JP2016202192A - Rigid endoscope - Google Patents

Rigid endoscope Download PDF

Info

Publication number
JP2016202192A
JP2016202192A JP2013207261A JP2013207261A JP2016202192A JP 2016202192 A JP2016202192 A JP 2016202192A JP 2013207261 A JP2013207261 A JP 2013207261A JP 2013207261 A JP2013207261 A JP 2013207261A JP 2016202192 A JP2016202192 A JP 2016202192A
Authority
JP
Japan
Prior art keywords
light transmission
tube
reflection surface
image
rigid endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013207261A
Other languages
Japanese (ja)
Inventor
宮城 邦彦
Kunihiko Miyagi
邦彦 宮城
澤井 貴司
Takashi Sawai
貴司 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIMRO Co Ltd
Original Assignee
JIMRO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIMRO Co Ltd filed Critical JIMRO Co Ltd
Priority to JP2013207261A priority Critical patent/JP2016202192A/en
Priority to PCT/JP2014/076020 priority patent/WO2015050100A1/en
Publication of JP2016202192A publication Critical patent/JP2016202192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rigid endoscope of a simple and inexpensive configuration whose internal structure is not damaged when an insertion part is bent even if the insertion part is extra fine.SOLUTION: An objective element 43 is provided at the tip of an insertion part 20 that extends from a proximal part of a rigid endoscope 2, and an image formation element 45 is provided to the proximal part. An image light transmission medium consisting of one of gas, liquid, and light-transmitting resin is provided inside a cylindrical image light transmission member 44 connecting the objective element 43 and the image formation element 45. An illumination light transmission medium consisting of one of gas, liquid, and light-transmitting resin is provided between a cylindrical inner side reflection surface 34b surrounding an inner tube 22 and a cylindrical outer side reflection surface 34a surrounding it.SELECTED DRAWING: Figure 3

Description

本発明は、硬性内視鏡に関し、特に挿入部の極細化に適した硬性内視鏡に関する。   The present invention relates to a rigid endoscope, and more particularly to a rigid endoscope suitable for making an insertion portion extremely thin.

一般に、硬性内視鏡は、手元部から挿入部が直線状に延びている。挿入部の内部には、光源からの照明光を先端方向へ伝送する照明光学系と、像光を基端方向へ伝送する像光学系とが設けられている。通常、照明光学系は光ファイバーで構成されている。像光学系は、ロッドレンズ等を含むリレーレンズや光ファイバーで構成されている(特許文献1、2等参照)。   Generally, in a rigid endoscope, an insertion portion extends linearly from a hand portion. An illumination optical system that transmits illumination light from the light source in the distal direction and an image optical system that transmits image light in the proximal direction are provided inside the insertion portion. Usually, the illumination optical system is composed of an optical fiber. The image optical system includes a relay lens including a rod lens and an optical fiber (see Patent Documents 1 and 2).

特開2005−237436号公報JP 2005-237436 A 特開2007−133175号公報JP 2007-133175 A

例えば、眼科用等の硬性内視鏡においては、挿入部をなるべく細くしたいとの要望がある。しかし、挿入部が極細であると、少し曲げられただけで、内部のリレーレンズが破損しやすい。また、挿入部内に光ファイバーを設ける場合、挿入部を細くすると、光ファイバーの本数や太さが制限されるため、照明が暗くなったり、画質が落ちたりする。さらには、リレーレンズや光ファイバーは比較的高価である。
本発明は、上記事情に鑑み、硬性内視鏡において、挿入部を細くした場合に、挿入部が多少曲げられたとしても内部構造が破損することなく、簡易で安価な構成にすることを目的とする。
For example, in a rigid endoscope for ophthalmology or the like, there is a demand for making the insertion portion as thin as possible. However, if the insertion portion is extremely thin, the internal relay lens is easily damaged even if it is slightly bent. In addition, when an optical fiber is provided in the insertion portion, if the insertion portion is narrowed, the number and thickness of the optical fibers are limited, so that the illumination becomes dark and the image quality deteriorates. Furthermore, relay lenses and optical fibers are relatively expensive.
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has an object to provide a simple and inexpensive configuration in a rigid endoscope, in which, when the insertion portion is thinned, the internal structure is not damaged even if the insertion portion is slightly bent. And

上記課題を解決するため、本発明は、手元部と、この手元部から軸線に沿って直線状に延びる挿入部と、光源からの照明光を観察対象へ伝送する照明光学系と、前記観察対象の像光を伝送する像光学系とを備えた硬性内視鏡であって、前記像光学系が、前記挿入部の先端に設けられた対物素子と、前記手元部に設けられた結像素子と、前記対物素子と前記結像素子とを連絡するようにして前記軸線に沿って延びる筒状の低反射面とを含み、前記低反射面の内側には、気体、液体、透光性の樹脂の何れかからなる像光伝送媒体が設けられており、
前記照明光学系が、前記低反射面を囲むようにして前記軸線に沿って延びる筒状の内側反射面と、前記内側反射面を囲むようにして前記軸線に沿って延びる筒状の外側反射面と含み、前記内側反射面と前記外側反射面との間には、気体、液体、透光性の樹脂の何れかからなる照明光伝送媒体が設けられていることを特徴とする。
In order to solve the above-described problems, the present invention provides a hand portion, an insertion portion extending linearly from the hand portion along the axis, an illumination optical system that transmits illumination light from a light source to the observation target, and the observation target. A rigid endoscope provided with an image optical system that transmits the image light of the image sensor, wherein the image optical system includes an objective element provided at a distal end of the insertion portion and an imaging element provided at the hand portion And a cylindrical low reflection surface extending along the axis so as to communicate the objective element and the imaging element, and inside the low reflection surface, gas, liquid, translucent An image light transmission medium made of any of resins is provided,
The illumination optical system includes a cylindrical inner reflection surface extending along the axis so as to surround the low reflection surface, and a cylindrical outer reflection surface extending along the axis so as to surround the inner reflection surface, An illumination light transmission medium made of any one of gas, liquid, and translucent resin is provided between the inner reflection surface and the outer reflection surface.

この特徴構成によれば、照明光学系及び像光学系の構造が簡素であるから、硬性内視鏡を安価にできる。挿入部内には、像光伝送用のリレーレンズ等の、対物素子以外の光学ガラス素子を設ける必要が無いから、挿入部を細くしたとしても、挿入部が何らかの曲げ荷重を受けて曲げられた場合、上記光学ガラス素子が破損しないようにできる。なお、対物素子は、挿入部の先端部に設けられているから、挿入部の中間部が湾曲されても破損する虞は殆ど無い。また、結像素子は、手元部に設けられているから、挿入部が湾曲されても破損する虞は無い。さらに、外側反射面及び内側反射面で照明光を反射させることによって照明光の伝送効率を高めることができ、観察対象を確実に照明できる。また、低反射面で像光の散乱を抑制することによって、観察対象の画像が不鮮明になるのを防止できる。   According to this characteristic configuration, since the structures of the illumination optical system and the image optical system are simple, the rigid endoscope can be made inexpensive. Since there is no need to provide an optical glass element other than the objective element, such as a relay lens for image light transmission, in the insertion part, even if the insertion part is made thin, the insertion part is bent under some bending load The optical glass element can be prevented from being damaged. In addition, since the objective element is provided in the front-end | tip part of an insertion part, even if the intermediate part of an insertion part is curved, there is almost no possibility of damaging. Further, since the imaging element is provided at the hand portion, there is no possibility of being damaged even if the insertion portion is bent. Furthermore, the illumination light is reflected by the outer reflection surface and the inner reflection surface, whereby the transmission efficiency of the illumination light can be increased, and the observation target can be reliably illuminated. Further, by suppressing the scattering of the image light on the low reflection surface, it is possible to prevent the image to be observed from becoming unclear.

前記挿入部が、前記軸線に沿って延びる金属製の外管と、前記外管に収容されるとともに前記軸線に沿って延びる金属製の内管とを含み、前記外管と前記内管との間に前記照明光伝送媒体が収容され、前記内管の内部に前記像光伝送媒体が収容されていることが好ましい。
これによって、挿入部の内部構造を確実に簡素にでき、硬性内視鏡を一層安価にできる。内管によって照明光伝送路と像光伝送路を確実に仕切ることができる。また、照明光が像光伝送路に侵入するのを阻止でき、観察画像の鮮明度(コントラスト)を確保できる。前記外管及び内管はそれぞれ金属製であることが好ましい。これによって、挿入部が曲げ荷重によって多少曲げられたとしても、曲げ荷重が外管及び内管の弾性変形領域内であれば、曲げ荷重が解除されたとき、外管及び内管の弾性復原力によって、挿入部を元の直線状に復帰させることができる。したがって、照明光及び像光を確実に伝送させることができる。
The insertion portion includes a metal outer tube extending along the axis, and a metal inner tube housed in the outer tube and extending along the axis, and the outer tube and the inner tube It is preferable that the illumination light transmission medium is accommodated in between and the image light transmission medium is accommodated in the inner tube.
As a result, the internal structure of the insertion portion can be surely simplified, and the rigid endoscope can be made more inexpensive. The illumination light transmission path and the image light transmission path can be reliably partitioned by the inner tube. Moreover, it is possible to prevent the illumination light from entering the image light transmission path, and to ensure the sharpness (contrast) of the observation image. The outer tube and the inner tube are preferably made of metal. As a result, even if the insertion portion is slightly bent by the bending load, if the bending load is within the elastic deformation region of the outer tube and the inner tube, the elastic restoring force of the outer tube and the inner tube is released when the bending load is released. Thus, the insertion portion can be returned to the original linear shape. Therefore, illumination light and image light can be reliably transmitted.

前記外管の内面が前記外側反射面を構成し、前記内管の外面が前記内側反射面を構成し、前記外管と前記内管との間が環状の空洞となり、この環状の空洞に前記照明光伝送媒体として気体又は液体が収容されていてもよい。
これによって、挿入部内の照明光伝送構造を確実に簡素化でき、硬性内視鏡を確実に安価にできる。挿入部が曲げられても、内部の照明光伝送媒体は気体又は液体であるから、該照明光伝送媒体が破損するおそれがない。照明光伝送媒体を構成する気体としては、空気、窒素等が挙げられ、好ましくは空気である。照明光伝送媒体を構成する液体としては、水が好ましい。液体は、ゾル状体、ゲル状体を含む。
The inner surface of the outer tube constitutes the outer reflecting surface, the outer surface of the inner tube constitutes the inner reflecting surface, and an annular cavity is formed between the outer tube and the inner tube. Gas or liquid may be accommodated as the illumination light transmission medium.
Thereby, the illumination light transmission structure in the insertion portion can be surely simplified, and the rigid endoscope can be reliably made inexpensive. Even if the insertion portion is bent, the illumination light transmission medium inside is a gas or a liquid, so that the illumination light transmission medium is not damaged. Air, nitrogen, etc. are mentioned as gas which comprises an illumination light transmission medium, Preferably it is air. Water is preferable as the liquid constituting the illumination light transmission medium. The liquid includes a sol body and a gel body.

前記内管の内面が前記低反射面を構成し、前記内管の内部が空洞となり、この空洞に前記像光伝送媒体として気体又は液体が収容されていてもよい。
これによって、挿入部内の像光伝送構造を確実に簡素化でき、硬性内視鏡を確実に安価にできる。挿入部が曲げられても、内部の像光伝送媒体は気体又は液体であるから、該像光伝送媒体が破損するおそれがない。像光伝送媒体を構成する気体としては、空気、窒素等が挙げられ、好ましくは空気である。像光伝送媒体を構成する液体としては、水が好ましい。液体は、ゾル状体、ゲル状体を含む。
An inner surface of the inner tube may constitute the low reflection surface, and an inner portion of the inner tube may be a cavity, and a gas or a liquid may be accommodated in the cavity as the image light transmission medium.
As a result, the image light transmission structure in the insertion portion can be reliably simplified, and the rigid endoscope can be reliably made inexpensive. Even if the insertion portion is bent, the internal image light transmission medium is a gas or a liquid, so that the image light transmission medium is not damaged. Examples of the gas constituting the image light transmission medium include air and nitrogen, and preferably air. Water is preferable as the liquid constituting the image light transmission medium. The liquid includes a sol body and a gel body.

前記照明光学系が、中心穴を有して前記軸線に沿って延びる透光性の樹脂からなる透明筒部材を含み、前記透明筒部材の外周面が前記外側反射面を構成し、前記中心穴の内周面が前記内側反射面を構成し、前記前記像光学系が、前記中心穴を貫通していてもよい。前記透明筒部材を照明光伝送媒体とすることによって、照明光の伝送ロスを確実に低減できる。また、透明筒部材に弾性を持たせることによって、挿入部が多少曲げられても、挿入部内の照明光伝送媒体の破損が起きないようにすることができる。   The illumination optical system includes a transparent cylindrical member made of a translucent resin having a central hole and extending along the axis, and an outer peripheral surface of the transparent cylindrical member constitutes the outer reflective surface, and the central hole The inner peripheral surface may constitute the inner reflection surface, and the image optical system may penetrate the center hole. By using the transparent cylindrical member as an illumination light transmission medium, it is possible to reliably reduce illumination light transmission loss. Moreover, by giving elasticity to the transparent cylindrical member, it is possible to prevent the illumination light transmission medium in the insertion portion from being damaged even if the insertion portion is bent slightly.

前記像光学系が、前記軸線に沿って延びる透光性の樹脂からなる透明円柱部材を含み、前透明円柱部材の外周面が前記低反射面を構成していてもよい。前記透明円柱部材を像光伝送媒体とすることによって、像光を確実に伝送できる。また、透明円柱部材に弾性を持たせることによって、挿入部が多少曲げられても、挿入部内の像光伝送媒体の破損が起きないようにすることができる。   The image optical system may include a transparent cylindrical member made of a translucent resin extending along the axis, and an outer peripheral surface of the front transparent cylindrical member may constitute the low reflection surface. By using the transparent cylindrical member as an image light transmission medium, it is possible to reliably transmit image light. Further, by giving elasticity to the transparent cylindrical member, it is possible to prevent the image light transmission medium in the insertion portion from being damaged even if the insertion portion is slightly bent.

前記内側反射面及び外側反射面の前記照明光に対する反射率が、前記低反射面の前記像光に対する反射率よりも高く、かつ前記内側反射面及び外側反射面の前記照明光に対する吸収率が、前記低反射面の前記像光に対する吸収率よりも低いことが好ましい。これによって、照明光の伝送効率を確実に確保できるとともに観察画像が不鮮明になるのを確実に防止できる。
前記外側反射面は、好ましくは鏡面である。前記内側反射面は、好ましくは鏡面である。これによって、照明光の伝送効率を確実に確保できる。
前記低反射面は、好ましくは暗色面である。これによって、像光の散乱を確実に防止できる。
前記外側反射面と前記内側反射面とは、同心円筒状であることが好ましい。前記外側反射面と前記内側反射面と前記低反射面とは、同心円筒状であることが好ましい。
The reflectance of the inner reflective surface and the outer reflective surface with respect to the illumination light is higher than the reflectance of the low reflective surface with respect to the image light, and the absorptivity of the inner reflective surface and the outer reflective surface with respect to the illumination light is as follows: The absorptivity of the low reflection surface with respect to the image light is preferably lower. Thereby, the transmission efficiency of illumination light can be reliably ensured and the observation image can be reliably prevented from becoming unclear.
The outer reflecting surface is preferably a mirror surface. The inner reflection surface is preferably a mirror surface. Thereby, the transmission efficiency of illumination light can be ensured reliably.
The low reflection surface is preferably a dark color surface. Thereby, scattering of image light can be reliably prevented.
The outer reflection surface and the inner reflection surface are preferably concentric cylinders. The outer reflective surface, the inner reflective surface, and the low reflective surface are preferably concentric cylinders.

本発明によれば、挿入部の内部構造を簡素にでき、硬性内視鏡を安価にできる。また、挿入部を細くした場合、挿入部が多少曲げられたとしても、内部の光学素子が破損しないようにできる。さらに、照明光の伝送効率を確保できるとともに、観察画像の鮮明さを確保できる。   According to the present invention, the internal structure of the insertion portion can be simplified, and the rigid endoscope can be made inexpensive. Further, when the insertion portion is made thin, even if the insertion portion is bent slightly, the internal optical element can be prevented from being damaged. Furthermore, the illumination light transmission efficiency can be ensured and the clearness of the observation image can be ensured.

図1(a)は、本発明の第1実施形態に係る硬性内視鏡を、挿入部と手元部が接続された状態で示す縦断面図である。図1(b)は、上記硬性内視鏡を、挿入部と手元部が分離された状態で示す縦断面図である。Fig.1 (a) is a longitudinal cross-sectional view which shows the rigid endoscope which concerns on 1st Embodiment of this invention in the state in which the insertion part and the hand part were connected. FIG. 1B is a longitudinal sectional view showing the rigid endoscope in a state where the insertion portion and the hand portion are separated. 図1(a)のII−IIに沿う、上記硬性内視鏡の内部構造を省略した断面図である。It is sectional drawing which abbreviate | omitted the internal structure of the said rigid endoscope which follows II-II of Fig.1 (a). 上記硬性内視鏡の一部分を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows a part of said rigid endoscope. 上記硬性内視鏡の導光部材の斜視図である。It is a perspective view of the light guide member of the said rigid endoscope. 上記硬性内視鏡を含む内視鏡装置の構成図である。It is a block diagram of the endoscope apparatus containing the said rigid endoscope. 本発明の第2実施形態に係る硬性内視鏡の一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of a rigid endoscope according to a second embodiment of the present invention. 本発明の第3実施形態に係る硬性内視鏡の一部分の縦断面図である。It is a longitudinal cross-sectional view of a part of a rigid endoscope according to a third embodiment of the present invention.

以下、本発明の実施形態を図面にしたがって説明する。
図5に示すように、内視鏡装置1は、硬性内視鏡2と、カメラコントロールユニット(CCU)3と、モニター4を備えている。硬性内視鏡2は、例えば眼科用の内視鏡であるが、本発明がこれに限られるものではない。図1(a)に示すように、硬性内視鏡2は、手元部10と、挿入部20と、照明手段30と、観察手段40を備えている。手元部10の先端(図1(a)において左)に挿入部20が連なっている。手元部10及び挿入部20の内部に照明手段30及び観察手段40が設けられている。手元部10が操作者によって保持され、挿入部20が人体の眼窩や涙腺等の観察対象に挿入される。照明手段30によって挿入部20の先端周辺の観察対象が照明される。観察手段40によって上記観察対象の像光が内視鏡2に取り込まれ、CCU3による画像処理を経て、モニター4に表示される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 5, the endoscope apparatus 1 includes a rigid endoscope 2, a camera control unit (CCU) 3, and a monitor 4. The rigid endoscope 2 is, for example, an ophthalmic endoscope, but the present invention is not limited to this. As shown in FIG. 1A, the rigid endoscope 2 includes a hand portion 10, an insertion portion 20, an illumination unit 30, and an observation unit 40. The insertion portion 20 is connected to the distal end of the hand portion 10 (left side in FIG. 1A). Illumination means 30 and observation means 40 are provided inside the hand portion 10 and the insertion portion 20. The hand portion 10 is held by an operator, and the insertion portion 20 is inserted into an observation target such as an eye socket or lacrimal gland of a human body. The observation object around the distal end of the insertion portion 20 is illuminated by the illumination means 30. The image light to be observed is taken into the endoscope 2 by the observation means 40 and displayed on the monitor 4 through image processing by the CCU 3.

内視鏡2の構造を更に詳述する。
図1(a)及び同図(b)に示すように、手元部10と挿入部20とは、互いに別部材にて構成されて分離可能(着脱可能)になっている。手元部10は、外筐11と、内筐12と、スリーブ13と、軸管14を含み、軸線Lに沿って延びる多重筒状になっている。図2に示すように、手元部10の断面形状は、卵形に似た変形楕円形状になっている。図1(a)に示すように、外筐11に内筐12が収容され、更に内筐12の内部にスリーブ13を介して軸管14が収容されている。スリーブ13及び軸管14は、互いに一体になって外筐11及び内筺12に対して軸方向(軸線Lに沿う方向)にスライド可能になっている。或いは、内筺12とスリーブ13と軸管14とが、互いに一体になって外筐11に対して軸方向にスライド可能になっていてもよい。
The structure of the endoscope 2 will be further described in detail.
As shown in FIG. 1A and FIG. 1B, the hand portion 10 and the insertion portion 20 are constituted by separate members and are separable (detachable). The hand portion 10 includes an outer casing 11, an inner casing 12, a sleeve 13, and a shaft tube 14, and has a multiple cylindrical shape extending along the axis L. As shown in FIG. 2, the cross-sectional shape of the hand portion 10 is a deformed ellipse shape similar to an oval shape. As shown in FIG. 1A, an inner casing 12 is accommodated in the outer casing 11, and a shaft tube 14 is accommodated in the inner casing 12 via a sleeve 13. The sleeve 13 and the shaft tube 14 are integrated with each other and are slidable in the axial direction (direction along the axis L) with respect to the outer casing 11 and the inner casing 12. Alternatively, the inner collar 12, the sleeve 13, and the shaft tube 14 may be integrated with each other and slidable in the axial direction with respect to the outer casing 11.

図1に示すように、挿入部20は、手元部10の先端から軸線Lに沿って直線状に延びている。図3に示すように、挿入部20は、外管21と、内管22を含み、二重円管状になっている。外管21の材質は、好ましくは弾性を有する金属であり、例えばステンレス、普通鋼、鉄、アルミニウム等である。外管21ひいては挿入部20は極細である。外管21の外直径は、数mm(2mm〜3mm)以下であり、好ましくは1mm以下であり、例えば0.9mm程度であるが、本発明はこれに限られるものではない。   As shown in FIG. 1, the insertion portion 20 extends linearly along the axis L from the distal end of the hand portion 10. As shown in FIG. 3, the insertion portion 20 includes an outer tube 21 and an inner tube 22 and has a double circular tube shape. The material of the outer tube 21 is preferably a metal having elasticity, such as stainless steel, ordinary steel, iron, aluminum or the like. The outer tube 21 and thus the insertion portion 20 are extremely thin. The outer diameter of the outer tube 21 is several mm (2 mm to 3 mm) or less, preferably 1 mm or less, for example, about 0.9 mm, but the present invention is not limited to this.

内管22は、外管21よりも小径であり、かつ外管21と同芯をなすようにして外管21の内部に収容されている。内管22の材質は、好ましくは弾性を有する金属であり、例えばステンレス、普通鋼、鉄、アルミニウムである。図1(b)に示すように、内管22の基端部(同図において右端部)は、外管21よりも手元部10に向かって突出している。この内管22の基端部に連結管23が設けられている。   The inner tube 22 has a smaller diameter than the outer tube 21 and is accommodated inside the outer tube 21 so as to be concentric with the outer tube 21. The material of the inner tube 22 is preferably a metal having elasticity, such as stainless steel, ordinary steel, iron, and aluminum. As shown in FIG. 1B, the base end portion (right end portion in the figure) of the inner tube 22 protrudes toward the hand portion 10 from the outer tube 21. A connecting pipe 23 is provided at the base end of the inner pipe 22.

図3に示すように、連結管23は、先端側(図3において左)の小径の管部23aと、中央のテーパ部23bと、基端側(図3において右)の大径の管部23cとを一体に含む。管部23aが、内管22の基端部の外周に嵌め込まれることによって、内管22と連結管23が一体に連結されている。管部23aの基端部にテーパ部23bが一体に連なっている。テーパ部23bは、基端方向へ向かうにしたがって拡径されている。このテーパ部23bの拡径端部に管部23cが一体に連なっている。この管部23cに、手元部10の軸管14が軸方向にスライド可能かつ着脱可能に嵌め込まれている。したがって、内管22の基端が、連結管23を介して軸管14と軸線Lに沿って相対位置調節可能かつ分離可能に連結されている。   As shown in FIG. 3, the connecting tube 23 is composed of a small-diameter tube portion 23 a on the distal end side (left in FIG. 3), a central tapered portion 23 b, and a large-diameter tube portion on the proximal end side (right in FIG. 3). 23c integrally. The inner tube 22 and the connecting tube 23 are integrally connected by fitting the tube portion 23 a into the outer periphery of the proximal end portion of the inner tube 22. A tapered portion 23b is integrally connected to the proximal end portion of the tube portion 23a. The diameter of the taper portion 23b is increased toward the proximal direction. The pipe portion 23c is integrally connected to the enlarged diameter end portion of the taper portion 23b. The shaft tube 14 of the hand portion 10 is fitted into the tube portion 23c so as to be slidable and detachable in the axial direction. Accordingly, the proximal end of the inner tube 22 is connected to the shaft tube 14 along the axis L via the connecting tube 23 so that the relative position can be adjusted and the separation is possible.

図1(a)及び同図(b)に示すように、手元部10と挿入部20との間に接続部材50が設けられている。接続部材50は、ゴム(弾性材料)にて構成され、弾性を有している。図1(b)及び図2に示すように、接続部材50は、被覆筒部51と、キャップ部52とを一体に含む。被覆筒部51は、筒軸を軸線Lに沿わせた筒状に形成され、その断面形状は、手元部10とほぼ相似の変形楕円形状になっている。被覆筒部51の基端部(図1(b)において右端部)は開口されている。被覆筒部51の先端部(図1(b)において左端部)はキャップ部52によって塞がれている。   As shown in FIG. 1A and FIG. 1B, a connection member 50 is provided between the hand portion 10 and the insertion portion 20. The connecting member 50 is made of rubber (elastic material) and has elasticity. As shown in FIGS. 1B and 2, the connection member 50 integrally includes a covering cylinder portion 51 and a cap portion 52. The covering cylinder portion 51 is formed in a cylinder shape with the cylinder axis along the axis L, and the cross-sectional shape thereof is a deformed elliptical shape that is substantially similar to the hand portion 10. The base end part (the right end part in FIG.1 (b)) of the covering cylinder part 51 is opened. The tip end portion (left end portion in FIG. 1B) of the covering cylinder portion 51 is closed by the cap portion 52.

図1(b)に示すように、キャップ部52は、軸線Lに沿って先端方向(図1(b)において左)に突出する錐形状の壁状になっている。図3に示すように、キャップ部52には、円錐凹部52aと、挿入穴52bとが軸線Lに沿って形成されている。円錐凹部52aは、先端(図3において左)に向かうにしたがって縮径された円錐形状になっている。円錐凹部52aの大径側の基端が、被覆筒部51の内部空間に開口されている。円錐凹部52aの小径側の先端に挿入穴52bが連なっている。挿入穴52bは、円錐凹部52aの先端部分と同程度の直径を有して、接続部材50の先端面に達している。   As shown in FIG. 1B, the cap portion 52 has a conical wall shape that protrudes along the axis L in the distal direction (left in FIG. 1B). As shown in FIG. 3, the cap 52 has a conical recess 52 a and an insertion hole 52 b formed along the axis L. The conical recess 52a has a conical shape with a diameter reduced toward the tip (left in FIG. 3). The base end on the large diameter side of the conical recess 52 a is opened to the internal space of the covering cylinder portion 51. An insertion hole 52b is connected to the tip on the small diameter side of the conical recess 52a. The insertion hole 52b has the same diameter as the tip portion of the conical recess 52a and reaches the tip surface of the connection member 50.

図1(a)に示すように、接続部材50は、手元部10の先端部と挿入部20の基端部との間に跨るようにして、手元部10及び挿入部20の外周に被さっている。そして、被覆筒部51が手元部10(一方の部材)の外周面に弾性的に密着し、かつキャップ部52が挿入部20(他方の部材)と一体に接合されている。これによって、手元部10と挿入部20とが、接続部材50によって分離可能に接続されている。   As shown in FIG. 1A, the connection member 50 covers the outer periphery of the proximal portion 10 and the insertion portion 20 so as to straddle between the distal end portion of the proximal portion 10 and the proximal end portion of the insertion portion 20. Yes. And the covering cylinder part 51 elastically adheres to the outer peripheral surface of the hand part 10 (one member), and the cap part 52 is joined integrally with the insertion part 20 (the other member). As a result, the hand portion 10 and the insertion portion 20 are detachably connected by the connection member 50.

上記接続構造について更に詳述する。
外管21の基端部が挿入穴52bに嵌め込まれている。この挿入穴52bにおいて、外管21とキャップ部52とが接着剤等によって一体に接合されている。外管21のキャップ部52からの突出長さは、例えば30mm〜50mm程度であるが、本発明はこれに限られるものではない。内管22の基端部は、外管21から突出されるとともに円錐凹部52aを軸線Lに沿って貫通して、接続部材50の内部に配置されている。
The connection structure will be further described in detail.
The base end portion of the outer tube 21 is fitted into the insertion hole 52b. In the insertion hole 52b, the outer tube 21 and the cap portion 52 are integrally joined by an adhesive or the like. The protruding length of the outer tube 21 from the cap portion 52 is, for example, about 30 mm to 50 mm, but the present invention is not limited to this. The proximal end portion of the inner tube 22 protrudes from the outer tube 21 and penetrates the conical recess 52 a along the axis L, and is disposed inside the connection member 50.

自然状態(無負荷時)における被覆筒部51の内周面の寸法は、外筐11の先端部の外周面の寸法より少し小さい。図1(a)及び図2に示すように、この被覆筒部51が、外筐11の先端部の外周部に被さることで、該外筐11に弾性的に密着している。この弾性力によって被覆筒部51と手元部10とが分離可能に接続されている。また、被覆筒部51の内周面と外筐11の外周面との間が液密にシールされている。
この接続状態において、キャップ52は、手元部10から先端方向(図1(a)に於いて左)に離れて、手元部10の先端面に被さっている。
The dimension of the inner peripheral surface of the covering cylinder part 51 in a natural state (no load) is slightly smaller than the dimension of the outer peripheral surface of the front end part of the outer casing 11. As shown in FIG. 1A and FIG. 2, the covering cylinder portion 51 covers the outer peripheral portion of the distal end portion of the outer casing 11, thereby being elastically adhered to the outer casing 11. The coated cylinder part 51 and the hand part 10 are detachably connected by this elastic force. In addition, a space between the inner peripheral surface of the covering cylinder portion 51 and the outer peripheral surface of the outer casing 11 is sealed in a liquid-tight manner.
In this connected state, the cap 52 is separated from the proximal portion 10 in the distal direction (left in FIG. 1A) and covers the distal end surface of the proximal portion 10.

図2に示すように、外筐11の外周面には、複数(ここでは2つ)の案内凸条11fが形成されている。これら案内凸条11fは、軸線Lに沿って真っ直ぐ延びるとともに、周方向に互いに離れて配置されている。一方、被覆筒部51の内周面には、上記案内凸条11fと対応する数(ここでは2つ)の案内溝51fが形成されている。これら案内溝51fは、軸線Lに沿って真っ直ぐ延びるとともに、周方向に互いに離れて、案内凸条11fと対応する位置に配置されている。各案内凸条11fが、対応する案内溝51fに軸線Lに沿ってスライド可能に嵌め込まれている。これによって、案内部材50が手元部10の周方向に相対回転しないように回り止めされている。   As shown in FIG. 2, a plurality (two in this case) of guide ridges 11 f are formed on the outer peripheral surface of the outer casing 11. These guide ridges 11f extend straight along the axis L and are spaced apart from each other in the circumferential direction. On the other hand, on the inner peripheral surface of the covering cylinder portion 51, a number (here, two) of guide grooves 51f corresponding to the guide protrusions 11f are formed. The guide grooves 51f extend straight along the axis L, and are spaced apart from each other in the circumferential direction, and are disposed at positions corresponding to the guide protrusions 11f. Each guide ridge 11f is slidably fitted along the axis L in the corresponding guide groove 51f. Thereby, the guide member 50 is prevented from rotating so as not to rotate relative to the circumferential direction of the hand portion 10.

さらに、図1に示すように、外筐11の外周面には、係止凹部11eが外筐11の周方向に沿って環状に形成されている。一方、被覆筒部51の基端部には、径方向の内側に突出する係止凸部51eが被覆筒部51の周方向に沿って環状に設けられている。係止凸部51eが係止凹部11eに嵌って係止されている。これによって、外筐11と接続部材50とが軸方向に位置決めされている。   Further, as shown in FIG. 1, a locking recess 11 e is formed on the outer peripheral surface of the outer casing 11 in an annular shape along the circumferential direction of the outer casing 11. On the other hand, a locking projection 51 e that protrudes inward in the radial direction is provided annularly along the circumferential direction of the covering cylinder 51 at the base end of the covering cylinder 51. The locking projection 51e is fitted and locked in the locking recess 11e. Thereby, the outer casing 11 and the connection member 50 are positioned in the axial direction.

接続部材50と手元部10との間には、位置調節手段60が設けられている。位置調節手段60は、ピニオン61(円形歯車)と、ラック62(直線歯車)とを含む。ピニオン61は、接続部材50に回転可能に埋め込まれている。接続部材50がピニオン61に弾性的に接することによって、接続部材50とピニオン61との間が液密にシールされている。ラック62は、手元部10のホルダ14に固定されている。これらピニオン61とラック62が互いに噛み合っている。ピニオン61を回すことによって、接続部材50と、スリーブ13及び軸管14との軸方向の相対位置を調節できる。この位置調整の際、接続部材50と外筐11との相対位置は固定されている。
また、接続部材50を弾性変形させることで、上記ピニオン61とラック62の噛み合いを解除可能である。
A position adjusting means 60 is provided between the connecting member 50 and the hand portion 10. The position adjusting means 60 includes a pinion 61 (circular gear) and a rack 62 (linear gear). The pinion 61 is rotatably embedded in the connection member 50. The connection member 50 is elastically in contact with the pinion 61, so that the space between the connection member 50 and the pinion 61 is liquid-tightly sealed. The rack 62 is fixed to the holder 14 of the hand portion 10. The pinion 61 and the rack 62 are engaged with each other. By rotating the pinion 61, the axial relative positions of the connecting member 50, the sleeve 13, and the shaft tube 14 can be adjusted. At the time of this position adjustment, the relative position between the connecting member 50 and the outer casing 11 is fixed.
Further, the engagement between the pinion 61 and the rack 62 can be released by elastically deforming the connecting member 50.

図1(a)に示すように、観察手段40は、像光学系41と、撮像素子42を有している。像光学系41は、対物レンズ43(対物素子)と、像光伝送管44(像光伝送部材)と、結像レンズ45(結像素子)を含む。対物レンズ43は、内管22の先端(すなわち挿入部20の先端)に設けられている。   As shown in FIG. 1A, the observation unit 40 includes an image optical system 41 and an image sensor 42. The image optical system 41 includes an objective lens 43 (object element), an image light transmission tube 44 (image light transmission member), and an imaging lens 45 (imaging element). The objective lens 43 is provided at the distal end of the inner tube 22 (that is, the distal end of the insertion portion 20).

像光伝送管44は、上記内管22、連結管23、及び軸管14によって構成され、軸線Lに沿って一直線に延びている。図3に示すように、像光伝送管44の内部空間が、像光伝送路44dとなっている。像光伝送路44dの周面(管22,23,14の内面)は、黒色系塗料等からなる暗色膜(図示省略)が被膜されることによって暗色の低反射面44bになっている。上記暗色は、好ましくは黒色である。低反射面44bは、軸線に沿って延びる筒状になっている。   The image light transmission tube 44 includes the inner tube 22, the connecting tube 23, and the shaft tube 14, and extends in a straight line along the axis L. As shown in FIG. 3, the internal space of the image light transmission tube 44 is an image light transmission path 44d. The peripheral surface of the image light transmission path 44d (the inner surfaces of the tubes 22, 23, and 14) is a dark color low reflection surface 44b by being coated with a dark color film (not shown) made of a black paint or the like. The dark color is preferably black. The low reflection surface 44b has a cylindrical shape extending along the axis.

図1に示すように、結像レンズ45は、像光伝送管44における軸管14(保持部)の先端部分に収容されている。したがって、結像レンズ45は、手元部10に設けられている。結像レンズ45は、一列をなす複数のレンズを含むリレーレンズにて構成され、対物レンズ43との間のレンズ間距離に対応する十分に大きな焦点距離を有している。図3に示すように、像光伝送管44における対物レンズ43と結像レンズ45の間の部分は空洞44eになっており、これらレンズ43,45間にレンズや光ファイバー等は設けられていない。内管22ひいては筒状の低反射面44bが、対物レンズ43と結像レンズ45とを連絡しており、この内管22(低反射面44b)内の空洞44eに像光伝送媒体としての空気(気体)が収容されている。   As shown in FIG. 1, the imaging lens 45 is accommodated in the distal end portion of the axial tube 14 (holding portion) in the image light transmission tube 44. Therefore, the imaging lens 45 is provided in the hand portion 10. The imaging lens 45 is configured by a relay lens including a plurality of lenses in a row, and has a sufficiently large focal length corresponding to the distance between the lenses with the objective lens 43. As shown in FIG. 3, a portion of the image light transmission tube 44 between the objective lens 43 and the imaging lens 45 is a cavity 44e, and no lens, optical fiber, or the like is provided between the lenses 43 and 45. The inner tube 22 and thus the cylindrical low reflection surface 44b communicates the objective lens 43 and the imaging lens 45, and air as an image light transmission medium is connected to the cavity 44e in the inner tube 22 (low reflection surface 44b). (Gas) is contained.

図1に示すように、軸管14の基端部には、撮像素子42が設けられている。撮像素子42は、CCDやCMOSにて構成されている。撮像素子42にケーブル5が接続されている。図5に示すように、ケーブル5は、手元部10の基端部から引き出されてCCU3に接続されている。   As shown in FIG. 1, an image sensor 42 is provided at the proximal end portion of the shaft tube 14. The image sensor 42 is configured by a CCD or a CMOS. The cable 5 is connected to the image sensor 42. As shown in FIG. 5, the cable 5 is pulled out from the proximal end portion of the hand portion 10 and connected to the CCU 3.

図1(a)に示すように、照明手段30は、複数の光源31と、照明光学系32を含む。光源31は、LED(発光ダイオード)にて構成されており、好ましくは白色LEDにて構成されているが、本発明はこれに限られるものではない。光源31は、スリーブ13から先端方向(図1(a)において左)を臨むようにして、スリーブ13に保持されている。したがって、光源31は、軸線Lからずれて配置されている。光源31の光軸L31は、軸線Lに対して斜めに向けられている。複数の光源31が、スリーブ13の周方向に環状に並べられ、軸管14の先端部(ひいては像光伝送管44)の外周を囲んでいる。
なお、1つの環状の光源を、像光伝送管44を囲むように設けてもよい。
As shown in FIG. 1A, the illumination unit 30 includes a plurality of light sources 31 and an illumination optical system 32. Although the light source 31 is comprised by LED (light emitting diode), Preferably it is comprised by white LED, This invention is not limited to this. The light source 31 is held by the sleeve 13 so as to face the distal direction (left in FIG. 1A) from the sleeve 13. Therefore, the light source 31 is arranged so as to be shifted from the axis L. Optical axis L 31 of the light source 31 is directed obliquely relative to the axis L. A plurality of light sources 31 are arranged in a ring shape in the circumferential direction of the sleeve 13 and surround the outer periphery of the distal end portion of the axial tube 14 (and thus the image light transmission tube 44).
One annular light source may be provided so as to surround the image light transmission tube 44.

図3に示すように、照明光学系32は、照明光伝送管34と、出射レンズ35(照明窓)、導光部材33(導光部)とを含む。照明光伝送管34は、挿入部20の外管21及び内管22によって構成されている。これら管21,22どうしの間が、環状(筒状)をなして軸線Lに沿って延びる空洞34eになっており、この環状の空洞34eが、挿入部10における照明光伝送路34dを構成している。照明光伝送路34d内には、照明光伝送媒体として空気(気体)が設けられている。環状の照明光伝送路34dの外側の周面(外管21の内面)は、鏡面化処理されることによって外側反射面34aを構成している。同様に、環状の照明光伝送路34dの内側の周面(内管22の外面)は、鏡面化処理されることによって内側反射面34bを構成している。外管21の内面及び内管22の外面を磨いたり、これら面に鏡面膜(図示省略)を蒸着やスパッタリング等にて被膜したりすることによって、これら面を鏡面にすることができる。上記鏡面膜の材質としては、アルミニウムが挙げられるが、本発明はこれに限定されるものではなく、銀等の他の光沢を有する金属を用いてもよい。   As shown in FIG. 3, the illumination optical system 32 includes an illumination light transmission tube 34, an exit lens 35 (illumination window), and a light guide member 33 (light guide portion). The illumination light transmission tube 34 is constituted by the outer tube 21 and the inner tube 22 of the insertion portion 20. A space 34e extending between the tubes 21 and 22 along the axis L is formed in an annular shape (cylindrical shape), and this annular cavity 34e constitutes an illumination light transmission path 34d in the insertion portion 10. ing. In the illumination light transmission path 34d, air (gas) is provided as an illumination light transmission medium. The outer peripheral surface (the inner surface of the outer tube 21) of the annular illumination light transmission path 34d is mirror-finished to form an outer reflecting surface 34a. Similarly, the inner peripheral surface of the annular illumination light transmission path 34d (the outer surface of the inner tube 22) is mirror-finished to form an inner reflection surface 34b. By polishing the inner surface of the outer tube 21 and the outer surface of the inner tube 22, or coating these surfaces with a mirror film (not shown) by vapor deposition or sputtering, these surfaces can be made mirror surfaces. Examples of the material for the mirror film include aluminum, but the present invention is not limited to this, and other glossy metals such as silver may be used.

内側反射面34bは、低反射面44bと表裏をなして低反射面44bを囲むとともに軸線Lに沿って延びる筒状になっている。外側反射面34aは、内側反射面34bと同心をなして内側反射面34bを囲むとともに軸線Lに沿って延びる筒状になっている。反射面34a,34bどうしの間(外管21と内管22との間)に、照明光伝送媒体としての空気(気体)が設けられている。反射面34a,34bの照明光に対する反射率は、低反射面44bの像光に対する反射率よりも高く、かつ反射面34a,34bの照明光に対する吸収率は、低反射面44bの像光に対する吸収率よりも低い。   The inner reflection surface 34b is formed in a cylindrical shape that extends along the axis L while surrounding the low reflection surface 44b with the front and back surfaces of the low reflection surface 44b. The outer reflection surface 34a is concentric with the inner reflection surface 34b, surrounds the inner reflection surface 34b, and has a cylindrical shape extending along the axis L. Air (gas) as an illumination light transmission medium is provided between the reflecting surfaces 34a and 34b (between the outer tube 21 and the inner tube 22). The reflectance of the reflection surfaces 34a and 34b with respect to the illumination light is higher than the reflectance of the low reflection surface 44b with respect to the image light, and the absorption rate with respect to the illumination light of the reflection surfaces 34a and 34b is absorption with respect to the image light of the low reflection surface 44b. Lower than the rate.

図3に示すように、出射レンズ35は、環状の凹レンズにて構成されている。この出射レンズ35が、照明光伝送管34の先端部(外管21及び内管22の先端部どうし間)に嵌め込まれている。出射レンズ35によって、照明光伝送路34dの先端部が塞がれている。
なお、レンズ35に代えて、環状の平ガラスを照明光伝送管34の先端部に設けてもよい。
As shown in FIG. 3, the exit lens 35 is configured by an annular concave lens. The exit lens 35 is fitted into the distal end portion of the illumination light transmission tube 34 (between the distal end portions of the outer tube 21 and the inner tube 22). The tip of the illumination light transmission path 34d is blocked by the exit lens 35.
Instead of the lens 35, an annular flat glass may be provided at the tip of the illumination light transmission tube 34.

図4に示すように、導光部材33は、中心穴33cを有する円錐環形状になっている。導光部材33は、透明なガラス(照明光伝送媒体)にて構成され、透光性を有している。なお、導光部材33が、ガラスに代えて、透明な光学樹脂(照明光伝送媒体)にて構成されていてもよい。   As shown in FIG. 4, the light guide member 33 has a conical ring shape having a center hole 33c. The light guide member 33 is made of transparent glass (illumination light transmission medium) and has translucency. The light guide member 33 may be made of a transparent optical resin (illumination light transmission medium) instead of glass.

図3に示すように、上記導光部材33が、中心軸を軸線Lと一致させて、円錐凹部52aに収容されている。これによって、光源31と挿入部20との間に導光部材33が介在されている。導光部材33の外周面は、挿入部20(ひいては照明光伝送路34d)に向って縮径されるとともに、円錐凹部52aの内周面に接している。導光部材33の大径側の端部が光源31に向けられ、導光部材33の小径側の端部が挿入部20に向けられている。導光部材33の小径側の環状の端面が、照明光伝送路34dの基端部を塞いでいる。中心孔33cには、内管22及び管部23aの一部(すなわち像光伝送管44の一部)が挿通されている。この中心孔33cの内周面が、上記内管22及び管部23aの外周面と接している。したがって、導光部材33は像光伝送管44を囲んでいる。   As shown in FIG. 3, the light guide member 33 is accommodated in the conical recess 52 a with the central axis aligned with the axis L. Accordingly, the light guide member 33 is interposed between the light source 31 and the insertion portion 20. The outer peripheral surface of the light guide member 33 is reduced in diameter toward the insertion portion 20 (and thus the illumination light transmission path 34d) and is in contact with the inner peripheral surface of the conical recess 52a. The end portion on the large diameter side of the light guide member 33 is directed to the light source 31, and the end portion on the small diameter side of the light guide member 33 is directed to the insertion portion 20. An annular end surface on the small diameter side of the light guide member 33 closes the base end portion of the illumination light transmission path 34d. A portion of the inner tube 22 and the tube portion 23a (that is, a portion of the image light transmission tube 44) is inserted through the center hole 33c. The inner peripheral surface of the center hole 33c is in contact with the outer peripheral surfaces of the inner tube 22 and the tube portion 23a. Therefore, the light guide member 33 surrounds the image light transmission tube 44.

導光部材33の外周面は、鏡面膜(図示省略)が蒸着やスパッタリングによって被膜されることによって鏡面化処理されている。これによって、導光部材33の外周面が、外側反射面33aを構成している。また、内管22及び管部23aの外周面は、磨かれたり、鏡面膜(図示省略)が蒸着やスパッタリングによって被膜されたりすることによって鏡面化処理されている。導光部材33の中心孔33cの内周面が、上記内管22及び管部23aの鏡面化された外周面と接することで、導光部材33の内側の反射面33bを構成している。これら反射面33a,33bどうしの間が、ガラスからなる照明光伝送媒体となっている。上記鏡面膜の材質としては、アルミニウムが挙げられるが、本発明はこれに限定されるものではなく、銀等の他の光沢を有する金属を用いてもよい。   The outer peripheral surface of the light guide member 33 is mirror-finished by coating a mirror film (not shown) by vapor deposition or sputtering. As a result, the outer peripheral surface of the light guide member 33 constitutes the outer reflective surface 33a. Further, the outer peripheral surfaces of the inner tube 22 and the tube portion 23a are polished or mirror-finished by coating a mirror film (not shown) by vapor deposition or sputtering. The inner peripheral surface of the center hole 33c of the light guide member 33 is in contact with the outer peripheral surface of the inner tube 22 and the tube portion 23a that is made into a mirror surface, thereby forming a reflection surface 33b on the inner side of the light guide member 33. An illumination light transmission medium made of glass is formed between the reflecting surfaces 33a and 33b. Examples of the material for the mirror film include aluminum, but the present invention is not limited to this, and other glossy metals such as silver may be used.

上記のように構成された硬性内視鏡2の作用を説明する。
内視鏡2によって、人体の眼窩等の観察対象を観察する際は、挿入部20を上記観察対象に挿入するとともに、光源31から照明光を出射する。光源31を手元部10内に配置することで、照明光の伝送距離を短くでき、伝送効率を高めることができる。照明光は、導光部材33の内部に斜めに入り、反射面33a,33bによって反射されながら、導光部材33の先端側に向かうにしたがって集光(収束)される。反射面33a,33bを鏡面にすることによって照明光を確実に反射させることができ、照明光のロスを抑制できる。また、照明光が反射面33a,33bで反射する度に、照明光の進行方向と軸線Lとのなす角度が大きくなる。この照明光が、導光部材33の先端から照明光伝送路34d内に導入される。そして、反射面34a,34bによって反射されながら、照明光伝送路34dの先端側へ伝播される。反射面34a,34bを鏡面にすることによって照明光を確実に反射させることができる。照明光の反射面34a,34bへの入射角が小さくても、確実に反射させることができ、透過を阻止できる。したがって、照明光のロスを低減できる。この照明光が、出射レンズ35から拡散するように照射され、観察対象を照らす。照明光の伝送効率を高めることで、観察対象を確実に照らすことができる。
導光部材33のテーパ状の外周面の角度や光源31の光軸L31の角度を適宜設定することによって、出射角度ひいては照明範囲を調節できる。すなわち、導光部材33によって出射角度を大きくでき、照明範囲を広くすることができる。
The operation of the rigid endoscope 2 configured as described above will be described.
When observing an observation target such as an orbit of a human body with the endoscope 2, the insertion unit 20 is inserted into the observation target and illumination light is emitted from the light source 31. By arranging the light source 31 in the hand portion 10, the transmission distance of the illumination light can be shortened and the transmission efficiency can be increased. The illumination light obliquely enters the light guide member 33 and is condensed (converged) toward the front end side of the light guide member 33 while being reflected by the reflection surfaces 33a and 33b. Illumination light can be reliably reflected by making the reflection surfaces 33a and 33b mirror surfaces, and loss of illumination light can be suppressed. Further, every time the illumination light is reflected by the reflecting surfaces 33a and 33b, the angle formed by the traveling direction of the illumination light and the axis L is increased. This illumination light is introduced into the illumination light transmission path 34 d from the tip of the light guide member 33. And it is propagated to the front end side of the illumination light transmission path 34d while being reflected by the reflecting surfaces 34a and 34b. Illumination light can be reliably reflected by making the reflecting surfaces 34a and 34b mirror surfaces. Even if the incident angle of the illumination light to the reflecting surfaces 34a and 34b is small, it can be reliably reflected and transmitted. Therefore, the loss of illumination light can be reduced. This illumination light is irradiated so as to diffuse from the exit lens 35 and illuminates the observation target. By increasing the transmission efficiency of the illumination light, the observation object can be illuminated reliably.
The angle of the optical axis L 31 of the angle and the light source 31 of the tapered outer peripheral surface of the light guide member 33 is appropriately set, can be adjusted emitting angle thus illumination range. That is, the emission angle can be increased by the light guide member 33, and the illumination range can be widened.

照明された観察対象の像光が、対物レンズ43に入射し、像光伝送路44dの基端側へ伝播される。導光伝送管44の内面を黒色の低反射面44bにすることによって、像光の散乱を抑制できる。像光は、対物レンズ43から真っ直ぐ結像レンズ45に入射し、結像レンズ45によって撮像素子42上に結像される。撮像素子42は、この像光を電気信号に変換する。この信号が、CCU3に送られ、モニター4に観察画像として表示される。上記導光伝送管44内における像光の散乱を抑制することによって、観察画像の鮮明度(コントラスト)を確保することができる。さらには、内管22によって照明光が像光伝送路44dに侵入するのを確実に阻止できるから、観察画像が不鮮明になるのを一層確実に防止できる。   The illuminated image light of the observation object enters the objective lens 43 and propagates to the proximal end side of the image light transmission path 44d. By making the inner surface of the light guide transmission tube 44 a black low reflection surface 44b, scattering of image light can be suppressed. The image light enters the imaging lens 45 straight from the objective lens 43 and is imaged on the image sensor 42 by the imaging lens 45. The image sensor 42 converts this image light into an electrical signal. This signal is sent to the CCU 3 and displayed on the monitor 4 as an observation image. By suppressing the scattering of the image light in the light guide transmission tube 44, the sharpness (contrast) of the observation image can be ensured. Furthermore, since the illumination light can be reliably prevented from entering the image light transmission path 44d by the inner tube 22, it is possible to more reliably prevent the observation image from becoming unclear.

硬性内視鏡2によれば、挿入部20内における照明光伝送路34dの照明光伝送媒体及び像光伝送路44dの像光伝送媒体が空気(気体)にて構成されているため、挿入部20の内部構造を簡素にできる。したがって、硬性内視鏡2を低廉化できる。
しかも、挿入部20内の光学素子の破損を懸念することなく、挿入部20を極細にできる。すなわち、挿入部20が例えば直径2mm〜3mm以下、好ましくは1mm以下の極細であったとしても、挿入部20が何らかの曲げ荷重によって曲げられたとき、内部の照明光伝送媒体及び像光伝送媒体が破損することはない。また、対物レンズ43は、挿入部20の先端部に設けられているから、挿入部20の中間部が湾曲されても破損する虞は殆ど無い。
さらに、外管21及び内管22の弾性変形領域内の曲げであれば、曲げ荷重が解除されたとき、管21,22の弾性復原力によって、挿入部20が元の真っ直ぐな状態に自然と復帰する。したがって、照明光を観察対象に確実に照射でき、かつ観察対象の像を確実に採取して観察することができる。
According to the rigid endoscope 2, since the illumination light transmission medium of the illumination light transmission path 34d and the image light transmission medium of the image light transmission path 44d in the insertion section 20 are composed of air (gas), the insertion section The internal structure of 20 can be simplified. Therefore, the price of the rigid endoscope 2 can be reduced.
In addition, the insertion portion 20 can be made extremely fine without worrying about damage to the optical element in the insertion portion 20. That is, even if the insertion part 20 is extremely fine, for example, having a diameter of 2 mm to 3 mm or less, preferably 1 mm or less, when the insertion part 20 is bent by some bending load, the internal illumination light transmission medium and image light transmission medium are There is no damage. Further, since the objective lens 43 is provided at the distal end portion of the insertion portion 20, there is almost no possibility that the objective lens 43 is damaged even if the intermediate portion of the insertion portion 20 is curved.
Furthermore, if the bending is within the elastic deformation region of the outer tube 21 and the inner tube 22, when the bending load is released, the insertion portion 20 naturally returns to the original straight state by the elastic restoring force of the tubes 21 and 22. Return. Therefore, it is possible to reliably irradiate the observation target with the illumination light, and to reliably collect and observe the image of the observation target.

硬性内視鏡2においては、使用のたびに、手元部10から使用済の挿入部20及び接続部材50を切り離して、新しい挿入部20及び接続部材50に付け替えることができる。
切り離しの際は、接続部材50を弾性変形させながら、係止凸部51eを係止凹部11eから外し、かつピニオン61とラック62の噛み合いを解除したうえで、接続部材50の被覆筒部51を外筐11から引き抜く。これによって、接続部材50と手元部10とを簡単に分離でき、ひいては挿入部20と手元部10とを分離できる。接続部材50の弾性変形によってピニオン61とラック62の噛み合いを解除できるから、噛み合い解除機構を別途設ける必要はない。
接続部材50を外筐11から引き抜くのに伴って、連結管23が軸管14から引き抜かれる。したがって、観察手段40が連結管23と軸管14との間において分離される。また、照明手段30については光源31と導光部材33との間において簡単に分離できる。
In the rigid endoscope 2, the used insertion portion 20 and the connection member 50 can be separated from the hand portion 10 and replaced with a new insertion portion 20 and connection member 50 each time it is used.
At the time of detachment, while the connecting member 50 is elastically deformed, the locking convex portion 51e is removed from the locking concave portion 11e, and the engagement between the pinion 61 and the rack 62 is released, and then the covering cylinder portion 51 of the connecting member 50 is removed. Pull out from the outer casing 11. Thereby, the connection member 50 and the hand portion 10 can be easily separated, and consequently, the insertion portion 20 and the hand portion 10 can be separated. Since the engagement between the pinion 61 and the rack 62 can be released by elastic deformation of the connecting member 50, it is not necessary to provide a separate engagement release mechanism.
As the connecting member 50 is pulled out from the outer casing 11, the connecting tube 23 is pulled out from the shaft tube 14. Therefore, the observation means 40 is separated between the connecting tube 23 and the shaft tube 14. Further, the illumination means 30 can be easily separated between the light source 31 and the light guide member 33.

手元部10に新たな挿入部20を装着するときは、この新たな挿入部20の連結管23を軸筒14に嵌め込むとともに、挿入部20と一体の接続部材50の被覆筒部51を外筐11の外周に嵌め込む。このとき、案内溝51fに案内凸条11fを挿入することで、接続部材50ひいては挿入部20と手元部10とを周方向に位置決めできる。また、接続部材50を弾性変形させながら、ピニオン61とラック62とを噛み合わせる。さらに、係止凸部51eを係止凹部11eに嵌めることで、接続部材50ひいては挿入部20と手元部10とを軸方向に位置決めできる。   When attaching the new insertion portion 20 to the hand portion 10, the connecting tube 23 of the new insertion portion 20 is fitted into the shaft tube 14, and the covering cylinder portion 51 of the connecting member 50 integrated with the insertion portion 20 is removed. Fit into the outer periphery of the housing 11. At this time, by inserting the guide protrusion 11f into the guide groove 51f, the connection member 50, and thus the insertion portion 20 and the proximal portion 10 can be positioned in the circumferential direction. Further, the pinion 61 and the rack 62 are engaged with each other while the connecting member 50 is elastically deformed. Furthermore, by fitting the locking projection 51e into the locking recess 11e, the connecting member 50 and thus the insertion portion 20 and the hand portion 10 can be positioned in the axial direction.

続いて、位置調節手段60のピニオン61を回すことによって、挿入部20と軸管14との軸方向の位置を微調節する。これによって、対物レンズ43と結像レンズ45との間のレンズ間距離を焦点距離に合わせて微調節できる。また、位置調節手段60によって観察画像の倍率を調節することも可能である。   Subsequently, the pinion 61 of the position adjusting means 60 is turned to finely adjust the position of the insertion portion 20 and the axial tube 14 in the axial direction. Thereby, the inter-lens distance between the objective lens 43 and the imaging lens 45 can be finely adjusted according to the focal length. It is also possible to adjust the magnification of the observation image by the position adjusting means 60.

内視鏡2によれば、接続部材50が外筐11に弾性的に密着することで、接続部材50自体がシール部材の機能を果たす。したがって、シール構造を複雑化させることなく、手元部10と挿入部20とを着脱自在にできる。よって、Oリング等のシール部材が不要であり、部品点数を減らすことができるだけでなく、シール部材の収容部を形成する必要がなく、構成を簡素にできる。さらには、位置調節手段60の構造も簡易である。したがって、挿入部20を使い捨てにしても費用が嵩むのを確実に回避でき、挿入部20の使い捨て仕様に適した内視鏡2を提供できる。
また、使用の度に新たな挿入部20に交換することで、使用済の挿入部20を洗浄する手間を省くことができる。
According to the endoscope 2, the connection member 50 itself elastically adheres to the outer casing 11, so that the connection member 50 itself functions as a seal member. Therefore, the hand portion 10 and the insertion portion 20 can be detachably attached without complicating the seal structure. Therefore, a sealing member such as an O-ring is not necessary, and not only the number of parts can be reduced, but also a housing for the sealing member need not be formed, and the configuration can be simplified. Furthermore, the structure of the position adjusting means 60 is also simple. Therefore, even if the insertion portion 20 is disposable, it is possible to reliably avoid an increase in cost, and the endoscope 2 suitable for the disposable specification of the insertion portion 20 can be provided.
Moreover, the trouble which wash | cleans the used insertion part 20 can be saved by replacing | exchanging to the new insertion part 20 at every use.

次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の形態と重複する構成に関しては図面に同一符号を付して説明を省略する。
図6は、本発明の第2実施形態を示したものである。第2実施形態の内視鏡2Aでは、照明光学系32が、照明光伝送媒体として透明筒部材36を含む。透明筒部材36は、中心穴36cを有する円筒状になっており、軸線Lに沿って長く延びている。透明筒部材36は、透明な光学樹脂からなり、透光性及び弾性を有している。
Next, another embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the drawings for the same configurations as those already described, and the description thereof is omitted.
FIG. 6 shows a second embodiment of the present invention. In the endoscope 2A of the second embodiment, the illumination optical system 32 includes a transparent cylindrical member 36 as an illumination light transmission medium. The transparent cylinder member 36 has a cylindrical shape having a center hole 36 c and extends long along the axis L. The transparent cylinder member 36 is made of a transparent optical resin and has translucency and elasticity.

この透明筒部材3が、外管21と内管22との間の照明光伝送路34dに装填されている。透明筒部材36の外周面が、外管21の鏡面をなす内周面と接することで、外側反射面36aを構成している。中心穴36cの内周面が、内管22の鏡面をなす外周面と接することで、内側反射面36bを構成している。透明筒部材36の環状の基端面(図6において右端)が、導光部材33の環状の先端面に突き当たるか、又は近接している。透明筒部材36の環状の先端面(図6において左端)が、出射レンズ35に突き当たるか、又は近接している。内管22ひいては像光学系41が、透明筒部材36の中心穴36cを貫通している。   The transparent cylindrical member 3 is loaded in the illumination light transmission path 34d between the outer tube 21 and the inner tube 22. The outer peripheral surface of the transparent cylindrical member 36 is in contact with the inner peripheral surface forming the mirror surface of the outer tube 21 to constitute the outer reflective surface 36a. The inner peripheral surface of the center hole 36c is in contact with the outer peripheral surface forming the mirror surface of the inner tube 22, thereby forming the inner reflective surface 36b. The annular base end surface (right end in FIG. 6) of the transparent cylindrical member 36 abuts on or is close to the annular distal end surface of the light guide member 33. An annular front end surface (left end in FIG. 6) of the transparent cylindrical member 36 abuts on or is close to the emission lens 35. The inner tube 22 and the image optical system 41 pass through the center hole 36 c of the transparent cylinder member 36.

なお、透明筒部材36の外周面又は内周面に蒸着やスパッタリング等によって鏡面膜(図示省略)を被膜することで、この鏡面膜によって反射面36a又は36bを構成することにしてもよい。その場合、外管21の内周面又は内管22の外周面は鏡面でなくてもよい。上記鏡面膜の材質としては、アルミニウムが挙げられるが、本発明はこれに限定されるものではなく、銀等の他の光沢を有する金属を用いてもよい。   In addition, you may decide to comprise the reflective surface 36a or 36b with this mirror surface film | membrane by coating a mirror surface film (illustration omitted) by vapor deposition, sputtering, etc. on the outer peripheral surface or inner peripheral surface of the transparent cylinder member 36. In that case, the inner peripheral surface of the outer tube 21 or the outer peripheral surface of the inner tube 22 may not be a mirror surface. Examples of the material for the mirror film include aluminum, but the present invention is not limited to this, and other glossy metals such as silver may be used.

第2実施形態の硬性内視鏡2Aによれば、透明樹脂からなる筒部材36にて照明光伝送媒体を構成することによって、照明光を導光部材33から出射レンズ35へ確実に伝播させることができ、照明光のロスを低減して、観察対象を確実に照明できる。
また、透明筒部材36に弾性を持たせることによって、挿入部20が多少曲げられても、挿入部20内の照明光伝送媒体の破損が起きないようにすることができる。
According to the rigid endoscope 2A of the second embodiment, the illumination light is reliably propagated from the light guide member 33 to the exit lens 35 by configuring the illumination light transmission medium with the cylindrical member 36 made of transparent resin. It is possible to reduce the loss of illumination light and to reliably illuminate the observation target.
Further, by giving elasticity to the transparent cylindrical member 36, it is possible to prevent the illumination light transmission medium in the insertion portion 20 from being damaged even if the insertion portion 20 is bent slightly.

図7は、本発明の第3実施形態を示したものである。第3実施形態の内視鏡2Bにおいては、照明光学系32が透明筒部材36を含むのに加えて、像光学系41が透明円柱部材46を含む。透明円柱部材46は、軸線Lに沿って真っ直ぐ延びる円断面の線材状になっている。透明円柱部材46は、透明な光学樹脂からなり、透光性及び弾性を有している。この透明円柱部材46が、像光学系41の像光伝送媒体を構成している。   FIG. 7 shows a third embodiment of the present invention. In the endoscope 2 </ b> B of the third embodiment, the image optical system 41 includes a transparent cylindrical member 46 in addition to the illumination optical system 32 including the transparent cylindrical member 36. The transparent cylindrical member 46 has a wire shape with a circular cross section that extends straight along the axis L. The transparent cylindrical member 46 is made of a transparent optical resin and has translucency and elasticity. The transparent cylindrical member 46 constitutes an image light transmission medium of the image optical system 41.

透明円柱部材46は、像光伝送管44の内部の像光伝送路44dに装填されている。透明円柱部材46の外周面が、像光伝送管44の暗色面をなす内周面と接することで、低反射面46bを構成している。透明円柱部材46の先端部(図7において左端部)は、対物レンズ43に突き当たるか、又は近接している。透明円柱部材46の基端部(図7において右端部)は、内管22の基端部とほぼ同じ軸方向の位置に配置され、結像レンズ45と離れて対向している。なお、透明円柱部材46の基端部が、結像レンズ45突き当たるか近接するまで延びていてもよい。   The transparent cylindrical member 46 is loaded in the image light transmission path 44 d inside the image light transmission tube 44. The outer peripheral surface of the transparent cylindrical member 46 is in contact with the inner peripheral surface forming the dark color surface of the image light transmission tube 44, thereby constituting the low reflection surface 46b. The distal end portion (left end portion in FIG. 7) of the transparent cylindrical member 46 abuts on or is close to the objective lens 43. The base end portion (right end portion in FIG. 7) of the transparent cylindrical member 46 is disposed at substantially the same axial position as the base end portion of the inner tube 22, and faces away from the imaging lens 45. Note that the base end portion of the transparent cylindrical member 46 may extend until it comes into contact with or close to the imaging lens 45.

なお、透明円柱部材46の外周面に暗色塗料等によって暗色膜(図示省略)を被膜することで、この暗色膜によって低反射面46bを構成することにしてもよい。その場合、管44の内周面は暗色でなくてもよい。   In addition, the low reflective surface 46b may be comprised with this dark color film | membrane by coating the outer peripheral surface of the transparent cylindrical member 46 with a dark color film (illustration omitted) with a dark color paint etc. In that case, the inner peripheral surface of the tube 44 may not be dark.

第3実施形態の硬性内視鏡2Bによれば、透明樹脂からなる円柱材46にて像光伝送媒体を構成することによって、像光を対物レンズ43から結像レンズ45へ確実に伝播させることができる。
また、透明筒部材36及び透明円柱部材46に弾性を持たせることによって、挿入部20が多少曲げられても、挿入部20内の照明光伝送媒体及び像光伝送媒体の破損が起きないようにすることができる。
According to the rigid endoscope 2B of the third embodiment, the image light is reliably propagated from the objective lens 43 to the imaging lens 45 by configuring the image light transmission medium with the cylindrical material 46 made of transparent resin. Can do.
Further, by giving elasticity to the transparent cylindrical member 36 and the transparent cylindrical member 46, the illumination light transmission medium and the image light transmission medium in the insertion portion 20 are not damaged even if the insertion portion 20 is bent slightly. can do.

本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内において種々の改変をなすことができる。
例えば、照明光伝送路34dにおける照明光伝送媒体を水等の液体にて構成してもよく、像光伝送路44dにおける像光伝送媒体を水等の液体にて構成してもよい。
第3実施形態において、透明筒部材36を省略することによって、第1実施形態と同様に照明光伝送路を空洞にし、照明光伝送媒体として空気(気体)を用いてもよい。
第3実施形態において、内管22を省略してもよい。その場合は、透明筒部材36の中心穴36cの内周面に鏡面膜を被膜し、透明円柱部材46の外周面に暗色膜を被膜することが好ましい。透明筒部材36の内周側の部分又は透明円柱部材46の外周側の部分が内管を兼ねていてもよい。
円錐凹部52aの内周面に鏡面膜を設けることで、外側の反射面33aを構成してもよい。また、導光部材33の中心孔33cの内周面に鏡面膜を設けることで、内側の反射面33bを構成してもよい。導光部材33を省略して、円錐凹部52a内を空洞とし、該円錐凹部52a内の空気(気体)を照明光伝送媒体としてもよい。この場合、円錐凹部52aの内周面に鏡面膜等の反射膜を被膜することが好ましい。
接続部材50の着脱部51が、挿入部10の基端部の周面に弾性的に、かつ分離可能に密着され、接合部52が手元部10に一体に接合されていてもよい。
外管21又は内管22が硬質樹脂にて構成されていてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the illumination light transmission medium in the illumination light transmission path 34d may be configured with a liquid such as water, and the image light transmission medium in the image light transmission path 44d may be configured with a liquid such as water.
In the third embodiment, by omitting the transparent cylindrical member 36, the illumination light transmission path may be made hollow as in the first embodiment, and air (gas) may be used as the illumination light transmission medium.
In the third embodiment, the inner tube 22 may be omitted. In that case, it is preferable to coat a mirror film on the inner peripheral surface of the center hole 36 c of the transparent cylindrical member 36 and coat a dark color film on the outer peripheral surface of the transparent cylindrical member 46. A portion on the inner peripheral side of the transparent cylindrical member 36 or a portion on the outer peripheral side of the transparent cylindrical member 46 may also serve as the inner tube.
The outer reflective surface 33a may be configured by providing a mirror film on the inner peripheral surface of the conical recess 52a. Further, the inner reflection surface 33b may be configured by providing a mirror film on the inner peripheral surface of the center hole 33c of the light guide member 33. The light guide member 33 may be omitted, the inside of the conical recess 52a may be a cavity, and the air (gas) in the conical recess 52a may be used as the illumination light transmission medium. In this case, it is preferable to coat a reflection film such as a mirror film on the inner peripheral surface of the conical recess 52a.
The attaching / detaching portion 51 of the connecting member 50 may be elastically and separably attached to the peripheral surface of the proximal end portion of the insertion portion 10, and the joining portion 52 may be integrally joined to the hand portion 10.
The outer tube 21 or the inner tube 22 may be made of a hard resin.

本発明は、例えば医療用の内視鏡に適用可能である。   The present invention is applicable to, for example, a medical endoscope.

L 軸線
2,2A,2B 硬性内視鏡
10 手元部
20 挿入部
21 外管
22 内管
31 光源
32 照明光学系
34a 外側反射面
34b 内側反射面
34e 環状の空洞
36 透明筒部材(照明光伝送媒体)
36a 外側反射面
36b 内側反射面
36c 中心穴
41 像光学系
43 対物レンズ(対物素子)
44 像光伝送管(像光伝送部材)
44b 低反射面
44e 空洞
45 結像レンズ(結像素子)
46 透明円柱部材(像光伝送媒体)
46b 低反射面
L axis 2, 2A, 2B rigid endoscope 10 proximal portion 20 insertion portion 21 outer tube 22 inner tube 31 light source 32 illumination optical system 34a outer reflection surface 34b inner reflection surface 34e annular cavity 36 transparent cylindrical member (illumination light transmission medium )
36a Outer reflecting surface 36b Inner reflecting surface 36c Center hole 41 Image optical system 43 Objective lens (objective element)
44 Image light transmission tube (image light transmission member)
44b Low reflection surface 44e Cavity 45 Imaging lens (imaging element)
46 Transparent cylindrical member (image light transmission medium)
46b Low reflective surface

Claims (8)

手元部と、この手元部から軸線に沿って直線状に延びる挿入部と、光源からの照明光を観察対象へ伝送する照明光学系と、前記観察対象の像光を伝送する像光学系とを備えた硬性内視鏡であって、
前記像光学系が、前記挿入部の先端に設けられた対物素子と、前記手元部に設けられた結像素子と、前記対物素子と前記結像素子とを連絡するようにして前記軸線に沿って延びる筒状の低反射面とを含み、前記低反射面の内側には、気体、液体、透光性の樹脂の何れかからなる像光伝送媒体が設けられており、
前記照明光学系が、前記低反射面を囲むようにして前記軸線に沿って延びる筒状の内側反射面と、前記内側反射面を囲むようにして前記軸線に沿って延びる筒状の外側反射面と含み、前記内側反射面と前記外側反射面との間には、気体、液体、透光性の樹脂の何れかからなる照明光伝送媒体が設けられていることを特徴とする硬性内視鏡。
A hand portion, an insertion portion extending linearly along the axis from the hand portion, an illumination optical system that transmits illumination light from a light source to an observation target, and an image optical system that transmits image light of the observation target A rigid endoscope comprising:
The image optical system extends along the axis so as to communicate the objective element provided at the distal end of the insertion portion, the imaging element provided at the hand portion, and the objective element and the imaging element. An image light transmission medium made of any one of gas, liquid, and translucent resin is provided inside the low reflection surface.
The illumination optical system includes a cylindrical inner reflection surface extending along the axis so as to surround the low reflection surface, and a cylindrical outer reflection surface extending along the axis so as to surround the inner reflection surface, A rigid endoscope, wherein an illumination light transmission medium made of any of gas, liquid, and translucent resin is provided between an inner reflection surface and the outer reflection surface.
前記挿入部が、前記軸線に沿って延びる金属製の外管と、前記外管に収容されるとともに前記軸線に沿って延びる金属製の内管とを含み、前記外管と前記内管との間に前記照明光伝送媒体が収容され、前記内管の内部に前記像光伝送媒体が収容されていることを特徴とする請求項1に記載の硬性内視鏡。   The insertion portion includes a metal outer tube extending along the axis, and a metal inner tube housed in the outer tube and extending along the axis, and the outer tube and the inner tube The rigid endoscope according to claim 1, wherein the illumination light transmission medium is accommodated therebetween, and the image light transmission medium is accommodated inside the inner tube. 前記外管の内面が前記外側反射面を構成し、前記内管の外面が前記内側反射面を構成し、前記外管と前記内管との間が環状の空洞となり、この環状の空洞に前記照明光伝送媒体として気体又は液体が収容されていることを特徴とする請求項2に記載の硬性内視鏡。   The inner surface of the outer tube constitutes the outer reflecting surface, the outer surface of the inner tube constitutes the inner reflecting surface, and an annular cavity is formed between the outer tube and the inner tube. The rigid endoscope according to claim 2, wherein gas or liquid is accommodated as the illumination light transmission medium. 前記内管の内面が前記低反射面を構成し、前記内管の内部が空洞となり、この空洞に前記像光伝送媒体として気体又は液体が収容されていることを特徴とする請求項2又は3に記載の硬性内視鏡。   The inner surface of the inner tube constitutes the low reflection surface, and the interior of the inner tube becomes a cavity, and gas or liquid is accommodated in the cavity as the image light transmission medium. The rigid endoscope according to 1. 前記照明光学系が、中心穴を有して前記軸線に沿って延びる透光性の樹脂からなる透明筒部材を含み、前記透明筒部材の外周面が前記外側反射面を構成し、前記中心穴の内周面が前記内側反射面を構成し、前記前記像光学系が、前記中心穴を貫通していることを特徴とする請求項1又は2に記載の硬性内視鏡。   The illumination optical system includes a transparent cylindrical member made of a translucent resin having a central hole and extending along the axis, and an outer peripheral surface of the transparent cylindrical member constitutes the outer reflective surface, and the central hole 3. The rigid endoscope according to claim 1, wherein an inner peripheral surface of the first optical axis constitutes the inner reflection surface, and the image optical system passes through the center hole. 前記像光学系が、前記軸線に沿って延びる透光性の樹脂からなる透明円柱部材を含み、前記透明円柱部材の外周面が前記低反射面を構成していることを特徴とする請求項1、2、又は5に記載の硬性内視鏡。   2. The image optical system includes a transparent cylindrical member made of a translucent resin extending along the axis, and an outer peripheral surface of the transparent cylindrical member constitutes the low reflection surface. The rigid endoscope according to 2, or 5. 前記内側反射面及び外側反射面の前記照明光に対する反射率が、前記低反射面の前記像光に対する反射率よりも高く、かつ前記内側反射面及び外側反射面の前記照明光に対する吸収率が、前記低反射面の前記像光に対する吸収率よりも低いことを特徴とする請求項1〜6の何れか1項に記載の硬性内視鏡。   The reflectance of the inner reflective surface and the outer reflective surface with respect to the illumination light is higher than the reflectance of the low reflective surface with respect to the image light, and the absorptivity of the inner reflective surface and the outer reflective surface with respect to the illumination light is as follows: The rigid endoscope according to any one of claims 1 to 6, wherein an absorptance with respect to the image light of the low reflection surface is lower. 前記外側反射面及び前記内側反射面が鏡面であり、前記低反射面が暗色面であることを特徴とする請求項1〜7の何れか1項に記載の硬性内視鏡。   The rigid endoscope according to any one of claims 1 to 7, wherein the outer reflection surface and the inner reflection surface are mirror surfaces, and the low reflection surface is a dark color surface.
JP2013207261A 2013-10-02 2013-10-02 Rigid endoscope Pending JP2016202192A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013207261A JP2016202192A (en) 2013-10-02 2013-10-02 Rigid endoscope
PCT/JP2014/076020 WO2015050100A1 (en) 2013-10-02 2014-09-30 Rigid endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207261A JP2016202192A (en) 2013-10-02 2013-10-02 Rigid endoscope

Publications (1)

Publication Number Publication Date
JP2016202192A true JP2016202192A (en) 2016-12-08

Family

ID=52778689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207261A Pending JP2016202192A (en) 2013-10-02 2013-10-02 Rigid endoscope

Country Status (2)

Country Link
JP (1) JP2016202192A (en)
WO (1) WO2015050100A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088113B1 (en) * 2017-12-26 2018-10-02 Industrial Technology Research Institute Illumination apparatus
JP2019092911A (en) * 2017-11-24 2019-06-20 ファイバーテック株式会社 Lacrimal duct endoscope

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3480442A1 (en) * 2017-11-02 2019-05-08 Siemens Aktiengesellschaft Optical apparatus
DE102019100144A1 (en) * 2019-01-04 2020-07-09 Olympus Winter & Ibe Gmbh Endoscope and position securing element
JP2020130187A (en) * 2019-02-12 2020-08-31 富士フイルム株式会社 Illumination optical device and endoscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423312A (en) * 1992-12-18 1995-06-13 Schott Fiber Optics, Inc. Rigid endoscope having modified high refractive index tunnel rod for image transmission and method of manufacture thereof
JPH10258023A (en) * 1997-03-21 1998-09-29 Matsushita Electric Ind Co Ltd Optical adaptor for video scope
US6332092B1 (en) * 1998-07-08 2001-12-18 Lifespex, Incorporated Optical probe having and methods for uniform light irradiation and/or light collection over a volume
ATE449560T1 (en) * 1999-09-13 2009-12-15 Visionscope Technologies Llc MINIATURE ENDOSCOPE ARRANGEMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019092911A (en) * 2017-11-24 2019-06-20 ファイバーテック株式会社 Lacrimal duct endoscope
US10088113B1 (en) * 2017-12-26 2018-10-02 Industrial Technology Research Institute Illumination apparatus

Also Published As

Publication number Publication date
WO2015050100A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JPH0355943Y2 (en)
WO2015050100A1 (en) Rigid endoscope
EP2415386B1 (en) Endoscope with improved light distribution of illumination
US8035902B2 (en) Optical unit for probe and optical unit producing method
GB2030313A (en) Endoscopes
US8366611B2 (en) Endoscope with sealing ring
US8531513B2 (en) Assembly method for endoscope image pickup unit and endoscope
JP4272783B2 (en) Objective optical system and endoscope objective optical system
JPH10170794A (en) Lens device of endoscope
WO2014068958A1 (en) Endoscope and insertion part for endoscope
JP6370301B2 (en) Endoscope
JP2014087483A (en) Endoscope
WO2015050101A1 (en) Endoscope
JP4083484B2 (en) The tip of an anti-contamination endoscope
KR20190106355A (en) Imaging probe and medical endoscope
WO2013132744A1 (en) Fiberscope for intravital observation
JP2014191222A (en) Endoscope lens unit and endoscope having the same
EP1662967A1 (en) Endoscope
JPH0627393A (en) Observation device
CN209821495U (en) Endoscope and objective lens device
JPS60165614A (en) Assembling method of hard endoscope
JP6671967B2 (en) Endoscope
JP3591180B2 (en) Endoscope lens device
JPS58184921A (en) Cover glass attaching device of endoscope
JPH0216327Y2 (en)