JP2017020880A - Film thickness unevenness inspection device - Google Patents

Film thickness unevenness inspection device Download PDF

Info

Publication number
JP2017020880A
JP2017020880A JP2015138373A JP2015138373A JP2017020880A JP 2017020880 A JP2017020880 A JP 2017020880A JP 2015138373 A JP2015138373 A JP 2015138373A JP 2015138373 A JP2015138373 A JP 2015138373A JP 2017020880 A JP2017020880 A JP 2017020880A
Authority
JP
Japan
Prior art keywords
film thickness
resin film
light
inspection apparatus
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015138373A
Other languages
Japanese (ja)
Inventor
宏一 今井
Koichi Imai
宏一 今井
義人 水谷
Yoshito Mizutani
義人 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2015138373A priority Critical patent/JP2017020880A/en
Publication of JP2017020880A publication Critical patent/JP2017020880A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a film thickness unevenness inspection device capable of discriminating a portion where film thickness is thick and a portion where the film thickness is thin, when thickness unevenness of a resin film applied onto a substrate is inspected.SOLUTION: A film thickness unevenness inspection device 1 for inspecting thickness unevenness of a rein film 2 applied onto a substrate, includes: a stage 4 which holds the substrate; a light irradiation section 5 which irradiates the resin film 2 with light having a predetermined wavelength region; an imaging section 6 which acquires intensity distribution of fluorescent light emitted from the resin film 2 as an image; and a control section 7 which control the operations of the stage 4, the light irradiation section 5, and the imaging section 6, and has a function of processing an image signal acquired by the imaging section 6. The control section 7 specifies a portion where film thickness is thick and a portion where the film thickness is thin of the resin film 2 from fluorescence intensity distribution acquired by the imaging section 6.SELECTED DRAWING: Figure 2

Description

本発明は、基板上に塗布された樹脂膜の厚みムラを検査する膜厚ムラ検査装置に関する。   The present invention relates to a film thickness nonuniformity inspection apparatus that inspects a thickness nonuniformity of a resin film applied on a substrate.

配線基板等の基板上にレジスト膜等の樹脂膜を塗布する場合、厚みムラが生じることがある。この厚みムラが許容範囲を超えると、後工程の処理条件や最終製品の品質に悪影響を及ぼすことがある。このため、基板上に塗布された樹脂膜の膜厚ムラの検査が従来より行われている。   When a resin film such as a resist film is applied on a substrate such as a wiring substrate, thickness unevenness may occur. If this thickness unevenness exceeds the allowable range, it may adversely affect the processing conditions of the subsequent process and the quality of the final product. For this reason, the inspection of the film thickness nonuniformity of the resin film apply | coated on the board | substrate is performed conventionally.

膜厚ムラの検査として、特許文献1に記載されているような、基板上の樹脂膜に単色光を照射し、膜厚の違いによって生じる干渉縞を目視、あるいは撮像して合否を判定する方法が従来より知られている。   As an inspection of film thickness unevenness, a method of irradiating a resin film on a substrate with monochromatic light as described in Patent Document 1 and visually observing or imaging an interference fringe caused by a difference in film thickness to determine pass / fail Is conventionally known.

干渉縞を撮像して、膜厚ムラを検査する装置の一例を図8に示す。図8の光干渉式膜厚ムラ検査装置100では、光源105から発せられる光を光学フィルタ106により単波長化して(光源105がナトリウムランプのような単波長光源なら光学フィルタ106は不要)、基板3上の樹脂膜2に照射し、樹脂膜2からの反射光をカメラ107が撮像する構成となっている。ここで、樹脂膜2からの反射光強度は、樹脂膜表面2aでの反射光および樹脂膜裏面2b(基板3側)での反射光が干渉し、樹脂膜2の膜厚Tと反射光強度PRの関係で図9のような関係になり、基板3上の面内で膜厚2の変化があれば干渉縞が発生する。このため、撮像画像中の干渉縞により膜厚変化の有無が判る。すなわち、膜厚ムラを検査することが出来る。   An example of an apparatus for imaging interference fringes and inspecting film thickness unevenness is shown in FIG. In the optical interference type film thickness unevenness inspection apparatus 100 of FIG. 8, the light emitted from the light source 105 is converted into a single wavelength by the optical filter 106 (if the light source 105 is a single wavelength light source such as a sodium lamp, the optical filter 106 is not required), and the substrate 3, the camera 107 irradiates the resin film 2 on the surface 3 and images the reflected light from the resin film 2. Here, the reflected light intensity from the resin film 2 is such that the reflected light on the resin film surface 2a interferes with the reflected light on the resin film back surface 2b (substrate 3 side), and the film thickness T of the resin film 2 and the reflected light intensity. The relation of PR is as shown in FIG. 9, and if there is a change in the film thickness 2 in the plane on the substrate 3, interference fringes are generated. For this reason, the presence or absence of a film thickness change is known from the interference fringes in the captured image. That is, the film thickness unevenness can be inspected.

特開平9−329423号公報JP-A-9-329423

基板上に塗布した樹脂膜に厚みムラが生じた場合、厚みムラが生じた原因を解析して、塗布工程等で具体的な対策を施す必要がある。このため、厚みムラが生じている状態、すなわち膜厚が厚い部分と薄い部分を把握しておく必要がある。   When thickness unevenness occurs in the resin film applied on the substrate, it is necessary to analyze the cause of the thickness unevenness and take specific measures in the application process or the like. For this reason, it is necessary to grasp the state where the thickness unevenness occurs, that is, the thick and thin portions.

ところで、光干渉で膜厚ムラを検査する方法では、図9に示すように、膜厚が厚くなる場合と薄くなる場合の何れの場合にも干渉縞が生じることが判る。このため、干渉縞を用いる方法では、膜厚が変化している箇所は判るが、厚いのか薄いのかまでは判別出来ない。例えば、図10のように樹脂膜2に、膜厚部B2と薄膜部D2が存在する場合(上面から見た図10(a)のA−A断面図が図10(b)のようになっている)、反射光強度PRの面内分布を示す反射光画像VRは図11のようになり、膜厚部B2と薄膜部D2で同様にリング状に干渉縞が現れる。   By the way, in the method of inspecting the film thickness unevenness by optical interference, it can be seen that interference fringes occur in both cases where the film thickness becomes thicker and thinner, as shown in FIG. For this reason, in the method using the interference fringes, the portion where the film thickness is changed can be recognized, but it cannot be determined whether the film is thick or thin. For example, when the resin film 2 has a film thickness portion B2 and a thin film portion D2 as shown in FIG. 10 (the AA cross-sectional view of FIG. 10A viewed from the top is as shown in FIG. 10B). 11), the reflected light image VR showing the in-plane distribution of the reflected light intensity PR is as shown in FIG. 11, and interference fringes appear in a ring shape in the film thickness part B2 and the thin film part D2.

本発明は、上記問題に鑑みて成されたものであり、基板上に塗布された樹脂膜の厚みムラの検査を行うのに際して膜厚が厚い部分と薄い部分を見分けることが出来る膜厚ムラ検査装置を提供するものである。   The present invention has been made in view of the above problems, and a film thickness unevenness inspection capable of distinguishing between a thick part and a thin part when inspecting a thickness unevenness of a resin film applied on a substrate. A device is provided.

上記の課題を解決するために、請求項1に記載の発明は、
基板上に塗布された樹脂膜の厚みムラを検査する膜厚ムラ検査装置であって、
前記基板を保持するステージと、
前記樹脂膜に所定波長域の光を照射する光照射部と、
前記樹脂膜から発せられる蛍光の強度分布を画像として取得する撮像部と、
前記ステージ、前記光照射部および前記撮像部の動作を制御するとともに、前記撮像部が取得した画像信号を処理する機能を有する制御部とを備え、
前記制御部が、前記撮像部が取得した蛍光強度分布から、前記樹脂膜の厚みが薄い部分と、厚い部分を特定する機能を有している。
In order to solve the above problems, the invention described in claim 1
A film thickness non-uniformity inspection apparatus for inspecting a thickness non-uniformity of a resin film applied on a substrate,
A stage for holding the substrate;
A light irradiation unit for irradiating the resin film with light in a predetermined wavelength range;
An imaging unit that acquires an intensity distribution of fluorescence emitted from the resin film as an image;
A control unit that controls operations of the stage, the light irradiation unit, and the imaging unit, and that has a function of processing an image signal acquired by the imaging unit;
The control unit has a function of specifying a thin part and a thick part of the resin film from the fluorescence intensity distribution acquired by the imaging unit.

請求項2に記載の発明は、
請求項1に記載の膜厚ムラ検査装置であって、
前記撮像部は、撮像装置と、前記樹脂膜から前記撮像装置に至る光路上に配置される撮像部光学フィルタを備え、
前記撮像部光学フィルタが、前記樹脂膜から発せられる蛍光の波長域を透過する一方で、前記光照射部から照射される光の波長域を遮断する特性を有している。
The invention described in claim 2
The film thickness nonuniformity inspection apparatus according to claim 1,
The imaging unit includes an imaging device and an imaging unit optical filter disposed on an optical path from the resin film to the imaging device,
The imaging unit optical filter has a characteristic of blocking the wavelength range of light emitted from the light irradiation unit while transmitting the wavelength range of fluorescence emitted from the resin film.

請求項3に記載の発明は、
請求項1または請求項2に記載の膜厚ムラ検査装置であって、
前記光照射部が、光源と、光源と前記樹脂膜に至る光路上に配置される光照射部光学フィルタを備え、
前記光照射部光学フィルタが、前記樹脂膜から発せられる蛍光の波長域を遮断する特性を有している。
The invention according to claim 3
The film thickness nonuniformity inspection apparatus according to claim 1 or 2,
The light irradiator includes a light source, and a light irradiator optical filter disposed on an optical path leading to the light source and the resin film,
The said light irradiation part optical filter has the characteristic which interrupts | blocks the wavelength range of the fluorescence emitted from the said resin film.

請求項4に記載の発明は、
請求項1〜請求項3のいずれかに記載の膜厚ムラ検査装置であって、
前記光照射部が樹脂膜に照射する光の波長がの390nm〜550nmの範囲内であって、
前記撮像部が550nmより短い波長を遮断する特性を有している。
The invention according to claim 4
It is a film thickness nonuniformity inspection apparatus in any one of Claims 1-3,
The wavelength of the light irradiated to the resin film by the light irradiation unit is in the range of 390 nm to 550 nm,
The imaging unit has a characteristic of blocking wavelengths shorter than 550 nm.

請求項5に記載の発明は、
請求項1〜請求項4のいずれかに記載の膜厚ムラ検査装置であって、
前記撮像装置にTDIカメラを用い、
前記撮像部と前記光照射部に対し、前記ステージを相対的に移動させながら撮像することで蛍光画像分布を得る
The invention described in claim 5
It is a film thickness nonuniformity inspection apparatus in any one of Claims 1-4,
Using a TDI camera for the imaging device,
Fluorescence image distribution is obtained by imaging while moving the stage relative to the imaging unit and the light irradiation unit.

本発明の膜厚ムラ検査装置により、基板上に塗布された樹脂膜の厚みムラの検査を行うのに際して膜厚が厚い部分と薄い部分を容易に見分けることが出来る。   With the film thickness unevenness inspection apparatus of the present invention, it is possible to easily distinguish between a thick part and a thin part when inspecting the thickness unevenness of the resin film applied on the substrate.

本発明の一実施形態に係る膜厚ムラ検査装置の構成を示す図である。It is a figure which shows the structure of the film thickness nonuniformity inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る膜厚ムラ検査装置の機能を説明するための図である。It is a figure for demonstrating the function of the film thickness nonuniformity inspection apparatus which concerns on one Embodiment of this invention. (a)本発明の一実施形態に係る膜厚ムラ検査装置で得た基板の一断面における蛍光の強度分布の一例を示す図である(b)同検査装置で得た蛍光強度の面内分布の一例である。(A) It is a figure which shows an example of the fluorescence intensity distribution in the cross section of the board | substrate obtained with the film thickness nonuniformity inspection apparatus which concerns on one Embodiment of this invention. (B) The in-plane distribution of the fluorescence intensity obtained with the same inspection apparatus. It is an example. (a)本発明の一実施形態に係る膜厚ムラ検査装置において照射光強度分布が不均一な場合に膜厚ムラが検知し難いことを説明する図である(b)同強度分布が不均一な場合に得るべき蛍光の標準的な強度分布を示す図である。(A) It is a figure explaining that film thickness nonuniformity is difficult to detect when the irradiation light intensity distribution is nonuniform in the film thickness nonuniformity inspection apparatus according to one embodiment of the present invention. (B) The intensity distribution is nonuniform. It is a figure which shows the standard intensity distribution of the fluorescence which should be obtained in such a case. 本発明の一実施形態に係る膜厚ムラ検査装置の変形例の構成を示す図である。It is a figure which shows the structure of the modification of the film thickness nonuniformity inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る膜厚ムラ検査装置の変形例の機能を説明するための図である。It is a figure for demonstrating the function of the modification of the film thickness nonuniformity inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る膜厚ムラ検査装置の別の変形例の構成を示す図である。It is a figure which shows the structure of another modification of the film thickness nonuniformity inspection apparatus which concerns on one Embodiment of this invention. 光干渉で膜厚ムラを検査する装置の一例である。It is an example of the apparatus which test | inspects film thickness nonuniformity by optical interference. 膜厚変化により反射光に干渉縞が現れる原理を説明する図である。It is a figure explaining the principle in which an interference fringe appears in reflected light by a film thickness change. (a)基板上に塗布された樹脂膜に厚い部分と薄い部分がある場合を上面から見た図である。(b)同樹脂膜に厚い部分と薄い部分が存在する線状の断面図を示す図である。(A) It is the figure which looked at the case where there exist a thick part and a thin part in the resin film apply | coated on the board | substrate from the upper surface. (B) It is a figure which shows the linear cross section in which the thick part and thin part exist in the resin film. 基板上に塗布された樹脂膜に厚い部分と薄い部分があるものに単色光を照射したときの反射光を示す図である。It is a figure which shows the reflected light when a monochromatic light is irradiated to what has a thick part and a thin part in the resin film apply | coated on the board | substrate.

本発明の実施形態について、図面を用いて説明する。
まず、図1に示した本発明に係る一実施形態である膜厚ムラ検査装置1について説明する。なお、図2は膜厚検査装置1の機能を説明する際に用いる図であり、図1のX方向から見た様子を示している。
Embodiments of the present invention will be described with reference to the drawings.
First, the film thickness nonuniformity inspection apparatus 1 which is one embodiment according to the present invention shown in FIG. 1 will be described. 2 is a diagram used when explaining the function of the film thickness inspection apparatus 1, and shows a state seen from the X direction of FIG.

膜厚ムラ検査装置1の検査対象である樹脂膜2は基板3上に塗布されている。膜厚ムラ検査装置1は、ステージ4、光照射部5、撮像部6、および制御部7を備えている。なお、本実施形態において基板3を保持する面をXY平面として、XY平面に直交する方向をZ方向とする。   A resin film 2 to be inspected by the film thickness unevenness inspection apparatus 1 is applied on a substrate 3. The film thickness unevenness inspection apparatus 1 includes a stage 4, a light irradiation unit 5, an imaging unit 6, and a control unit 7. In the present embodiment, the surface holding the substrate 3 is the XY plane, and the direction orthogonal to the XY plane is the Z direction.

樹脂膜2は、エポキシやポリイミド等の樹脂を主成分としたものであり、可視域の光照射に対して極めて微弱ながら蛍光を発するものである。このため、樹脂膜2には、蛍光材を敢えて添加しなくても良い。なお、蛍光と表記しているのは、光照射を受けた分子が励起されて発する照射光より長波長の光のことであり、蛍光のみならず燐光も含むものとする。ここで、蛍光は照射された光が膜内の分子が励起されて発せられるものなので、膜厚が厚いほど励起される分子が増えて蛍光強度が増しやすい。   The resin film 2 is mainly composed of a resin such as epoxy or polyimide, and emits fluorescence while being extremely weak against visible light irradiation. For this reason, it is not necessary to add a fluorescent material to the resin film 2. Note that “fluorescence” refers to light having a longer wavelength than the irradiation light emitted when the molecule irradiated with light is excited, and includes phosphorescence as well as fluorescence. Here, since the emitted light is emitted by exciting the molecules in the film, the number of excited molecules increases and the fluorescence intensity tends to increase as the film thickness increases.

基板3は、配線基板等を形成するものであり、材質としてはガラス、セラミックス、シリコン等の無機材料を主成分とし、樹脂膜2が蛍光を発する条件において蛍光を発しない(或いは樹脂膜2に比べて極めて弱い)ものが本発明において有効である。また、金属は蛍光を発しないため、基板3上に銅等の金属配線が施されていても良い。   The substrate 3 forms a wiring substrate or the like. The substrate 3 is mainly composed of an inorganic material such as glass, ceramics, or silicon, and does not emit fluorescence under the condition that the resin film 2 emits fluorescence (or the resin film 2 does not emit light). Those which are extremely weak compared with each other are effective in the present invention. In addition, since metal does not emit fluorescence, metal wiring such as copper may be provided on the substrate 3.

ステージ4は、図示しない平坦なテーブル上に配置されており、基板3を真空吸着等により保持する機能と、基板3を保持した状態でテーブル上をXY面内で移動する機能を有している。   The stage 4 is disposed on a flat table (not shown), and has a function of holding the substrate 3 by vacuum suction or the like and a function of moving on the table in the XY plane while holding the substrate 3. .

光照射部5は、樹脂膜2に所定の波長域の光を照射する機能を有している。光照射部5は、光源51と所定波長域の光を透過させる光照射部光学フィルタ52を構成要素としている。   The light irradiation unit 5 has a function of irradiating the resin film 2 with light in a predetermined wavelength range. The light irradiating unit 5 includes a light source 51 and a light irradiating unit optical filter 52 that transmits light in a predetermined wavelength range.

光源51には白色光源を用いても良いが、発光ダイオード(以下LED光源と記す)や半導体レーザー(以下LD光源と記す)のような単色光源を用いれば、光照射部フィルタ52を省ける可能性がある。   A white light source may be used as the light source 51, but if a monochromatic light source such as a light emitting diode (hereinafter referred to as an LED light source) or a semiconductor laser (hereinafter referred to as an LD light source) is used, the light irradiation unit filter 52 may be omitted. There is.

光学フィルタ52の機能としては、所定波長域の光を透過するとともに、(所定波長域の光を照射することで)樹脂膜2から発せられる蛍光の波長域を遮断することが必要である。すなわち、樹脂膜2から発せられる蛍光は微弱であるので、この蛍光を検出する際の外乱となる光を照射光から除外しておく必要がある。例えば、光源51にLED光源やLD光源のような単色光源を用いた場合であっても、その発光波長に蛍光の波長域と重なる部分があったら、光照射部光学フィルタ52を省くことは出来ない。ただし、光源51として、発光波長が所定波長域内に含まれ、蛍光の波長域と重なるような波長を含まないものを用いたら、光照射部光学フィルタ52を省くことが出来る。   As a function of the optical filter 52, it is necessary to transmit light in a predetermined wavelength region and to block the wavelength region of fluorescence emitted from the resin film 2 (by irradiating light in the predetermined wavelength region). That is, since the fluorescence emitted from the resin film 2 is weak, it is necessary to exclude light that becomes a disturbance when detecting the fluorescence from the irradiation light. For example, even when a monochromatic light source such as an LED light source or an LD light source is used as the light source 51, the light irradiation unit optical filter 52 can be omitted if there is a portion where the emission wavelength overlaps the fluorescent wavelength region. Absent. However, if the light source 51 includes a light emission wavelength that is included in a predetermined wavelength range and does not include a wavelength that overlaps the fluorescence wavelength range, the light irradiation unit optical filter 52 can be omitted.

所定の波長域として、蛍光強度を高めるためには短波長側であることが望ましいが、短波長域の光は樹脂膜2に悪影響を及ぼす懸念があり、特に樹脂膜2が感光性レジストの場合において紫外域の光は好ましくない。このため、所定域の波長としては可視域、すなわち390nmより長いことが望ましい。ただし、樹脂膜2に波長が550nmより長い光を照射しても、撮像部6が検知出来る蛍光発光が得にくくなるので好ましくない。すなわち、所定の波長域は390nm〜550nmの範囲内にあることが望ましい。   In order to increase the fluorescence intensity as a predetermined wavelength range, it is desirable to be on the short wavelength side, but there is a concern that light in the short wavelength range may adversely affect the resin film 2, especially when the resin film 2 is a photosensitive resist. In this case, ultraviolet light is not preferable. For this reason, it is desirable that the wavelength in the predetermined range is longer than the visible range, that is, 390 nm. However, it is not preferable to irradiate the resin film 2 with light having a wavelength longer than 550 nm because fluorescence emission that can be detected by the imaging unit 6 is difficult to obtain. That is, the predetermined wavelength range is desirably in the range of 390 nm to 550 nm.

光照射部5が光を照射する樹脂膜2の範囲は、撮像部6の視野によって異なるが、図1においては、後述するように撮像部6の視野領域2Lが直線状になっている。このため、光源51および光照射部光学フィルタは視野領域2L均一に照射する形状となっている。なお、図示はしていないが、視野領域2Lに光を集光するためのレンズを光源51から樹脂膜2の光路上に配置しても良い。   The range of the resin film 2 to which the light irradiation unit 5 emits light varies depending on the field of view of the imaging unit 6, but in FIG. 1, the field region 2L of the imaging unit 6 is linear as will be described later. For this reason, the light source 51 and the light irradiation unit optical filter have a shape that uniformly irradiates the visual field region 2L. Although not shown, a lens for condensing light in the visual field region 2L may be disposed on the optical path of the resin film 2 from the light source 51.

撮像部6は、樹脂膜2から発せられる蛍光の強度分布を取得する機能を有している。撮像部6は撮像装置61および撮像部光学フィルタ62を構成要素としている。撮像部光学フィルタ62は、光照射部5が樹脂膜2に照射する光の波長域を遮断する一方で、樹脂膜2が発する蛍光の波長域を透過させる機能を有している。   The imaging unit 6 has a function of acquiring the intensity distribution of fluorescence emitted from the resin film 2. The imaging unit 6 includes an imaging device 61 and an imaging unit optical filter 62 as constituent elements. The imaging unit optical filter 62 has a function of transmitting the wavelength range of the fluorescence emitted by the resin film 2 while blocking the wavelength range of the light irradiated by the light irradiation unit 5 onto the resin film 2.

撮像装置61は、視野内の画素毎の光強度を電気信号に変換する機能を有しており、例えば、CCD固体撮像素子、MOSイメージセンサおよびCMOSイメージセンサなどが用いられる。撮像装置61としては、画素が2次元配列のエリアカメラと、画素が1次元配列のラインセンサカメラの何れかを用いる。撮像装置としてラインセンサカメラを用いた場合は、図1のように視野領域2LがX方向の直線状となるが、光照射部5と撮像部6に対して、(相対的に)ステージ4をY方向に一定距離移動させる度に撮像を行うことにより2次元的な蛍光分布を取得することが出来る。   The imaging device 61 has a function of converting the light intensity of each pixel in the field of view into an electrical signal. For example, a CCD solid-state imaging device, a MOS image sensor, a CMOS image sensor, or the like is used. As the imaging device 61, either an area camera having two-dimensional pixels or a line sensor camera having one-dimensional pixels is used. When a line sensor camera is used as the imaging device, the visual field region 2L is linear in the X direction as shown in FIG. 1, but the stage 4 is (relatively) arranged relative to the light irradiation unit 5 and the imaging unit 6. A two-dimensional fluorescence distribution can be acquired by taking an image every time a certain distance is moved in the Y direction.

本実施形態においては、視野領域に均一な強度の光を照射する場合、2次元視野よりは1次元視野の方が装置構成的に容易であるという理由から、図1のような視野領域2Lとしている。直線的な視野領域2Lに対しては、一般的なラインセンサカメラの他に、TDIカメラ(Time Delay Integration Camera)を適用することも可能である。TDIカメラは、視野自体は1次元であるが、2次元配列された画素を活かして受光感度を高めたものである。TDIカメラは高感度であるため微弱な光の強度を測るのに適しており、特に可視光を受けた際に発するような極めて微弱な蛍光の強度測定には好適である。   In the present embodiment, when irradiating light of uniform intensity to the visual field region, the one-dimensional visual field is easier to construct as the visual field region 2L as shown in FIG. 1 than the two-dimensional visual field. Yes. In addition to a general line sensor camera, a TDI camera (Time Delay Integration Camera) can be applied to the linear visual field 2L. The TDI camera has a one-dimensional field of view, but uses a two-dimensionally arranged pixel to increase the light receiving sensitivity. Since the TDI camera has high sensitivity, it is suitable for measuring the intensity of faint light, and is particularly suitable for measuring the intensity of extremely weak fluorescence emitted when receiving visible light.

制御部7は、具体的には、CPU、ROM、RAM、HDD等がバスで接続される構成される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。制御部7は、ステージ4、光照射部5および撮像部6の機能を制御するとともに、撮像部6の撮像装置61が取得した蛍光分布を画像信号として処理する機能を有している。   Specifically, the control unit 7 may have a configuration in which a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like. The control unit 7 has a function of controlling the functions of the stage 4, the light irradiation unit 5, and the imaging unit 6 and processing the fluorescence distribution acquired by the imaging device 61 of the imaging unit 6 as an image signal.

制御部7は、ステージ4に接続され、基板3の保持、ステージ4のXY方向での移動を制御する機能を有する。制御部7は、光照射部5に接続され、光照射の方向、光源51の点滅および点灯電力を制御する機能を有している。制御部7は、撮像部6に接続され、撮像視野の調整、撮像装置61による画像取り込みを制御する機能を有している。また、制御部7は撮像装置61が取得した画像を処理する機能も有している。   The control unit 7 is connected to the stage 4 and has a function of controlling the holding of the substrate 3 and the movement of the stage 4 in the XY directions. The control unit 7 is connected to the light irradiation unit 5 and has a function of controlling the direction of light irradiation, blinking of the light source 51 and lighting power. The control unit 7 is connected to the imaging unit 6 and has a function of controlling adjustment of the imaging field of view and image capture by the imaging device 61. The control unit 7 also has a function of processing an image acquired by the imaging device 61.

本発明に係る膜厚ムラ検査装置1では、図1に示す樹脂膜2の視野領域2Lに、光を照射する。ここで、視野領域2Lに照射するのは、図2に示すように、光源51から発せられた後に、光照射部光学フィルタ52を透過して、所定波長域となった光LIである。ここで、所定波長域は前述のとおり390〜550nmの範囲内にあることが望ましい。   In the film thickness unevenness inspection apparatus 1 according to the present invention, light is irradiated to the visual field region 2L of the resin film 2 shown in FIG. Here, as shown in FIG. 2, what is irradiated to the visual field region 2L is light LI emitted from the light source 51 and transmitted through the light irradiation unit optical filter 52 to become a predetermined wavelength region. Here, it is desirable that the predetermined wavelength range is in the range of 390 to 550 nm as described above.

視野領域2Lの樹脂膜2は、図2に示すように、光LIを受けることにより、蛍光FOを発する。この蛍光FOは、撮像部光学フィルタ62を透過して撮像装置61で電気信号に変換される。なお、光LIは視野領域2Lで一部が反射されるが、反射光は撮像光学フィルタ62で遮断される。   As shown in FIG. 2, the resin film 2 in the visual field region 2L emits fluorescent FO by receiving the light LI. The fluorescent FO passes through the imaging unit optical filter 62 and is converted into an electrical signal by the imaging device 61. The light LI is partially reflected by the visual field region 2L, but the reflected light is blocked by the imaging optical filter 62.

視野領域2Lから発せられた蛍光FOは、撮像装置61により電気信号に変換されるがその一例を図3(a)に示す。図3(a)は、図10(a)のA−Aに相当する部分、すなわち図10(b)のような断面形状を有する領域を視野領域2Lとしたものであり、蛍光強度PFは膜厚が厚い部分で強く、膜厚が薄い部分で弱くなっている。そこで、蛍光強度PFに一定の範囲Gを設けて、蛍光強度PFが範囲Gの上限を超える部分は膜厚が厚く、範囲Gの下限に満たないものは膜厚が薄いと判定することが出来る。このような判定は、撮像装置61が取得した画像を処理する機能を有した、制御部7が行う。   The fluorescence FO emitted from the visual field region 2L is converted into an electric signal by the imaging device 61. An example thereof is shown in FIG. FIG. 3A shows a portion corresponding to AA in FIG. 10A, that is, a region having a cross-sectional shape as shown in FIG. 10B as a visual field region 2L. It is strong at the thick part and weak at the thin part. Therefore, it is possible to determine that a certain range G is provided for the fluorescence intensity PF, the portion where the fluorescence intensity PF exceeds the upper limit of the range G is thick, and the portion where the fluorescence intensity PF is less than the lower limit of the range G is thin. . Such a determination is performed by the control unit 7 having a function of processing an image acquired by the imaging device 61.

本実施形態においてはラインセンサカメラにより視野領域2Lが、図1におけるX方向の1次元になっている。このため、基板3全面について膜厚ムラ検査を行うためには、Y方向において、少なくとも検査領域(例えば、図10(a)のY0からY1)が入る範囲において、ステージ4をY方向に一定量移動させながら、撮像装置61が画像を取り込むように、制御部7がステージ4と撮像装置61を制御する。なお、ステージ4を移動させる代わりに撮像部6をY方向に移動させても良い。なお、撮像毎にステージ4をY方向に一定量移動する際の移動量は、必要に応じて任意に設定して良いが、ライセンサカメラの画素数によって決まるX方向の分解能と同程度が望ましい。   In the present embodiment, the visual field region 2L is one-dimensional in the X direction in FIG. 1 by the line sensor camera. Therefore, in order to perform the film thickness nonuniformity inspection on the entire surface of the substrate 3, the stage 4 is moved in the Y direction by a certain amount in the Y direction at least in the range where the inspection region (for example, Y0 to Y1 in FIG. 10A) is included. While moving, the control unit 7 controls the stage 4 and the imaging device 61 so that the imaging device 61 captures an image. Instead of moving the stage 4, the imaging unit 6 may be moved in the Y direction. Note that the amount of movement when the stage 4 is moved in the Y direction by a certain amount for each imaging may be arbitrarily set as necessary, but is preferably about the same as the resolution in the X direction determined by the number of pixels of the licensor camera.

ステージ4と撮像部6をY方向に相対移動することによって得た、蛍光の2次元強度分布の一例を図3(b)に示す。図3(b)においては、蛍光を発していない部分を黒くし、蛍光強度が増すに従い、グレーから白へと変化している。蛍光が強いと膜厚が厚く、蛍光が弱いと膜厚が薄いという特徴から、図2(b)では、基板3面上において、樹脂膜2の厚い部分と薄い部分を容易に見分けることが出来る。これは、光干渉を用いる方法で得た結果(図11)とは大きく異なる。   An example of the two-dimensional intensity distribution of fluorescence obtained by relatively moving the stage 4 and the imaging unit 6 in the Y direction is shown in FIG. In FIG.3 (b), the part which is not emitting fluorescence is blackened, and it changes from gray to white as fluorescence intensity increases. Since the film thickness is thick when the fluorescence is strong and the film thickness is thin when the fluorescence is weak, in FIG. 2B, the thick part and the thin part of the resin film 2 can be easily distinguished on the surface of the substrate 3. . This is very different from the result obtained by the method using optical interference (FIG. 11).

ところで、図3(a)において、樹脂膜3の膜厚が同じであれば、場所に係わらず蛍光強度PFが同じになっているが、光源51によっては樹脂膜2に照射する光LIの強度がX方向で均一にならない場合がある。すなわち、視野領域2Lの幅(X方向)に対する光源61の幅(X方向)によっては、視野領域2Lの両端側において光LIが弱くなる。このような場合、光LIの強度分布が蛍光FOに反映される。その一例を、図10(a)のA−Aに相当する部分、すなわち図10(b)のような断面形状を有する領域を視野領域2Lとした場合について、図4(a)に示す。図4(a)では、周辺に対して蛍光強度PFが強い部分と弱い部分があることは判るが、図3(a)のように膜厚が厚い薄いを判別するような範囲Gを設けることが出来ない。そこで、樹脂膜2の膜厚が同じでも蛍光強度PFが場所により異なる場合においては、図3(b)のような標準的な蛍光強度PFの分布を得て、各場所毎に標準的な蛍光強度PFとの比較で膜厚が厚いか薄いかを判定する機能を制御部7が有するようにすれば良い。   By the way, in FIG. 3A, if the resin film 3 has the same film thickness, the fluorescence intensity PF is the same regardless of the location, but depending on the light source 51, the intensity of the light LI irradiated to the resin film 2 is the same. May not be uniform in the X direction. That is, depending on the width (X direction) of the light source 61 with respect to the width (X direction) of the visual field region 2L, the light LI becomes weak at both ends of the visual field region 2L. In such a case, the intensity distribution of the light LI is reflected in the fluorescence FO. An example of this is shown in FIG. 4A in the case where the portion corresponding to AA in FIG. 10A, that is, the region having the cross-sectional shape as shown in FIG. In FIG. 4A, it can be seen that there are a portion where the fluorescence intensity PF is strong and a weak portion with respect to the periphery, but a range G is provided to discriminate whether the film thickness is thick or thin as shown in FIG. I can not. Therefore, when the fluorescence intensity PF differs depending on the location even if the resin film 2 has the same film thickness, a standard fluorescence intensity PF distribution as shown in FIG. 3B is obtained, and the standard fluorescence is obtained for each location. What is necessary is just to make it the control part 7 have the function to determine whether a film thickness is thick or thin compared with intensity | strength PF.

以上、図1の膜厚ムラ検査装置1を例に本発明の実施形態を説明してきたが、本発明の実施形態の変形例を図5に示す。図5の膜厚ムラ検査装置11においては、光照射部5と樹脂膜2の光路上にハーフミラー8を配置し、図6に示すように、光LIはハーフミラー8で反射した後に樹脂膜2に照射され、樹脂膜2が発した蛍光FOはハーフミラー8を透過して撮像部6に至る構成となっている。ここで、ハーフミラー8にダイクロイックミラーを用いれば、光照射部フィルター52と撮像部光学フィルター62の機能をダイクロイックミラーであるハーフミラー8に担わせることも可能となる。   The embodiment of the present invention has been described above by taking the film thickness unevenness inspection apparatus 1 of FIG. 1 as an example. FIG. 5 shows a modification of the embodiment of the present invention. In the film thickness nonuniformity inspection apparatus 11 of FIG. 5, the half mirror 8 is arrange | positioned on the optical path of the light irradiation part 5 and the resin film 2, and the resin film is reflected after the light LI is reflected by the half mirror 8, as shown in FIG. The fluorescent FO emitted from the resin film 2 is transmitted through the half mirror 8 and reaches the imaging unit 6. Here, if a dichroic mirror is used as the half mirror 8, the functions of the light irradiation unit filter 52 and the imaging unit optical filter 62 can be assigned to the half mirror 8 which is a dichroic mirror.

また、本発明の実施形態の別の変形例を図7に示す。図7の膜厚ムラ検査装置21では、撮像装置61として2次元画像を取得するエリアカメラを使用している。ここまでの説明では蛍光強度が微弱であることを前提として、撮像装置61としてはラインセンサカメラで望ましくはTDIカメラを利用するが、比較的蛍光強度が高い場合においては図7の視野領域2Aのような2次元領域で蛍光画像を取得するエリアカメラを採用しても良い。例えば、蛍光材が含まれているような樹脂膜2を検査対象とする場合にはエリアカメラも採用可能である。   FIG. 7 shows another modification of the embodiment of the present invention. In the film thickness nonuniformity inspection apparatus 21 in FIG. 7, an area camera that acquires a two-dimensional image is used as the imaging apparatus 61. In the above description, on the assumption that the fluorescence intensity is weak, a line sensor camera and preferably a TDI camera are preferably used as the imaging device 61. However, when the fluorescence intensity is relatively high, the field of view field 2A in FIG. You may employ | adopt the area camera which acquires a fluorescence image in such a two-dimensional area | region. For example, when a resin film 2 containing a fluorescent material is to be inspected, an area camera can also be employed.

1 膜厚ムラ検査装置
2 樹脂膜
3 基板
4 ステージ
5 光照射部
6 撮像部
7 制御部
8 ハーフミラー
10 制御部
51 光源
52 光照射部光学フィルタ
61 撮像装置
62 撮像部光学フィルタ
DESCRIPTION OF SYMBOLS 1 Thickness nonuniformity inspection apparatus 2 Resin film 3 Substrate 4 Stage 5 Light irradiation part 6 Imaging part 7 Control part 8 Half mirror 10 Control part 51 Light source 52 Light irradiation part Optical filter 61 Imaging device 62 Imaging part Optical filter

Claims (5)

基板上に塗布された樹脂膜の厚みムラを検査する膜厚ムラ検査装置であって、
前記基板を保持するステージと、
前記樹脂膜に所定波長域の光を照射する光照射部と、
前記樹脂膜から発せられる蛍光の強度分布を画像として取得する撮像部と、
前記ステージ、前記光照射部および前記撮像部の動作を制御するとともに、前記撮像部が取得した画像信号を処理する機能を有する制御部とを備え、
前記制御部が、前記撮像部が取得した蛍光強度分布から、前記樹脂膜の厚みが薄い部分と、厚い部分を特定する機能を有している膜厚ムラ検査装置。
A film thickness non-uniformity inspection apparatus for inspecting a thickness non-uniformity of a resin film applied on a substrate,
A stage for holding the substrate;
A light irradiation unit for irradiating the resin film with light in a predetermined wavelength range;
An imaging unit that acquires an intensity distribution of fluorescence emitted from the resin film as an image;
A control unit that controls operations of the stage, the light irradiation unit, and the imaging unit, and that has a function of processing an image signal acquired by the imaging unit;
The film thickness nonuniformity inspection apparatus in which the control unit has a function of specifying a thin part and a thick part of the resin film from the fluorescence intensity distribution acquired by the imaging unit.
請求項1に記載の膜厚ムラ検査装置であって、
前記撮像部は、撮像装置と、前記樹脂膜から前記撮像装置に至る光路上に配置される撮像部光学フィルタを備え、
前記撮像部光学フィルタが、前記樹脂膜から発せられる蛍光の波長域を透過する一方で、前記光照射部から照射される光の波長域を遮断する特性を有している膜厚ムラ検査装置。
The film thickness nonuniformity inspection apparatus according to claim 1,
The imaging unit includes an imaging device and an imaging unit optical filter disposed on an optical path from the resin film to the imaging device,
The film thickness nonuniformity inspection apparatus which has the characteristic which the said imaging part optical filter permeate | transmits the wavelength range of the fluorescence emitted from the said resin film, and interrupts | blocks the wavelength range of the light irradiated from the said light irradiation part.
請求項1または請求項2に記載の膜厚ムラ検査装置であって、
前記光照射部が、光源と、光源と前記樹脂膜に至る光路上に配置される光照射部光学フィルタを備え、
前記光照射部光学フィルタが、前記樹脂膜から発せられる蛍光の波長域を遮断する特性を有している膜厚ムラ検査装置。
The film thickness nonuniformity inspection apparatus according to claim 1 or 2,
The light irradiator includes a light source, and a light irradiator optical filter disposed on an optical path leading to the light source and the resin film,
The film thickness nonuniformity inspection apparatus in which the light irradiation unit optical filter has a characteristic of blocking a wavelength range of fluorescence emitted from the resin film.
請求項1〜請求項3のいずれかに記載の膜厚ムラ検査装置であって、
前記光照射部が樹脂膜に照射する光の波長がの390nm〜550nmの範囲内であって、
前記撮像部が550nmより短い波長を遮断する特性を有している膜厚ムラ検査装置。
It is a film thickness nonuniformity inspection apparatus in any one of Claims 1-3,
The wavelength of the light irradiated to the resin film by the light irradiation unit is in the range of 390 nm to 550 nm,
A film thickness unevenness inspection apparatus in which the imaging unit has a characteristic of blocking wavelengths shorter than 550 nm.
請求項1〜請求項4のいずれかに記載の膜厚ムラ検査装置であって、
前記撮像装置にTDIカメラを用い、
前記撮像部と前記光照射部に対し、前記ステージを相対的に移動させながら撮像することで蛍光画像分布を得る膜厚ムラ検査装置。
It is a film thickness nonuniformity inspection apparatus in any one of Claims 1-4,
Using a TDI camera for the imaging device,
A film thickness nonuniformity inspection apparatus that obtains a fluorescence image distribution by imaging while moving the stage relative to the imaging unit and the light irradiation unit.
JP2015138373A 2015-07-10 2015-07-10 Film thickness unevenness inspection device Pending JP2017020880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138373A JP2017020880A (en) 2015-07-10 2015-07-10 Film thickness unevenness inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138373A JP2017020880A (en) 2015-07-10 2015-07-10 Film thickness unevenness inspection device

Publications (1)

Publication Number Publication Date
JP2017020880A true JP2017020880A (en) 2017-01-26

Family

ID=57889501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138373A Pending JP2017020880A (en) 2015-07-10 2015-07-10 Film thickness unevenness inspection device

Country Status (1)

Country Link
JP (1) JP2017020880A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916317A (en) * 2019-03-06 2019-06-21 武汉理工大学 A kind of caliberating device and method of fluorescence imaging membrane thickness measuring system
KR102326795B1 (en) * 2020-06-26 2021-11-17 (주) 제이와이 Lamp unit for inspecting synthetic resin coating substrate and inspecting method thereof
WO2024053672A1 (en) * 2022-09-08 2024-03-14 オムロン キリンテクノシステム株式会社 Resin molded article inspection method, inspection device, and computer program used therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916317A (en) * 2019-03-06 2019-06-21 武汉理工大学 A kind of caliberating device and method of fluorescence imaging membrane thickness measuring system
CN109916317B (en) * 2019-03-06 2023-09-19 武汉理工大学 Calibration device and method of fluorescence imaging film thickness measurement system
KR102326795B1 (en) * 2020-06-26 2021-11-17 (주) 제이와이 Lamp unit for inspecting synthetic resin coating substrate and inspecting method thereof
WO2024053672A1 (en) * 2022-09-08 2024-03-14 オムロン キリンテクノシステム株式会社 Resin molded article inspection method, inspection device, and computer program used therefor

Similar Documents

Publication Publication Date Title
US7504642B2 (en) Photoluminescence imaging with preferential detection of photoluminescence signals emitted from a specified material layer of a wafer or other workpiece
KR102547930B1 (en) Inspection device and inspection method
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
US11009461B2 (en) Defect investigation device simultaneously detecting photoluminescence and scattered light
WO2012176106A4 (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
KR20130138214A (en) Defect inspection and photoluminescence measurement system
WO2020195136A1 (en) Inspection device and inspection method
JP5830229B2 (en) Wafer defect inspection system
KR20160068228A (en) Apparatus for inspecting defects of a substrate
JP2017020880A (en) Film thickness unevenness inspection device
KR101577119B1 (en) Pattern inspection apparatus and pattern inspection method
KR20180054416A (en) Optical inspecting apparatus
JP2014163857A (en) Fluorescence emitter inspection device
WO2020195137A1 (en) Inspection device and inspection method
JP6119784B2 (en) Foreign object inspection method
JP2018040761A (en) Device for inspecting appearance of inspection target object
JP2009236760A (en) Image detection device and inspection apparatus
JP2017075838A (en) Wafer inspection device and wafer inspection method
KR20220123378A (en) Inspection device and inspection method
JP5973846B2 (en) Method and apparatus for inspecting modified pattern of liquid repellent resin
JP6720429B1 (en) Inspection device and inspection method
JP7291676B2 (en) Inspection device and inspection method
TWI834843B (en) Inspection equipment and inspection methods
JP2014130112A (en) Inspection device and inspection method for microlens array for scanning exposure
WO2022209263A1 (en) Inspection method, conductive member, and inspection device