JP2016502589A - Additive manufacturing of turbine components with multiple materials - Google Patents

Additive manufacturing of turbine components with multiple materials Download PDF

Info

Publication number
JP2016502589A
JP2016502589A JP2015536818A JP2015536818A JP2016502589A JP 2016502589 A JP2016502589 A JP 2016502589A JP 2015536818 A JP2015536818 A JP 2015536818A JP 2015536818 A JP2015536818 A JP 2015536818A JP 2016502589 A JP2016502589 A JP 2016502589A
Authority
JP
Japan
Prior art keywords
powder
layers
laser
laser energy
powder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015536818A
Other languages
Japanese (ja)
Inventor
スブラマニアン ラメシュ
スブラマニアン ラメシュ
オット ミヒャエル
オット ミヒャエル
トマイディス ディミトリオス
トマイディス ディミトリオス
サドヴォイ アレクサンドル
サドヴォイ アレクサンドル
ミュンツァー ヤン
ミュンツァー ヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2016502589A publication Critical patent/JP2016502589A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/008Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24545Containing metal or metal compound

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laminated Bodies (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

複数の材料による積層造形の方法である。コンポーネント(20)の所与の切断面における隣接最終材料(30、44、45)の第1の領域形状(73)、第2の領域形状(74)、および第3の領域形状(75)それぞれにて、第1の隣接粉末層(48)、第2の隣接粉末層(50)、および第3の隣接粉末層(52)を作業面(54A)上に供給する。第1の粉末は、翼型基板(30)の断面形状に供給された構造用金属であってもよい。第2の粉末は、基板上の接合塗料(45)の断面形状にて供給された接合塗料材料であってもよい。第3の粉末は、遮熱被膜(44)の断面形状に供給された遮熱セラミックであってもよい。特定のレーザ強度(69A、69B)を各層に印加することによって、当該層を溶融または焼結する。隣接層間には、勾配材料重畳および/または交互突起によって、統合界面(57、77、80)を形成するようにしてもよい。This is a method of additive manufacturing using a plurality of materials. First region shape (73), second region shape (74), and third region shape (75) of adjacent final material (30, 44, 45) at a given cut surface of component (20), respectively The first adjacent powder layer (48), the second adjacent powder layer (50), and the third adjacent powder layer (52) are supplied onto the work surface (54A). The first powder may be a structural metal supplied in the cross-sectional shape of the airfoil substrate (30). The second powder may be a bonding paint material supplied in a cross-sectional shape of the bonding paint (45) on the substrate. The third powder may be a thermal barrier ceramic supplied to the cross-sectional shape of the thermal barrier coating (44). By applying a specific laser intensity (69A, 69B) to each layer, the layer is melted or sintered. An integrated interface (57, 77, 80) may be formed between adjacent layers by overlapping gradient materials and / or alternating protrusions.

Description

本発明は、積層造形、特に、異なる材料の隣接粉末層の選択的レーザ焼結および選択的レーザ溶融による多材料金属/セラミックガスタービンコンポーネントの作製に関する。   The present invention relates to additive manufacturing, and in particular to the production of multi-material metal / ceramic gas turbine components by selective laser sintering and selective laser melting of adjacent powder layers of different materials.

本願は、米国仮特許出願第61/710,995号(代理人整理番号第2012P24077US号)の出願日2012年10月8日および米国仮特許出願第61/711,813号(代理人整理番号第2012P24278US号)の出願日2012年10月10日の利益を主張し、その両者を本明細書中に参考として援用する。   This application is filed on Oct. 8, 2012 of US Provisional Patent Application No. 61 / 710,995 (Attorney Docket No. 2012P24077US) and US Provisional Patent Application No. 61 / 711,813 (Attorney Docket No. No. 2012P24278US), the benefit date of October 10, 2012, both of which are incorporated herein by reference.

発明の背景
選択的積層造形では、粉末床の選択的レーザ溶融(SLM)および選択的レーザ焼結(SLS)によってコンポーネントの積層を構築し、正味の形状または近似的な正味の形状を実現する。コンポーネントの最終材料または前駆材料の粉末床は、作業面上に堆積させる。コンポーネントの断面領域形状に従って、選択的にレーザエネルギーを粉末床に案内することによりコンポーネントの層または薄片を作成すると、これがその後、次の層の新たな作業面となる。従来は、第1のステップにおいて粉末床が作業面全体に拡がっており、その後のステップにおいて、たとえばラスタースキャンにより床上のコンポーネント断面領域をレーザで規定または「塗装」する。
BACKGROUND OF THE INVENTION Selective additive manufacturing builds a stack of components by selective laser melting (SLM) and selective laser sintering (SLS) of a powder bed to achieve a net shape or an approximate net shape. A powder bed of the final or precursor material of the component is deposited on the work surface. Creating a layer or flake of a component by selectively guiding laser energy to the powder bed according to the cross-sectional area shape of the component then becomes the new work surface for the next layer. Conventionally, the powder bed has spread over the entire work surface in the first step, and in subsequent steps the component cross-sectional area on the floor is defined or “painted” with a laser, for example by raster scanning.

マイクロクラッディングと称することが多い関連プロセスでは、移動式ノズル等の供給装置によって、コンポーネント上に粉末を堆積させる。粉末は、レーザにより堆積点で同時に溶融されるため、供給装置の移動に伴って、コンポーネント上に材料ビードが形成される。また、連続的なパスによって、コンポーネントの修繕または製造のための1つまたは複数の材料層の構築が可能となる。   In a related process, often referred to as microcladding, the powder is deposited on the component by a feeding device such as a moving nozzle. As the powder is melted simultaneously at the deposition point by the laser, a material bead is formed on the component as the feeder moves. Continuous passes also allow the construction of one or more material layers for component repair or manufacturing.

本発明者らは、特性が異なる複数の隣接材料を有するコンポーネントの積層造形方法を考案した。この方法では、金属からセラミックに至るまでの隣接材料を強力に接合した正味の形状または近似的な正味の形状が得られる。これは特に、セラミック遮熱被膜を備えた超合金翼および羽根等のガスタービンコンポーネントの製造に有益である。このような翼型は、タービュレータおよびフィルム冷却孔に裏打ちされたサーペンタイン冷却チャンネルを有する複雑な形状のため、製造が困難である。   The inventors of the present invention have devised an additive manufacturing method for components having a plurality of adjacent materials having different characteristics. In this way, a net shape or an approximate net shape is obtained that strongly joins adjacent materials ranging from metal to ceramic. This is particularly beneficial for the manufacture of gas turbine components such as superalloy blades and vanes with ceramic thermal barrier coatings. Such airfoils are difficult to manufacture due to the complex shape with serpentine cooling channels lined with turbulators and film cooling holes.

以下の記述では、図面を参照して本発明を説明する。   In the following description, the present invention will be described with reference to the drawings.

従来技術のガスタービン翼の断面図である。It is sectional drawing of the gas turbine blade of a prior art. 隣接粉末層を作業面上に形成する粉末供給装置の断面図である。It is sectional drawing of the powder supply apparatus which forms an adjacent powder layer on a working surface. 隣接粉末層を溶融および焼結するレーザビームの断面図である。It is sectional drawing of the laser beam which fuse | melts and sinters an adjacent powder layer. コンポーネントの非線形断面プロファイルと平行な粉末供給および/またはレーザ供給のためのスキャンパスのパターンを示した図である。FIG. 7 shows a pattern of scan paths for powder supply and / or laser supply parallel to a nonlinear cross-sectional profile of a component. 平行な線形パスを有する別のスキャンパターンを示した図である。It is the figure which showed another scan pattern which has a parallel linear path. コンポーネントの壁と垂直または略垂直なスキャンパスを示した図である。FIG. 5 is a diagram showing a scan path perpendicular or substantially perpendicular to a component wall. コンポーネントの第1の薄片上に形成されている第2の薄片を示した図である。FIG. 3 shows a second flake formed on a first flake of a component. 異なる厚さで堆積した隣接粉末層を示した図である。It is the figure which showed the adjacent powder layer deposited by different thickness. 隣接材料間の連動する界面を示した図である。It is the figure which showed the interface which interlock | cooperates between adjacent materials. 本発明の一実施形態の態様を示したフローチャートである。3 is a flowchart illustrating aspects of one embodiment of the present invention.

発明の詳細な説明
図1は、前縁22、後縁24、圧力側26、吸引側28、金属基板30、冷却チャンネル32、隔壁34、タービュレータ36、フィルム冷却吐出孔38、冷却ピン40、および後縁吐出孔42を備えた典型的なガスタービン翼型20の横断面図である。翼型基板の外部は、セラミック遮熱被膜44で被覆されている。基板と遮熱被膜との間には、金属接合塗料45が適用されていてもよい。タービュレータは、表面積を増大させるとともに冷媒流れの流体境界層を撹拌する冷却チャンネル32内の突起、窪み、隆起、または凹部である。
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows a leading edge 22, a trailing edge 24, a pressure side 26, a suction side 28, a metal substrate 30, a cooling channel 32, a partition wall 34, a turbulator 36, a film cooling discharge hole 38, a cooling pin 40, and 2 is a cross-sectional view of a typical gas turbine airfoil 20 having a trailing edge discharge hole 42. FIG. The outside of the airfoil substrate is covered with a ceramic thermal barrier coating 44. A metal bonding paint 45 may be applied between the substrate and the thermal barrier coating. Turbulators are protrusions, depressions, ridges, or depressions in the cooling channel 32 that increase the surface area and stir the fluid boundary layer of the refrigerant flow.

図2は、コンポーネントの所与の切断面における第1、第2、および第3の隣接最終材料の第1、第2、および第3の領域形状にて、第1の隣接粉末層48、第2の隣接粉末層50、および第3の隣接粉末層52を作業面54A上に供給するプロセスおよび装置を示している。たとえば、第1の粉末層48は、図1に示す翼型基板30の領域形状に供給された構造用金属であってもよい。第2の粉末層50は、基板上の接合塗料45の領域形状(図1)にて、第1の粉末48に隣接して供給された接合塗料であってもよい。第3の粉末層52は、遮熱被膜44の領域形状(図1)にて、第2の粉末に隣接して供給された遮熱セラミックであってもよい。   FIG. 2 illustrates the first adjacent powder layer 48, first, second, and third region shapes of the first, second, and third adjacent final materials at a given cut surface of the component. 2 illustrates a process and apparatus for supplying two adjacent powder layers 50 and a third adjacent powder layer 52 onto a work surface 54A. For example, the first powder layer 48 may be a structural metal supplied to the region shape of the airfoil substrate 30 shown in FIG. The second powder layer 50 may be a bonding paint supplied adjacent to the first powder 48 in the region shape (FIG. 1) of the bonding paint 45 on the substrate. The third powder layer 52 may be a thermal barrier ceramic supplied adjacent to the second powder in the region shape of the thermal barrier coating 44 (FIG. 1).

第1および第2の粉末層間には、界面56を供給することによって、2つの隣接粉末層48、50間に材料勾配遷移を与える重畳領域57を形成するようにしてもよい。また、第2および第3の粉末50、52間には、界面58を供給することによって、第2および第3の粉末から交互に突出した交互フィンガ等の工学的な機械的連動部を形成するようにしてもよい(後述)。粉末供給装置60は、粉末噴霧64を焦点66に供給する1つまたは複数のノズル62を有していてもよい。   By providing an interface 56 between the first and second powder layers, an overlapping region 57 that provides a material gradient transition between the two adjacent powder layers 48 and 50 may be formed. In addition, by supplying an interface 58 between the second and third powders 50 and 52, an engineered mechanical interlocking unit such as alternating fingers protruding alternately from the second and third powders is formed. You may make it (it mentions later). The powder supply device 60 may have one or more nozzles 62 that supply a powder spray 64 to the focal point 66.

粉末供給装置60は、作業面54Aに対する多軸移動61を組み込むことによって、ノズルが所与の水平面における非線形断面プロファイルに追従し、作業面54Aに対して異なる平面または距離に移動し、様々な角度で粉末を供給できるようにしてもよい。これらの軸は、コンピュータ制御下のトラックおよび回転軸受けを介した作業台55および/または粉末供給装置60の運動により実現するようにしてもよい。また、ノズル並進速度、質量供給速度、および噴霧角度等の粉末供給パラメータについては、離散粒子モデリングシミュレーションによって予め決めておくことにより、最終的な薄片形状を最適化するようにしてもよい。噴霧後の粉末は、レーザ加熱に先立って、電磁エネルギーおよび/または機械的もしくは音響的振動等の手段によって圧縮および安定化するようにしてもよい。   The powder feeder 60 incorporates a multi-axis movement 61 relative to the work surface 54A so that the nozzle follows a non-linear cross-sectional profile in a given horizontal plane and moves to different planes or distances relative to the work surface 54A at various angles. It may be possible to supply the powder. These axes may be realized by movement of the worktable 55 and / or the powder supply device 60 via a track and rotary bearing under computer control. In addition, powder supply parameters such as nozzle translation speed, mass supply speed, and spray angle may be determined in advance by discrete particle modeling simulation to optimize the final flake shape. The sprayed powder may be compressed and stabilized by means such as electromagnetic energy and / or mechanical or acoustic vibration prior to laser heating.

粉末は、噴霧前または噴霧中に水、アルコール、ラッカー、またはバインダで湿らせることによって、レーザ溶融またはレーザ焼結によりコンポーネントの凝集薄片となるまで所望の形態を保持するようにしてもよい。本明細書中に参考として援用する同時係属出願である米国特許出願公開第2013/0140278A1号(代理人整理番号第2012P22347US号)に詳述されている通り、粉末材料にフラックス材料を含むことによって、クラッディングプロセスを容易化するようにしてもよい。   The powder may be kept in the desired form until it is agglomerated flakes of the component by laser melting or laser sintering by wetting with water, alcohol, lacquer or binder before or during spraying. By including a flux material in the powder material, as detailed in US Patent Application Publication No. 2013/0140278 A1 (Attorney Docket No. 2012P22347US), a co-pending application incorporated herein by reference, The cladding process may be facilitated.

図3は、それぞれ異なるレーザエネルギーにより異なる粉末層48、50、52を溶融および/または焼結するプロセスおよび装置を示している。たとえば、基板超合金粉末48および接合塗料粉末58は、第1および第2のレーザエネルギーにより溶融し、セラミック遮熱粉末52は、セラミック粒子を一部のみ溶融する第3のレーザエネルギーにより焼結するようにしてもよい。また、異なるレーザエネルギー69A、69Bは、可変出力の単一のレーザ発光器68Aまたは異なる粉末層に対して異なる出力を行う複数のレーザ発光器68A、68Bにより供給するようにしてもよい。レーザ発光器は、作業面54Aに対する多軸移動70を組み込むことによって、所与の平面における非線形断面プロファイルに追従し、作業面54Aに対して異なる平面または距離に移動し、所望の角度およびスポットサイズにレーザビームを位置決めおよび案内できるようにしてもよい。   FIG. 3 shows a process and apparatus for melting and / or sintering different powder layers 48, 50, 52 with different laser energies. For example, the substrate superalloy powder 48 and the bonding paint powder 58 are melted by the first and second laser energy, and the ceramic heat shielding powder 52 is sintered by the third laser energy that melts only a part of the ceramic particles. You may do it. Further, the different laser energies 69A and 69B may be supplied by a single laser emitter 68A having a variable output or a plurality of laser emitters 68A and 68B performing different outputs for different powder layers. The laser emitter follows a non-linear cross-sectional profile in a given plane by incorporating a multi-axis movement 70 relative to the work surface 54A and moves to a different plane or distance relative to the work surface 54A to achieve the desired angle and spot size. The laser beam may be positioned and guided.

図4は、コンポーネント20の非線形断面形状プロファイル73、74、75に追従するパス72のパターンを示している。図2の粉末供給焦点66は、このようなパスに追従するように制御してもよい。断面形状プロファイルと平行であるこのようなスキャンパターン72によって、粉末層48、50、52ごとに粉末の種類を変更可能となる。   FIG. 4 shows the pattern of the path 72 following the non-linear cross-sectional profile 73, 74, 75 of the component 20. The powder supply focal point 66 of FIG. 2 may be controlled to follow such a path. Such a scan pattern 72 that is parallel to the cross-sectional profile enables the powder type to be changed for each of the powder layers 48, 50, 52.

また、レーザエネルギー69A、69B(図3)は、図4の72のような非線形スキャンパスに追従するようにしてもよい。このようなパスであれば、異なる粉末材料に対して、レーザ強度の変更数を最小限に抑えられる。また、第1の粉末層48の断面形状73の輪郭に追従するように第1のレーザエネルギーを案内し、第2の粉末層50の断面形状74の輪郭に追従するように第2のレーザエネルギーを案内し、第3の粉末層52の断面形状75の輪郭に追従するように第3のレーザエネルギーを案内するようにしてもよい。レーザは、フィルム冷却孔38等、形成したコンポーネント中に空洞として残ることになる領域上を通過する際にオフ循環させるようにしてもよい。   Further, the laser energies 69A and 69B (FIG. 3) may follow a non-linear scan path such as 72 in FIG. Such a path can minimize the number of laser intensity changes for different powder materials. The first laser energy is guided so as to follow the contour of the cross-sectional shape 73 of the first powder layer 48, and the second laser energy is followed so as to follow the contour of the cross-sectional shape 74 of the second powder layer 50. The third laser energy may be guided so as to follow the contour of the cross-sectional shape 75 of the third powder layer 52. The laser may be circulated off as it passes over areas that will remain as cavities in the formed component, such as film cooling holes 38.

図5は、レーザエネルギーの平行な線形パス74を有する別のスキャンパターンを示している。図6は、コンポーネントの壁と垂直または略垂直なスキャンパス76を示している。パターン74、76では、空洞38のためのオフ/オン循環のほか、異なる粉末層に対して、界面56、58との交差ごとのレーザ強度の変更が必要となる場合がある。スキャン72、74、76の間隔は、粉末表面におけるレーザビームの幅またはスポットサイズによって決まる。複数のレーザ発光器を併用してより広い領域を生成することにより、スキャン数を少なくするようにしてもよい。レーザビームは、作業面からの発光器の距離の変更による幅の調整および/または調整可能なレンズ、ミラー、またはマスクによるサイズおよび形状の調整を行うことによって、スキャン間隔およびスポットサイズを低減することなく、フィレット等のコンポーネントの小型、先鋭、または湾曲要素をより良好に規定するようにしてもよい。   FIG. 5 shows another scan pattern having parallel linear paths 74 of laser energy. FIG. 6 shows a scan path 76 that is perpendicular or substantially perpendicular to the wall of the component. Patterns 74 and 76 may require an off / on circulation for cavity 38 as well as a change in laser intensity at each intersection with interfaces 56 and 58 for different powder layers. The spacing between the scans 72, 74, 76 is determined by the width or spot size of the laser beam at the powder surface. The number of scans may be reduced by using a plurality of laser emitters together to generate a wider area. Laser beam reduces scan spacing and spot size by adjusting the width by changing the distance of the light emitter from the work surface and / or adjusting the size and shape with an adjustable lens, mirror, or mask Rather, it may better define small, sharp, or curved elements of components such as fillets.

図7は、新たな作業面54Bを与えるコンポーネントの第1の固化薄片74を示しており、その上に粉末層48、50、52を適用することによって、コンポーネントの第2の薄片76を得る。   FIG. 7 shows a first solidified flake 74 of a component that provides a new work surface 54B, and a second flake 76 of the component is obtained by applying a powder layer 48, 50, 52 thereon.

図8は、最終的に均一な薄片厚さを実現するため、それぞれのプロセス収縮に応じた異なる高さで供給された粉末層48、50、52を示している。第1の隣接層48および第2の隣接層50の粉末は、重畳して勾配材料遷移となるように、重畳領域57に堆積させてもよい。重畳幅は、たとえば少なくとも0.2mmであってもよい。また、第2の隣接層50および第3の隣接層52の粉末についても、重畳して勾配材料遷移となるように、重畳領域77に堆積させてもよい。重畳幅は、たとえば少なくとも0.2mmまたは0.4mm、あるいは最大1mmまたは最大2mmであってもよい。   FIG. 8 shows the powder layers 48, 50, 52 supplied at different heights depending on the respective process shrinkage in order to finally achieve a uniform flake thickness. The powders of the first adjacent layer 48 and the second adjacent layer 50 may be deposited in the overlapping region 57 so as to overlap and form a gradient material transition. The overlapping width may be at least 0.2 mm, for example. Further, the powders of the second adjacent layer 50 and the third adjacent layer 52 may also be deposited in the overlapping region 77 so as to overlap and cause a gradient material transition. The overlap width may be for example at least 0.2 mm or 0.4 mm, or a maximum of 1 mm or a maximum of 2 mm.

図9は、接合層50およびセラミック層52から交互に突出した3次元交互フィンガを形成する交互プロファイル等の工学的な連動機構80が形成された第2の層50と第3の層52との間の界面を示している。このような機械的に連動する界面は、図8に示す勾配材料領域77の代替または追加として設けてもよい。セラミック層52には亀裂82を形成して、当該セラミック層52のスキャン時にレーザエネルギーをオフ/オン循環させることにより動作時の張力を緩和するようにしてもよい。また、セラミック層52の材料には、中空のセラミック球84を含むことによって、熱伝導性を抑えるようにしてもよい。遮熱層52に中空のセラミック球を含めると、動作時の焼結で球の空洞が減少することはないため、熱伝導性が永久に抑えられる。   FIG. 9 shows the second layer 50 and the third layer 52 in which an engineering interlocking mechanism 80 such as an alternating profile forming a three-dimensional alternating finger protruding alternately from the bonding layer 50 and the ceramic layer 52 is formed. The interface is shown. Such a mechanically interlocking interface may be provided as an alternative or addition to the gradient material region 77 shown in FIG. A crack 82 may be formed in the ceramic layer 52 to relieve the tension during operation by circulating the laser energy off / on when the ceramic layer 52 is scanned. Further, the material of the ceramic layer 52 may include a hollow ceramic sphere 84 to suppress thermal conductivity. When a hollow ceramic sphere is included in the heat-insulating layer 52, since the cavities of the sphere are not reduced by sintering during operation, the thermal conductivity is permanently suppressed.

図10は、本発明の一実施形態の態様を示した方法84のフローチャートであって、
86.多材料コンポーネントの所与の切断面を表す各領域形状にて、それぞれ異なる材料の複数の隣接粉末層を作業面上に供給するステップと、
88.隣接粉末層のうちの少なくとも2つに重畳することによって、当該少なくとも2つの隣接粉末層間に勾配材料遷移領域を形成するステップと、
90.特定のレーザエネルギーを粉末層のそれぞれに印加して当該層を溶融または焼結するステップであって、当該層のうちの少なくとも2つがそれぞれ異なるレーザ強度を受けるステップと、
92.連続する切断面に対してステップ86から繰り返すことにより、選択的積層造形によってコンポーネントを製造するステップと、
を含む。
FIG. 10 is a flowchart of a method 84 illustrating aspects of an embodiment of the present invention,
86. Providing a plurality of adjacent powder layers of different materials on the work surface at each region shape representing a given cut surface of the multi-material component;
88. Forming a gradient material transition region between at least two adjacent powder layers by superimposing on at least two of the adjacent powder layers;
90. Applying a specific laser energy to each of the powder layers to melt or sinter the layers, wherein at least two of the layers receive different laser intensities;
92. Producing a component by selective additive manufacturing by repeating from step 86 on successive cut surfaces;
including.

一部の実施形態においては、ナノスケールのセラミック粒子を含むことによって、セラミック層の焼結温度を350℃も低くすることができる。これにより、金属およびセラミック層の共焼結および接合が容易化される。温度低下は、特に平均直径が100nm未満の粒子がセラミック粉末に少なくとも2容量%、最大100容量%含まれている場合、特に平均直径が50nm未満の粒子の場合に発生する。本方法によれば、このようなナノ粒子を部分的に溶融するだけで焼結が可能となる。これは、溶射技術によりセラミック被膜を適用する場合は不可能である。より小さな粒子が完全に溶融してしまう傾向があるためである。   In some embodiments, the sintering temperature of the ceramic layer can be as low as 350 ° C. by including nanoscale ceramic particles. This facilitates co-sintering and joining of the metal and ceramic layers. The temperature drop occurs particularly when particles having an average diameter of less than 100 nm are contained in the ceramic powder at least 2% by volume and at most 100% by volume, particularly when the particles have an average diameter of less than 50 nm. According to this method, sintering can be performed only by partially melting such nanoparticles. This is not possible when applying ceramic coatings by thermal spray techniques. This is because smaller particles tend to melt completely.

高温ガスタービンコンポーネントに使用されるニッケルベースの超合金は、ガンマ相マトリクス中のガンマプライム沈殿剤相で強化されていることが多い。これらの超合金は、その高温環境耐久性によって、製造および修繕が困難である。ただし、本明細書に記載の方法によれば、セラミック等の異なる材料の隣接層に対して製造および接合が可能となる。タービュレータおよびフィルム冷却吐出孔を備えたサーペンタインチャンネルを有するガスタービン翼の鋳造は、困難かつ高価である。本方法では、異なる材料層をより完全に接合しつつ、コストを低減する。これによれば、超合金翼を鋳造した後に溶射等の別個のプロセスで被覆を行う代わりに、タービン翼等の多材料コンポーネント全体を1つのプロセスで製造可能となる。   Nickel-based superalloys used in hot gas turbine components are often strengthened with a gamma prime precipitant phase in a gamma phase matrix. These superalloys are difficult to manufacture and repair due to their high temperature environmental durability. However, according to the method described herein, it is possible to manufacture and bond to adjacent layers of different materials such as ceramics. Casting gas turbine blades having serpentine channels with turbulators and film cooling and discharge holes is difficult and expensive. The method reduces costs while more fully bonding different material layers. This allows the entire multi-material component, such as a turbine blade, to be manufactured in a single process, instead of coating the superalloy blade after a separate process such as thermal spraying.

以上、本発明の種々実施形態を図示および説明したが、これらの実施形態を一例として提供したに過ぎないことは明らかであろう。本発明から逸脱することなく、様々な変形、変更、および置換が可能である。したがって、本発明は、添付の特許請求の範囲の主旨および範囲によってのみ制限されるものである。   While various embodiments of the present invention have been illustrated and described above, it will be apparent that these embodiments have been provided as examples only. Various modifications, changes and substitutions can be made without departing from the invention. Accordingly, the invention is limited only by the spirit and scope of the appended claims.

20 ガスタービン翼型
22 前縁
24 後縁
26 圧力側
28 吸引側
30 金属基板
32 冷却チャンネル
34 隔壁
36 タービュレータ
38 フィルム冷却吐出孔
40 冷却ピン
42 後縁吐出孔
44 セラミック遮熱被膜
45 金属接合塗料
48 第1の隣接粉末層
50 第2の隣接粉末層
52 第3の隣接粉末層
54A 作業面
54B 作業面
55 作業台
56 界面
57 重畳領域
58 界面
60 粉末供給装置
61 多軸移動
62 ノズル
64 粉末噴霧
66 焦点
68A レーザ発光器
68B レーザ発光器
69A レーザエネルギー
69B レーザエネルギー
70 多軸移動
72 スキャンパターン
73 非線形断面形状プロファイル
74 非線形断面形状プロファイル
75 非線形断面形状プロファイル
76 薄片
77 重畳領域
80 連動機構
82 亀裂
84 中空のセラミック球
20 Gas Turbine Airfoil 22 Leading Edge 24 Trailing Edge 26 Pressure Side 28 Suction Side 30 Metal Substrate 32 Cooling Channel 34 Bulkhead 36 Turbulator 38 Film Cooling Discharge Hole 40 Cooling Pin 42 Trailing Edge Discharge Hole 44 Ceramic Thermal Barrier Coating 45 Metal Bonding Paint 48 First Adjacent Powder Layer 50 Second Adjacent Powder Layer 52 Third Adjacent Powder Layer 54A Work Surface 54B Work Surface 55 Work Table 56 Interface 57 Superposition Area 58 Interface 60 Powder Supply Device 61 Multiaxial Movement 62 Nozzle 64 Powder Spray 66 Focus 68A Laser emitter 68B Laser emitter 69A Laser energy 69B Laser energy 70 Multi-axis movement 72 Scan pattern 73 Non-linear cross-sectional shape profile 74 Non-linear cross-sectional shape profile 75 Non-linear cross-sectional shape profile 76 Thin piece 77 Overlapping region 80 Interlocking mechanism 2 crack 84 hollow ceramic spheres

Claims (20)

コンポーネントを作製する方法であって、
多材料コンポーネントの所与の切断面における各最終材料を表す各領域形状にて、それぞれ異なる粉末材料の複数の隣接粉末層を作業面上に供給するステップと、
前記隣接粉末層のうちの少なくとも2つに重畳することによって、当該少なくとも2つの隣接粉末層間に材料勾配領域を形成するステップと、
第1の強度の第1のレーザエネルギーを前記粉末層のうちの第1の粉末層に、第2の異なるレーザ強度の第2のレーザエネルギーを前記粉末層のうちの第2の粉末層に印加するステップと、
前記コンポーネントの連続する切断面に対して前記供給ステップから繰り返すことにより、当該コンポーネントを製造するステップと、
を含む方法。
A method of making a component,
Providing a plurality of adjacent powder layers of different powder materials on the work surface, with each region shape representing each final material at a given cut surface of the multi-material component;
Forming a material gradient region between the at least two adjacent powder layers by overlapping at least two of the adjacent powder layers;
A first laser energy having a first intensity is applied to the first powder layer of the powder layer, and a second laser energy having a second different laser intensity is applied to the second powder layer of the powder layer. And steps to
Producing the component by repeating from the supplying step on successive cut surfaces of the component;
Including methods.
前記第1の粉末層が金属を含み、前記第2の粉末が遮熱セラミックを含み、前記第1の粉末層の非線形外周と平行な第1の複数のスキャンパスに追従するように前記第1のレーザエネルギーを案内し、前記第2の粉末層の非線形外周と平行な第2の複数のスキャンパスに追従するように前記第2のレーザエネルギーを案内する、請求項1に記載の方法。   The first powder layer includes a metal, the second powder includes a thermal barrier ceramic, and the first powder layer follows a first plurality of scan paths parallel to a non-linear outer periphery of the first powder layer. 2. The method of claim 1, wherein the second laser energy is guided to follow a second plurality of scan paths parallel to a non-linear outer periphery of the second powder layer. 前記第1および第2のスキャンパスに追従しつつ前記第1および第2のレーザエネルギーをオン・オフ循環させることによって、前記第1および第2の最終材料を通過するチャンネルを形成することをさらに含む、請求項2に記載の方法。   Forming a channel through the first and second final materials by cycling the first and second laser energies while following the first and second scan paths. The method of claim 2 comprising. 第2のスキャンパスに追従しつつ前記第2のレーザエネルギーをオン・オフ循環させることによって、前記第2の最終材料に張力緩和亀裂を形成することをさらに含む、請求項2に記載の方法。   The method of claim 2, further comprising forming a strain relaxation crack in the second final material by cycling the second laser energy on and off while following a second scan path. 交互プロファイルを介して前記第1および第2の粉末材料を前記作業面上に供給することにより、機械的に連動する界面を前記第1および第2の最終材料間に形成することによって、前記界面全体に交互フィンガを形成することをさらに含む、請求項1に記載の方法。   Supplying the first and second powder materials onto the work surface via alternating profiles to form a mechanically interlocking interface between the first and second final materials; The method of claim 1, further comprising forming alternating fingers throughout. 前記第1および第2の粉末層をそれぞれ第1および第2の厚さで前記作業面上に堆積させるとともに、前記各レーザエネルギーを予め決めておくことによって、前記所与の切断面における前記最終材料の均一な厚さまで前記粉末層を薄くすることをさらに含む、請求項1に記載の方法。   The first and second powder layers are deposited on the work surface at first and second thicknesses, respectively, and the laser energy is predetermined to thereby determine the final at the given cut surface. The method of claim 1, further comprising thinning the powder layer to a uniform thickness of material. 前記第1および第2の粉末層上をそれぞれ通過する連続した線形スキャンパスに沿って案内されるレーザビームにより前記第1および第2のレーザエネルギーを提供することと、各スキャンパスに沿って前記レーザビームの強度を変化させることにより前記第1および第2の強度を与えることとをさらに含む、請求項1に記載の方法。   Providing the first and second laser energies by a laser beam guided along a continuous linear scan path that respectively passes over the first and second powder layers; and The method of claim 1, further comprising: providing the first and second intensities by changing the intensity of a laser beam. 請求項1に記載の方法により形成された製品。   A product formed by the method of claim 1. コンポーネントを作製する方法であって、
組み合わせにより前記コンポーネントの所与の多材料切断面を表す第1、第2、および第3の各領域形状にて、それぞれ異なる材料の第1、第2、および第3の隣接層の各粉末を作業面上に供給するステップであり、
前記第1の粉末層が構造用金属材料を含み、前記第2の粉末層が接合塗料材料を含み、前記第3の粉末層が遮熱セラミックを含む、ステップと、
前記粉末層のそれぞれに特定のレーザエネルギーを印加することによって当該層を溶融または焼結するステップであり、前記層のうちの少なくとも2つがそれぞれ異なるレーザ強度を受ける、ステップと、
連続する切断面に対して前記供給ステップから繰り返すことにより、選択的積層造形によって前記コンポーネントを製造するステップと、
を含む方法。
A method of making a component,
Each powder of the first, second, and third adjacent layers of different materials in a first, second, and third region shape that represents a given multi-material cut surface of the component in combination. Supplying on the work surface,
The first powder layer comprises a structural metal material, the second powder layer comprises a bonding paint material, and the third powder layer comprises a thermal barrier ceramic;
Melting or sintering the layer by applying specific laser energy to each of the powder layers, wherein at least two of the layers are each subjected to different laser intensities;
Producing the component by selective additive manufacturing by repeating from the supplying step on a continuous cut surface;
Including methods.
前記領域形状の各プロファイルと平行なスキャンパスに追従しつつ前記レーザエネルギーをオン・オフ循環させることによって、前記コンポーネントにチャンネルを形成することをさらに含む、請求項9に記載の方法。   The method of claim 9, further comprising forming a channel in the component by cycling the laser energy on and off while following a scan path parallel to each profile of the region shape. 前記第1の形状のプロファイルと平行なスキャンパスに追従するように第1のレーザエネルギーを案内し、前記第2の形状のプロファイルと平行なスキャンパスに追従するように第2のレーザエネルギーを案内し、前記第3の形状のプロファイルと平行なスキャンパスに追従するように第3のレーザエネルギーを案内することをさらに含む、請求項9に記載の方法。   Guide the first laser energy to follow a scan path parallel to the profile of the first shape and guide the second laser energy to follow a scan path parallel to the profile of the second shape. The method of claim 9, further comprising guiding a third laser energy to follow a scan path parallel to the profile of the third shape. 前記第3のレーザエネルギーをオン・オフ循環させることによって、前記遮熱セラミックに張力緩和亀裂を形成することをさらに含む、請求項11に記載の方法。   The method of claim 11, further comprising forming a strain relief crack in the thermal barrier ceramic by cycling the third laser energy on and off. 交互プロファイルを介して前記第2および第3の粉末を前記作業面上に供給することにより、機械的に連動する界面を前記第2および第3の層間に形成することによって、前記界面に交互フィンガを形成することをさらに含む、請求項11に記載の方法。   By supplying the second and third powders onto the work surface via an alternating profile, a mechanically interlocking interface is formed between the second and third layers, thereby providing an alternating finger at the interface. The method of claim 11, further comprising: forming. 前記第1および第2の粉末に少なくとも0.2mmだけ重畳することによって、勾配材料領域を形成することをさらに含む、請求項9に記載の方法。   The method of claim 9, further comprising forming a gradient material region by overlapping the first and second powders by at least 0.2 mm. 前記第2および第3の粉末に少なくとも0.4mmだけ重畳することによって、勾配材料領域を形成することをさらに含む、請求項11に記載の方法。   The method of claim 11, further comprising forming a gradient material region by overlapping the second and third powders by at least 0.4 mm. 前記第1および第3の層をそれぞれ第1および第2の異なる厚さで前記作業面上に堆積させるとともに、前記レーザエネルギーの各強度を既定することによって、均一な材料厚さまで前記3つの粉末層を薄くすることをさらに含む、請求項11に記載の方法。   The first and third layers are deposited on the work surface with first and second different thicknesses, respectively, and the three powders are made to a uniform material thickness by defining respective intensities of the laser energy. The method of claim 11, further comprising thinning the layer. 前記第1、第2、および第3の層上をそれぞれ通過する連続した線に沿って案内されるレーザビームにより前記第1、第2、および第3のレーザエネルギーを提供することと、各線に沿って前記レーザビームの強度を変化させることにより当該線と交差する各粉末層の前記特定のエネルギーを与えることとをさらに含む、請求項11に記載の方法。   Providing the first, second, and third laser energy by a laser beam guided along a continuous line that respectively passes over the first, second, and third layers; 12. The method of claim 11, further comprising providing the specific energy of each powder layer that intersects the line by changing the intensity of the laser beam along the line. ガスタービンコンポーネントを作製する方法であって、
前記コンポーネントの所与の切断面における第1、第2、および第3の隣接最終材料の第1、第2、および第3の各領域形状にて、第1、第2、および第3の隣接粉末層を作業面上に供給するステップであり、
前記第1の材料が構造用金属を含み、前記第2の材料が接合塗料金属を含み、前記第3の材料が遮熱セラミックを含む、ステップと、
第1および第2のレーザエネルギーそれぞれにより前記第1および第2の粉末層を溶融し、第3のレーザエネルギーにより前記第3の粉末層を一部のみ溶融するステップであり、前記隣接最終材料の新たな作業面を固化により形成するステップと、
連続する切断面に対して前記供給ステップから繰り返すことにより、多孔性セラミック遮熱層を備えた前記構造用金属の前記コンポーネントを製造するステップであり、
前記第1の形状の輪郭に追従するように前記第1のレーザエネルギーを案内し、前記第2の形状の輪郭に追従するように前記第2のレーザエネルギーを案内し、前記第3の形状の輪郭に追従するように前記第3のレーザエネルギーを案内する、ステップと、
を含む方法。
A method of making a gas turbine component comprising:
First, second, and third adjacency in first, second, and third region shapes of first, second, and third adjacent final materials at a given cut surface of the component Supplying a powder layer on the work surface;
The first material comprises a structural metal, the second material comprises a bond paint metal, and the third material comprises a thermal barrier ceramic;
Melting the first and second powder layers with first and second laser energies, respectively, and melting only a portion of the third powder layer with third laser energies, Forming a new work surface by solidification;
Producing the component of the structural metal with a porous ceramic thermal barrier layer by repeating from the supplying step on a continuous cut surface;
The first laser energy is guided to follow the contour of the first shape, the second laser energy is guided to follow the contour of the second shape, and the third shape of the third shape is guided. Guiding the third laser energy to follow a contour; and
Including methods.
前記第1および第2の粉末に少なくとも0.2mmだけ重畳することによって、前記第1および第2の層間に勾配材料界面を形成することと、
交互プロファイルを介して前記第2および第3の粉末を前記作業面上に供給することにより、機械的に連動する界面を前記第2および第3の層間に形成することによって、前記界面全体に交互フィンガを形成することと、
をさらに含む、請求項18に記載の方法。
Forming a gradient material interface between the first and second layers by overlapping at least 0.2 mm on the first and second powders;
By supplying the second and third powders onto the work surface via an alternating profile, a mechanically interlocking interface is formed between the second and third layers, thereby alternating the entire interface. Forming fingers,
The method of claim 18, further comprising:
請求項19に記載の方法により形成された製品。   20. A product formed by the method of claim 19.
JP2015536818A 2012-10-08 2013-10-07 Additive manufacturing of turbine components with multiple materials Pending JP2016502589A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261710995P 2012-10-08 2012-10-08
US61/710,995 2012-10-08
US201261711813P 2012-10-10 2012-10-10
US61/711,813 2012-10-10
US14/043,037 2013-10-01
US14/043,037 US20140099476A1 (en) 2012-10-08 2013-10-01 Additive manufacture of turbine component with multiple materials
PCT/US2013/063641 WO2014107204A2 (en) 2012-10-08 2013-10-07 Additive manufacture of turbine component with multiple materials

Publications (1)

Publication Number Publication Date
JP2016502589A true JP2016502589A (en) 2016-01-28

Family

ID=50432877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015536818A Pending JP2016502589A (en) 2012-10-08 2013-10-07 Additive manufacturing of turbine components with multiple materials

Country Status (7)

Country Link
US (1) US20140099476A1 (en)
EP (1) EP2903762A2 (en)
JP (1) JP2016502589A (en)
CN (1) CN104684667A (en)
IN (1) IN2015DN02324A (en)
RU (1) RU2015116240A (en)
WO (1) WO2014107204A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170729A1 (en) * 2016-03-29 2017-10-05 三菱重工コンプレッサ株式会社 Impeller production method by fused deposition modeling using dissimilar materials, and impeller
JP2017198205A (en) * 2016-04-26 2017-11-02 ゼネラル・エレクトリック・カンパニイ Airfoil for turbine engine
KR20180049284A (en) * 2016-10-31 2018-05-11 한국생산기술연구원 Manufacturing Method of Metal Foam and Metal Foam Manufactured by the Same
WO2019087281A1 (en) 2017-10-31 2019-05-09 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade, turbo charger, and manufacturing method for turbine rotor blade
WO2019138497A1 (en) 2018-01-11 2019-07-18 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade, turbo charger, and turbine rotor blade manufacturing method
KR20200003315A (en) * 2018-06-20 2020-01-09 한국생산기술연구원 One-step manufacturing method of laminated molding porous component which has curved surface
JP2020165359A (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 High-temperature component, manufacturing method of high-temperature component and flow rate adjustment method
WO2020202866A1 (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 High-temperature component and method for manufacturing high-temperature component
JPWO2019117076A1 (en) * 2017-12-12 2020-12-24 株式会社ニコン Modeling system, modeling method, computer program, recording medium and control device
KR20230025156A (en) * 2021-08-13 2023-02-21 한국생산기술연구원 3d printing apparatus using a voxel-by-boxel multi-materials

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511447B2 (en) * 2013-12-12 2016-12-06 General Electric Company Process for making a turbulator by additive manufacturing
DE102012202487A1 (en) * 2012-02-17 2013-08-22 Evonik Industries Ag Process for melting / sintering powder particles for the layered production of three-dimensional objects
US9776282B2 (en) 2012-10-08 2017-10-03 Siemens Energy, Inc. Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
ES2777927T3 (en) * 2012-10-12 2020-08-06 MTU Aero Engines AG Component for a turbine
US10710161B2 (en) * 2013-03-11 2020-07-14 Raytheon Technologies Corporation Turbine disk fabrication with in situ material property variation
CN105143146A (en) * 2013-04-25 2015-12-09 联合工艺公司 Additive manufacturing of ceramic turbine components by transient liquid phase bonding using metal or ceramic binders
EP3017149B1 (en) * 2013-07-01 2019-08-28 United Technologies Corporation Airfoil, and method for manufacturing the same
US20150003997A1 (en) * 2013-07-01 2015-01-01 United Technologies Corporation Method of forming hybrid metal ceramic components
ES2718129T3 (en) * 2013-07-23 2019-06-27 MTU Aero Engines AG Insulation device for a thermal gas turbine and a thermal gas turbine with this structure
US10260352B2 (en) 2013-08-01 2019-04-16 Siemens Energy, Inc. Gas turbine blade with corrugated tip wall
US20150064047A1 (en) * 2013-08-28 2015-03-05 Elwha Llc Systems and methods for additive manufacturing of three dimensional structures
EP3066234B1 (en) 2013-11-04 2020-07-01 United Technologies Corporation Calcium-magnesium-alumino-silicate resistant thermal barrier coatings
US9649690B2 (en) * 2014-02-25 2017-05-16 General Electric Company System having layered structure and method of making the same
US9358643B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
US9359897B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
JP6305295B2 (en) * 2014-09-19 2018-04-04 株式会社東芝 Additive manufacturing apparatus and additive manufacturing method
KR102026354B1 (en) 2014-10-14 2019-09-27 지멘스 에너지, 인코포레이티드 Laser additive manufacture of three-dimensional components containing multiple materials formed as integrated systems
US10352181B2 (en) * 2014-11-26 2019-07-16 Ansaldo Energia Ip Uk Limited Leading edge cooling channel for airfoil
JP2017535458A (en) * 2014-11-26 2017-11-30 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー Method for producing edible article using SLS
DE102015202417A1 (en) * 2015-02-11 2016-08-11 Ksb Aktiengesellschaft Stömungsführendes component
US10094240B2 (en) * 2015-02-12 2018-10-09 United Technologies Corporation Anti-deflection feature for additively manufactured thin metal parts and method of additively manufacturing thin metal parts
CN106457662B (en) * 2015-03-30 2019-11-22 北京大学口腔医院 A kind of 3 D-printing method, device and printer
TW201636188A (en) * 2015-04-01 2016-10-16 和碩聯合科技股份有限公司 Work piece processing apparatus and work piece processing method
US10322470B2 (en) * 2015-04-06 2019-06-18 The Boeing Company Deposition head for additive manufacturing
US9849510B2 (en) * 2015-04-16 2017-12-26 General Electric Company Article and method of forming an article
DE102015207463A1 (en) * 2015-04-23 2016-10-27 Siemens Aktiengesellschaft Printed repair plaster for turbine components
CN107206675A (en) * 2015-04-30 2017-09-26 惠普发展公司有限责任合伙企业 Print many structure 3D objects
WO2016185966A1 (en) * 2015-05-15 2016-11-24 コニカミノルタ株式会社 Powder material, method for producing three-dimensional molded article, and three-dimensional molding device
JP2016216801A (en) * 2015-05-26 2016-12-22 セイコーエプソン株式会社 Three-dimensional forming apparatus and three-dimensional forming method
US9976441B2 (en) 2015-05-29 2018-05-22 General Electric Company Article, component, and method of forming an article
WO2017011009A1 (en) 2015-07-15 2017-01-19 Hewlett-Packard Development Company, L.P. Processing object part data for a three-dimensional object
JP2017036484A (en) * 2015-08-11 2017-02-16 株式会社日立製作所 Metallic product production method
US10344597B2 (en) 2015-08-17 2019-07-09 United Technologies Corporation Cupped contour for gas turbine engine blade assembly
US10830176B2 (en) 2015-08-26 2020-11-10 Rohr, Inc. Additive manufacturing fiber-reinforced, thrust reverser cascade
DE102015114959A1 (en) * 2015-09-07 2017-03-09 Cl Schutzrechtsverwaltungs Gmbh Device for the generative production of a three-dimensional object
US10739087B2 (en) 2015-09-08 2020-08-11 General Electric Company Article, component, and method of forming an article
US10253986B2 (en) 2015-09-08 2019-04-09 General Electric Company Article and method of forming an article
US10087776B2 (en) 2015-09-08 2018-10-02 General Electric Company Article and method of forming an article
US9884393B2 (en) * 2015-10-20 2018-02-06 General Electric Company Repair methods utilizing additively manufacturing for rotor blades and components
US9914172B2 (en) * 2015-10-20 2018-03-13 General Electric Company Interlocking material transition zone with integrated film cooling
US10370975B2 (en) * 2015-10-20 2019-08-06 General Electric Company Additively manufactured rotor blades and components
US10180072B2 (en) 2015-10-20 2019-01-15 General Electric Company Additively manufactured bladed disk
US10184344B2 (en) 2015-10-20 2019-01-22 General Electric Company Additively manufactured connection for a turbine nozzle
LT6438B (en) * 2015-10-21 2017-08-25 Uab "Neurotechnology" Apparatus for contactless manipulation of material, method of assembling and 3d printing
JP6801173B2 (en) 2015-10-29 2020-12-16 セイコーエプソン株式会社 Manufacturing method of three-dimensional structure, its manufacturing equipment and its control program
US10350684B2 (en) 2015-11-10 2019-07-16 General Electric Company Additive manufacturing method for making complex film holes
WO2017110001A1 (en) 2015-12-25 2017-06-29 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing device, control method of three-dimensional additive manufacturing device, and control program of three-dimensional additive manufacturing device
US10675687B2 (en) * 2016-03-24 2020-06-09 GM Global Technology Operations LLC Method of producing insulating three-dimensional (3D) structures using 3D printing
DE102017106327B4 (en) 2016-03-24 2021-08-26 GM Global Technology Operations LLC Process for producing insulating three-dimensional (3D) structures using 3D printing
EP3222372A1 (en) * 2016-03-24 2017-09-27 Siemens Aktiengesellschaft Method for additive manufacturing a component with multiple building materials and component
SG11201807807YA (en) * 2016-04-20 2018-10-30 Scg Cement Co Ltd A cement formula composition for constructing a multiple layered object
CN106041079B (en) * 2016-07-20 2018-01-19 北京隆源自动成型系统有限公司 A kind of selective laser melting shaping operation method
WO2018057330A1 (en) 2016-09-12 2018-03-29 University Of Washington Vat photopolymerization additive manufacturing of multi-material parts
US11149572B2 (en) * 2016-10-27 2021-10-19 Raytheon Technologies Corporation Additively manufactured component for a gas powered turbine
CN106694886A (en) * 2016-11-30 2017-05-24 苏州大学 Method for preparing foamed aluminum sandwich panel by lasers
US11179926B2 (en) 2016-12-15 2021-11-23 General Electric Company Hybridized light sources
US10583530B2 (en) 2017-01-09 2020-03-10 General Electric Company System and methods for fabricating a component with laser array
US10773310B2 (en) * 2017-01-31 2020-09-15 General Electric Company Additive manufacturing system, article, and method of manufacturing an article
BE1025091B1 (en) * 2017-03-30 2018-10-29 Safran Aero Boosters S.A. Three-dimensional printer
US20180311769A1 (en) * 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
US20180311891A1 (en) * 2017-04-28 2018-11-01 Ut-Battelle, Llc Z-axis improvement in additive manufacturing
EP3403744A1 (en) * 2017-05-19 2018-11-21 Siemens Aktiengesellschaft Machine component made by additive manufacturing
US11123973B2 (en) * 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
CN107538008A (en) * 2017-06-13 2018-01-05 郭志光 A kind of new different metal materials combination interface structure and its manufacture method
CN108914029A (en) * 2017-06-13 2018-11-30 刘红宾 A method of preventing different metal materials zigzag Interface Cracking
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
US20190111480A1 (en) * 2017-10-17 2019-04-18 Desktop Metal, Inc. Binder jetting in additive manufacturing of inhomogeneous three-dimensional parts
DE102017219333A1 (en) * 2017-10-27 2019-05-02 Siemens Aktiengesellschaft Method of modifying components using additive manufacturing
US11571743B2 (en) 2017-11-13 2023-02-07 General Electric Company Systems and methods for additive manufacturing
US10307823B1 (en) 2017-11-13 2019-06-04 General Electric Company Methods and systems for repairing powder containment structures
US11097348B2 (en) * 2017-12-08 2021-08-24 General Electric Company Structures and components having composite unit cell matrix construction
US10835996B2 (en) 2018-01-30 2020-11-17 Siemens Energy, Inc. Laser metal deposition with inoculation
JP6950583B2 (en) * 2018-03-02 2021-10-13 トヨタ自動車株式会社 Mold manufacturing method
DE102018203637A1 (en) * 2018-03-09 2019-09-12 Volkswagen Aktiengesellschaft Design of the transition from laser deposition material to substrate to reduce the notch effect
CN108648220B (en) * 2018-04-17 2021-01-19 湖南华曙高科技有限责任公司 Three-dimensional printing scanning method, readable storage medium and three-dimensional printing scanning control equipment
CN110405204B (en) * 2018-04-28 2021-09-10 深圳市裕展精密科技有限公司 Preparation method of heterogeneous metal piece
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
DE102018215609A1 (en) * 2018-09-13 2020-03-19 Thyssenkrupp Ag Manufacturing process for roller bearing cages, in particular large roller bearing cages, and roller bearing cages
RU2701436C1 (en) * 2018-09-28 2019-09-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of making part from metal powder material
RU2704360C1 (en) * 2018-09-28 2019-10-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Method of making part from metal powder material
EP3856520A4 (en) * 2019-01-15 2022-05-04 Hewlett-Packard Development Company, L.P. Additive manufacturing of transitioned three-dimensional object
WO2020161096A1 (en) * 2019-02-04 2020-08-13 Kanthal Ab Tube, method of manufacturing tube, and related devices
EP3698968A1 (en) * 2019-02-22 2020-08-26 Essilor International Method and system for manufacturing an optical volume element from a hardenable material using an additive manufacturing technology
US11123916B2 (en) 2019-05-06 2021-09-21 Rohr, Inc. Forming a thrust reverser cascade using corrugated bodies
EP3741480A1 (en) * 2019-05-24 2020-11-25 Siemens Aktiengesellschaft Powder bed fusion system for a multi-material production of an object
US11951566B2 (en) * 2019-07-31 2024-04-09 General Electric Company Assignment of multiple print parameter sets in additive manufacturing
PL3789513T3 (en) * 2019-09-09 2023-09-04 Sturm Maschinen- & Anlagenbau Gmbh Coating device and method for metallic coating of workpieces
US11584083B2 (en) * 2019-09-26 2023-02-21 General Electric Company Method and system of additive manufacturing contour-based hatching
CN111186140B (en) * 2020-01-20 2021-03-26 浙江大学 Method for generating mask printing path with distributed force lines
US11590705B2 (en) 2020-05-13 2023-02-28 The Boeing Company System and method for additively manufacturing an object
US11766832B2 (en) 2020-05-13 2023-09-26 The Boeing Company System and method for additively manufacturing an object
JP7482227B2 (en) * 2020-06-19 2024-05-13 Dmg森精機株式会社 Workpiece processing method and processing machine
EP3936260A1 (en) * 2020-07-06 2022-01-12 Siemens Aktiengesellschaft Radiation strategy for a structure made by means of additive manufacture
CN115867430A (en) * 2020-08-19 2023-03-28 西门子股份公司 Printing process making method and device in additive manufacturing
CN112775431B (en) * 2020-12-25 2023-07-18 北京航空航天大学合肥创新研究院 Laser additive manufacturing method of titanium alloy/stainless steel dissimilar metal member
CN112958781A (en) * 2021-01-29 2021-06-15 陕西博鼎快速精铸科技有限责任公司 Preparation method of TRT blade based on 3D printing
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
CN115138859B (en) * 2022-08-17 2023-07-07 南京农业大学 Integrally formed diamond grinding wheel and preparation method thereof
CN115926501B (en) * 2022-12-27 2023-08-22 广东省科学院中乌焊接研究所 Method for improving corrosion resistance of super duplex stainless steel structural member manufactured by arc additive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391251B1 (en) * 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US20050268998A1 (en) * 2002-09-17 2005-12-08 Georg Bostanjoglo Method for producing a three-dimensional moulded body
JP2007051635A (en) * 2005-06-30 2007-03-01 General Electric Co <Ge> Niobium silicide-based turbine component and related method for laser deposition
JP2012507624A (en) * 2008-11-04 2012-03-29 シーメンス アクティエンゲゼルシャフト Welding additives, use of welding additives and components
EP2502729A1 (en) * 2011-03-25 2012-09-26 BAE Systems Plc Additive layer manufacturing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612106B1 (en) * 1987-03-09 1989-05-19 Alsthom METHOD OF LAYING A PROTECTIVE COATING ON A TITANIUM ALLOY BLADE AND A COATED BLADE
JPH04120259A (en) * 1990-09-10 1992-04-21 Agency Of Ind Science & Technol Method and device for producing equipment member by laser beam spraying
US5759641A (en) * 1996-05-15 1998-06-02 Dimitrienko; Ludmila Nikolaevna Method of applying strengthening coatings to metallic or metal-containing surfaces
US6610419B1 (en) * 1998-04-29 2003-08-26 Siemens Akteingesellschaft Product with an anticorrosion protective layer and a method for producing an anticorrosion protective
WO2001045882A2 (en) * 1999-11-16 2001-06-28 Triton Systems, Inc. Laser fabrication of discontinuously reinforced metal matrix composites
US7186092B2 (en) * 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same
CN100404174C (en) * 2006-01-24 2008-07-23 华中科技大学 Preparation method for quick preparing functional gradient material
EP2292357B1 (en) * 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
US9352413B2 (en) 2011-01-13 2016-05-31 Siemens Energy, Inc. Deposition of superalloys using powdered flux and metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391251B1 (en) * 1999-07-07 2002-05-21 Optomec Design Company Forming structures from CAD solid models
US20050268998A1 (en) * 2002-09-17 2005-12-08 Georg Bostanjoglo Method for producing a three-dimensional moulded body
JP2007051635A (en) * 2005-06-30 2007-03-01 General Electric Co <Ge> Niobium silicide-based turbine component and related method for laser deposition
JP2012507624A (en) * 2008-11-04 2012-03-29 シーメンス アクティエンゲゼルシャフト Welding additives, use of welding additives and components
EP2502729A1 (en) * 2011-03-25 2012-09-26 BAE Systems Plc Additive layer manufacturing

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170729A1 (en) * 2016-03-29 2017-10-05 三菱重工コンプレッサ株式会社 Impeller production method by fused deposition modeling using dissimilar materials, and impeller
JP2017198205A (en) * 2016-04-26 2017-11-02 ゼネラル・エレクトリック・カンパニイ Airfoil for turbine engine
KR20180049284A (en) * 2016-10-31 2018-05-11 한국생산기술연구원 Manufacturing Method of Metal Foam and Metal Foam Manufactured by the Same
KR101883272B1 (en) * 2016-10-31 2018-07-31 한국생산기술연구원 Manufacturing Method of Metal Foam
WO2019087281A1 (en) 2017-10-31 2019-05-09 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade, turbo charger, and manufacturing method for turbine rotor blade
US11421535B2 (en) 2017-10-31 2022-08-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine blade, turbocharger, and method of producing turbine blade
JPWO2019117076A1 (en) * 2017-12-12 2020-12-24 株式会社ニコン Modeling system, modeling method, computer program, recording medium and control device
WO2019138497A1 (en) 2018-01-11 2019-07-18 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade, turbo charger, and turbine rotor blade manufacturing method
US11512634B2 (en) 2018-01-11 2022-11-29 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine rotor blade, turbocharger, and method for producing turbine rotor blade
KR20200003315A (en) * 2018-06-20 2020-01-09 한국생산기술연구원 One-step manufacturing method of laminated molding porous component which has curved surface
KR102115229B1 (en) 2018-06-20 2020-05-27 한국생산기술연구원 One-step manufacturing method of laminated molding porous component which has curved surface
JP2020165359A (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 High-temperature component, manufacturing method of high-temperature component and flow rate adjustment method
TWI737188B (en) * 2019-03-29 2021-08-21 日商三菱動力股份有限公司 High-temperature parts and manufacturing methods of high-temperature parts
WO2020202863A1 (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 High-temperature part, manufacturing method of high-temperature part and flow rate adjusting method
WO2020202866A1 (en) * 2019-03-29 2020-10-08 三菱重工業株式会社 High-temperature component and method for manufacturing high-temperature component
US11702944B2 (en) 2019-03-29 2023-07-18 Mitsubishi Power, Ltd. High-temperature component, production method for high-temperature component, and flow rate control method
US11920486B2 (en) 2019-03-29 2024-03-05 Mitsubishi Power, Ltd. High-temperature component and method of producing the high-temperature component
KR20230025156A (en) * 2021-08-13 2023-02-21 한국생산기술연구원 3d printing apparatus using a voxel-by-boxel multi-materials
KR102512669B1 (en) * 2021-08-13 2023-03-22 한국생산기술연구원 3d printing apparatus using a voxel-by-boxel multi-materials

Also Published As

Publication number Publication date
WO2014107204A2 (en) 2014-07-10
IN2015DN02324A (en) 2015-08-28
US20140099476A1 (en) 2014-04-10
RU2015116240A (en) 2016-11-27
CN104684667A (en) 2015-06-03
EP2903762A2 (en) 2015-08-12
WO2014107204A3 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP2016502589A (en) Additive manufacturing of turbine components with multiple materials
Wang et al. Research on the fabricating quality optimization of the overhanging surface in SLM process
Duda et al. 3D metal printing technology
US10337335B2 (en) Method for manufacturing a metallic or ceramic component by selective laser melting additive manufacturing
JP6770245B2 (en) Manufacturing method of 3D model and manufacturing equipment of 3D model
US11155502B2 (en) Method to additively manufacture a fiber-reinforced ceramic matrix composite
US10518325B2 (en) Device and method for additively producing at least one component region of a component
US20160319690A1 (en) Additive manufacturing methods for turbine shroud seal structures
KR101819084B1 (en) Superalloy laser cladding with surface topology energy transfer compensation
CN108115137A (en) A kind of double high energy beam metal increasing material manufacturing methods
Bineli et al. Direct metal laser sintering (DMLS): Technology for design and construction of microreactors
JP2018012336A (en) Three-dimensional laminate molding device, control method of three-dimensional laminate molding device and control program of three-dimensional laminate molding device
JP2020515413A (en) Integrated cast core-shell structure for producing cast parts with cooling holes in hard-to-access locations
Pinkerton Laser direct metal deposition: theory and applications in manufacturing and maintenance
Paul et al. Metal additive manufacturing using lasers
WO2020058722A1 (en) A powder bed: additive manufacturing
JP2007106108A (en) High density performance process
EP3434396A1 (en) Pre-fusion laser sintering for metal powder stabilization during additive manufacturing
EP3592488A1 (en) Triangle hatch pattern for additive manufacturing
CN204892952U (en) 3D prints make -up machine
JP2019039067A (en) Continuous additive manufacture of high pressure turbine
TWI741645B (en) Three-dimensional layering device and method
EP3804883A1 (en) Method of applying a plurality of energy beams in additive manufacturing
EP2377641B1 (en) Method and apparatus for Manufacturing a Component
EP3427869A1 (en) Additive manufacturing methods and related components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170327