JP2016223836A - Analysis method for metal in high-salinity sample - Google Patents

Analysis method for metal in high-salinity sample Download PDF

Info

Publication number
JP2016223836A
JP2016223836A JP2015108486A JP2015108486A JP2016223836A JP 2016223836 A JP2016223836 A JP 2016223836A JP 2015108486 A JP2015108486 A JP 2015108486A JP 2015108486 A JP2015108486 A JP 2015108486A JP 2016223836 A JP2016223836 A JP 2016223836A
Authority
JP
Japan
Prior art keywords
measured
icp emission
sample solution
analysis
chelate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015108486A
Other languages
Japanese (ja)
Inventor
俊達 武井
Toshitatsu Takei
俊達 武井
光隆 近藤
Mitsutaka Kondo
光隆 近藤
文彦 清水
Fumihiko Shimizu
文彦 清水
敬士 森下
Takashi Morishita
敬士 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2015108486A priority Critical patent/JP2016223836A/en
Publication of JP2016223836A publication Critical patent/JP2016223836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove or suppress influences of a coexisting element in an ICP emission spectrochemical analysis and to provide a simple quantitative analysis method for determining a dilution rate suitable in the ICP emission spectrochemical analysis.SOLUTION: An ICP emission spectrochemical analysis method for a measured element in a sample solution including amount of coexisting element enough to cause ionization interference in an ICP emission spectrochemical analysis includes the steps of: using a chelate resin to process the sample solution under an effective condition in capturing the measured element, allowing the chelate resin to capture the measured element and also removing the coexisting element without allowing the chelate resin to capture it; processing the chelate resin after capturing the measured element, under an effective condition in separating the measured element, and obtaining an eluate with the measured element eluted; and applying the ICP emission spectrochemical analysis to the measured element in the eluate. In a preferable embodiment, the method further includes a step of determining quantity of the measured element in the sample solution by a fluorescent X-ray analysis method using a paper filter dripping method, and determining a dilution rate of the sample solution to be provided for the ICP emission spectrochemical analysis, on the basis of the obtained quantitative value.SELECTED DRAWING: None

Description

環境モニタリングや環境汚染防止を目的として、水質、土壌、大気といった環境を調査し、汚染状況や健康に悪影響のある物質が過剰に含まれていないか等について分析することは非常に重要であり、必要性が高い。また水処理を行うシステムにおいて、処理対象に含まれる物質濃度の正確な把握は、効率的な処理を行う上で経済的にも意味がある。   For the purpose of environmental monitoring and prevention of environmental pollution, it is very important to investigate the environment such as water quality, soil and air, and analyze the pollution status and whether or not it contains excessive substances that adversely affect health. The necessity is high. In addition, in a system that performs water treatment, accurately grasping the concentration of a substance contained in a treatment target is economically meaningful for efficient treatment.

環境分析における微量金属の定量は、一般に誘導結合プラズマ発光分光分析(以下、ICP発光分光分析という。)(特許文献1および2)のような、高感度、ダイナミックレンジ、多元素の同時分析が求められ、さまざま試料に応用されている。ICP発光分光分析は高周波結合プラズマを光源とする発光分光分析法であり、ネブライザーで霧化された試料を高温のアルゴンプラズマ中に導入し、励起された元素が発する光を分光器で分光し、その波長より定性分析を、強度より定量分析を行なうことができる方法である。   Trace metals in environmental analysis generally require high sensitivity, dynamic range, and simultaneous analysis of multiple elements, such as inductively coupled plasma emission spectrometry (hereinafter referred to as ICP emission spectroscopy) (Patent Documents 1 and 2). Applied to various samples. ICP emission spectroscopic analysis is an emission spectroscopic method using a high-frequency coupled plasma as a light source. A sample atomized by a nebulizer is introduced into a high-temperature argon plasma, and the light emitted by the excited element is dispersed with a spectrometer. In this method, qualitative analysis can be performed from the wavelength and quantitative analysis from the intensity.

微量金属の分析方法としては、蛍光X線分析方法がある。蛍光X線分析法は、迅速に多元素同時分析できる点で汎用性の高い手法であるが、液体試料中の微量元素を定量する場合には、通常、なんらかの手段で液体試料を濃縮する必要がある。そのための技術として、ろ紙に液体試料を滴下して乾燥させることにより含有成分を濃縮し、かつ保持させるろ紙点滴法が開発されている(特許文献3〜6)。   As an analysis method for trace metals, there is a fluorescent X-ray analysis method. X-ray fluorescence analysis is a highly versatile technique in that it can quickly analyze multiple elements simultaneously. However, when quantifying trace elements in a liquid sample, it is usually necessary to concentrate the liquid sample by some means. is there. As a technique for this purpose, a filter paper drip method has been developed in which a liquid sample is dropped onto a filter paper and dried to concentrate and retain the contained components (Patent Documents 3 to 6).

一方、重金属イオンや希土類金属イオンの濃度の分析を行う際、または工業排水等の溶液中からの重金属の除去・回収を行う際には、キレート剤またはキレート樹脂を用いることが提案されている(特許文献7および8)。   On the other hand, it is proposed to use a chelating agent or a chelating resin when analyzing the concentration of heavy metal ions or rare earth metal ions, or when removing or recovering heavy metals from a solution such as industrial wastewater ( Patent Documents 7 and 8).

特開2009-85943号公報JP 2009-85943 特開2008-309767号公報JP 2008-309767 国際公開公報WO2005/012889International Publication WO2005 / 012889 特開平7−311131号公報Japanese Patent Laid-Open No. 7-311131 特開2002-296152号公報JP 2002-296152 A 特開2009-222615号公報JP 2009-222615 特開2012-27006号公報JP 2012-27006 A WO2010/098257号公報WO2010 / 098257 Publication

ICP発光分光分析では、被測定試料溶液に、被測定元素以外の元素、例えばマトリックス成分(アルカリ金属、アルカリ土類金属等)が共存すると、共存元素もプラズマに導入されてイオン化され、被測定元素のイオンと互いに影響し合い、すなわちイオン化干渉し、発光強度を変化させる。そのため、高感度で微量の被測定元素を分析するためには、共存元素による影響を排除または抑制する必要がある。   In ICP emission spectroscopic analysis, if an element other than the element to be measured, such as a matrix component (alkali metal, alkaline earth metal, etc.) coexists in the sample solution to be measured, the coexisting element is also introduced into the plasma and ionized. Interact with each other, that is, cause ionization interference and change the emission intensity. Therefore, in order to analyze a very small amount of element to be measured with high sensitivity, it is necessary to eliminate or suppress the influence of the coexisting element.

さらに、ICP発光分光分析に際しては、目的の被測定元素を適性濃度レベル内に収めることと共存元素の影響確認のため、試料の希釈とICP発光分光分析操作を繰り返す必要があった。そのため分析操作全体が、非常に煩雑で効率が悪いものとなっていた。ICP発光分光分析に際して適切な希釈倍率を決定することが可能な、簡易的な定量分析方法があれば望ましい。   Furthermore, in the ICP emission spectroscopic analysis, it was necessary to repeat the sample dilution and the ICP emission spectroscopic analysis operation in order to keep the target element to be measured within the proper concentration level and to confirm the influence of the coexisting elements. Therefore, the whole analysis operation is very complicated and inefficient. It would be desirable to have a simple quantitative analysis method that can determine an appropriate dilution factor for ICP emission spectroscopic analysis.

本発明は、以下を提供する。
[1] 試料溶液中の被測定元素の、ICP発光分光分析方法であって:
試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含み;
試料溶液を、キレート樹脂で、被測定元素の捕捉上有効な条件で処理し、被測定元素をキレート樹脂に捕捉させ、かつ共存元素をキレート樹脂に捕捉させずに除去する工程;
被測定元素捕捉させたキレート樹脂を、被測定元素の分離上有効な条件下で処理し、被測定元素を溶離させた溶出液を得る工程;および
溶出液中の被測定元素を、ICP発光分光分析する工程
を含む、方法。
[2] 共存元素が、アルカリ金属およびアルカリ土類金属 からなる群より選択されるいずれか である、1に記載の方法。
[3] 共存元素が、ナトリウム、カリウム、マグネシウムおよびカルシウムからなる群より選択されるいずれか である、2に記載の方法。
[4] 被測定元素が、鉄、ニッケル、銅、亜鉛、カドミウム、鉛、コバルト、およびウランからなる群より選択されるいずれかである、1〜3のいずれか1項に記載の方法。
[5] キレート樹脂が、イミノジカルボン酸型またはポリアミン型である、1〜4のいずれか1項に記載の方法。
[6] キレート樹脂が、官能基としてエチレンジアミン三酢酸とイミノ二酢酸とを有する、5に記載の方法。
[7] 被測定元素の捕捉上有効な条件が、酸性条件である、1〜6のいずれか1項に記載の方法。
[8] 酸性条件が、pH4.5以上7未満である、7に記載の方法。
[9] 試料溶液が、パルプ廃液、白液または緑液である、1〜8のいずれか1項に記載の方法。
[10] 試料溶液中の被測定元素の、ICP発光分光分析方法であって:
試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含み;
試料溶液にイオン化干渉抑制剤を添加し、イオン化干渉抑制剤の存在下で試料溶液中の被測定元素を、ICP発光分光分析する工程
を含む、方法。
[11] 試料溶液中の被測定元素をろ紙点滴法を用いた蛍光X線分析法で定量し、得られた定量値に基づき、ICP発光分光分析に供する試料溶液の希釈倍率を決定する工程をさらに含む、1〜10のいずれか1項に記載の方法。
The present invention provides the following.
[1] A method for ICP emission spectroscopic analysis of an element to be measured in a sample solution:
The sample solution contains an amount of coexisting elements that cause ionization interference during ICP emission spectroscopy;
Treating the sample solution with a chelate resin under conditions effective for capturing the element to be measured, allowing the element to be measured to be captured by the chelate resin, and removing the coexisting element without capturing it by the chelate resin;
Processing the chelate resin captured by the element to be measured under conditions effective for the separation of the element to be measured to obtain an eluate from which the element to be measured is eluted; and the element to be measured in the eluate is subjected to ICP emission spectroscopy. A method comprising the step of analyzing.
[2] The method according to 1, wherein the coexisting element is any one selected from the group consisting of alkali metals and alkaline earth metals.
[3] The method according to 2, wherein the coexisting element is any one selected from the group consisting of sodium, potassium, magnesium and calcium.
[4] The method according to any one of 1 to 3, wherein the element to be measured is any one selected from the group consisting of iron, nickel, copper, zinc, cadmium, lead, cobalt, and uranium.
[5] The method according to any one of 1 to 4, wherein the chelate resin is of iminodicarboxylic acid type or polyamine type.
[6] The method according to 5, wherein the chelate resin has ethylenediaminetriacetic acid and iminodiacetic acid as functional groups.
[7] The method according to any one of 1 to 6, wherein the effective conditions for capturing the element to be measured are acidic conditions.
[8] The method according to 7, wherein the acidic condition is pH 4.5 or more and less than 7.
[9] The method according to any one of 1 to 8, wherein the sample solution is pulp waste liquid, white liquor or green liquor.
[10] A method for ICP emission spectroscopic analysis of an element to be measured in a sample solution:
The sample solution contains an amount of coexisting elements that cause ionization interference during ICP emission spectroscopy;
A method comprising adding an ionization interference inhibitor to a sample solution and performing ICP emission spectroscopic analysis of an element to be measured in the sample solution in the presence of the ionization interference inhibitor.
[11] A step of quantifying an element to be measured in a sample solution by a fluorescent X-ray analysis method using a filter paper drip method, and determining a dilution rate of the sample solution to be subjected to ICP emission spectroscopic analysis based on the obtained quantitative value. The method according to any one of 1 to 10, further comprising:

試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含む場合であっても、共存元素の影響を抑制または排除した高感度の分析を行うことができる。
点滴ろ紙法を使用した蛍光X線分析により、ICP発光分光分析のための試料溶液の適切な希釈倍率の決定を、簡易に行うことができる。またこの蛍光X線分析とICP発光分光分析との併用により、分析精度が向上しうる。
Even when the sample solution contains an amount of coexisting elements that cause ionization interference during ICP emission spectroscopic analysis, it is possible to perform highly sensitive analysis in which the influence of the coexisting elements is suppressed or eliminated.
By the fluorescent X-ray analysis using the drip filter paper method, it is possible to easily determine the appropriate dilution factor of the sample solution for ICP emission spectroscopic analysis. Further, the combined use of this X-ray fluorescence analysis and ICP emission spectroscopic analysis can improve the analysis accuracy.

イオン化干渉抑制剤による効果Effects of ionization interference inhibitors Na濃度の比較Comparison of Na concentration 蛍光X線分析の元素スペクトルElemental spectrum of X-ray fluorescence analysis 金属元素の検量線Calibration curve for metal elements

「部」および「%」は、特に記載した場合を除き、質量に基づく割合(質量部、質量%)を表す。数値範囲「X〜Y」は、特に記載した場合を除き、両端の値を含む。「(・・・からなる群より選択される)いずれか」というときは、特に記載した場合を除き、群中に含まれる任意のメンバーを指し、メンバーの数は一に限らず、複数であってもよい。「分析」は、特に記載した場合を除き、定性的である場合と定量的である場合とを含む。   “Parts” and “%” represent ratios based on mass (parts by mass, mass%) unless otherwise specified. The numerical range “X to Y” includes values at both ends unless otherwise specified. “Any” (selected from the group consisting of ...) refers to any member included in the group, unless otherwise specified, and the number of members is not limited to one and may be plural. May be. “Analysis” includes qualitative and quantitative cases, unless otherwise specified.

本発明は、下記の特徴を有する試料溶液中の被測定元素の、ICP発光分光分析方法を提供する:
・試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含む。
・下記の工程を含む。
試料溶液を、キレート樹脂で、被測定元素の捕捉上有効な条件で処理し、被測定元素をキレート樹脂に捕捉させ、かつ共存元素をキレート樹脂に捕捉させずに除去する工程(工程(1));
被測定元素捕捉させたキレート樹脂を、被測定元素の分離上有効な条件下で処理し、被測定元素を溶離させた溶出液を得る工程(工程(2));および
溶出液中の被測定元素を、ICP発光分光分析する工程(工程(3))。
The present invention provides an ICP emission spectroscopic analysis method for an element to be measured in a sample solution having the following characteristics:
The sample solution contains an amount of coexisting elements that causes ionization interference during ICP emission spectroscopic analysis.
-The following steps are included.
The sample solution is treated with a chelate resin under conditions effective for capturing the element to be measured, the element to be measured is captured by the chelate resin, and the coexisting element is removed without being captured by the chelate resin (step (1)) );
Processing the chelate resin that captures the element to be measured under conditions effective for the separation of the element to be measured to obtain an eluate from which the element to be measured is eluted (step (2)); and the measurement in the eluate A step of analyzing the element by ICP emission spectroscopy (step (3)).

〔測定対象となる試料溶液〕
本実施態様のICP発光分光分析方法は、被測定元素を含む種々の試料溶液であって、ICP発光分光分析に際してイオン化干渉が生じる程度に高い濃度で共存元素が含まれるものの分析に適している。
[Sample solution to be measured]
The ICP emission spectroscopic analysis method of the present embodiment is suitable for analysis of various sample solutions containing an element to be measured and containing coexisting elements at a concentration high enough to cause ionization interference during ICP emission spectroscopic analysis.

<被測定元素>
本実施態様の方法で測定される被測定元素は、後述するキレート樹脂で捕捉することができ、かつキレート樹脂から適切な条件で溶離することができるものであれば、特に限定されない。なお、捕捉することができるとは、捕捉率が70%を超える場合をいい、好ましくは捕捉率が80%を超えることであり、より好ましくは捕捉率が90%を超えることである。用いるキレート樹脂にもよるが、被測定元素の例としては、鉄、ニッケル、銅、亜鉛、カドミウム、鉛、アルミニウム、スカンジウム、チタン、バナジウム、マンガン、コバルト、ガリウム、イットリウム、ジルコニウム、モリブデン、銀、インジウム、スズ、ハフニウム、タングステン、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、トリウムおよびウランが挙げられる。被測定元素は、通常複数であり、同時に分析できる。
<Element to be measured>
The element to be measured measured by the method of the present embodiment is not particularly limited as long as it can be captured by a chelate resin described later and can be eluted from the chelate resin under appropriate conditions. Note that “capture is possible” means that the capture rate exceeds 70%, preferably the capture rate exceeds 80%, and more preferably the capture rate exceeds 90%. Depending on the chelate resin used, examples of elements to be measured include iron, nickel, copper, zinc, cadmium, lead, aluminum, scandium, titanium, vanadium, manganese, cobalt, gallium, yttrium, zirconium, molybdenum, silver, Indium, tin, hafnium, tungsten, bismuth, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, thorium and uranium. There are usually multiple elements to be measured, which can be analyzed simultaneously.

好ましい被測定元素の例は、鉄、ニッケル、銅、亜鉛、カドミウム、鉛、コバルトおよびウランからなる群より選択されるいずれかである。好ましい実施態様の一つにおいては、鉄、ニッケル、銅、亜鉛、カドミウムおよび鉛が、被測定元素として同時に分析される。   Examples of preferable elements to be measured are any selected from the group consisting of iron, nickel, copper, zinc, cadmium, lead, cobalt, and uranium. In one preferred embodiment, iron, nickel, copper, zinc, cadmium and lead are analyzed simultaneously as elements to be measured.

ICP発光分光分析に際しての被測定元素の濃度は、当業者であれば用いる装置の特性や検量線の範囲を考慮して適宜設定できる。被測定元素の濃度の下限値は、被測定元素の種類にもよるが、例えば1μg/Lである。被測定元素の濃度の上限値は、被測定元素の種類にもよるが、例えば1000μg/Lであり、好ましくは600μg/Lである。試料溶液は、必要に応じて希釈して、ICP発光分光分析装置に供することができる。   The concentration of the element to be measured in the ICP emission spectroscopic analysis can be appropriately set by those skilled in the art in consideration of the characteristics of the apparatus used and the range of the calibration curve. The lower limit value of the concentration of the element to be measured is, for example, 1 μg / L although it depends on the type of the element to be measured. The upper limit value of the concentration of the element to be measured is, for example, 1000 μg / L, preferably 600 μg / L, although it depends on the type of element to be measured. The sample solution can be diluted as necessary and provided to an ICP emission spectroscopic analyzer.

<共存元素>
共存元素は、試料溶液に含まれる被測定元素以外の元素をいい、後述するキレート樹脂に捕捉されないものであれば、特に限定されない。なお、捕捉されないとは、捕捉率が10%以下である場合をいい、好ましくは5%以下であることであり、より好ましくは1%以下であることである。用いるキレート樹脂にもよるが、共存元素の例として、アルカリ金属およびアルカリ土類金属を挙げることができる。なお、マグネシウムは、狭義のアルカリ土類金属には含まれないが、本願では含むこととする。
<Coexisting elements>
The coexisting element means an element other than the element to be measured contained in the sample solution, and is not particularly limited as long as it is not captured by the chelate resin described later. The term “not captured” means that the capture rate is 10% or less, preferably 5% or less, and more preferably 1% or less. Depending on the chelate resin used, examples of coexisting elements include alkali metals and alkaline earth metals. Magnesium is not included in the narrowly defined alkaline earth metal, but is included in the present application.

被測定元素がいずれの場合であっても、好ましい共存元素の例は、ナトリウム、カリウム、マグネシウムおよびカルシウムからなる群より選択されるいずれかである。好ましい実施態様の一つにおいては、被測定元素がいずれの場合であっても、共存元素は、ナトリウム、カリウム、マグネシウムおよびカルシウムである。   Whatever the element to be measured, any preferred coexisting element is any selected from the group consisting of sodium, potassium, magnesium and calcium. In one preferred embodiment, the coexisting elements are sodium, potassium, magnesium and calcium, regardless of the element to be measured.

本実施態様の方法においては、測定対象となる試料溶液は、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含む。ICP発光分光分析に際してイオン化干渉が生じる、共存元素の濃度は、被測定元素の種類および共存元素の種類にもよる。例えば、ナトリウムの場合、濃度が600ppm以上であればイオン化干渉を生じる。また、海水の場合は、海水中にナトリムが約35,000 ppm含まれており、明らかにイオン化干渉を生じる。   In the method of this embodiment, the sample solution to be measured contains coexisting elements in an amount that causes ionization interference in the ICP emission spectroscopic analysis. The concentration of coexisting elements that cause ionization interference during ICP emission spectroscopic analysis depends on the type of element to be measured and the type of coexisting elements. For example, in the case of sodium, ionization interference occurs when the concentration is 600 ppm or more. In the case of seawater, the seawater contains about 35,000 ppm of sodium, which clearly causes ionization interference.

本実施態様の方法においては、後述するキレート樹脂を用いることにより、ICP発光分光分析に先立ち、試料溶液から共存元素を十分に除去することができるので、試料溶液には共存元素が種々の濃度で含まれていてよい。例えば、ナトリウムであれば、200ppm以上含まれていてもよく、2,000ppm以上含まれていてもよく、20,000ppm以上含まれていてもよい。また、カリウムであれば、70ppm以上含まれていてもよく、700ppm以上含まれていてもよく、7,000ppm以上含まれていてもよい。またカルシウムであれば、20ppm以上含まれていてもよく、200ppm以上含まれていてもよく、300ppm以上含まれていてもよい。さらにマグネシウムであれば、30ppm以上含まれていてもよく、300ppm以上含まれていてもよく、1000ppm以上含まれていてもよい。共存元素はキレート樹脂には捕捉されないので、試料溶液に含まれていてもよい共存元素の濃度の上限値は、特に限定されない。   In the method of this embodiment, by using the chelate resin described later, the coexisting elements can be sufficiently removed from the sample solution prior to the ICP emission spectroscopic analysis. May be included. For example, in the case of sodium, it may be contained at 200 ppm or more, 2,000 ppm or more, or 20,000 ppm or more. Moreover, as long as it is potassium, it may be contained 70 ppm or more, may be contained 700 ppm or more, and may be contained 7,000 ppm or more. Further, calcium may be contained at 20 ppm or more, may be contained at 200 ppm or more, and may be contained at 300 ppm or more. Further, in the case of magnesium, it may be contained at 30 ppm or more, may be contained at 300 ppm or more, and may be contained at 1000 ppm or more. Since the coexisting elements are not captured by the chelate resin, the upper limit of the concentration of the coexisting elements that may be contained in the sample solution is not particularly limited.

<試料溶液>
ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含む試料溶液の具体例は、海水、およびパルプ繊維を製造するプロセス等において生じる種々の液、例えばパルプ廃液、緑液、白液、環境工程水である。
<Sample solution>
Specific examples of sample solutions containing coexisting elements in amounts that cause ionization interference in ICP emission spectroscopic analysis include seawater and various liquids generated in processes such as pulp fiber production, such as pulp waste liquid, green liquid, white liquid, and environmental processes. It is water.

以下に、木材チップから紙の素材となるパルプ繊維を製造するプロセスを概説し、パルプ廃液、緑液、白液、環境工程水等について説明する。
クラフトパルプ製造工程において使用される蒸解薬液は、水酸化ナトリウムおよび硫化ナトリウムを含むアルカリ水溶液であり、一般的に白液と呼ばれる。この白液を用い、所定の条件の下、木材チップの蒸解を行う。クラフト蒸解後にパルプと分離されて発生するパルプ廃液(黒液)は、蒸解時に発生したリグニン等の有機成分とナトリウム塩を始めとする無機成分からなる。黒液は濃縮後、薬品回収ボイラーの燃料として利用される。ボイラーでの燃焼後に残った無機成分はスメルトと呼ばれ、希薄なアルカリ水溶液である弱液に溶解し緑液とする。この緑液は、アルカリ回収工程にて白液に転換され、再び蒸解薬液として利用される。クラフトパルプ製造工程では回収した無機成分が繰り返し循環利用されるので、原料の木材チップ等に含まれる塩素やカリウムが濃縮される。は腐食等の障害の原因となるため、ボイラー捕集灰等より塩素とカリウムを一定比率除去することが必要である。ボイラ捕集灰とは、回収ボイラーの煙道中に設置した電機集塵機で捕集された飛灰であり、硫酸ナトリウムおよび炭酸ナトリウムを主成分とするものである。塩素やカリウムの除去方法としては、ボイラ捕集灰中の塩化ナトリウムおよび硫酸カリウムを水に溶解した後、スラリ中の固形分(硫酸ナトリウム)を分離回収する方法、ボイラ捕集灰を水分に溶解した溶解スラリを冷却し、冷却により再結晶化したナトリウム分を溶解スラリから分離(ろ過)する方法等がある。回収したナトリウム分は脱水機で固形分とし希黒液に供されるが、塩素やカリウム分は水に溶けた状態で環境工程水(脱カリ排水)として排出される。
本実施態様の方法では、このようなパルプ繊維を製造するプロセスで生じる種々の液を測定対象とすることができる。
Below, the process for producing pulp fibers as paper materials from wood chips will be outlined, and pulp waste liquid, green liquor, white liquor, environmental process water, etc. will be described.
The cooking chemical used in the kraft pulp manufacturing process is an alkaline aqueous solution containing sodium hydroxide and sodium sulfide, and is generally called white liquor. Using this white liquor, the wood chips are cooked under predetermined conditions. Pulp waste liquor (black liquor) generated after being separated from pulp after kraft cooking is composed of organic components such as lignin generated during cooking and inorganic components such as sodium salts. The black liquor is concentrated and then used as fuel for the chemical recovery boiler. The inorganic component remaining after combustion in the boiler is called smelt and is dissolved in a weak liquid which is a dilute alkaline aqueous solution to form a green liquid. This green liquor is converted into a white liquor in the alkali recovery step and used again as a cooking chemical. In the kraft pulp manufacturing process, the recovered inorganic components are repeatedly circulated, so that chlorine and potassium contained in the raw material wood chips and the like are concentrated. Since it causes corrosion and other troubles, it is necessary to remove a certain ratio of chlorine and potassium from boiler collection ash and the like. Boiler collection ash is fly ash collected by an electric dust collector installed in the flue of the recovery boiler, and contains sodium sulfate and sodium carbonate as main components. Methods for removing chlorine and potassium include dissolving sodium chloride and potassium sulfate in boiler collection ash in water, then separating and recovering solids (sodium sulfate) in the slurry, and dissolving boiler collection ash in water There is a method of cooling the dissolved slurry and separating (filtering) the sodium recrystallized by cooling from the dissolved slurry. The recovered sodium content is made solid by a dehydrator and supplied to dilute black liquor. Chlorine and potassium are dissolved in water and discharged as environmental process water (decalcified waste water).
In the method of this embodiment, various liquids generated in the process of producing such pulp fibers can be measured.

〔工程(1)〕
工程(1)では、試料溶液を、キレート樹脂で、被測定元素の捕捉上有効な条件で処理し、被測定元素をキレート樹脂に捕捉させ、かつ共存元素をキレート樹脂に捕捉させずに除去する。
[Process (1)]
In step (1), the sample solution is treated with a chelate resin under conditions effective for capturing the element to be measured, the element to be measured is captured by the chelate resin, and the coexisting elements are removed without being captured by the chelate resin. .

<キレート樹脂>
キレート樹脂は、基材樹脂上に、金属イオンとキレート(錯体)を作る官能基を導入したものであり、キレートを形成することによって金属イオンを捕捉することができる。キレートを形成する官能基としてはN、S、O、P等の電子供与元素を2個以上含んだものが使われる。キレート樹脂には、例えばN-O系、S-N系、N-N系、O-O系などの種類があるが、目的の被測定元素を捕捉することができるものであれば、限定されない。キレート樹脂としては、イミノジカルボン酸型またはポリアミン型が汎用されており、本実施態様においても被測定元素に応じて、用いることができる。
<Chelate resin>
The chelate resin is a base resin in which a functional group that forms a chelate (complex) with a metal ion is introduced, and the metal ion can be captured by forming a chelate. As the functional group for forming a chelate, one containing two or more electron donating elements such as N, S, O, and P is used. Examples of the chelate resin include NO type, SN type, NN type, and OO type, but are not limited as long as the target element to be measured can be captured. As the chelating resin, an iminodicarboxylic acid type or a polyamine type is widely used, and in this embodiment, it can be used according to the element to be measured.

キレート樹脂の好ましい官能基の例は、試料溶液や被測定元素の種類にもよるが、官能基としてエチレンジアミン三酢酸とイミノ二酢酸とを有するものである。   Examples of preferable functional groups of the chelate resin are those having ethylenediaminetriacetic acid and iminodiacetic acid as functional groups, although depending on the sample solution and the type of the element to be measured.

キレート樹脂の基材樹脂部分は、試料溶液の性質に応じて選択することができ、例えば、水系の試料溶液を用いる場合には、親水性のものがよい。親水性の基材樹脂の具体例としては、親水性メタクリレートが挙げられる。   The base resin portion of the chelate resin can be selected according to the properties of the sample solution. For example, when an aqueous sample solution is used, it is preferably hydrophilic. Specific examples of the hydrophilic base resin include hydrophilic methacrylate.

好ましい実施態様の一つにおいては、キレート樹脂は、親水性メタクリレートを基材樹脂とし、官能基としてエチレンジアミン三酢酸とイミノ二酢酸とを有するものである。   In one preferred embodiment, the chelate resin has hydrophilic methacrylate as a base resin and has ethylenediaminetriacetic acid and iminodiacetic acid as functional groups.

キレート樹脂は、カラムに充填された形態であることが好ましい。カラムに通液することにより、容易に被測定元素の捕捉が実施できるからである。カラム未充填された、親水性メタクリレートを基材樹脂とし、官能基としてエチレンジアミン三酢酸とイミノ二酢酸とを有するキレート樹脂の市販品の例として、固相抽出カラムNOBIAS CHELATE-PA1(日立ハイテクノロジーズ社製)が挙げられる。   The chelate resin is preferably in a form packed in a column. This is because the element to be measured can be easily captured by passing the liquid through the column. As an example of a commercial product of a chelate resin with hydrophilic methacrylate as a base resin and having ethylenediaminetriacetic acid and iminodiacetic acid as functional groups, the solid phase extraction column NOBIAS CHELATE-PA1 (Hitachi High-Technologies Corporation) Manufactured).

<被測定元素の捕捉上有効な条件>
試料溶液は、試料溶液を、キレート樹脂で、被測定元素の捕捉上有効な条件で処理される。被測定元素の捕捉上有効な条件の例は、酸性条件である。酸性条件は、例えばpH4.5以上7未満であり、好ましくはpH5.0以上6.5未満であり、より好ましくはpH5.5以上6.0未満である。この範囲であれば、鉄、ニッケル、銅、亜鉛、カドミウムおよび鉛を十分に捕捉でき、鉄、ニッケル、銅、亜鉛、カドミウムおよび鉛についての後述する回収率が80質量%以上だからである。
<Effective conditions for capturing elements to be measured>
The sample solution is treated with a chelate resin under conditions effective for capturing the element to be measured. An example of an effective condition for capturing the element to be measured is an acidic condition. The acidic condition is, for example, pH 4.5 or more and less than 7, preferably pH 5.0 or more and less than 6.5, and more preferably pH 5.5 or more and less than 6.0. This is because, within this range, iron, nickel, copper, zinc, cadmium and lead can be sufficiently captured, and the recovery rate described later for iron, nickel, copper, zinc, cadmium and lead is 80% by mass or more.

pHの調整は、当業者であれば、適切な酸またはアルカリを用いて適宜行うことができる。酸またはアルカリとしては、後のICP発光分光分析において被測定元素のイオンに影響を与えない、すなわちイオン化干渉のないものがよい。使用できる酸またはアルカリの具体例は、被測定元素がいずれの場合であっても、酢酸アンモニウム、硝酸、またはアンモニアのいずれかである。   Those skilled in the art can appropriately adjust the pH using an appropriate acid or alkali. The acid or alkali is preferably one that does not affect the ions of the element to be measured in the subsequent ICP emission spectroscopic analysis, that is, has no ionization interference. Specific examples of the acid or alkali that can be used are any of ammonium acetate, nitric acid, and ammonia, regardless of the element to be measured.

工程(1)においては、キレート樹脂が被測定元素を捕捉する一方で、共存元素はキレート樹脂に捕捉されない。キレート樹脂としてカラムに充填された形態のものを用いる場合は、カラムに試料溶液を通液することにより被測定元素が捕捉される一方で、共存元素はカラムを素通りし、除去される。試料溶液の通液後、カラムを純水等の適切な溶液で洗浄し、さらに十分に共存元素を除去することができる。   In the step (1), the chelate resin captures the element to be measured, while the coexisting element is not captured by the chelate resin. When a chelate resin having a form packed in a column is used, the element to be measured is captured by passing the sample solution through the column, while the coexisting element passes through the column and is removed. After passing the sample solution, the column can be washed with an appropriate solution such as pure water to further sufficiently remove the coexisting elements.

〔工程(2)〕
工程(2)では、被測定元素捕捉させたキレート樹脂を、被測定元素の分離上有効な条件下で処理し、被測定元素を溶離させた溶出液を得る。
[Process (2)]
In step (2), the chelate resin that has captured the element to be measured is treated under conditions effective for the separation of the element to be measured to obtain an eluate from which the element to be measured has been eluted.

<被測定元素の分離上有効な条件>
被測定元素の分離上有効な条件は、被測定元素が溶離される種々の条件を用いることができる。用いるキレート樹脂や被測定元素にもよるが、被測定元素の分離上有効な条件の例は、pHを5.5とすることであり、好ましくは5.0とすることであり、さらに好ましくはpH4.5とすることである。この範囲であれば、鉄、ニッケル、銅、亜鉛、カドミウムおよび鉛を十分に溶離でき、鉄、ニッケル、銅、亜鉛、カドミウムおよび鉛についての回収率を80質量%以上とすることができるからある。用いることのできる強酸は、後のICP発光分光分析において被測定元素のイオンに影響を与えない、すなわちイオン化干渉のないものがよい。使用できる強酸の具体例は、硝酸である。被測定元素の回収率(%)は、(キレート樹脂から溶離された被測定元素量)/(試料溶液に含まれていた被測定元素量)×100で求められる値である。
<Effective conditions for separation of elements to be measured>
As conditions effective for separation of the element to be measured, various conditions under which the element to be measured is eluted can be used. Although depending on the chelate resin used and the element to be measured, an example of an effective condition for separating the element to be measured is to set the pH to 5.5, preferably to 5.0, and more preferably to pH 4.5. It is to be. Within this range, iron, nickel, copper, zinc, cadmium and lead can be sufficiently eluted, and the recovery rate for iron, nickel, copper, zinc, cadmium and lead can be 80% by mass or more. . The strong acid that can be used is preferably one that does not affect the ions of the element to be measured in the subsequent ICP emission spectroscopic analysis, that is, has no ionization interference. A specific example of a strong acid that can be used is nitric acid. The recovery rate (%) of the element to be measured is a value obtained by (amount of element to be measured eluted from chelate resin) / (amount of element to be measured contained in sample solution) × 100.

キレート樹脂としてカラムに充填された形態のものを用いる場合、溶離は、被測定元素の分離上有効な条件とするための強酸溶液をカラムに通液することにより行える。通液速度、通液量は、当業者であれば適宜決定できる。   When a chelate resin packed in a column is used, elution can be performed by passing a strong acid solution through the column to make the conditions effective for the separation of the element to be measured. Those skilled in the art can appropriately determine the flow rate and the flow rate.

工程(2)においては、被測定元素の分離上有効な条件とするのに用いる強酸溶液の量を適宜とすることにより、被測定元素の濃縮も行える。   In the step (2), the element to be measured can be concentrated by appropriately adjusting the amount of the strong acid solution used to make the condition effective for the separation of the element to be measured.

〔工程(3)〕
工程(3)では、溶出液を、ICP発光分光分析装置に供する工程である。ICP発光分光分析装置には、シーケンシャル型とマルチチャンネル型のものがあるが、いずれも用いることができる。また測定に際しては、軸方向観測と横方向観察とがあるが、感度がよいという観点からは、軸方向観察が好ましい。一般に、軸方向観察は、共存元素の影響が大きいが、本実施態様においては、共存元素の影響が抑制または排除される。
[Process (3)]
In step (3), the eluate is used in an ICP emission spectroscopic analyzer. There are two types of ICP emission spectroscopic analyzers, a sequential type and a multi-channel type, and any of them can be used. The measurement includes axial observation and lateral observation, but axial observation is preferable from the viewpoint of good sensitivity. In general, in the axial observation, the influence of coexisting elements is large, but in this embodiment, the influence of coexisting elements is suppressed or eliminated.

〔その他〕
本発明者らの検討によると、試料溶液がICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含む場合の、共存元素の影響の抑制または排除は、適切なイオン化干渉抑制剤を用いることによっても解消することができる。すなわち、本発明の実施態様の一つは、下記の特徴を有する、試料溶液中の被測定元素のICP発光分光分析方法である。
・試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含む。
・以下の工程を含む。
試料溶液にイオン化干渉抑制剤を添加し、イオン化干渉抑制剤の存在下で試料溶液中の被測定元素を、ICP発光分光分析する工程。
[Others]
According to the study by the present inventors, when the sample solution contains an amount of coexisting elements that cause ionization interference in ICP emission spectroscopic analysis, the effect of coexisting elements can be suppressed or eliminated by using an appropriate ionization interference inhibitor. Can also be resolved. That is, one of the embodiments of the present invention is an ICP emission spectroscopic analysis method for an element to be measured in a sample solution having the following characteristics.
The sample solution contains an amount of coexisting elements that causes ionization interference during ICP emission spectroscopic analysis.
-Including the following steps.
A step of adding an ionization interference inhibitor to the sample solution and performing ICP emission spectroscopic analysis of the element to be measured in the sample solution in the presence of the ionization interference inhibitor.

イオン化干渉抑制剤として添加される元素は、非測定元素とは異なる元素であり、イオン化ポテンシャルが比較的低いものである。好ましくは、ナトリウムおよびカリウムのイオン化ポテンシャル以下のイオン化ポテンシャルを有する元素である。イオン化ポテンシャルの低い元素は、プラズマに導入されたときにイオン化され易くなり、イオン化干渉が強く出るため、発光強度がさらに高くなり、共存元素の影響をより抑制することができるからである。さらにイオン化干渉抑制剤として添加される元素のイオン化ポテンシャルが、Naの5.14eV、Kの4.34eV以下であると、より確実に、共存元素の影響を抑制することができる。イオン化ポテンシャルが比較的低い元素の例として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム、カルシウム、ストロンチウム、バリウム、ラジウムが挙げられる。特に好ましい例の一つは、セシウムである。イオン化ポテンシャルが3.89eVと小さいからである。セシウムをイオン化干渉抑制剤としてICP測定用の試料溶液に添加する場合、塩化セシウム(CsCl)の水溶液として用いることができる。   The element added as the ionization interference suppressor is an element different from the non-measurement element and has a relatively low ionization potential. Preferably, it is an element having an ionization potential equal to or lower than that of sodium and potassium. This is because an element having a low ionization potential is easily ionized when introduced into plasma and ionization interference is strongly generated, so that the emission intensity is further increased and the influence of coexisting elements can be further suppressed. Further, when the ionization potential of the element added as an ionization interference inhibitor is 5.14 eV of Na or less than 4.34 eV of Na, the influence of the coexisting elements can be more reliably suppressed. Examples of elements having a relatively low ionization potential include lithium, sodium, potassium, rubidium, cesium, francium, calcium, strontium, barium, and radium. One particularly preferred example is cesium. This is because the ionization potential is as small as 3.89 eV. When cesium is added as an ionization interference inhibitor to a sample solution for ICP measurement, it can be used as an aqueous solution of cesium chloride (CsCl).

添加元素の濃度は、共存元素による十分にイオン化干渉が抑制され、非測定元素の分析が適切に行える範囲であれば、特に限定されない。共存元素濃度に対して0.5倍以上の濃度となるように添加することができる。具体的には、イオン化干渉抑制剤としてCsClを用いる場合、CsClが試料溶液中で0.5質量%以上となるように添加することができ、0.75質量%以上となるように添加することが好ましく、より好ましくは1質量%以上となるように添加する。上限値は、特に限定されないが、経済性等を考慮して、例えば、3質量%以下とすることができ、2質量%以下としてもよく、1.5質量%としてもよい。   The concentration of the additive element is not particularly limited as long as ionization interference due to the coexisting elements is sufficiently suppressed and analysis of the non-measurement element can be appropriately performed. It can be added so that the concentration is 0.5 times or more of the coexisting element concentration. Specifically, when CsCl is used as the ionization interference inhibitor, CsCl can be added so that it is 0.5% by mass or more in the sample solution, and is preferably added so that it is 0.75% by mass or more. Preferably, it adds so that it may become 1 mass% or more. The upper limit value is not particularly limited, but can be, for example, 3% by mass or less, 2% by mass or less, or 1.5% by mass in consideration of economy and the like.

本発明者らはまた、ICP発光分光分析に際しては、目的の被測定元素を適性濃度レベル内に収めることと共存元素の影響確認のため、試料の希釈とICP発光分光分析操作を繰り返す必要があることに鑑み、ろ紙点滴法を用いた簡易な蛍光X線分析法も開発した。すなわち、本発明の実施態様の一つは、試料溶液中の被測定元素をろ紙点滴法を用いた蛍光X線分析法で定量し、得られた定量値に基づき、ICP発光分光分析に供する試料溶液の希釈倍率を決定する工程をさらに含む、ICP発光分光分析である。   In the ICP emission spectroscopic analysis, the present inventors also need to repeat the sample dilution and the ICP emission spectroscopic analysis operation in order to keep the target element to be measured within an appropriate concentration level and confirm the influence of coexisting elements. In view of this, a simple fluorescent X-ray analysis method using a filter paper drip method has also been developed. That is, one of the embodiments of the present invention is a sample that is subjected to ICP emission spectroscopic analysis based on the obtained quantitative value by quantifying the element to be measured in the sample solution by a fluorescent X-ray analysis method using a filter paper drip method. ICP emission spectral analysis further comprising the step of determining the dilution factor of the solution.

ろ紙点滴法に関しては、前掲特許文献3〜6を参照することができる。この実施態様における蛍光X線分析に際しては、微量の元素を測定するための既存のろ紙点滴法を適用することができる。微量の非測定元素を分析することから、不純物が排除されたろ紙を用いることが好ましく、この例として、リガク社製ウルトラキャリー(登録商標)ライト等が挙げられる。また蛍光X線分析に際しては、アルミニウム製のサンプルホルダーを用いることが好ましく、周囲から散乱線が入らない密閉系とすることが好ましい。
本発明者らの検討によると、ろ紙点滴法を用いた簡易な蛍光X線分析法とICP発光分光分析法とは十分な相関がある。そのため、ろ紙点滴法を用いた簡易な蛍光X線分析法とICP発光分光分析法との併用により、分析についてダブルチェックが行えるという利点もある。併用により、操作ミス等の発見が容易となり、より的確な分析結果が得られることが期待できる。
Regarding the filter paper drip method, the above-mentioned patent documents 3 to 6 can be referred to. In the fluorescent X-ray analysis in this embodiment, an existing filter paper drip method for measuring a trace amount of elements can be applied. In order to analyze a trace amount of non-measuring elements, it is preferable to use a filter paper from which impurities are excluded. Examples of this include Ultracarry (registered trademark) light manufactured by Rigaku Corporation. In the fluorescent X-ray analysis, it is preferable to use an aluminum sample holder, and it is preferable to use a sealed system in which scattered radiation does not enter from the surroundings.
According to the study by the present inventors, there is a sufficient correlation between the simple fluorescent X-ray analysis method using the filter paper drip method and the ICP emission spectroscopic analysis method. Therefore, the combined use of a simple fluorescent X-ray analysis method using a filter paper drip method and an ICP emission spectroscopic analysis method also has an advantage that the analysis can be double-checked. The combined use facilitates the discovery of operation mistakes and can be expected to obtain more accurate analysis results.

〔実施例1〕
模擬海水として、塩化ナトリウム(関東化学製試薬特級)の最終濃度が3質量%になるように超純水で調製した(以下、「試料」という。)。この試料とICP用標準溶液を既定の比率で混合した(以下、「分析用試料」という)。また、必要に応じてNa、Mg、K、Ca(関東化学製原子吸光分析用標準液、1000mg/l)を分析用試料に添加した。次に、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1(株式会社日立ハイテクフィールディング販売)を用いて下記の手順で処理した。カラム(サイズ:78mm(長さ)xφ15mm(直径)、充填量240mg)にアセトン10mlを添加し膨潤させた後、3mol/l硝酸10ml、超純水20mlの順でカラムを洗浄し、0.1mol/l酢酸アンモニウム10mlを通液した。
[Example 1]
Simulated seawater was prepared with ultrapure water so that the final concentration of sodium chloride (special grade reagent manufactured by Kanto Chemical) was 3% by mass (hereinafter referred to as “sample”). This sample and the ICP standard solution were mixed at a predetermined ratio (hereinafter referred to as “analytical sample”). Further, Na, Mg, K, and Ca (standard solution for atomic absorption analysis manufactured by Kanto Chemical Co., Ltd., 1000 mg / l) were added to the analysis sample as necessary. Next, the analytical sample was processed by the following procedure using a solid phase extraction column NOBIAS CHELATE-PA1 (Hitachi High-Tech Fielding Co., Ltd.). After 10 ml of acetone was added to the column (size: 78 mm (length) x φ15 mm (diameter), packing amount 240 mg) and swollen, the column was washed in the order of 3 mol / l nitric acid 10 ml and ultrapure water 20 ml, 0.1 mol / l l 10 ml of ammonium acetate was passed through.

分析用試料に金属元素の最終濃度が100μg/lになるように超純水で調製した。分析用試料に酢酸アンモニウム、硝酸、アンモニアのいずれかを添加しpHを5.6に調整後、分析用試料をカラムに通液した。分析用試料をカラムに通液した後、カラムに超純水を通液しカラムに吸着されない成分を除去した。次に、3mol/l硝酸2mlをカラムに通液し、カラムに吸着している成分を溶離させた。通液は4〜6ml/minの速度で自然滴下で行なった。溶離した水溶液(以下、「溶出液」という。)を超純水で5mlに定容し10倍濃縮液(以下、「カラム処理試料」という。)を得た。このカラム処理試料に含まれる金属成分の濃度をスペクトロ製/軸方向観測ICP発光分光分析装置CIROS-120を用いて測定した。尚、本研究に使用した水はすべてメルクミリポア製Milli-Q Integral(比抵抗18.2MΩcm以上)で精製した水を用いた。金属成分の分析結果を表1に示す。   The sample for analysis was prepared with ultrapure water so that the final concentration of the metal element was 100 μg / l. Either ammonium acetate, nitric acid, or ammonia was added to the analytical sample to adjust the pH to 5.6, and then the analytical sample was passed through the column. After passing the analytical sample through the column, ultrapure water was passed through the column to remove components that were not adsorbed on the column. Next, 2 ml of 3 mol / l nitric acid was passed through the column to elute the components adsorbed on the column. The liquid was passed by natural dropping at a rate of 4 to 6 ml / min. The eluted aqueous solution (hereinafter referred to as “eluent”) was made up to 5 ml with ultrapure water to obtain a 10-fold concentrated liquid (hereinafter referred to as “column-treated sample”). The concentration of the metal component contained in this column-treated sample was measured using a spectro / axial observation ICP emission spectroscopic analyzer CIROS-120. The water used in this study was water purified by Merck Millipore Milli-Q Integral (specific resistance 18.2 MΩcm or more). Table 1 shows the analysis results of the metal components.

〔実施例2〕
海水(東京都江東区で採取。Na 9,400ppm、K 330ppm、Ca 340ppm、Mg 1120ppm)を試料として用いた。それ以外は、全て実施例1と同様の方法で試験した。金属成分の分析結果を表1に示す。
[Example 2]
Seawater (collected in Koto-ku, Tokyo. Na 9,400ppm, K 330ppm, Ca 340ppm, Mg 1120ppm) was used as a sample. Except that, all tests were performed in the same manner as in Example 1. Table 1 shows the analysis results of the metal components.

〔実施例3〕
環境工程水(Na 50,689ppm、K 25,542ppm、Ca 218ppm、Mg 32ppm)を試料として用いた。それ以外は、全て実施例1と同様の方法で試験した。金属成分の分析結果を表1に示す。
Example 3
Environmental process water (Na 50,689 ppm, K 25,542 ppm, Ca 218 ppm, Mg 32 ppm) was used as a sample. Except that, all tests were performed in the same manner as in Example 1. Table 1 shows the analysis results of the metal components.

〔実施例4〕
パルプ廃液を試料として用いた。それ以外は、全て実施例1と同様の方法で試験した。金属成分の分析結果を表1に示す。
Example 4
Pulp waste liquor was used as a sample. Except that, all tests were performed in the same manner as in Example 1. Table 1 shows the analysis results of the metal components.

〔実施例5〕
白液を試料(Na 79,700ppm、K 7,840ppm、Ca 20ppm)として用いた。それ以外は、全て実施例1と同様の方法で試験した。金属成分の分析結果を表1に示す。
Example 5
White liquor was used as a sample (Na 79,700 ppm, K 7,840 ppm, Ca 20 ppm). Except that, all tests were performed in the same manner as in Example 1. Table 1 shows the analysis results of the metal components.

〔実施例6〕
緑液(Na 87,000ppm、K 7,820ppm、Ca 23ppm)を試料として用いた。但し、実施例1において、カラム処理試料にICP用標準液をCd 6μg/l、Ni 20μg/l、Pb20μg/l、Cu 200μg/l、Zn 200μg/l、Fe 600μg/lとなるように試料に添加した。それ以外は、全て実施例1と同様の方法で試験した。金属成分の分析結果を表1に示す。
Example 6
Green liquor (Na 87,000 ppm, K 7,820 ppm, Ca 23 ppm) was used as a sample. However, in Example 1, the ICP standard solution was added to the column-treated sample such that Cd 6 μg / l, Ni 20 μg / l, Pb 20 μg / l, Cu 200 μg / l, Zn 200 μg / l, Fe 600 μg / l. Added. Except that, all tests were performed in the same manner as in Example 1. Table 1 shows the analysis results of the metal components.

〔比較例1〕
実施例1において、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1で処理しない以外は全て実施例1と同様の方法で試験した。ICP発光分光分析装置で分析した結果、金属成分は、検出できなかった。
[Comparative Example 1]
In Example 1, all the samples for analysis were tested in the same manner as in Example 1 except that they were not treated with the solid phase extraction column NOBIAS CHELATE-PA1. As a result of analysis using an ICP emission spectroscopic analyzer, no metal component could be detected.

〔比較例2〕
実施例2において、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1で処理しない以外は全て実施例2と同様の方法で試験した。ICP発光分光分析装置で分析した結果、金属成分は、検出できなかった。
[Comparative Example 2]
In Example 2, all the samples for analysis were tested in the same manner as in Example 2 except that they were not treated with the solid phase extraction column NOBIAS CHELATE-PA1. As a result of analysis using an ICP emission spectroscopic analyzer, no metal component could be detected.

〔比較例3〕
実施例3において、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1で処理しない以外は全て実施例3と同様の方法で試験した。ICP発光分光分析装置で分析した結果、金属成分は、検出できなかった。
[Comparative Example 3]
In Example 3, all the samples for analysis were tested in the same manner as in Example 3 except that they were not treated with the solid phase extraction column NOBIAS CHELATE-PA1. As a result of analysis using an ICP emission spectroscopic analyzer, no metal component could be detected.

〔比較例4〕
実施例4において、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1で処理しない以外は全て実施例4と同様の方法で試験した。ICP発光分光分析装置で分析した結果、金属成分は、検出できなかった。
[Comparative Example 4]
In Example 4, all the samples for analysis were tested in the same manner as in Example 4 except that they were not treated with the solid phase extraction column NOBIAS CHELATE-PA1. As a result of analysis using an ICP emission spectroscopic analyzer, no metal component could be detected.

〔比較例5〕
実施例5において、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1で処理しない以外は全て実施例5と同様の方法で試験した。ICP発光分光分析装置で分析した結果、金属成分は、検出できなかった。
[Comparative Example 5]
In Example 5, all the samples for analysis were tested in the same manner as in Example 5 except that they were not treated with the solid phase extraction column NOBIAS CHELATE-PA1. As a result of analysis using an ICP emission spectroscopic analyzer, no metal component could be detected.

〔比較例6〕
実施例6において、分析用試料を固相抽出カラムNOBIAS CHELATE-PA1で処理しない以外は全て実施例6と同様の方法で試験した。ICP発光分光分析装置で分析した結果、金属成分は、検出できなかった。
[Comparative Example 6]
In Example 6, all the samples for analysis were tested in the same manner as in Example 6 except that they were not treated with the solid phase extraction column NOBIAS CHELATE-PA1. As a result of analysis using an ICP emission spectroscopic analyzer, no metal component could be detected.

以上の結果より、固相抽出カラムで目的外の不純物(アルカリ金属、アルカリ土類金属)を効率的に除去し、目的の金属元素(Fe、Ni、Cu、Zn、Cd、Pb)を効率的に回収することができた(各金属元素の回収率は100±5%)。分析用試料を固相抽出カラムで前処理することによりICP発光分光分析法で精度が高く金属元素分析をすることが可能となった。   Based on the above results, solid phase extraction columns efficiently remove undesired impurities (alkali metals, alkaline earth metals) and efficiently target metal elements (Fe, Ni, Cu, Zn, Cd, Pb). (The recovery rate of each metal element was 100 ± 5%). Pretreatment of the analytical sample with a solid phase extraction column has made it possible to perform metal element analysis with high accuracy by ICP emission spectroscopy.

〔実施例7〕
超純水を試料として用いて実施例1と同様の方法で試験した。ここではICP用標準液をFe、Ni、Cu、Zn、Cd、Pbについて各々の濃度が100μg/lとなるように試料に添加した。実施例1において、分析用試料に酢酸アンモニウム、硝酸、アンモニアのいずれかを添加しpHを1.5、2.5、3.5、4.5、5.5、6.5、7.5、8.5、9.5に調整後、分析用試料をカラムに通液した。それ以外の操作は全て実施例1と同様の方法で試験した。金属成分の分析結果を表2に示す。
Example 7
The test was conducted in the same manner as in Example 1 using ultrapure water as a sample. Here, a standard solution for ICP was added to the sample so that each concentration of Fe, Ni, Cu, Zn, Cd, and Pb was 100 μg / l. In Example 1, any one of ammonium acetate, nitric acid, and ammonia is added to the analytical sample to adjust the pH to 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, and 9.5, and then the analytical sample is placed in the column. The liquid was passed. All other operations were tested in the same manner as in Example 1. Table 2 shows the analysis results of the metal components.

〔実施例8〕
海水を試料として用いて実施例7と同様の方法で試験した。金属成分の分析結果を表3に示す。
Example 8
It tested by the method similar to Example 7 using seawater as a sample. Table 3 shows the analysis results of the metal components.

〔参考例1:イオン化干渉抑制剤を使用する方法〕
(1)実験方法
ICP発光分光分析において環境試料中の発光スペクトルは一般的に極端に難しい分光干渉も少なく、比較的容易な分析法として知られている。しかしながら高塩濃度中のアルカリ金属(Na、K)を標準添加法で確認した際、分析値が実際量の8割程度と低くなる現象が確認された。詳細な調査、検討を行った結果、共存元素による妨害、干渉のうち、イオン化干渉による原因が見つかった。高塩試料中のイオン化干渉を再現させる試験としてNa濃度5mg/lに対し、K濃度0〜10000mg/lの試料を作製し、イオン化干渉抑制剤の効果について検討した。金属元素分析はスペクトロ製/軸方向観測ICP発光分光分析装置CIROS-120 を用いた。
[Reference Example 1: Method of using ionization interference inhibitor]
(1) Experimental Method In ICP emission spectroscopic analysis, the emission spectrum in an environmental sample is generally known as a comparatively easy analysis method with few extremely difficult spectral interferences. However, when the alkali metal (Na, K) in the high salt concentration was confirmed by the standard addition method, a phenomenon that the analytical value was reduced to about 80% of the actual amount was confirmed. As a result of detailed investigation and examination, the cause of ionization interference was found out of interference and interference by coexisting elements. As a test for reproducing ionization interference in a high salt sample, a sample having a K concentration of 0 to 10,000 mg / l was prepared for an Na concentration of 5 mg / l, and the effect of the ionization interference inhibitor was examined. Metal elemental analysis was performed using a spectro / axial observation ICP emission spectrometer CIROS-120.

イオン化干渉の再現試験を詳細に検討した結果、金属元素、Ca、Mgなどのアルカリ土類金属は回収率の影響が小さかったが、Na、Kなどのアルカリ金属は回収率に影響を与えていることが分かった。ICP発光分光分析の測定条件のうち、Naの波長は588.995nm、Kは766.490nmを使用した。イオン化干渉を抑制する方法を検討するためイオン化エネルギーを調べたところ、Naは5.14eV、Kは4.34eVで、Csは3.89eVと小さく、最もイオン化しやすい元素であった。   As a result of detailed examination of the reproduction test of ionization interference, alkaline earth metals such as metal elements, Ca and Mg had a small effect on the recovery rate, but alkali metals such as Na and K had an effect on the recovery rate. I understood that. Among the measurement conditions of ICP emission spectroscopic analysis, Na wavelength was 588.995 nm and K was 766.490 nm. When ionization energy was examined to examine a method for suppressing ionization interference, Na was 5.14 eV, K was 4.34 eV, and Cs was 3.89 eV, which was the most easily ionized element.

イオン化干渉抑制剤の検討として、0〜2質量%CsClを加えて測定した。少ない量では干渉を抑制できなかったが1質量%CsCl添加時が良好で、それ以上添加しても効果は変わらなかった。   As an examination of an ionization interference inhibitor, 0-2 mass% CsCl was added and measured. Although interference could not be suppressed with a small amount, it was good when 1% by mass of CsCl was added, and the effect was not changed even when more was added.

結果を図1および2に示す。
イオン化干渉抑制剤を添加しない系では、Na濃度5mg/lに対し、K濃度が1000mg/l以上になると、グラフ上大きな反り上がりが発生した(図1)。一方、イオン化干渉抑制剤を添加した系ではNa濃度5mg/lに対し、K濃度が上昇しても大きな反り上がりが発生せず、適正な濃度が認められた。
The results are shown in FIGS.
In the system in which the ionization interference inhibitor was not added, when the K concentration was 1000 mg / l or more with respect to the Na concentration of 5 mg / l, a large warp occurred on the graph (FIG. 1). On the other hand, in the system to which the ionization interference inhibitor was added, the Na concentration was 5 mg / l, and even when the K concentration increased, no significant warping occurred, and an appropriate concentration was observed.

確認のため、同様のイオン化干渉が発生していた試料を数点分析し、イオンクロマトグラフ法による分析値とイオン化干渉抑制剤を添加しないICP法による分析値とを比較したところ、相関が悪かった(図2、△のプロット)。しかしながら、1質量% CsClを添加したICP法による分析値は、イオンクロマトグラフ法による分析値と良好に相関した(図2、○のプロット)。なおK溶液中のNa濃度についても同様にイオン化干渉抑制剤の効果が確認された。   For confirmation, several samples of samples with similar ionization interference were analyzed, and the analysis value by the ion chromatograph method was compared with the analysis value by the ICP method without adding an ionization interference inhibitor, and the correlation was poor. (FIG. 2, plot of Δ). However, the analysis value by the ICP method to which 1% by mass of CsCl was added correlated well with the analysis value by the ion chromatography method (Fig. 2, ◯ plot). In addition, the effect of the ionization interference inhibitor was similarly confirmed also about the Na density | concentration in K solution.

〔参考例2:点滴ろ紙−蛍光X線分析法〕
蛍光X線分析法は、迅速に多元素同時分析できる点で汎用性の高い手法であるが、水溶液中の微量元素を定量する場合に何らかの濃縮処理が必要である。また、高塩試料は、ICP発光分光分析を測定するために適正な希釈倍率が必要となり、多い時で1試料当たり5〜6点の希釈試料を作製する必要があり、煩雑であった。迅速で簡易な元素分析法が求められているため検討を行った。
[Reference Example 2: Infusion filter paper-X-ray fluorescence analysis]
The fluorescent X-ray analysis method is a highly versatile technique in that simultaneous multi-element analysis can be performed quickly, but some concentration treatment is required when quantifying trace elements in an aqueous solution. In addition, the high salt sample requires an appropriate dilution factor for measuring ICP emission spectroscopic analysis, and when it is large, it is necessary to prepare 5 to 6 diluted samples per sample, which is complicated. Since a quick and simple elemental analysis method is required, it was examined.

装置は、波長分散型蛍光X線分析装置(スペクトリス社製PW2404)を用い、1元素を10秒、Be(4)〜U(92)までの全元素を9分で測定できる条件で行った。この分析方法は事前に検量線を作製しておき、測定した元素のX線強度を表計算に入力することで、濃度が算出できる。Fe、Ni、Cu、Zn、Cd、Pb(以下、金属元素と呼ぶ)の検量線は、SPEX製XSTC622Bの多元素混合標準液(各元素10mg/l)を用い、Na、Mg、K、Ca(以下、「マトリックス成分」という。)の検量線は関東化学製原子吸光用標準液(1000mg/l)を用いた。   The apparatus used was a wavelength dispersive X-ray fluorescence analyzer (Spectris PW2404) under the condition that one element can be measured for 10 seconds and all elements from Be (4) to U (92) can be measured in 9 minutes. In this analysis method, a calibration curve is prepared in advance, and the concentration can be calculated by inputting the measured X-ray intensity of the element into a spreadsheet. The calibration curve for Fe, Ni, Cu, Zn, Cd, and Pb (hereinafter referred to as metal elements) uses SPEX XSTC622B multi-element mixed standard solution (each element 10mg / l), Na, Mg, K, Ca The standard curve for atomic absorption (1000 mg / l) manufactured by Kanto Chemical Co., Ltd. was used for the calibration curve (hereinafter referred to as “matrix component”).

前処理は、リガク社製ウルトラキャリー(登録商標)ライト(測定径:φ18mm、材質:リング/PET、フィルム/PP、ろ紙/セルロース)にマイクロピペットで500μlの試料液を滴下後、乾燥した。アルミニウム製のサンプルホルダーを用い、ポリエチレンカップを利用してまわりから散乱線が入らない密閉系となるようにして、蛍光X線分析を行った。   In the pretreatment, 500 μl of the sample liquid was dropped with a micropipette onto Ultracarry (registered trademark) light (measured diameter: φ18 mm, material: ring / PET, film / PP, filter paper / cellulose) manufactured by Rigaku Corporation, and then dried. Using a sample holder made of aluminum, a fluorescent X-ray analysis was performed using a polyethylene cup so as to be a closed system in which scattered radiation does not enter from around.

ウルトラキャリーライト−蛍光X線分析法を使用した金属元素の検量線(0〜10mg/l)を作製した。図3に金属元素10mg/l濃度の蛍光X線スペクトル例を示す。図4にPbの検量線を示す。金属元素の検量線は良好な直線関係が得られ、相関係数は1.0000であった。また、マトリックス成分の検量線も、良好な直線関係が得られた。蛍光X線分析法で作製した検量線範囲(0〜10mg/l)である金属元素0、0.1、1、5、10mg/lの濃度の蛍光X線分析およびICP発光分光分析の分析値を比較したところ、相関が高いことが確認された。   A calibration curve (0 to 10 mg / l) of a metal element using an ultra carry light-fluorescence X-ray analysis method was prepared. FIG. 3 shows an example of a fluorescent X-ray spectrum at a metal element concentration of 10 mg / l. FIG. 4 shows a calibration curve for Pb. The calibration curve of the metal element showed a good linear relationship, and the correlation coefficient was 1.000. Also, a good linear relationship was obtained for the calibration curve of the matrix component. Compare analytical values of fluorescent X-ray analysis and ICP emission spectroscopic analysis of metal elements 0, 0.1, 1, 5, and 10 mg / l in the calibration curve range (0 to 10 mg / l) prepared by X-ray fluorescence analysis As a result, it was confirmed that the correlation was high.

以上より、金属元素およびマトリックス成分はウルトラキャリーライトを使用した蛍光X線分析法で、迅速で簡易的に定量分析ができるようになり、希釈倍率、金属元素濃度、マトリックス成分濃度を推定できる方法が確立された。また、ICP発光分光分析が迅速でより正確となり、ICP発光分光分析と蛍光X線分析法のダブルチェックができることでミスを事前に防ぐことが期待できる。   From the above, metal elements and matrix components can be quickly and easily quantitatively analyzed by X-ray fluorescence analysis using ultra carry light, and a method that can estimate the dilution factor, metal element concentration, and matrix component concentration is available. It has been established. In addition, ICP emission spectroscopic analysis is quick and more accurate, and ICP emission spectroscopic analysis and X-ray fluorescence analysis can be double-checked, so it can be expected to prevent mistakes in advance.

〔小括〕
・本研究は固相抽出カラム-ICP発光分光分析法を検討することで、マトリックス成分(アルカリ金属、アルカリ土類金属)を効率的に除去し、目的金属元素の濃縮が可能となり、今まで難しかった金属元素(Fe、Ni、Cu、Zn、Cd、Pb)の回収率が100±2%と良好な結果を得ることができた。
・ICP発光分光分析においてアルカリ金属(Na、K)によるイオン化干渉が発生していたが、イオン化干渉抑制剤を検討することで良好となり、他の分析法とも高い相関が示された。また、点滴ろ紙法を使用した蛍光X線分析法による簡易分析が可能になったことで、迅速で正確な希釈倍率が把握できるようになった。更にこの簡易分析法でICP発光分光分析法とのダブルチェックができるようになり、分析精度が向上した。
・固相抽出カラム-ICP発光分光分析法および点滴ろ紙−蛍光X線分析法による併用分析は、高塩濃度試料に限らず、適用できる分野は極めて広いものと考えられる。
〔Brief Summary〕
-This study has been difficult until now by examining solid-phase extraction columns-ICP emission spectroscopy, which can efficiently remove matrix components (alkali metals and alkaline earth metals) and concentrate target metal elements. As a result, the metal element (Fe, Ni, Cu, Zn, Cd, Pb) recovery rate was 100 ± 2%, and good results were obtained.
・ Although ionization interference due to alkali metals (Na, K) occurred in ICP emission spectroscopic analysis, it was improved by investigating ionization interference inhibitors, and showed high correlation with other analysis methods. In addition, the simplified X-ray fluorescence analysis method using the drip filter paper method has become possible, so that a quick and accurate dilution ratio can be grasped. Furthermore, this simple analysis method can double check with the ICP emission spectroscopic analysis method, improving the analysis accuracy.
The combined analysis by solid phase extraction column-ICP emission spectroscopic analysis and drip filter paper-fluorescence X-ray analysis is not limited to high salt concentration samples, and is considered to have a very wide range of applicable fields.

Claims (11)

試料溶液中の被測定元素の、ICP発光分光分析方法であって:
試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含み;
試料溶液を、キレート樹脂で、被測定元素の捕捉上有効な条件で処理し、被測定元素をキレート樹脂に捕捉させ、かつ共存元素をキレート樹脂に捕捉させずに除去する工程;
被測定元素が捕捉させたキレート樹脂を、被測定元素の分離上有効な条件下で処理し、被測定元素を溶離させた溶出液を得る工程;および
溶出液中の被測定元素を、ICP発光分光分析する工程
を含む、方法。
An ICP emission spectroscopic analysis method for an element to be measured in a sample solution comprising:
The sample solution contains an amount of coexisting elements that cause ionization interference during ICP emission spectroscopy;
Treating the sample solution with a chelate resin under conditions effective for capturing the element to be measured, allowing the element to be measured to be captured by the chelate resin, and removing the coexisting element without capturing it by the chelate resin;
A process in which the chelate resin captured by the element to be measured is treated under conditions effective for separation of the element to be measured to obtain an eluate from which the element to be measured is eluted; and the element to be measured in the eluate is subjected to ICP emission. A method comprising the step of spectroscopic analysis.
共存元素が、アルカリ金属およびアルカリ土類金属からなる群より選択されるいずれかである、請求項1に記載の方法。 The method according to claim 1, wherein the coexisting element is any selected from the group consisting of alkali metals and alkaline earth metals. 共存元素が、ナトリウム、カリウム、マグネシウムおよびカルシウムからなる群より選択されるいずれかである、請求項2に記載の方法。 The method according to claim 2, wherein the coexisting element is any one selected from the group consisting of sodium, potassium, magnesium and calcium. 被測定元素が、鉄、ニッケル、銅、亜鉛、カドミウム、鉛、コバルト、およびウランからなる群より選択されるいずれかである、請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the element to be measured is any one selected from the group consisting of iron, nickel, copper, zinc, cadmium, lead, cobalt, and uranium. キレート樹脂が、イミノジカルボン酸型またはポリアミン型である、請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the chelate resin is of iminodicarboxylic acid type or polyamine type. キレート樹脂が、官能基としてエチレンジアミン三酢酸とイミノ二酢酸とを有する、請求項5に記載の方法。 The method according to claim 5, wherein the chelate resin has ethylenediaminetriacetic acid and iminodiacetic acid as functional groups. 被測定元素の捕捉上有効な条件が、酸性条件である、請求項1〜6のいずれか1項に記載の方法。 The method according to claim 1, wherein the effective condition for capturing the element to be measured is an acidic condition. 酸性条件が、pH4.5以上7未満である、請求項7に記載の方法。 The method according to claim 7, wherein the acidic condition is pH 4.5 or more and less than 7. 試料溶液が、パルプ廃液、白液または緑液である、請求項1〜8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the sample solution is pulp waste liquid, white liquor or green liquor. 試料溶液中の被測定元素の、ICP発光分光分析方法であって:
試料溶液が、ICP発光分光分析に際してイオン化干渉が生じる量の共存元素を含み;
試料溶液にイオン化干渉抑制剤を添加し、イオン化干渉抑制剤の存在下で試料溶液中の被測定元素を、ICP発光分光分析する工程
を含む、方法。
An ICP emission spectroscopic analysis method for an element to be measured in a sample solution comprising:
The sample solution contains an amount of coexisting elements that cause ionization interference during ICP emission spectroscopy;
A method comprising adding an ionization interference inhibitor to a sample solution and performing ICP emission spectroscopic analysis of an element to be measured in the sample solution in the presence of the ionization interference inhibitor.
試料溶液中の被測定元素をろ紙点滴法を用いた蛍光X線分析法で定量し、得られた定量値に基づき、ICP発光分光分析に供する試料溶液の希釈倍率を決定する工程をさらに含む、請求項1〜10のいずれか1項に記載の方法。 Further comprising the step of quantifying the element to be measured in the sample solution by fluorescent X-ray analysis using a filter paper drip method, and determining the dilution rate of the sample solution to be subjected to ICP emission spectrometry based on the obtained quantitative value; The method according to claim 1.
JP2015108486A 2015-05-28 2015-05-28 Analysis method for metal in high-salinity sample Pending JP2016223836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108486A JP2016223836A (en) 2015-05-28 2015-05-28 Analysis method for metal in high-salinity sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108486A JP2016223836A (en) 2015-05-28 2015-05-28 Analysis method for metal in high-salinity sample

Publications (1)

Publication Number Publication Date
JP2016223836A true JP2016223836A (en) 2016-12-28

Family

ID=57746497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108486A Pending JP2016223836A (en) 2015-05-28 2015-05-28 Analysis method for metal in high-salinity sample

Country Status (1)

Country Link
JP (1) JP2016223836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537498A (en) * 2020-05-13 2020-08-14 深圳市深投环保科技有限公司 Method for determining low-concentration heavy metal elements in high-chlorine high-salt wastewater
CN112697734A (en) * 2020-12-31 2021-04-23 华仁药业股份有限公司 Detection method of glucose electrolyte beverage sodium
CN112697777A (en) * 2021-01-20 2021-04-23 中国核动力研究设计院 Method for determining content of lithium, sodium, magnesium and calcium in uranium compound
CN114136953A (en) * 2021-11-08 2022-03-04 广西北港新材料有限公司 Analysis method for detecting chloride content in sodium sulfate by ICP-AES (inductively coupled plasma-atomic emission Spectrometry)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216458U (en) * 1985-07-12 1987-01-31
JPH03185189A (en) * 1989-12-14 1991-08-13 Taiho Ind Co Ltd Method for preventing corrosion and dust trouble of recovery boiler
JPH07311131A (en) * 1994-05-17 1995-11-28 Rigaku Ind Co Method for preparing sample of x-ray analysis
JPH08220070A (en) * 1995-02-13 1996-08-30 Jeol Ltd Analysis method and dilution device
JP2002296152A (en) * 2001-03-30 2002-10-09 Rigaku Industrial Co Method for preparation of oil specimen for x-ray fluorescent analysis
JP2002365243A (en) * 2001-06-11 2002-12-18 Rigaku Industrial Co X-ray fluorescence analyzer for judging pretreatment method and sample analysis system therewith
JP2003322596A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Method of analyzing impurity element in metallic sodium
WO2005012889A1 (en) * 2003-08-01 2005-02-10 Rigaku Industrial Corporation Sample holder for x-ray fluorescence analysis and x-ray fluorescence analysis method and apparatus employing same
JP2006053001A (en) * 2004-08-11 2006-02-23 Hitachi High-Technologies Corp Analysis method using chelate resin
JP2009222615A (en) * 2008-03-18 2009-10-01 Rigaku Corp Sample holder for fluorescent x-ray analysis, and method and device for fluorescent x-ray analysis using the same
US20120067786A1 (en) * 2010-09-16 2012-03-22 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US20120125816A1 (en) * 2010-11-19 2012-05-24 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216458U (en) * 1985-07-12 1987-01-31
JPH03185189A (en) * 1989-12-14 1991-08-13 Taiho Ind Co Ltd Method for preventing corrosion and dust trouble of recovery boiler
JPH07311131A (en) * 1994-05-17 1995-11-28 Rigaku Ind Co Method for preparing sample of x-ray analysis
JPH08220070A (en) * 1995-02-13 1996-08-30 Jeol Ltd Analysis method and dilution device
JP2002296152A (en) * 2001-03-30 2002-10-09 Rigaku Industrial Co Method for preparation of oil specimen for x-ray fluorescent analysis
JP2002365243A (en) * 2001-06-11 2002-12-18 Rigaku Industrial Co X-ray fluorescence analyzer for judging pretreatment method and sample analysis system therewith
JP2003322596A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Method of analyzing impurity element in metallic sodium
WO2005012889A1 (en) * 2003-08-01 2005-02-10 Rigaku Industrial Corporation Sample holder for x-ray fluorescence analysis and x-ray fluorescence analysis method and apparatus employing same
JP2006053001A (en) * 2004-08-11 2006-02-23 Hitachi High-Technologies Corp Analysis method using chelate resin
JP2009222615A (en) * 2008-03-18 2009-10-01 Rigaku Corp Sample holder for fluorescent x-ray analysis, and method and device for fluorescent x-ray analysis using the same
US20120067786A1 (en) * 2010-09-16 2012-03-22 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids
US20120125816A1 (en) * 2010-11-19 2012-05-24 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ICP発光分光分析におけるイオン化干渉", SEIテクニカルレビュー, vol. 172, JPN6018020826, January 2008 (2008-01-01), pages 100 - 105, ISSN: 0003930239 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537498A (en) * 2020-05-13 2020-08-14 深圳市深投环保科技有限公司 Method for determining low-concentration heavy metal elements in high-chlorine high-salt wastewater
CN112697734A (en) * 2020-12-31 2021-04-23 华仁药业股份有限公司 Detection method of glucose electrolyte beverage sodium
CN112697777A (en) * 2021-01-20 2021-04-23 中国核动力研究设计院 Method for determining content of lithium, sodium, magnesium and calcium in uranium compound
CN114136953A (en) * 2021-11-08 2022-03-04 广西北港新材料有限公司 Analysis method for detecting chloride content in sodium sulfate by ICP-AES (inductively coupled plasma-atomic emission Spectrometry)

Similar Documents

Publication Publication Date Title
Blum et al. Recent developments in mercury stable isotope analysis
Hemming et al. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry
Feist et al. Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system
JP2016223836A (en) Analysis method for metal in high-salinity sample
Manzoori et al. Simplified cloud point extraction for the preconcentration of ultra-trace amounts of gold prior to determination by electrothermal atomic absorption spectrometry
Karbasi et al. Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel
JP2008157865A (en) Hexavalent chromium analyzing method
JP2010271247A (en) Method for simultaneously analyzing multielement component such as heavy metal or the like in soil
Grotti et al. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods
Mohammadi et al. Simultaneous extraction of trace amounts of cobalt, nickel and copper ions using magnetic iron oxide nanoparticles without chelating agent
JP2006253420A (en) Method for quantitating metal in semiconductor polishing slurry
Liu et al. Determination of trace indium in urine after preconcentration with a chelating‐resin‐packed minicolumn
JP6683011B2 (en) Mass spectrometry
Yousefi et al. On-line surfactant-based extraction using ion-pair microparticles combined with ICP-OES for simultaneous preconcentration and determination of rare earth elements in aqueous samples
JP2020085894A (en) Evaluation methods for tungsten and element
JP4199143B2 (en) Method for analyzing harmful metal elements and pretreatment method thereof
JP2023012339A (en) Method for analyzing concentrations of fluorine and compound thereof
CN115452927A (en) Method for detecting toxicity of leaching solution
Uzawa et al. Determination of trace amounts of gallium by tungsten metal furnace atomic absorption spectrometry after preconcentration on activated carbon impregnated with 8-quinolinol
Takeda et al. Determination of ultra-trace amounts of uranium and thorium in high-purity aluminium by inductively coupled plasma mass spectrometry
Su et al. Online solid phase extraction using a PVC-packed minicolumn coupled with ICP-MS for determination of trace multielements in complicated matrices
Suvardhan et al. RETRACTED: The determination of nickel (II) after on-line sorbent preconcentration by inductively coupled plasma atomic emission spectrometry using Borassus Flabellifer inflorescence loaded with coniine dithiocarbamate
Yamini et al. Determination of trace elements in natural water using X‐ray fluorescence spectrometry after preconcentration with powdered silica gel
dos Santos et al. Field sampling system for determination of cadmium and nickel in fresh water by flame atomic absorption spectrometry
JP2008256636A (en) Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204