JP2016215146A - Gas-liquid separator - Google Patents

Gas-liquid separator Download PDF

Info

Publication number
JP2016215146A
JP2016215146A JP2015103957A JP2015103957A JP2016215146A JP 2016215146 A JP2016215146 A JP 2016215146A JP 2015103957 A JP2015103957 A JP 2015103957A JP 2015103957 A JP2015103957 A JP 2015103957A JP 2016215146 A JP2016215146 A JP 2016215146A
Authority
JP
Japan
Prior art keywords
gas
liquid
mixed fluid
separation container
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015103957A
Other languages
Japanese (ja)
Inventor
忠弘 後藤
Tadahiro Goto
忠弘 後藤
豪孝 伊藤
Toshitaka Ito
豪孝 伊藤
宮内 祐治
Yuji Miyauchi
祐治 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2015103957A priority Critical patent/JP2016215146A/en
Priority to PCT/JP2016/064600 priority patent/WO2016186108A1/en
Publication of JP2016215146A publication Critical patent/JP2016215146A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid separator that can be installed even in a narrow place such as a vehicle engine room and is high in collection efficiency.SOLUTION: In a gas-liquid separator of a system in which a mixed fluid of liquid and gas is collided with an internal wall face of a separating container, thereby separating liquid and gas, the inside of the separating container is in the form of a spiral passage, and the internal wall face of the spiral passage is a wall face with which the mixed fluid of gas and liquid comes into contact. A gas outlet pipe is connected to the upper face of the separating container. The lower face side of the separating container has an inclined bottom face part for collecting liquid droplets separated in the spiral passage. A liquid recovery tank is connected, via a liquid outlet pipe (exhaust liquid pipe), to a liquid collection part continuous with the inclined bottom face part.SELECTED DRAWING: Figure 1

Description

本発明は、液体(水等)と気体(空気、ガス等)とを含む混合流体から液体と気体とを分離する気液分離装置に関するものである。   The present invention relates to a gas-liquid separator that separates liquid and gas from a mixed fluid containing liquid (water, etc.) and gas (air, gas, etc.).

例えば、内燃機関からの排気を浄化するシステム(装置)の一つとして、EGR(Exhaust Gas Recirculation:排気再循環)システムが知られている。EGRシステムにおいては、燃焼室内に還流させるEGRガスを冷却することにより、燃焼温度を低下させることができ、これによりNOx(窒素酸化物)の排出量を低減することができる。EGRガスを冷却すると、EGRガス中に含まれる水分が凝縮してEGR流路内に凝縮水が発生する。外気温度が0℃以下となるような環境下では凝縮水がより発生し易くなる。   For example, an EGR (Exhaust Gas Recirculation) system is known as one of systems (devices) for purifying exhaust gas from an internal combustion engine. In the EGR system, by cooling the EGR gas that is recirculated into the combustion chamber, the combustion temperature can be lowered, thereby reducing the amount of NOx (nitrogen oxide) emissions. When the EGR gas is cooled, moisture contained in the EGR gas is condensed and condensed water is generated in the EGR flow path. In an environment where the outside air temperature is 0 ° C. or less, condensed water is more likely to be generated.

EGRガスは燃料中の硫黄分を含むためEGR流路内の凝縮水には硫酸が含まれる。この硫酸を含む凝縮水がEGR流路や内燃機関の燃焼室等の内部に付着・滞留すると、内燃機関の各部(EGR流路やEGRバルブ、吸気流路や燃焼室等)に腐食や損傷等を引き起こすことが考えられる。又、内燃機関の燃焼室が多量の凝縮水を吸い込んでしまうことで、いわゆる水撃(ウォーターハンマー)による内燃機関の破損等を招くことも考えられる。   Since EGR gas contains sulfur in the fuel, the condensed water in the EGR flow path contains sulfuric acid. If this condensed water containing sulfuric acid adheres to or stays in the EGR flow path or the combustion chamber of the internal combustion engine, etc., each part of the internal combustion engine (EGR flow path, EGR valve, intake flow path, combustion chamber, etc.) is corroded or damaged, etc. It is thought to cause. It is also conceivable that the combustion chamber of the internal combustion engine sucks in a large amount of condensed water, thereby causing damage to the internal combustion engine due to a so-called water hammer.

そこで、EGRガスから凝縮水を除くために気液分離装置(あるいは気水分離装置)や吸水材(フィルター)等が用いられる。気液分離装置としては、例えばサイクロン式気液分離装置が知られている。このサイクロン式気液分離装置は、液体を含んだ気体を分離筒内に接線方向に導入し、この分離筒内で旋回流を形成することによって液体と気体を分離する方式となしたもので、分離された液体を分離筒下部より排出し、気体のみを分離筒上部より取出す構造となったものが一般的である。又、分離筒からの分離液の排出を促進して分離性能を高めるために分離筒内に分離液の旋回を抑制するための障壁を設けたものも提案されている(特許文献1参照)。さらに、EGRガス流れ下流側のEGRガス流路の内壁に設けられた凹凸部によりEGRガスから生じた凝縮水を捕集する凝縮水捕集部を備え、該凝縮水捕集部により捕集した凝縮水を貯留部に収容して貯留するEGR装置も提案されている(特許文献2参照)。吸水材やフィルター等を採用したものとしては、例えば、排気管の内壁面から排気ガス流路内に突出する異物捕集フィルタに吸水材を設けた排気還流装置(特許文献3参照)等が知られている。   Therefore, a gas-liquid separator (or a gas-water separator), a water absorbing material (filter), or the like is used to remove condensed water from the EGR gas. As the gas-liquid separator, for example, a cyclone type gas-liquid separator is known. This cyclone type gas-liquid separator is a system that separates liquid and gas by introducing a gas containing liquid in a tangential direction into the separation cylinder, and forming a swirl flow in the separation cylinder. In general, the separated liquid is discharged from the lower part of the separation cylinder and only the gas is taken out from the upper part of the separation cylinder. In addition, there has also been proposed a barrier provided in the separation cylinder for suppressing the rotation of the separation liquid in order to enhance the separation performance by promoting the discharge of the separation liquid from the separation cylinder (see Patent Document 1). Furthermore, the condensate collecting part which collects the condensate produced from EGR gas by the uneven | corrugated | grooved part provided in the inner wall of the EGR gas flow path of the EGR gas flow downstream is provided, and it collected by this condensate collection part An EGR device that stores and stores condensed water in a storage section has also been proposed (see Patent Document 2). For example, an exhaust gas recirculation device (see Patent Document 3) in which a water absorbing material is provided on a foreign matter collecting filter that protrudes from the inner wall surface of the exhaust pipe into the exhaust gas flow path is known as a device that employs a water absorbing material or a filter. It has been.

特開平9−220421号公報JP-A-9-220421 特開2013−29081号公報JP 2013-29081 A 特開2012−202265公報JP 2012-202265 A

しかしながら、前記した従来の気液分離手段には、以下に記載する欠点がある。
即ち、液体を含んだ気体を分離筒内に接線方向に導入し、この分離筒内で旋回流を形成することによって液体と気体を分離する方式のサイクロン式気液分離装置や、EGRガス流路に凝縮水捕集部を内蔵して気液分離する装置の場合は、水分の捕集作用が限定的であり、流速10〜100m/sのような広範囲のガス流速に対応できない。さらに、車両のエンジンルーム内は空きスペースが少なく、サイクロン方式のような比較的大型の気液分離装置の設置は難しい。又、排気還流装置の場合は、分離容器内にフィルターや吸水材等の分離部材を配置するため通気抵抗が高い上、風量が多く流速が速い領域においても通気抵抗が高まることにより、内燃機関に対して負荷がかかることになり燃費悪化をもたらす。
However, the conventional gas-liquid separation means described above has the following drawbacks.
That is, a cyclone type gas-liquid separation device or an EGR gas flow path that separates liquid and gas by introducing gas containing liquid into the separation cylinder in a tangential direction and forming a swirl flow in the separation cylinder In the case of an apparatus for gas-liquid separation with a built-in condensed water collecting part, the moisture collecting action is limited, and it cannot cope with a wide range of gas flow rates such as a flow rate of 10 to 100 m / s. Furthermore, there is little empty space in the vehicle engine room, and it is difficult to install a relatively large gas-liquid separator such as a cyclone system. Further, in the case of an exhaust gas recirculation device, a separation member such as a filter or a water absorbing material is disposed in the separation container, so that the ventilation resistance is high and the ventilation resistance is increased even in a region where there is a large amount of air and a high flow velocity. On the other hand, a load is applied, resulting in deterioration of fuel consumption.

本発明は、前記した従来の気液分離手段の有する欠点を解消するためになされたもので、フィルターや吸水材等の分離部材を無くし通気抵抗の低減をはかることにより、流速10〜100m/sのような広範囲のガス流速にも対応でき、かつ車両のエンジンルーム等の狭い場所にも設置可能な小型で捕集効率の高い気液分離装置を提供しようとするものである。   The present invention has been made in order to eliminate the disadvantages of the conventional gas-liquid separation means described above. By eliminating the separation member such as a filter and a water-absorbing material and reducing the air flow resistance, the flow rate is 10 to 100 m / s. Thus, the present invention is intended to provide a gas-liquid separation device that can cope with a wide range of gas flow rates as described above and can be installed in a narrow place such as an engine room of a vehicle and has high collection efficiency.

本発明に係る気液分離装置は、液体と気体の混合流体(以下、説明の便宜上「気液混合流体」と称する)を分離容器内に接線方向に導入し、該分離容器内で旋回流を形成することによって前記液体と気体を分離する方式の気液分離装置であって、前記分離容器内が渦巻状の流路となすとともに該渦巻状流路の内壁面を前記気液混合流体の接触壁面となし、前記分離容器の上面側には前記渦巻状流路の中心部に開口部を突出する気体出口管が接続され、前記分離容器の下面側には前記渦巻状流路内で分離した液滴を集める傾斜底面部を有し、該傾斜底面部に連なる集液部に液体出口管(排液管)を介して液体回収タンクが接続された構成となしたことを特徴とするものである。   The gas-liquid separation device according to the present invention introduces a liquid-gas mixed fluid (hereinafter referred to as “gas-liquid mixed fluid” for convenience of description) into the separation container in a tangential direction, and causes a swirl flow in the separation container. A gas-liquid separation device of a type that separates the liquid and gas by forming the inside of the separation container into a spiral channel and contacting the inner wall surface of the spiral channel with the gas-liquid mixed fluid A gas outlet pipe protruding from the central portion of the spiral flow path is connected to the upper surface side of the separation container on the upper surface side of the separation container, and the lower surface side of the separation container is separated in the spiral flow path It has an inclined bottom part for collecting droplets, and a liquid recovery tank is connected to a liquid collecting part connected to the inclined bottom part via a liquid outlet pipe (drainage pipe). is there.

又、本発明装置は、気液混合流体の接触壁面となす分離容器の渦巻状流路の内壁面を粗面とすることを好ましい態様とするものである。   In addition, the apparatus of the present invention preferably has a rough surface on the inner wall surface of the spiral flow path of the separation container that forms the contact wall surface of the gas-liquid mixed fluid.

本発明の気液分離装置は、気液分離容器内にフィルターや吸水材等の分離部材を無くして通気抵抗の低減をはかるとともに、気液混合流体を渦巻状流路の内壁面に接触させて気液分離させる方式として気液混合流体の壁面接触長さを増長させたことにより、気液混合流体は渦巻状流路の内壁面に接触しながら長い距離を流れることとなり、内壁面との摩擦による気液分離がより効果的に行われ、装置の小型化がはかられるのみならず、流速10〜100m/sのような広範囲のガス流速にも十分に対応でき、内燃機関の燃費改善にも多大な効果を奏する。又、分離容器の底部に液体出口管を介して液体回収タンクを設けることにより、回収された液滴の分離容器内への巻き上げが防止され、高流速域における液滴捕集率の低下を抑制できる。さらに、渦巻状流路の気液混合流体の接触壁面を粗面とすることにより、面衝突による液滴化を効率よく行うことができ、液滴の捕集効率を増加することが可能となる。   The gas-liquid separation device of the present invention eliminates a separation member such as a filter and a water absorbing material in the gas-liquid separation container so as to reduce the ventilation resistance, and makes the gas-liquid mixed fluid contact the inner wall surface of the spiral channel. By increasing the wall contact length of the gas-liquid mixed fluid as a method of gas-liquid separation, the gas-liquid mixed fluid flows over a long distance while contacting the inner wall surface of the spiral flow path, and friction with the inner wall surface Gas-liquid separation is more effectively performed, and not only miniaturization of the apparatus can be achieved, but also a wide range of gas flow rates such as a flow rate of 10 to 100 m / s can be sufficiently handled, thereby improving the fuel efficiency of the internal combustion engine. Also has a great effect. In addition, by providing a liquid recovery tank at the bottom of the separation vessel via a liquid outlet pipe, the collected droplets are prevented from being rolled up into the separation vessel, and the drop in the droplet collection rate at high flow rates is suppressed. it can. Furthermore, by making the contact wall surface of the gas-liquid mixed fluid in the spiral flow path rough, it is possible to efficiently form droplets by surface collision and increase the collection efficiency of the droplets. .

本発明に係る気液分離装置の第1実施例を開蓋(上蓋を外した状態)して示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a first embodiment of a gas-liquid separation device according to the present invention with an open lid (with an upper lid removed). 図1に示す気液分離装置の正面図である。It is a front view of the gas-liquid separator shown in FIG. 図1、図2に示す気液分離装置の縦断正面図である。FIG. 3 is a longitudinal sectional front view of the gas-liquid separator shown in FIGS. 1 and 2. 本発明に係る気液分離装置の第2実施例を開蓋(上蓋を外した状態)して示す斜視図である。It is a perspective view which opens and shows the 2nd Example of the gas-liquid separator which concerns on this invention (state which removed the upper cover). 図4に示す気液分離装置の縦断正面図である。It is a vertical front view of the gas-liquid separator shown in FIG. 図4、図5に示す気液分離装置の渦巻状流路に施す粗面の形態を例示したもので、(a)は凹凸の格子状配列、(b)は凹凸の菱形状配列、をそれぞれ示す。4 and 5 exemplify a rough surface applied to the spiral flow path of the gas-liquid separation device shown in FIGS. 4 and 5, (a) shows an uneven lattice arrangement, and (b) shows an uneven rhombus arrangement, respectively. Show.

以下、図面を参照して本発明の実施の形態について説明する。
図1〜図6において、1、11は気液分離装置、2、12は気液分離容器、2−1、12−1は渦巻状流路、2−2は気液混合流体の接触壁面、12−2は気液混合流体の粗面の接触壁面、2−3、12−3は傾斜底面部、2−4、12−4は集液部、2−5、12−5は上蓋、3、13は気液混合流体入口管、3−1、13−1は端部開口部、4、14は気体出口管、5、15は液体出口管、6、16は液体回収タンク(貯水タンク等)、7、17は液体排出管である。
Embodiments of the present invention will be described below with reference to the drawings.
1 to 6, 1 and 11 are gas-liquid separation devices, 2 and 12 are gas-liquid separation containers, 2-1 and 12-1 are spiral channels, 2-2 is a contact wall surface of the gas-liquid mixed fluid, 12-2 is a rough contact surface of the gas-liquid mixed fluid, 2-3 and 12-3 are inclined bottom surfaces, 2-4 and 12-4 are liquid collecting portions, 2-5 and 12-5 are upper lids, 3 , 13 are gas-liquid mixed fluid inlet pipes, 3-1, 13-1 are end openings, 4, 14 are gas outlet pipes, 5, 15 are liquid outlet pipes, 6, 16 are liquid recovery tanks (water storage tanks, etc.) ), 7 and 17 are liquid discharge pipes.

図1〜図3に示す本発明に係る第1実施例の気液分離装置1は、渦巻状の壁面によって形成された渦巻状流路2−1を有する気液分離容器2、気液分離容器2の渦巻状流路2−1の最外周の流路に接線方向に接続された気液混合流体入口管3、気液分離容器2の上面部に上蓋2−5を貫通して垂直に接続された気体出口管4、気液分離容器2の底面部に接続された液体回収タンク6とから構成されている。気液分離容器2の渦巻状流路2−1は、気液混合流体入口管3から流入する気液混合流体が接触する内壁面(渦巻中心側の壁面)を気液混合流体の接触壁面2−2となすとともに、該渦巻状流路2−1の下方には最外周の接触壁面2−2の下端縁に連なるすり鉢状の傾斜底面部2−3が形成され、該傾斜底面部2−3のほぼ中央部に設けられた円筒状の集液部2−4に液体出口管5を介して液体回収タンク6が接続されている。
ここで、気液分離容器2を渦巻状流路2−1で構成したのは、例えばサイクロン式は最外周に位置する壁面に流体が接触するが、気液混合流体の流路を渦巻状にすることにより流体の接触壁面長さを増長させることとなり、接触壁面との摩擦により気液混合流体の気液分離がより効果的に行われる(水分が水滴や液滴化しやすくなる)という効果を得るためである。
なお、上蓋2−5は気液分離容器2の上面部にネジやボルト・ナット等で着脱可能に固着されている。
A gas-liquid separation device 1 according to the first embodiment of the present invention shown in FIGS. 1 to 3 includes a gas-liquid separation container 2 having a spiral flow channel 2-1 formed by a spiral wall surface, and a gas-liquid separation container. The gas-liquid mixed fluid inlet pipe 3 connected in the tangential direction to the outermost flow path of the two spiral flow paths 2-1 and the upper surface of the gas-liquid separation container 2 are vertically connected through the upper lid 2-5. The gas outlet pipe 4 and the liquid recovery tank 6 connected to the bottom surface of the gas-liquid separation container 2 are configured. The spiral flow path 2-1 of the gas-liquid separation container 2 is configured such that the gas-liquid mixed fluid contact wall surface 2 contacts the inner wall surface (wall surface on the spiral center side) with which the gas-liquid mixed fluid flowing in from the gas-liquid mixed fluid inlet pipe 3 contacts. 2 and a mortar-shaped inclined bottom surface portion 2-3 connected to the lower end edge of the outermost contact wall surface 2-2 is formed below the spiral flow channel 2-1, and the inclined bottom surface portion 2- A liquid recovery tank 6 is connected via a liquid outlet pipe 5 to a cylindrical liquid collecting part 2-4 provided at a substantially central part of 3.
Here, the gas-liquid separation container 2 is configured by the spiral flow channel 2-1. For example, in the cyclone type, the fluid contacts the wall surface located on the outermost periphery, but the gas-liquid mixed fluid flow channel is formed in a spiral shape. As a result, the contact wall length of the fluid is increased, and the gas-liquid separation of the gas-liquid mixed fluid is more effectively performed due to friction with the contact wall surface (moisture becomes easier to form water droplets or droplets). To get.
The upper lid 2-5 is detachably fixed to the upper surface portion of the gas-liquid separation container 2 with screws, bolts, nuts or the like.

気液分離容器2の渦巻状流路2−1の最外周の流路に接線方向に接続された気液混合流体入口管3は、その端部開口部3−1が気液分離容器2の渦巻状流路2−1の最外周の流路入口に接続されている。一方、気体出口管4は、気液分離容器2の上面のほぼ中心部(渦巻状流路の終端部)に垂直にかつその下端開口部が気液分離容器2の内部に突出するように上蓋2−5を貫通して垂直に接続されている。なお、気体出口管4の気液分離容器2内の突出部4−1の突出長さ(突出代)としては、特に限定するものではないが5〜20mmが好ましい。即ち、突出長さが5mm未満では気体出口管4からの液滴吸引の抑制効果が小さく、他方、20mmを超えると排液管5側への液滴集液が抑制されてしまうためである。   The gas-liquid mixed fluid inlet pipe 3 connected in a tangential direction to the outermost flow path of the spiral flow path 2-1 of the gas-liquid separation container 2 has an end opening 3-1 of the gas-liquid separation container 2. It is connected to the outermost channel inlet of the spiral channel 2-1. On the other hand, the gas outlet pipe 4 has an upper lid so that it is perpendicular to the substantially central portion of the upper surface of the gas-liquid separation container 2 (the end portion of the spiral flow path) and the lower end opening projects into the gas-liquid separation container 2. It is vertically connected through 2-5. In addition, although it does not specifically limit as protrusion length (protrusion allowance) of the protrusion part 4-1 in the gas-liquid separation container 2 of the gas exit pipe | tube 4, Although 5-20 mm is preferable. That is, if the protrusion length is less than 5 mm, the effect of suppressing the suction of the liquid droplets from the gas outlet pipe 4 is small, while if it exceeds 20 mm, the liquid collection to the drain pipe 5 side is suppressed.

気液分離容器2の傾斜底面部2−3のほぼ中央部に設けられた円筒状の集液部2−4には、液体出口管5を介して液体回収タンク6が接続されている。   A liquid recovery tank 6 is connected to a cylindrical liquid collecting portion 2-4 provided at a substantially central portion of the inclined bottom surface portion 2-3 of the gas-liquid separation container 2 via a liquid outlet pipe 5.

なお、気液分離容器2の中央部の接触壁面2−1の下端部と傾斜底面部2−3との間には図3に示すように適度な大きさの空間Sが設けられている。   A moderately sized space S is provided between the lower end of the contact wall surface 2-1 at the center of the gas-liquid separation container 2 and the inclined bottom surface 2-3 as shown in FIG.

図1〜図3に示す構成の気液分離装置において、気液混合流体入口管3より気液分離容器2内に流入した気液混合流体Mは、気液分離容器2の渦巻状流路2−1に沿って旋回しながら移動するが、その際、気液混合流体は渦巻状流路の内壁面に接触しながら長い距離を流れることとなり、内壁面との摩擦による気液分離が効果的に行われる。即ち、気液混合流体Mは渦巻状流路を流れる間に遠心力や慣性力が作用して接触壁面2−2に衝突あるいは接触することにより、効果的に気体Gと液滴Wとに分離される。気液混合流体M中の分離された液滴Wは接触壁面2−2に付着した後、自重と気流の力作用によって当該壁面を下降しながら他の液滴と結合して大きく成長して傾斜底面部2−3上に落下するとともに下方へ流下し、当該傾斜底面部2−3のほぼ中央部に設けられた円筒状の集液部2−4に液体となって集まる。集液部2−4に集液された液体は、液体出口管5を介して液体回収タンク6に回収される。このように気液混合流体Mから分離された液滴Wを気液分離容器2とは別設の液体回収タンク6に回収することにより、回収された液滴の気液分離容器2内への巻き上げが防止され、高流速域における液体捕集率の低下を抑制できる。液体回収タンク6に集められた液体は液体排出管7によって排出される。一方、気液混合流体M中の分離された気体Gは気液分離容器2の上面の気体出口管4より外部に流出する。なお、気体出口管4の気液分離容器2内の突出部4−1の突出長さを前記のように液滴吸引の抑制効果等を考慮して適正に設定することにより、液滴Wを吸引することなく分離された気体Gのみを効果的に取出すことができる。   1 to 3, the gas-liquid mixed fluid M that has flowed into the gas-liquid separation container 2 from the gas-liquid mixed fluid inlet pipe 3 flows into the spiral flow path 2 of the gas-liquid separation container 2. The gas-liquid mixed fluid flows over a long distance while contacting the inner wall surface of the spiral channel, and gas-liquid separation by friction with the inner wall surface is effective. To be done. That is, the gas-liquid mixed fluid M is effectively separated into the gas G and the droplet W by colliding with or contacting the contact wall surface 2-2 by the centrifugal force or inertial force acting while flowing through the spiral flow path. Is done. The separated droplet W in the gas-liquid mixed fluid M adheres to the contact wall surface 2-2, and then grows and grows greatly by being combined with other droplets while descending the wall surface by the action of its own weight and airflow. The liquid falls on the bottom surface part 2-3 and flows downward, and is collected as a liquid in a cylindrical liquid collecting part 2-4 provided at a substantially central part of the inclined bottom surface part 2-3. The liquid collected in the liquid collection unit 2-4 is collected in the liquid collection tank 6 through the liquid outlet pipe 5. The liquid droplets W thus separated from the gas-liquid mixed fluid M are collected in a liquid collection tank 6 that is separate from the gas-liquid separation container 2, whereby the collected liquid droplets into the gas-liquid separation container 2 are collected. Winding up is prevented, and a decrease in liquid collection rate in a high flow rate region can be suppressed. The liquid collected in the liquid recovery tank 6 is discharged by the liquid discharge pipe 7. On the other hand, the separated gas G in the gas-liquid mixed fluid M flows out from the gas outlet pipe 4 on the upper surface of the gas-liquid separation container 2. In addition, by appropriately setting the protrusion length of the protrusion 4-1 in the gas-liquid separation container 2 of the gas outlet pipe 4 in consideration of the effect of suppressing droplet suction as described above, the droplet W Only the separated gas G can be effectively taken out without being sucked.

次に、図4〜図5に示す本発明に係る第2実施例の気液分離装置11は、前記図1〜図3に示す気液分離容器の接触壁面2−2を粗面の接触壁面12−2とした以外は、前記図1〜図3に示す構成の気液分離装置と同様の構成を有する。
即ち、その構造は前記図1〜図3に示す本発明の気液分離装置1と同様に、気液分離装置11は、渦巻状の壁面によって形成された渦巻状流路12−1を有する気液分離容器12、気液分離容器12の渦巻状流路12−1の最外周の流路に接線方向に接続された気液混合流体入口管13、気液分離容器12の上面部に上蓋12−5を貫通して垂直に接続された気体出口管14、気液分離容器12の底面部に接続された液体回収タンク16とから構成されている。気液分離容器12の渦巻状流路12−1は、気液混合流体入口管13から流入する気液混合流体が接触する内壁面(渦巻中心側の壁面)を気液混合流体の粗面の接触壁面12−2となすとともに、該渦巻状流路12−1の下方には最外周の粗面の接触壁面12−2の下端縁に連なるすり鉢状の傾斜底面部12−3が形成され、該傾斜底面部12−3のほぼ中央部に設けられた円筒状の集液部12−4に液体出口管15を介して液体回収タンク16が接続されている。12−5は上蓋、13−1は端部開口部、14−1は気体出口管14の気液分離容器12内の突出部である。
Next, the gas-liquid separation device 11 according to the second embodiment of the present invention shown in FIGS. 4 to 5 has a contact wall 2-2 of the gas-liquid separation container shown in FIGS. Except for 12-2, it has the same configuration as the gas-liquid separator having the configuration shown in FIGS.
That is, the structure is similar to the gas-liquid separator 1 of the present invention shown in FIGS. 1 to 3, and the gas-liquid separator 11 has a spiral flow path 12-1 formed by a spiral wall surface. The liquid separation container 12, the gas-liquid mixed fluid inlet pipe 13 tangentially connected to the outermost flow path of the spiral flow path 12-1 of the gas-liquid separation container 12, and the upper lid 12 on the upper surface of the gas-liquid separation container 12 The gas outlet pipe 14 is connected vertically through the −5 and the liquid recovery tank 16 connected to the bottom surface of the gas-liquid separation container 12. The spiral flow path 12-1 of the gas-liquid separation container 12 has an inner wall surface (wall surface on the spiral center side) in contact with the gas-liquid mixed fluid flowing in from the gas-liquid mixed fluid inlet pipe 13 as a rough surface of the gas-liquid mixed fluid. While forming the contact wall surface 12-2, a mortar-shaped inclined bottom surface portion 12-3 connected to the lower end edge of the outermost rough contact wall surface 12-2 is formed below the spiral flow path 12-1. A liquid recovery tank 16 is connected via a liquid outlet pipe 15 to a cylindrical liquid collecting portion 12-4 provided at a substantially central portion of the inclined bottom surface portion 12-3. 12-5 is an upper lid, 13-1 is an end opening, and 14-1 is a protrusion in the gas-liquid separation container 12 of the gas outlet pipe 14.

上記第2実施例装置において、気液混合流体の接触壁面を粗面の接触壁面12−2としたのは、気液混合流体中の液滴粒子が接触壁面に付着し易いようにすることにより、気液分離装置における気液分離効率の向上、気液混合流体からの液滴捕集量の増加をはかるためである。ここで、粗面とは表面に液滴粒子が引っかかりやすく、気流の流れを妨げないような粗さである。例えば、気液混合流体中の液滴粒子の粒経が数μm〜数百μmの混合流体の場合は、接触壁面12−1の表面に凹部と凸部の差が数百μm〜5mm程度となる表面処理(凹凸形成)を施して液滴の捕集率を向上させることが望ましい。なお、この数値は気液混合流体の流速や液滴の種類(水滴、油滴等)、気液分離容器12の内部形状等によって変わるものであり、前記数値に限定されるものではない。又、粗面の接触壁面12−2は前記表面処理に代えて、表面に液滴を付着し易い材料を設けて形成してもよい。例えば、ステンレス等の金属繊維を網目状に織り込んだ織物や格子状の網体(メッシュ)を貼り付けてもよく、さらに耐熱性、耐食性等の条件が満たされれば、合成樹脂製、セラミック製等のものであってもよい。粗面の形態としては、例えば図6(a)に示す凹凸の格子状配列や、同(b)に示す凹凸の菱形状配列等がある。   In the apparatus of the second embodiment, the contact wall surface of the gas-liquid mixed fluid is a rough contact wall surface 12-2 by making it easy for the droplet particles in the gas-liquid mixed fluid to adhere to the contact wall surface. This is to improve the gas-liquid separation efficiency in the gas-liquid separator and increase the amount of droplets collected from the gas-liquid mixed fluid. Here, the rough surface is such a roughness that the droplet particles are easily caught on the surface and do not hinder the flow of the airflow. For example, when the particle size of the droplet particles in the gas-liquid mixed fluid is a mixed fluid of several μm to several hundred μm, the difference between the concave and convex portions on the surface of the contact wall surface 12-1 is about several hundred μm to 5 mm. It is desirable to improve the collection rate of the droplets by performing a surface treatment (irregularity formation). This numerical value varies depending on the flow velocity of the gas-liquid mixed fluid, the type of liquid droplet (water droplet, oil droplet, etc.), the internal shape of the gas-liquid separation container 12, and the like, and is not limited to the above numerical value. The rough contact wall surface 12-2 may be formed by providing a material that easily attaches droplets to the surface, instead of the surface treatment. For example, a woven fabric or a net-like mesh (mesh) woven with metal fibers such as stainless steel may be attached, and if conditions such as heat resistance and corrosion resistance are satisfied, synthetic resin, ceramic, etc. It may be. Examples of the rough surface include an uneven lattice arrangement shown in FIG. 6A and an uneven rhombus arrangement shown in FIG. 6B.

図4〜図5に示す構成の気液分離装置11においても、前記図1〜図3に示す構成の気液分離装置1と同様に、気液混合流体入口管13より気液分離容器12内に流入した気液混合流体Mは、気液分離容器12の渦巻状流路12−1に沿って旋回しながら移動するが、その際、気液混合流体は渦巻状流路の粗面の内壁面即ち粗面の接触壁面12−2に接触しながら長い距離を流れることとなり、粗面の接触壁面12−2との摩擦による気液分離がより効果的に行われる。即ち、気液混合流体Mは渦巻状流路を流れる間に遠心力や慣性力が作用して接触壁面12−2に衝突あるいは接触することにより、効果的に気体Gと液滴Wとに分離されるが、粗面の接触壁面12−2の場合は、前記したように粗面の作用により気液混合流体Mからの液滴Wの分離がより促進される。気液混合流体M中の分離された液滴Wは接触壁面12−2に付着した後、自重と気流の力作用によって当該壁面を下降しながら他の液滴と結合して大きく成長して傾斜底面部12−3上に落下するとともに下方へ流下し、当該傾斜底面部12−3のほぼ中央部に設けられた円筒状の集液部12−4に液体となって集まる。集液部12−4に集液された液体は、液体出口管15を介して液体回収タンク16に回収される。   Also in the gas-liquid separator 11 having the configuration shown in FIGS. 4 to 5, in the gas-liquid separation container 12 through the gas-liquid mixed fluid inlet pipe 13, similarly to the gas-liquid separator 1 having the configuration shown in FIGS. 1 to 3. The gas-liquid mixed fluid M flowing into the gas moves while swirling along the spiral flow path 12-1 of the gas-liquid separation container 12. At this time, the gas-liquid mixed fluid moves within the rough surface of the spiral flow path. A long distance flows while contacting the wall surface, that is, the rough contact wall surface 12-2, and gas-liquid separation by friction with the rough contact wall surface 12-2 is more effectively performed. That is, the gas-liquid mixed fluid M is effectively separated into the gas G and the droplet W by colliding with or contacting the contact wall surface 12-2 due to the centrifugal force or inertial force acting while flowing through the spiral channel. However, in the case of the rough contact surface 12-2, the separation of the droplet W from the gas-liquid mixed fluid M is further promoted by the action of the rough surface as described above. The separated droplet W in the gas-liquid mixed fluid M adheres to the contact wall surface 12-2, and then grows and tilts greatly by combining with other droplets while descending the wall surface by the action of its own weight and airflow. The liquid falls on the bottom surface portion 12-3 and flows downward, and is collected as a liquid in a cylindrical liquid collecting portion 12-4 provided at a substantially central portion of the inclined bottom surface portion 12-3. The liquid collected in the liquid collection unit 12-4 is collected in the liquid collection tank 16 through the liquid outlet pipe 15.

又、本実施例装置の場合も、気液混合流体Mから分離された液滴Wを気液分離容器12とは別設の液体回収タンク16に回収することにより、回収された液滴の気液分離容器12内への巻き上げが防止され、高流速域における液体捕集率の低下を抑制できることはいうまでもない。一方、気液混合流体M中の分離された気体Gは気液分離容器12の上面の気体出口管14より外部に流出するが、本実施例装置においても、気体出口管14の気液分離容器12内の突出部14−1の突出長さを前記のように液滴吸引の抑制効果等を考慮して適正に設定することにより、液滴Wを吸引することなく分離された気体Gのみを効果的に取出すことができることはいうまでもない。   Also in the case of the apparatus of the present embodiment, the droplet W separated from the gas-liquid mixed fluid M is collected in the liquid collection tank 16 provided separately from the gas-liquid separation container 12, thereby Needless to say, the winding into the liquid separation container 12 is prevented, and the decrease in the liquid collection rate in the high flow rate region can be suppressed. On the other hand, the separated gas G in the gas-liquid mixed fluid M flows out from the gas outlet pipe 14 on the upper surface of the gas-liquid separation container 12, but also in this embodiment, the gas-liquid separation container of the gas outlet pipe 14 is used. 12 by appropriately setting the projecting length of the projecting portion 14-1 in the above in consideration of the effect of suppressing the suction of the liquid droplets as described above, so that only the gas G separated without sucking the liquid droplets W can be obtained. Needless to say, it can be taken out effectively.

1、11 気液分離装置
2、12 気液分離容器
2−1、12−1 渦巻状流路
2−2 気液混合流体の接触壁面
12−2 気液混合流体の粗面の接触壁面
2−3、12−3 傾斜底面部
2−4、12−4 集液部
2−5、12−5 上蓋
3、13 気液混合流体入口管
3−1、13−1 端部開口部
4、14 気体出口管
4−1、14−1 突出部
5、15 液体出口管
6、16 液体回収タンク
7、17 液体排出管
M 気液混合流体
W 液滴
G 気体
S 空間
DESCRIPTION OF SYMBOLS 1, 11 Gas-liquid separation apparatus 2, 12 Gas-liquid separation container 2-1, 12-1 Spiral flow path 2-2 Contact wall surface of gas-liquid mixed fluid 12-2 Contact wall surface of rough surface of gas-liquid mixed fluid 2- 3, 12-3 Inclined bottom part 2-4, 12-4 Liquid collecting part 2-5, 12-5 Upper lid 3, 13 Gas-liquid mixed fluid inlet pipe 3-1, 13-1 End opening part 4, 14 Gas Outlet pipe 4-1, 14-1 Protrusion 5,15 Liquid outlet pipe 6,16 Liquid recovery tank 7,17 Liquid discharge pipe M Gas-liquid mixed fluid W Droplet G Gas S Space

Claims (2)

液体と気体の混合流体を分離容器内に接線方向に導入し、該分離容器内で旋回流を形成することによって前記液体と気体を分離する方式の気液分離装置であって、前記分離容器内が渦巻状の流路となすとともに該渦巻状流路の内壁面を前記気液混合流体の接触壁面となし、前記分離容器の上面側には前記渦巻状流路の中心部に開口部が突出する気体出口管が接続され、前記分離容器の下面側には前記渦巻状流路内で分離した液滴を集める傾斜底面部を有し、該傾斜底面部に連なる集液部に液体出口管(排液管)を介して液体回収タンクが接続された構成となしたことを特徴とする気液分離装置。   A gas-liquid separator of a type that separates the liquid and gas by introducing a fluid mixture of liquid and gas into the separation container in a tangential direction and forming a swirl flow in the separation container. And the inner wall surface of the spiral flow channel as a contact wall surface of the gas-liquid mixed fluid, and an opening protrudes from the upper surface side of the separation container at the center of the spiral flow channel A gas outlet pipe is connected to the lower surface of the separation container, and has an inclined bottom surface portion for collecting droplets separated in the spiral flow path, and a liquid outlet pipe ( A gas-liquid separator characterized in that a liquid recovery tank is connected via a drainage pipe). 前記気液混合流体の接触壁面を粗面とすることを特徴とする請求項1に記載の気液分離装置。   The gas-liquid separator according to claim 1, wherein a contact wall surface of the gas-liquid mixed fluid is a rough surface.
JP2015103957A 2015-05-21 2015-05-21 Gas-liquid separator Pending JP2016215146A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015103957A JP2016215146A (en) 2015-05-21 2015-05-21 Gas-liquid separator
PCT/JP2016/064600 WO2016186108A1 (en) 2015-05-21 2016-05-17 Gas-liquid separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015103957A JP2016215146A (en) 2015-05-21 2015-05-21 Gas-liquid separator

Publications (1)

Publication Number Publication Date
JP2016215146A true JP2016215146A (en) 2016-12-22

Family

ID=57319893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015103957A Pending JP2016215146A (en) 2015-05-21 2015-05-21 Gas-liquid separator

Country Status (2)

Country Link
JP (1) JP2016215146A (en)
WO (1) WO2016186108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235736A1 (en) * 2017-06-22 2018-12-27 いすゞ自動車株式会社 Exhaust gas recirculating device
JP2020536004A (en) * 2017-09-29 2020-12-10 ベンディックス コマーシャル ビークル システムズ エルエルシー Emission treatment equipment and emission treatment methods for vehicle air brake filling systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6982463B2 (en) * 2017-10-25 2021-12-17 臼井国際産業株式会社 Gas-liquid separator
CN115350567B (en) * 2022-09-26 2023-06-20 北京翰海青天环保科技有限公司 Carbon dioxide trapping and purifying device system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182460A (en) * 1975-01-16 1976-07-20 Hitachi Ltd SAIKURONSHIKI BOJINSOCHI
US4028076A (en) * 1975-08-18 1977-06-07 Parma Industries, Inc. Centrifugal air precleaner for internal combustion engines
US4322233A (en) * 1979-05-02 1982-03-30 Westinghouse Electric Corp. Apparatus for separating entrained liquid from a liquid gas mixture
DE102011007971A1 (en) * 2011-01-04 2012-07-05 Mann + Hummel Gmbh Device for the separation of liquids and gases

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235736A1 (en) * 2017-06-22 2018-12-27 いすゞ自動車株式会社 Exhaust gas recirculating device
JP2020536004A (en) * 2017-09-29 2020-12-10 ベンディックス コマーシャル ビークル システムズ エルエルシー Emission treatment equipment and emission treatment methods for vehicle air brake filling systems
JP7358341B2 (en) 2017-09-29 2023-10-10 ベンディックス コマーシャル ビークル システムズ エルエルシー Emissions treatment equipment and methods for vehicle air brake filling systems

Also Published As

Publication number Publication date
WO2016186108A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US4035171A (en) Gas liquid separator for flare systems
US9005340B2 (en) Fiber bed assembly including a re-entrainment control device for a fiber bed mist eliminator
US8657897B2 (en) Wet gas separator
WO2016186108A1 (en) Gas-liquid separation device
ES2860524T3 (en) Cyclone, cyclonic mist eliminator and method of use
WO2016194982A1 (en) Gas-liquid separating device
CN105214331B (en) A kind of high-efficiency condensation tube bank demister and application
JP5772402B2 (en) Oil separator
CN106582248A (en) Flue gas wet desulphurization, dedusting integrated device and process
JP2016151196A (en) Exhaust gas recirculation system and marine engine mounted with the same
JP2013512102A (en) Separation system for separating particles of a first fluid from a second fluid stream
CN102921259B (en) Self-circulation rotary liquid combined type gas filter and filtering method thereof
JP4425951B2 (en) Oil separator for blow-by gas
CN108465301B (en) Combined cyclone deflection large-caliber gas-liquid compound separation device of gas compressor
JP5776326B2 (en) Gas-liquid separator
CN209646139U (en) A kind of moisture trap
CN107971151B (en) A kind of liquid film type multicyclone
CN215352481U (en) Gas-liquid separation tank and gas-liquid separation system
JP5531557B2 (en) Capacitor
CN202921124U (en) Self-circulation revolving liquid composite gas filter
CN209530445U (en) A kind of combined type multi-stage spray cleaner
JP2005098274A (en) Air pre-cleaner
CN101367534B (en) Defoaming device of tube-type down-flow evaporator
CN1045235A (en) Chevron shaped blade separating component and separator thereof
WO2017010226A1 (en) Oil-separator/collector