JP2017011369A - 構造体及びアンテナ - Google Patents

構造体及びアンテナ Download PDF

Info

Publication number
JP2017011369A
JP2017011369A JP2015122117A JP2015122117A JP2017011369A JP 2017011369 A JP2017011369 A JP 2017011369A JP 2015122117 A JP2015122117 A JP 2015122117A JP 2015122117 A JP2015122117 A JP 2015122117A JP 2017011369 A JP2017011369 A JP 2017011369A
Authority
JP
Japan
Prior art keywords
conductor
planar conductor
planar
unit
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015122117A
Other languages
English (en)
Inventor
淳 守田
Jun Morita
淳 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015122117A priority Critical patent/JP2017011369A/ja
Publication of JP2017011369A publication Critical patent/JP2017011369A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

【課題】特定の周波数の入射される電磁波を同相で反射する、又は、特定の周波数帯域の電磁波に対して高いインピーダンス特性を有する小型の導体の構造体を提供すること。【解決手段】互いに平行な複数の平面に形成される導体を含む構造体において、第1の面状導体、第2の面状導体、及び第1の面状導体と第2の面状導体とを接続する第1の導体を含む第1の単位が第1の平面にアレイ状に配置され、第3の面状導体、第4の面状導体、及び第3の面状導体と第4の面状導体とを接続する第2の導体を含む第2の単位が、第1の平面と異なる第2の平面にアレイ状に配置され、第1の単位と第2の単位とは接続されておらず、第1の単位は、複数の平面の垂直方向から見て、第1の単位に含まれる第1の面状導体が、第2の単位の1つの第3の面状導体と重なるように配置されると共に、第2の面状導体が第2の単位のその1つの第4の面状導体と重ならないように配置される。【選択図】 図1

Description

本発明は、特定の周波数の電磁波に作用する導体の構造体、及び、アンテナに関する。
近年、特定の周波数で入射された電磁波(入射波)を同相で反射する構造体、または、特定の周波数帯域の電磁波に対して高いインピーダンス特性を有する構造体が検討されている。これは、磁気壁(Magnetic Wall)または完全磁性体(Perfect Magnetic Conductor)と同様の働きをし、人工磁性体(Artificial Magnetic Conductor)又はAMCと呼ばれることもある。このような構造体は、例えばアンテナ装置を小型化するのに用いられうる。
特許文献1には、特定の周波数において高いインピーダンス特性を有する人工磁気壁の構造として、グランド層と導体とからなるトップ層の間に浮遊キャパシタ層を設けた単位セルを有する構造体を含む、アンテナ装置が記載されている。また、特許文献2には、特定周波数帯の電磁波の伝搬を阻止するバンドギャップ面を有する基板上に、バンドギャップ面に沿って、特定の周波数帯に属する作動周波数帯の円偏波を送受信する進行波型のアンテナを配置したアンテナ装置が記載されている。
特開2009−218971号公報 特開2009−100445号公報
一般に、電子機器は小形化されることが要求されるため、電子機器の電気回路基板も小形化されることが要求される。また、その結果、電気回路基板に実装される部品、回路パターン等も小型化されることが要求されうる。したがって、上述のような、特定の周波数の入射された電磁波(入射波)を同相で反射する構造体、又は、特定の周波数帯域の電磁波に対して高いインピーダンス特性を有する構造体も、小型化されることが要求される。
本発明は上記課題に鑑みなされたものであり、特定の周波数の入射される電磁波を同相で反射する、又は、特定の周波数帯域の電磁波に対して高いインピーダンス特性を有する小型の導体の構造体を提供することを目的とする。
上記目的を達成するため、本発明による構造体は、互いに平行な複数の平面に形成される導体を含み、所定の周波数の電磁波を同相で反射する構造体であって、第1の面状導体、第2の面状導体、及び前記第1の面状導体と前記第2の面状導体とを接続する第1の導体を含む第1の単位が、前記複数の平面のうちの第1の平面にアレイ状に配置され、第3の面状導体、第4の面状導体、及び前記第3の面状導体と前記第4の面状導体とを接続する第2の導体を含む第2の単位が、前記複数の平面のうちの前記第1の平面とは異なる第2の平面にアレイ状に配置され、前記第1の単位と前記第2の単位とは接続されておらず、前記第1の単位は、前記複数の平面の垂直方向から見て、当該第1の単位に含まれる前記第1の面状導体が、前記第2の単位の1つの前記第3の面状導体と重なるように配置されると共に、前記第2の面状導体が前記第2の単位の当該1つの前記第4の面状導体と重ならないように配置される、ことを特徴とする。
本発明によれば、特定の周波数の入射される電磁波を同相で反射する、又は、特定の周波数帯域の電磁波に対して高いインピーダンス特性を有する小型の導体の構造体を提供することができる。
構成例1に係るAMCの単位セルの構成例を示す図。 図1の単位セルを周期的に並べたAMCの構成例を示す図。 図1及び図2のAMCにおいて、入射波がY軸方向にのみ電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 構成例1に係るAMCの単位セルの別の構成例を示す図。 図4のAMCにおいて、入射波がY軸方向にのみ電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 構成例2に係るAMCの単位セルの構成例を示す図。 図6の単位セルを周期的に並べたAMCの構成例を示す図。 図6及び図7のAMCにおいて、入射波がY軸方向にのみ電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 構成例3に係るAMCの単位セルの構成例を示す図。 図9の単位セルを周期的に並べたAMCの構成例を示す図。 図9のAMCにおいて、入射波がY軸方向にのみ電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 図1のAMCにおいて、面状導体の辺の長さa及びbを変化させた時の、入射波がX軸方向とY軸方向に電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 構成例4に係るAMCの単位セルの構成例を示す図。 図13の単位セルを周期的に並べたAMCの構成例を示す図。 図13のAMCにおいて、面状導体の辺の長さe及びfを変化させた時の、入射波がY軸方向にのみ電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 図14のAMCの上層にアンテナ導体を配置したアンテナ構造を示す図。 図13のAMCの面状導体の辺の長さe及びfを変化させた時の、図16のアンテナ構造における放射効率を示す図。 図2のAMCの上層にアンテナを配置した時の図 図1のAMCにおいて、面状導体の辺の長さc及びdを変化させた時の、入射波がY軸方向のみに電界成分をもつ場合の入射波と反射波の位相差の特性を示す図。 図18のAMC付きアンテナにおいて、AMCの面状導体の辺の長さc及びdを変化させた時の放射効率を示す図。
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。
電子機器の小型化の要求に伴って、アンテナが内蔵されることが想定されうる。このとき、アンテナの近傍には、電子機器の筺体、電気回路基板、その他電子機器を構成する部品が存在し、それらによってアンテナの特性が劣化しうる。例えば、アンテナから使用周波数の波長に比べて非常に短い距離に金属部材が存在する場合、アンテナから放射される電磁波と、金属部材で反射してアンテナに戻る電磁波は、金属部材の反射面において逆相で重なる。このため、アンテナから放射される電磁波は打ち消されて、アンテナの特性が劣化する。このようなアンテナの特性劣化を防ぐには、例えばアンテナと金属部材の距離を、少なくとも使用周波数の電気長の1/4の長さだけ確保し、アンテナにおける入射波と反射波の位相を同相とすることが可能である。しかしながら、アンテナと金属部材の距離を、少なくとも使用周波数の電気長の1/4の長さだけ離すのは、電子機器の大きさの制約の観点から容易ではない。
これに対して、まず、入射された電磁波(入射波)の特定の周波数成分を同相で反射する構造体、または、特定の周波数帯域の電磁波に対して高いインピーダンス特性を有する構造体を用いることができる。なお、以下では、このような構造体のことを、人工磁性体(Artificial Magnetic Conductor、AMC)と呼ぶ。
このようなAMCに入射する特定の周波数の入射波の位相は、AMCにおいて反射される反射波の位相と、AMCの反射面において同相となる。このため、AMCとアンテナ導体とを含むアンテナ装置において、アンテナ導体の近傍にAMCが存在しても、アンテナ導体から放射される電磁波が打ち消され、アンテナ特性が劣化するようなことがなくなる。したがって、アンテナ導体の近傍にAMCを配置することにより、アンテナ特性を劣化させることなく、アンテナ装置を電子機器内にコンパクトに内蔵することが可能となる。ここで、上述の「アンテナ導体の近傍」とは、アンテナ導体からの距離が、使用周波数の波長に比べて非常に短い範囲を指す。
ここで、AMC自体のサイズが大きいと、結果として電子機器のサイズも大きくなってしまう。したがって、AMC自体のサイズを小型化することが要求される。本実施形態では、このような要求に応じて、いくつかの小型のAMCを例示する。そして、その後に、そのようなAMCとアンテナ導体とを有するアンテナについて説明する。なお、AMCは、アンテナ以外の装置にも、所定の周波数の入射波を同相で反射又は遮断することが要求される電子回路内に含められることができる。なお、以下の構成例では、無線LAN(IEEE802.11b/g/n)で使用する周波数帯域である2.4−2.5GHzで動作するAMCの構造について検討する。AMCは、一般的な4層のプリント基板上に構成されうる。しかしながらこれに限られず、互いに平行な複数の平面において導体が配置されることによってAMCが実現されうる。
(AMCの構成)
<構成例1>
図1に、AMCの構成例1における単位セルを示す。また、図2は、図1の単位セルを周期的に(アレイ状に)並べたAMCの構成例を示す。図2のようなAMCの構成により、特定の周波数帯域に対する表面インピーダンスを高め、それにより特定の周波数の入射波を同相反射することができる。
本構成例に係るAMCの単位セルは、図1に示すように、第1の平面の面状導体101〜104並びに線状導体105〜107、及び第1の平面に平行な第2の平面の面状導体108〜111並びに線状導体112〜114を含んで構成される。また、AMCの単位セルは、一例において、第1の平面及び第2の平面に平行な第3の平面に配置されるグランド導体115及び各平面間の誘電体116を含む。各導体は、例えば、0.8mmの厚さのプリント基板の誘電体中に形成される。
単位セルでは、プリント基板の第1の平面において、第1の面状導体102及び第2の面状導体103が配置され、第1の面状導体102及び第2の面状導体103は、線状導体105によって接続されて、第1の単位が形成される。また、プリント基板の第2の平面において、第3の面状導体109及び第4の面状導体111が配置され、第3の面状導体109及び第4の面状導体111は、線状導体113によって接続されて、第2の単位が形成される。第1の単位は、第1の平面においてアレイ状に配置され、第2の単位は第2の平面においてアレイ状に配置される。なお、第1の単位は第2の単位とは接続されない。また、面状導体101、104、108、110は、それぞれ第1の面状導体、第2の面状導体、第3の面状導体、第4の面状導体の一例である。
ここで、第1及び第2の平面の垂直方向から見て、1つの第1の単位における第1の面状導体は第2の単位の所定の1つにおける第3の面状導体と重なり、その第1の単位における第2の面状導体はその所定の1つの第2の単位の第4の面状導体とは重ならない。一方で、その第1の単位における第2の面状導体は、その所定の1つの第2の単位とは異なる別の第2の単位の第4の面状導体と重なる。このようにして、第1の単位は、第1及び第2の平面の垂直方向から見て、2つの第2の単位のそれぞれの一部(一方の第3の面状導体と他方の第4の面状導体)と重なるように配置される。また、図1の例では、第1の単位の線状導体部分が、第1及び第2の平面の垂直方向から見て、面状導体の部分では重ならない第2の単位の線状導体部分と交差するように、第1の単位と第2の単位とが配置される。
図2のように、単位セルが周期的に配列された構造体に、特定の周波数の電磁波が入射すると、構造体におけるインダクタンス成分とキャパシタンス成分による共振現象が発生し、特定の周波数において入射波を同相で反射し、高いインピーダンス特性を示す。すなわち、AMCは、AMCとして動作させる特定の周波数で共振する構造体を構成することで実現される。図1の単位セルの場合、第1の平面の面状導体101と面状導体104とにおけるキャパシタ成分が大きくなるように、これらの面状導体と垂直方向から見て重なるように、第2の平面に、互いに線状導体で接続される面状導体109及び111が配置される。さらに、第2の平面の面状導体108と面状導体110とにおけるキャパシタンス成分が大きくなるように、これらの面状導体と垂直方向から見て重なるように、第1の平面に互いに線状導体で接続される面状導体102及び103が配置される。そして、AMC構造のキャパシタンス成分を大きくすることで、小型の単位セルを実現することができる。なお、図1の単位セルは、2.4−2.5GHzでAMCとして動作するように設計すると、X軸方向の長さが5.5mm、Y軸方向の長さが5.5mmとなり、十分に小さいと言える。
なお、図1の単位セルにおいて、第1の単位の線状導体部分は、第1及び第2の平面の垂直方向から見て、面状導体の部分では重ならない第2の単位の線状導体部分と交差しないように第1の単位と第2の単位とが配置されてもよい。また、図1の単位セルでは、第1の面状導体、第2の面状導体、第3の面状導体、及び第4の面状導体は、いずれも矩形形状を有するが、これに限られない。例えば、各面状導体は、円形形状を有していてもよい。さらに、図1の単位セルでは、第1の面状導体は、その矩形形状の1つの角において、第2の面状導体の矩形形状のその1つの角に対応する角の対角と線状導体によって接続されているがこれに限られない。同様に、図1の単位セルでは、第3の面状導体は、その矩形形状の1つの角において、第4の面状導体の矩形形状のその1つの角に対応する角の対角と線状導体によって接続されているがこれに限られない。例えば、第1の面状導体および第2の面状導体、第3の面状導体および第4の面状導体は、その矩形形状の一辺の任意の点において線状導体によって接続されてもよい。
次に、図1及び図2のZ軸方向から、Y軸方向にのみ電界成分をもつ電磁波を入射した場合のAMCの反射特性について説明する。図3は、図1に示した単位セルが、X軸方向、Y軸方向に無限に周期的に配列されたAMCによる電磁波の位相回転量の特性を示している。すなわち、図3は、Z軸方向から入射した電磁波の基板表面における位相と、AMCで反射された反射波の基板表面における位相の、位相差の特性を示している。なお、位相差が180°又は−180°である場合は、入射波と反射波の位相は逆相となる。
図3から、図1及び図2のZ軸方向から入射する電磁波が、Y軸方向にのみ電界成分をもつ場合、約2.45GHzで位相差が0°となることが分かる。位相差が0°であることは、AMCで電磁波が同相で反射していることを意味する。また、無線LANで使用する周波数帯である2.4−2.5GHz帯においては、入射波と反射波の位相差が約120°〜−120°となっていることが分かる。
次にキャパシタ成分をより大きくしたAMCについて説明する。この場合の単位セルの構造を図4に示す。図4の構成では、第1の平面に配置される面状導体401〜404並びに線状導体405〜407、第2の平面に配置される面状導体408〜411並びに線状導体412〜414、グランド導体415、及び誘電体416を含む。各導体は、例えば、0.8mmの厚さのプリント基板の誘電体中に形成されている。
本構成例では、キャパシタ成分をより大きくするために、第1の平面に配置される面状導体401〜404と第2の平面に配置される面状導体408〜411とが、重なる面積を大きくしている。すなわち、第1の単位は、他の第1の単位と接続されない範囲で面状導体の大きさを拡大し、また、第2の単位は、他の第2の単位と接続されない範囲で面状導体の大きさを拡大する。なお、本構成例では、第1の単位が隣接する他の第1の単位と接続されない範囲で略最大の大きさを有するように、面状導体の大きさが定められている。
このとき、例えば、第1の面状導体402の面積は第3の面状導体408の面積と略同一であるか、第2の面状導体403の面積は第4の面状導体410の面積と略同一であるか、の少なくともいずれかでありうる。すなわち、互いに重なる面状導体の面積の少なくともいずれかが略同一であるように、第1の単位と第2の単位とが構成されうる。なお、この面状導体が重なる面積によってキャパシタ成分の大きさを調整することができるため、AMCのとるべきサイズに応じて、面状導体が重なる面積を調整することによって、同相で反射させる電磁波の周波数を調整することができる。ここで、図4に示した単位セルは、2.4−2.5GHzでAMCとして動作するよう設計すると、X軸方向の長さが4.6mm、Y軸方向の長さが4.6mmとなり、AMCの単位セルをさらに小型化することができている。
図5に、図4に示した単位セルが、X軸方向、Y軸方向に無限に周期的に配列されたAMCによる電磁波の位相回転量の特性を示す。図5から、図4のZ軸方向から入射する電磁波が、Y軸方向にのみ電界成分をもつ場合、約2.45GHzで位相差が0°となることが分かる。また、無線LANで使用する周波数帯である2.4−2.5GHz帯においては、入射波と反射波の位相差が約120°〜−120°となっていることが分かる。なお、図1及び図4の構成では、第1の平面がプリント基板の表層であるような構成について示しているが、第1の平面はプリント基板の内層であってもよい。
<構成例2>
構成例1では、AMCのキャパシタ成分が大きくなるように、第1の平面の面状導体と第2の平面の面状導体とが、それらの平面の垂直方向から見て重なるように、複数の面状導体を含む導体構造の単位をアレイ状に配置した。そして、このときに、面状導体が重なる面積を大きくすることによって、キャパシタ成分を大きくし、AMCの構造を小型化可能であることについて説明した。これに対して、本構成例では、インダクタンス成分を大きくする単位セルの構造について説明する。
本構成例のAMCの単位セルを図6に示す。また、図7は、図6の単位セルを周期的に(アレイ状に)並べたAMCの構成例を示す。図7のようなAMCの構成により、特定の周波数帯域に対する表面インピーダンスを高め、それにより特定の周波数の入射波を同相反射することができる。
本構成例に係るAMCの単位セルは、図6に示すように、第1の平面に配置される面状導体601〜604並びに線状導体605〜607、及び第2の平面に配置される面状導体608〜611並びに線状導体612〜614を含んで構成される。また、AMCの単位セルは、一例において、第3の平面に配置されるグランド導体615及び各平面間の誘電体616を含む。各導体は、例えば、0.8mmの厚さのプリント基板の誘電体中に形成される。
本構成例では、線状導体605をメアンダ状にすることにより、第1の導体の線長を確保し、AMCのインダクタンス成分を大きくしている。これにより、図6に示した単位セルは、2.4−2.5GHzでAMCとして動作するように設計すると、X軸方向の長さが5.1mm、Y軸方向の長さが5.1mmとなり、図1のAMCの単位セルよりも小型化することができている。なお、このときの、図1の面状導体101〜104及び面状導体108〜111の面積と、図6の面状導体601〜604及び面状導体608〜611の面積は同一であり、図1のAMCと図6のAMCのキャパシタンス成分はほぼ同一である。
図8に、図6に示した単位セルがX軸方向及びY軸方向に無限に周期的に配列された、図7のようなAMCによる、電磁波の位相回転量の特性を示す。図8から、図6及び図7のZ軸方向から入射する電磁波が、Y軸方向にのみ電界成分をもつ場合、約2.45GHzで位相差が0°となることが分かる。また、無線LANで使用する周波数帯である2.4−2.5GHz帯においては、入射波と反射波の位相差が約130°〜−130°となっていることが分かる。なお、図6の構成では、第1の平面がプリント基板の表層であるような構成について示しているが、第1の平面はプリント基板の内層であってもよい。
なお、図6の構成では、第1の平面において、線状導体605のみをメアンダ状としているが、他の線状導体606及び607をメアンダ状にしても同様の効果を得ることができる。また、図6の例では、第1の平面における線状導体の形状をメアンダ状としたが、第2の平面における導体613を、第1の平面における線状導体の代わりに又はそれに追加して、メアンダ状としてもよい。なお、図6の例では、線状導体605が、メアンダ状となるように構成されているが、スパイラル状又はヘリカル状となるように構成されてもよく、この場合でも同様の効果を得ることができる。また、線状導体606〜607及び線状導体612〜614も、スパイラル状又はヘリカル状となるように構成されてもよい。
また、面状導体および線状導体の構成について、構成例1において説明した変形例と同様の変形が可能である。すなわち、図6の単位セルにおいて、第1の単位の線状導体部分(例えば605)は、第1及び第2の平面の垂直方向から見て、面状導体の部分で重ならない第2の単位の線状導体部分(例えば613)と交差しないように構成されてもよい。また、図6の単位セルでは、各面状導体(601〜604及び608〜611)はいずれも矩形形状を有するが、これに限られない。例えば、各面状導体は、円形形状を有していてもよい。さらに、図6の単位セルでは、例えば、面状導体602は、その矩形形状の1つの角において、面状導体603の矩形形状のその1つの角に対応する角の対角と、線状導体605によって接続されているがこれに限られない。同様に、図6の単位セルでは、面状導体608は、その矩形形状の1つの角において、面状導体610の矩形形状のその1つの角に対応する角の対角と、線状導体613によって接続されているがこれに限られない。例えば、面状導体602および面状導体603、面状導体608および面状導体610は、それぞれ、その矩形形状の一辺の任意の点において線状導体によって接続されてもよい。また、第1及び第2の平面の垂直方向から見て重なる面状導体の面積は略同一となるように、また面状導体の面積をできるだけ大きくするように、各導体が配置及び構成されてもよい。
<構成例3>
構成例1及び構成例2では、第1の平面と第2の平面のそれぞれにおいて、同一平面上の2つの面状導体を線状導体で接続したものを1つの単位として、その1つの単位をアレイ状に繰り返して配置する構造について説明した。本構成例では、第1の平面に配置された第1の面状導体と、第2の平面に配置された第2の面状導体とが、導体ビアを含む線状導体によって接続されて第1の単位を構成する。また、第2の平面に配置された第3の面状導体と、第1の平面に配置された第4の面状導体とが、導体ビアを含む線状導体によって接続されて第2の単位を構成する。ここで、第1及び第2の平面の垂直方向から見て、第1の単位に含まれる第1の面状導体および第2の面状導体は、それぞれ、ある第2の単位に含まれる第3の面状導体、及び、別の第2の単位に含まれる第4の面状導体と、重なる位置に配置される。すなわち、第1の単位は、面状導体の位置において、2つの第2の単位と重なるように配置される。また、第1及び第2の平面の垂直方向から見て、第2の単位に含まれる第3の面状導体および第4の面状導体は、それぞれ、ある第1の単位に含まれる第1の面状導体、及び、別の第1の単位に含まれる第2の面状導体と、重なる位置に配置される。すなわち、第2の単位は、面状導体の位置において、2つの第1の単位と重なるように配置される。
図9に、本構成例に係るAMCの単位セルを示す。また、図10は、図9の単位セルを周期的に(アレイ状に)繰り返し並べたAMCの構成例を示す。図10のようなAMCの構成により、特定の周波数帯域に対する表面インピーダンスを高め、それにより特定の周波数の入射波を同相反射することができる。
本構成例に係るAMCの単位セルは、図9に示すように、第1の平面に配置される面状導体901〜904並びに線状導体905〜導体907、第2の平面に配置される面状導体908〜911並びに線状導体912〜導体914を含んで構成される。また、AMCの単位セルは、異なる平面に配置された面状導体を接続するための導体ビア915〜918を含む。より詳細には、面状導体901と面状導体911とが、線状導体913及び導体ビア915によって接続される。また、面状導体902と面状導体910とが、線状導体906と導体ビア916とによって接続される。さらに、面状導体904は、導体ビア917及び線状導体912によって、また、面状導体908は、導体ビア918及び線状導体907によって、他の単位セルの面状導体と接続される。同様に、面状導体903は線状導体905及び不図示の導体ビアによって、また、面状導体909は、線状導体914及び不図示の導体ビアによって、他の単位セルの面状導体と接続される。また、AMCの単位セルは、一例において、第3の平面に形成されるグランド導体919及び各平面間の誘電体920を含む。各導体は、例えば、0.8mmの厚さのプリント基板の誘電体中に形成される。なお、図9の単位セルは、2.4−2.5GHzでAMCとして動作するように設計すると、X軸方向の長さが4.5mm、Y軸方向の長さが4.5mmとなり、十分に小さいと言える。
図11に、図9に示した単位セルがX軸方向及びY軸方向に無限に周期的に配列された、図10のようなAMCによる、電磁波の位相回転量の特性を示す。図11から、図9及び図10のZ軸方向から入射する電磁波が、Y軸方向にのみ電界成分をもつ場合、約2.45GHzで位相差が0°となることが分かる。また、無線LANで使用する周波数帯である2.4−2.5GHz帯においては、射波と反射波の位相差が約120°〜−120°となっていることが分かる。
なお、面状導体および線状導体の構成について、構成例1及び2において説明した変形例と同様の変形が可能である。すなわち、例えば、面状導体の形状は矩形形状に限られず、また、線状導体は、その少なくとも一部において、メアンダ状、スパイラル状、ヘリカル状の形状を有してもよい。なお、構成例1〜3では、無線LANで使用する周波数帯である2.4−2.5GHzでAMCとして動作するように導体構造を設計しているが、AMCとして動作させるべき電磁波の周波数帯に合わせて設計が可能である。例えば、構成例1で示したように、面状導体の重なる面積を調整することによって、又は、構成例2で示したように、線状導体の少なくとも一部をメアンダ状等の形状とすることで、AMCとして動作させるべき電磁波の周波数帯を調整可能である。
ここで、上述のAMCの各構成例では、入射する電磁波が一方向のみ電界成分をもつ場合に、2.4−2.5GHzにおいてAMCとして動作する導体構造について説明した。ここでは、入射する電磁波が二方向の電界成分をもつ場合に、一方の偏波に対しては上述の説明と同様の動作周波数帯を有しながら、他方の偏波に対して動作周波数帯を調整可能なAMCの設計方法を述べる。
図1に示した単位セルが、X軸方向及びY軸方向に無限に周期的に配列されたAMCによる、電磁波の位相回転量を図12(A)に示す。ここで、図1に示した面状導体101〜104のX軸方向(図1のa)とY軸方向の辺の長さ(図1のb)はともに1.85mmである。図12(A)の(1)は、図1のZ軸方向から入射する電磁波がY軸方向に電界成分をもつ場合の、入射波と反射波の位相差の特性を示しており、約2.45GHzで位相差が0°となっていることが分かる。図12(A)の(2)は、図1のZ軸方向から入射する電磁波がX軸方向に電界成分をもつ場合の、入射波と反射波の位相差の特性を示しており、約7GHzで位相差が0°となっていることが分かる。すなわち、図12(A)の結果から、図1のAMC構造は、共にZ軸方向から入射する電磁波であっても、その偏波によって、特性が異なることが分かる。
続いて、図1における面状導体101〜104の面積を変化させずに、それぞれの導体のX軸方向(図1のa)とY軸方向の辺の長さ(図1のb)を変化させた場合の結果を図12(B)及び図12(C)に示す。図12(B)は、a及びbの長さが、それぞれ1.71mm及び2mmである時の、入射波と反射波の位相差の特性を示しており、図12(C)は、a及びbの長さが、それぞれ2mm及び1.71mmである時の、同特性を示している。
図12(B)の(1)は、図1のZ軸方向から入射する電磁波がY軸方向に電界成分をもつ場合の、入射波と反射波の位相差の特性を示しており、約2.45GHzで位相差が0°となっていることが分かる。図12(B)の(2)は、Z軸方向から入射する電磁波がX軸方向に電界成分をもつ場合の、入射波と反射波の位相差の特性を示しており、約6.8GHzで位相差が0°となっていることが分かる。図12(C)の(1)は、図1のZ軸方向から入射する電磁波がY軸方向に電界成分をもつ場合の、入射波と反射波の位相差の特性を示しており、約2.45GHzで位相差が0°となっていることが分かる。図12(C)の(2)は、Z軸方向から入射する電磁波がX軸方向に電界成分をもつ場合の、入射波と反射波の位相差の特性を示しており、約6.5GHzで位相差が0°となっていることが分かる。
以上のように、図12A〜Cから、面状導体101〜104の面積を変えずに導体のX軸方向の辺の長さ(図1のa)とY軸方向の辺の長さ(図1のb)を変化させることで、AMCとしての動作の特性を変更することができる。すなわち、面状導体101〜104の面積を一定とすることによって、一方の偏波に対しての動作周波数帯を変化させることなく、辺の長さを変更することによって、その一方の偏波に直交する他方の偏波に対しての動作周波数帯を変化させることができる。なお、面状導体101〜104の面積の大きさに応じて、第1の方向の偏波に対する動作周波数帯を調整し、面状導体101〜104の辺の長さに応じて、第1の方向に直交する第2の方向の偏波に対する動作周波数帯を調整することができる。
これにより、単位セルのセルサイズを変化させることなく、面状導体101〜104におけるX軸方向(図1のa)の辺の長さとY軸方向の辺の長さ(図1のb)を変化させ、一方向の偏波に対してのみ、設計周波数を調節できる効果を得ることができる。したがって、デュアルバンドAMCの設計が、面状導体の形状の変更によって容易に可能となる。
<構成例4>
構成例1〜3では、2つの面状導体が線状導体などにより接続される場合の例について説明した。本構成例では、面状導体が接続されずにアレイ状に配置されるAMC構造について説明する。
図13に、本構成例に係るAMCの単位セルを示す。また、図14は、図13の単位セルを周期的に(アレイ状に)繰り返し並べたAMCの構成例を示す。図14のようなAMCの構成により、特定の周波数帯域に対する表面インピーダンスを高め、それにより特定の周波数の入射波を同相反射することができる。
本構成例に係るAMCの単位セルは、第1の平面に形成される面状導体1301及び第2の平面に形成される面状導体1302〜1305を含んで構成される。なお、第1の平面に形成される面状導体と第2の平面に形成される面状導体とは互いに接続されず、また、各平面に複数配置された面状導体も、互いに接続されない。また、AMCの単位セルは、その一例において、第3の平面に配置されるグランド導体1306及び各平面間の誘電体1307を含む。各導体は、例えば、プリント基板の誘電体中に形成される。なお、面状導体1302〜1305は、図13ではその一部のみが表されているが、実際には、図14に示すように、第1及び第2の平面の垂直方向から見て、面状導体1301以外の第1の平面の面状導体とも重なるような大きさを有し得る。なお、第1の平面に形成される面状導体1301は、4つの面状導体1302〜1305と重なるように配置されているが、必ずしも4つの面状導体と重ならなければならないわけではない。すなわち、第1の平面の面状導体は、第2の平面に形成される少なくとも1つの面状導体と重なるような位置に形成されれば足りる。図13の構造においても、構成例1で示したように、第1の平面または第2の平面に形成される面状導体の面積の大きさを変化させることで、面状導体間のキャパシタ成分の大きさを調整し、AMCとして動作する周波数を設計することができる。
図15に、図13に示した単位セルを、X軸方向及びY軸方向に無限に周期的に配列された、図14のようなAMCによる、電磁波の位相回転量の特性を示す。図15では、面状導体1302〜1305が、面状導体1301と重なる部分のX軸方向の辺の長さ(図13のe)とY軸方向の辺の長さ(図13のf)を4mm、5mm、6mmとした場合の特性を、それぞれ1501、1502、1503によって示している。図15から、面状導体1302〜1305と面状導体1301とが重なる部分の面積を大きくすることで、AMCとして動作する周波数が低域に移動することが分かる。
(AMCを含むアンテナ)
続いて、AMCとアンテナ導体とを含むアンテナについて説明する。図16に、一例として、図14のAMCの上層にアンテナ導体を配置した場合のアンテナの構造の例を示す。図16に示すように、アンテナは、AMC1601、アンテナ導体1602、導体ビア1603〜1604、グランド導体1605、誘電体1606、及び給電点1607を有する。アンテナ導体1602は、導体ビア1603を介して給電点1607と接続し、また、導体ビア1604を介してグランド導体1605と接続している。またAMC及びアンテナ導体はプリント基板に構成されている。なお、アンテナ導体1602は、AMCにおける各導体が形成される平面及びグランド導体が配置される平面と異なる平面に配置される。
図16の構成において、アンテナとAMCはともに導体で構成されるため、アンテナとAMCを近接して配置すると、アンテナとAMCの間に強い電磁結合または磁気的結合が発生する。これにより、アンテナ及びAMCの周波数特性がずれることが想定される。このとき、グランド導体1605と接続するアンテナ導体1602の周波数特性のずれは、AMCの周波数特性のずれと比べ小さくなる。このため、アンテナ導体のエレメント長を変化させずに、AMCの動作周波数を調整することで、AMC付きアンテナが所定の周波数で十分な放射特性を得ることが可能となる。
図17に、図16の構成のAMC付きアンテナの放射効率を示す。図17では、図13の面状導体1302〜1305のX軸方向(図13のe)とY軸方向の辺の長さ(図13のf)を4mm、5mm、6mmと変化させた時のAMC付きアンテナの放射効率を、それぞれ1701、1702、1703によって示している。図17から、面状導体1301と重なる面状導体1302〜1305の部分の面積を大きくすることで、放射効率が最も高くなる周波数が低域に変化していることが分かる。すなわち、AMCとしての動作周波数を調整し、最適値を選択することで、AMCとアンテナ導体とを含むアンテナが所望の周波数で所望の特性を得ることが可能となる。
また、図15の1501に示したように、面状導体1301と重なる面状導体1302〜1305の部分のX軸方向(図13のe)とY軸方向の辺の長さ(図13のf)が4mmの時、図13の構造体は、周波数帯2.4−2.5GHzでAMCとして動作する。すなわち、図13の構造体は、このとき、周波数帯2.4−2.5GHzにおいて、入射波と反射波との位相差が約120°〜−120°となっている。しかし、図17の1701に示したように、この場合のAMC付きアンテナの最大放射効率が得られる周波数は2.95GHzとなり、2.4−2.5GHzからずれている。
一方、図15の1503に示すように、面状導体1301と重なる面状導体1302〜1305のX軸方向及びY軸方向の辺の長さ(図13のe及びf)が6mmの時、図13の構造体は、周波数帯2.4−2.5GHzより低域でAMCとして動作する。すなわち、図13の構造体は、このとき、位相回転量が約120°〜−120°の範囲となっている。しかし、図17の1703に示したように、この場合のAMC付きアンテナの最大放射効率が得られる周波数は2.45GHzとなり、無線LANで使用する周波数帯2.4−2.5GHzと合致する。このように、AMC付きアンテナの最大放射効率が得られる周波数を無線LANで使用する周波数帯2.4−2.5GHzに設計する場合、AMCは、その動作周波数、すなわち、同相で反射する電磁波の周波数がそれよりも低域となるように構成される。
なお、上述の構成例1〜3で説明したAMCの上層にアンテナ導体を配置しても、同様である。すなわち、AMC付きアンテナの最大放射効率が得られる周波数は、図1、図4、図6又は図9のAMCの面状導体のサイズ等を調整することによって、調整可能である。さらに、最大放射効率が得られる周波数帯が2.4−2.5GHzとなるようにアンテナを設計する場合、併せて使用されるAMCは、動作周波数がそれよりも低域であるように設計される。
一例として、図2のAMC構造の上層にアンテナ導体を配置した時のAMC付きアンテナの設計に関して説明する。本実施形態の別のAMC付きアンテナを図18に示す。図18のアンテナは、AMC1801、アンテナ導体1802、導体ビア1803〜1804、グランド導体1805、誘電体1806、給電点1807を有する。アンテナ導体1802は、導体ビア1803を通じて給電点1807と接続し、また、導体ビア1804を通じてグランド導体1805と接続している。またAMC及びアンテナ導体は、プリント基板に構成されている。
図19に、図1のAMCの単位セルをX軸方向及びY軸方向に無限に周期的に配列された、図2のようなAMCの入射波と反射波との位相差の特性を示す。図19では、第2の面に形成される面状導体108〜111のX軸方向の辺の長さ(図1のc)とY軸方向の辺の長さ(図1のd)とを2.9mm、3.9mm、4.9mmと変化させた場合の特性を、それぞれ1901、1902、1903として示している。図19から、面状導体108〜111のサイズを大きくすることで、AMCとして動作する周波数が低域に移動することが分かる。
図20に、図18のAMC付きアンテナの放射効率を示した。図20では、AMCの面状導体108〜111のX軸方向の辺の長さ(図1のc)とY軸方向の辺の長さ(図1のd)を2.9mm、3.9mm、4.9mmと変化させた時のアンテナの放射効率を、それぞれ2001、2002、2003として示している。図20から、AMCの面状導体108〜111のサイズを大きくすることで、最大放射効率が得られる周波数が低域にシフトしていることが分かる。すなわち、AMCの動作周波数を調整することにより、AMC付きアンテナが所望の特性を得ることが可能となる。
ここで、最大放射効率が得られる周波数帯が2.4−2.5GHzとなるのは、AMCの面状導体108〜111のX軸方向の辺の長さ(図1のc)とY軸方向の辺の長さ(図1のd)が4.9mmの時である。このときのAMCは、図19の1903に示すように、周波数帯2.4−2.5GHzよりも低域の動作周波数を有する。しかし、図20の2003に示すように、この場合のアンテナの最大放射効率が得られる周波数は2.45GHzとなっており、無線LANで使用する周波数帯2.4−2.5GHzと合致する。このように、AMC付きアンテナは、アンテナの所望の動作周波数帯よりも、低域な周波数を動作周波数とするAMCを含むように設計されることにより、その所望の周波数帯において最大放射効率を得ることができる。
なお、ここでは、図1及び図13のAMCのグランド導体に最も近い層の面状導体のサイズを変更して、AMC付きアンテナを設計したが、サイズが変更されるのは、最も近い層の導体でなくてもよい。なお、ここでは、図1及び図13のAMCの上層にアンテナを配置した際の設計手法に関して説明したが、AMCとして、図4、図5、又は図9の単位セルを用いることもできる。なお、図16及び図18のアンテナ導体1602及び1802は、一端が給電点に接続され、もう一端がグランド導体に接続されているが、グランド導体に接続されずに一端が開放端のアンテナ導体であってもよい。
なお、ここでは、AMC付きアンテナを無線LANの周波数帯である2.4−2.5GHzにおいて最大放射効率が得られるように設計した場合について説明したが、2.4−2.5GHzと異なる所望の周波数帯に合わせて設計することができる。なお、上述の各例では、AMC及びアンテナ導体を誘電体基板内に形成する構成で実現したが、誘電体基板でなくてもよい。例えば、セラミック等の高誘電体部材内においてこれらが形成されてもよい。
101〜104:第1の平面に配置される面状導体、105〜107:第1の平面に配置される2つの面状導体を接続する導体、108〜111:第2の平面に配置される面状導体、112〜114:第2の平面に配置される2つの面状導体を接続する導体、115:グランド導体、116:誘電体

Claims (18)

  1. 互いに平行な複数の平面に形成される導体を含み、所定の周波数の電磁波を同相で反射する構造体であって
    第1の面状導体、第2の面状導体、及び前記第1の面状導体と前記第2の面状導体とを接続する第1の導体を含む第1の単位が、前記複数の平面のうちの第1の平面にアレイ状に配置され、
    第3の面状導体、第4の面状導体、及び前記第3の面状導体と前記第4の面状導体とを接続する第2の導体を含む第2の単位が、前記複数の平面のうちの前記第1の平面と異なる第2の平面にアレイ状に配置され、
    前記第1の単位と前記第2の単位とは接続されておらず、
    前記第1の単位は、前記複数の平面の垂直方向から見て、当該第1の単位に含まれる前記第1の面状導体が、前記第2の単位の1つの前記第3の面状導体と重なるように配置されると共に、前記第2の面状導体が前記第2の単位の当該1つの前記第4の面状導体と重ならないように配置される、
    ことを特徴とする構造体。
  2. 互いに平行な複数の平面に形成される導体を含み、所定の周波数の電磁波を同相で反射する構造体であって
    前記複数の平面のうちの第1の平面に配置される第1の面状導体、前記複数の平面のうちの前記第1の平面と異なる第2の平面に配置される第2の面状導体、及び前記第1の面状導体と前記第2の面状導体とを接続する第1の導体とを含む第1の単位が、アレイ状に配置され、
    前記第2の平面に配置される第3の面状導体、前記第1の平面に配置される第4の面状導体、及び前記第3の面状導体と前記第4の面状導体とを接続する第2の導体を含む第2の単位が、アレイ状に配置され、
    前記第1の単位と前記第2の単位とは接続されておらず、
    前記第1の単位は、前記複数の平面の垂直方向から見て、当該第1の単位に含まれる前記第1の面状導体が、前記第2の単位の1つの前記第3の面状導体と重なるように配置されると共に、前記第2の面状導体が前記第2の単位の当該1つの前記第4の面状導体と重ならないように配置される、
    ことを特徴とする構造体。
  3. 前記第1の面状導体の面積が、当該第1の面状導体と前記垂直方向から見て重なる前記第3の面状導体の面積と略同一である、
    ことを特徴とする請求項1又は2に記載の構造体。
  4. 前記第1の単位は、前記複数の平面の垂直方向から見て、当該第1の単位に含まれる前記第1の面状導体が、前記第2の単位の1つの前記第3の面状導体と重なるように配置されると共に、前記第2の面状導体が前記第2の単位の当該1つと異なる別の前記第2の単位における前記第4の面状導体と重なるように配置される、
    ことを特徴とする請求項1から3のいずれか1項に記載の構造体。
  5. 前記第2の面状導体の面積が、当該第2の面状導体と前記垂直方向から見て重なる前記第4の面状導体の面積と略同一である、
    ことを特徴とする請求項4に記載の構造体。
  6. 前記第1の導体および前記第2の導体は線状の導体であり、
    複数の前記第2の単位のうち、前記第1の単位に含まれる前記第1の面状導体および前記第2の面状導体が前記垂直方向から見て前記第3の面状導体および前記第4の面状導体のいずれとも重ならない前記第2の単位に含まれる前記第2の導体と、当該第1の単位に含まれる前記第1の導体とが、前記垂直方向から見て交差するように、前記第1の単位および前記第2の単位が配置される、
    ことを特徴とする請求項1から5のいずれか1項に記載の構造体。
  7. 前記第1の面状導体、前記第2の面状導体、前記第3の面状導体、および前記第4の面状導体は、矩形形状を有する、
    ことを特徴とする請求項1から6のいずれか1項に記載の構造体。
  8. 前記第1の面状導体の前記矩形形状の1つの角と、前記第2の面状導体の当該1つの角に対応する角の対角とが、前記第1の導体によって接続され、
    前記第3の面状導体の前記矩形形状の1つの角と、前記第4の面状導体の当該1つの角に対応する角の対角とが、前記第2の導体によって接続される、
    ことを特徴とする請求項7に記載の構造体。
  9. 前記第1の単位に含まれる前記第1の面状導体と前記第2の面状導体との少なくともいずれかの面積は、入射される電磁波のうち、前記複数の平面に平行な第1の方向における偏波に対して、同相で反射させる電磁波の周波数に応じた大きさを有し、
    前記矩形形状の辺の長さが、入射される電磁波のうち、前記複数の平面に平行な第1の方向に直交する第2の方向における偏波に対して、同相で反射させる電磁波の周波数に応じた長さを有する、
    ことを特徴とする請求項7又は8に記載の構造体。
  10. 前記第1の導体と前記第2の導体の少なくともいずれかの、少なくとも一部が、メアンダ状である、
    ことを特徴とする請求項1から9のいずれか1項に記載の構造体。
  11. 前記第1の導体と前記第2の導体の少なくともいずれかの、少なくとも一部が、スパイラル状である、
    ことを特徴とする請求項1から9のいずれか1項に記載の構造体。
  12. 前記第1の導体と前記第2の導体の少なくともいずれかの、少なくとも一部が、ヘリカル状である、
    ことを特徴とする請求項1から9のいずれか1項に記載の構造体。
  13. 互いに平行な複数の平面に形成される導体を含み、所定の周波数の電磁波を同相で反射する構造体であって
    前記複数の平面のうち第1の平面にアレイ状に配置される第1の面状導体と、前記複数の平面のうち第2の平面にアレイ状に配置される第2の面状導体と、を含み、
    前記第1の面状導体は、前記第2の面状導体および他の前記第1の面状導体と接続されず、
    前記第2の面状導体は、前記第1の面状導体および他の前記第2の面状導体と接続されず、
    前記第1の面状導体は、前記複数の平面の垂直方向から見て、少なくとも1つの前記第2の面状導体の一部と重なるように配置される、
    ことを特徴とする構造体。
  14. 前記第1の平面および前記第2の平面と異なる第3の平面にグランド導体が配置される、
    ことを特徴とする請求項1から13のいずれか1項に記載の構造体。
  15. アンテナ導体と、請求項1から14のいずれか1項に記載の構造体とを有する、
    ことを特徴とするアンテナ。
  16. 前記構造体は、前記アンテナの最大放射効率が得られる周波数より低域な周波数の電磁波を同相で反射する、
    ことを特徴とする請求項15に記載のアンテナ。
  17. 前記アンテナ導体は、前記構造体に含まれる導体が形成される平面と異なる平面に配置される、
    ことを特徴とする請求項15又は16に記載のアンテナ。
  18. 前記アンテナ導体は、その一端において導体ビアを介して給電点に接続される、
    ことを特徴とする請求項15から17のいずれか1項に記載のアンテナ。
JP2015122117A 2015-06-17 2015-06-17 構造体及びアンテナ Pending JP2017011369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015122117A JP2017011369A (ja) 2015-06-17 2015-06-17 構造体及びアンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015122117A JP2017011369A (ja) 2015-06-17 2015-06-17 構造体及びアンテナ

Publications (1)

Publication Number Publication Date
JP2017011369A true JP2017011369A (ja) 2017-01-12

Family

ID=57764099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122117A Pending JP2017011369A (ja) 2015-06-17 2015-06-17 構造体及びアンテナ

Country Status (1)

Country Link
JP (1) JP2017011369A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539406A (zh) * 2018-05-22 2018-09-14 南京邮电大学 一种基于人工磁导体的微带天线
WO2020262384A1 (ja) * 2019-06-25 2020-12-30 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
CN112930623A (zh) * 2018-11-02 2021-06-08 京瓷株式会社 天线元件、阵列天线、通信单元、移动体以及基站
CN113924695A (zh) * 2019-06-25 2022-01-11 京瓷株式会社 天线、无线通信模块以及无线通信设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539406A (zh) * 2018-05-22 2018-09-14 南京邮电大学 一种基于人工磁导体的微带天线
CN112930623A (zh) * 2018-11-02 2021-06-08 京瓷株式会社 天线元件、阵列天线、通信单元、移动体以及基站
CN112930623B (zh) * 2018-11-02 2024-03-12 京瓷株式会社 天线元件、阵列天线、通信单元、移动体以及基站
WO2020262384A1 (ja) * 2019-06-25 2020-12-30 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JPWO2020262384A1 (ja) * 2019-06-25 2021-12-16 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
CN113924695A (zh) * 2019-06-25 2022-01-11 京瓷株式会社 天线、无线通信模块以及无线通信设备
JP7072724B2 (ja) 2019-06-25 2022-05-20 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器

Similar Documents

Publication Publication Date Title
JP5522042B2 (ja) 構造体、プリント基板、アンテナ、伝送線路導波管変換器、アレイアンテナ、電子装置
JP4384102B2 (ja) 携帯無線機およびアンテナ装置
JP5712931B2 (ja) 構造体
JP5533860B2 (ja) 構造体、プリント基板、アンテナ、伝送線路導波管変換器、アレイアンテナ、電子装置
JP6465109B2 (ja) マルチアンテナ及びそれを備える無線装置
JP5301608B2 (ja) 無線端末装置用のアンテナ
US20110115584A1 (en) Periodic structure
JP3992077B2 (ja) アンテナ構造およびそれを備えた無線通信機
JP2010068085A (ja) アンテナ装置
WO2016148274A1 (ja) アンテナ及び無線通信装置
JP6424886B2 (ja) アンテナ、アレイアンテナ及び無線通信装置
EP1711980A4 (en) MULTIFREQUENCY MAGNETIC DOUBLE ANTENNA STRUCTURES
CN112038751A (zh) 超紧凑超宽带双极化基站天线
JP2015185946A (ja) アンテナ装置
JPWO2010100932A1 (ja) 共振器アンテナ及び通信装置
JP6610551B2 (ja) アンテナアレイ、無線通信装置及びアンテナアレイの製造方法
CN111082226B (zh) 基于电磁超谐振器的超小型圆极化天线
JP2002359515A (ja) M型アンテナ装置
JP2017011369A (ja) 構造体及びアンテナ
JP2017098782A (ja) アンテナ素子
JP2018170561A (ja) 円偏波アンテナ
JP2013530623A (ja) 平面導電素子を有するアンテナ
JP7309033B2 (ja) アンテナ
JP2010200202A (ja) アンテナ
JP5078732B2 (ja) アンテナ装置