JP2016191143A - Lithium extraction method - Google Patents

Lithium extraction method Download PDF

Info

Publication number
JP2016191143A
JP2016191143A JP2016040140A JP2016040140A JP2016191143A JP 2016191143 A JP2016191143 A JP 2016191143A JP 2016040140 A JP2016040140 A JP 2016040140A JP 2016040140 A JP2016040140 A JP 2016040140A JP 2016191143 A JP2016191143 A JP 2016191143A
Authority
JP
Japan
Prior art keywords
lithium
alkali metal
aqueous solution
extraction method
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016040140A
Other languages
Japanese (ja)
Other versions
JP6644314B2 (en
Inventor
和彦 常世田
Kazuhiko Tsuneyoda
和彦 常世田
哲也 石本
Tetsuya Ishimoto
哲也 石本
笹井 亮
Akira Sasai
亮 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Shimane University
Original Assignee
Taiheiyo Cement Corp
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Shimane University filed Critical Taiheiyo Cement Corp
Publication of JP2016191143A publication Critical patent/JP2016191143A/en
Application granted granted Critical
Publication of JP6644314B2 publication Critical patent/JP6644314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium extraction method which can efficiently extract lithium in a lithium ion battery with a simple operation.SOLUTION: A lithium extraction method comprises a calcining step of calcining a lithium ion battery to obtain a calcined product, a crushing step of crushing the calcined product to obtain a crushed product, a sieving step of sieving the crushed product to obtain granules of a predetermined diameter, and a hydrothermal treatment step of heating an alkali metal salt aqueous solution having a specified quantity of granules added thereto.SELECTED DRAWING: None

Description

本発明は、リチウム抽出方法に関する。   The present invention relates to a lithium extraction method.

近年、携帯電話、家庭用電気製品、自動車等の産業分野でリチウムイオン電池の需要が増大している。また、リチウムイオン電池の正極材料として、リン酸鉄を使用するリチウムイオン電池が開発されている。   In recent years, demand for lithium ion batteries has been increasing in industrial fields such as mobile phones, household electrical appliances, and automobiles. In addition, lithium ion batteries using iron phosphate have been developed as positive electrode materials for lithium ion batteries.

リチウムは高価な有価金属であり、不良品又は使用後のリン酸鉄を含有するリチウムイオン電池からリチウムを回収するために、リチウムイオン電池を400℃以下の温度で予備焙焼して得られた粉状品を400℃以上の温度で酸化焙焼し、その後、400〜750℃の温度で還元焙焼して還元焙焼品を生成し、アルカリ土類金属の水酸化物を懸濁させた水溶液に還元焙焼品を浸漬させて還元焙焼品中のリチウムを水に溶出させ、リチウムを回収する方法が提案されている(特許文献1)。   Lithium is an expensive valuable metal, and was obtained by pre-roasting a lithium ion battery at a temperature of 400 ° C. or lower in order to recover lithium from a defective product or a lithium ion battery containing iron phosphate after use. The powdered product was oxidized and roasted at a temperature of 400 ° C. or higher, and then reduced and roasted at a temperature of 400 to 750 ° C. to produce a reduced roasted product, in which the alkaline earth metal hydroxide was suspended. A method has been proposed in which a reduced roasted product is immersed in an aqueous solution, lithium in the reduced roasted product is eluted in water, and lithium is recovered (Patent Document 1).

また、コバルト酸リチウム(LiCoO)をアルミ箔に塗布した正極材料に対して水のみを用いた水熱処理によってリチウムを抽出する方法が提案されている(非特許文献1)。 In addition, a method for extracting lithium by hydrothermal treatment using only water for a positive electrode material in which lithium cobaltate (LiCoO 2 ) is applied to an aluminum foil has been proposed (Non-patent Document 1).

特開2012−229481号公報JP 2012-229481 A

Waste Management and the Environment III,92,3−12(2006)Waste Management and the Environment III, 92, 3-12 (2006)

特許文献1に記載されたリチウムを回収する方法では、リチウムイオン電池に含まれるコバルト、ニッケル、マンガン、リチウム等の有価金属を分別して回収するため、複数回の焙焼処理と、アルカリ土類金属の水酸化物を懸濁させた水溶液に還元焙焼品を浸漬させる。   In the method of recovering lithium described in Patent Literature 1, valuable metals such as cobalt, nickel, manganese, and lithium contained in the lithium ion battery are separated and recovered, so that multiple roasting treatments and alkaline earth metals are performed. The reduced roasted product is soaked in an aqueous solution in which the hydroxide is suspended.

しかしながら、特許文献1に記載された方法では、浸漬後の水溶液中に還元焙焼品から溶出したリチウムの濃度が低く、リチウム濃度を高める必要性が生じる。そのため、回収方法が複雑化し、回収するための時間が長くなり、回収コストの上昇を招くおそれがある。   However, in the method described in Patent Document 1, the concentration of lithium eluted from the reduced roasted product in the aqueous solution after immersion is low, and there is a need to increase the lithium concentration. Therefore, the collection method becomes complicated, and the time for collection becomes long, which may increase the collection cost.

また、非特許文献1に記載されたリチウムの抽出方法では、廃棄されるリチウムイオン電池には種々の正極材料が混在するため、水熱処理における水溶液中の性状が変化することによりリチウムの抽出率が低下するおそれがある。そのため、各種正極材料、負極材料、電解質等の構成材料が混在したリチウムイオン電池からリチウムを抽出できるリチウム抽出技術の確立が必要である。   Further, in the lithium extraction method described in Non-Patent Document 1, since various positive electrode materials are mixed in the discarded lithium ion battery, the lithium extraction rate is increased by changing the properties in the aqueous solution in the hydrothermal treatment. May decrease. Therefore, it is necessary to establish a lithium extraction technique capable of extracting lithium from a lithium ion battery in which constituent materials such as various positive electrode materials, negative electrode materials, and electrolytes are mixed.

そこで、本発明は、リンを含有するリチウムイオン電池であっても、リチウムイオン電池中のリチウムを効率的に抽出できるリチウム抽出方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a lithium extraction method capable of efficiently extracting lithium in a lithium ion battery even in a lithium ion battery containing phosphorus.

本発明は、以下の[1]〜[5]のリチウム抽出方法を提供する。
[1]リチウムイオン電池を焙焼してリンを含有する焙焼物を得る焙焼工程と、前記焙焼物を破砕して破砕物を得る破砕工程と、前記破砕物を篩分けして、所定の粒径の粉粒体を得る篩分け工程と、所定量の粉粒体を添加したアルカリ金属塩水溶液を加熱する水熱処理工程とを備えるリチウム抽出方法。
[2][1]記載のリチウム抽出方法であって、前記アルカリ金属塩水溶液中のアルカリ金属塩は、ナトリウム塩又はカリウム塩であるリチウム抽出方法。
[3][1]又は[2]記載のリチウム抽出方法であって、前記アルカリ金属塩水溶液におけるアルカリ金属のリチウムに対するモル比が0.05〜1.0になるように調製するリチウム抽出方法。
[4][1]〜[3]のいずれかに記載のリチウム抽出方法であって、前記水熱処理工程は、150[℃]〜200[℃]の範囲の温度で、前記アルカリ金属塩水溶液を水熱処理するリチウム抽出方法。
The present invention provides the following lithium extraction methods [1] to [5].
[1] A roasting step of roasting a lithium ion battery to obtain a roasted product containing phosphorus, a crushing step of crushing the roasted product to obtain a crushed product, sieving the crushed product, A lithium extraction method comprising a sieving step for obtaining a granular material having a particle size and a hydrothermal treatment step for heating an aqueous alkali metal salt solution to which a predetermined amount of the granular material is added.
[2] The lithium extraction method according to [1], wherein the alkali metal salt in the alkali metal salt aqueous solution is a sodium salt or a potassium salt.
[3] A lithium extraction method according to [1] or [2], wherein the molar ratio of alkali metal to lithium in the alkali metal salt aqueous solution is 0.05 to 1.0.
[4] The lithium extraction method according to any one of [1] to [3], wherein the hydrothermal treatment step is performed at a temperature in a range of 150 [° C.] to 200 [° C.] with the alkali metal salt aqueous solution. Lithium extraction method using hydrothermal treatment.

本発明のリチウム抽出方法によれば、リチウムイオン電池を焙焼して得られた粉粒体を分散させたアルカリ金属塩水溶液中で水熱処理することにより、簡易な操作で、リチウムイオン電池中のリチウムを効率的に抽出できる。   According to the lithium extraction method of the present invention, hydrothermal treatment is performed in an alkali metal salt aqueous solution in which particles obtained by roasting a lithium ion battery are dispersed. Lithium can be extracted efficiently.

発明者等は、上述の課題を解決するため、リンを含有するリチウムイオン電池中のリチウムを効率的に抽出する方法について種々の検討を行った結果、リチウムイオン電池の焙焼物から得られたリンを含有する粉粒体を添加した所定のアルカリ金属塩水溶液を水熱処理することにより、リチウムの抽出率を向上させることができることを見出し、本発明をするに至った。   In order to solve the above-mentioned problems, the inventors have conducted various studies on methods for efficiently extracting lithium in a lithium ion battery containing phosphorus. As a result, phosphorus obtained from a roasted lithium ion battery has been obtained. It has been found that the extraction rate of lithium can be improved by hydrothermally treating a predetermined aqueous solution of alkali metal salt to which a granular material containing bismuth has been added, leading to the present invention.

すなわち、本発明は、リチウムイオン電池を焙焼して焙焼物を得る焙焼工程と、前記焙焼物を破砕して破砕物を得る破砕工程と、前記破砕物を篩分けして、所定の粒径の粉粒体を得る篩分け工程と、所定量の粉粒体を添加したアルカリ金属塩水溶液を加熱処理する水熱処理工程とを備えることを特徴とするリチウム抽出方法、を提供するものである。   That is, the present invention includes a roasting step of roasting a lithium ion battery to obtain a roasted product, a crushing step of crushing the roasted product to obtain a crushed product, and sieving the crushed product to obtain predetermined particles. The present invention provides a lithium extraction method comprising a sieving step for obtaining a granular material having a diameter, and a hydrothermal treatment step for heat-treating an aqueous alkali metal salt solution to which a predetermined amount of the granular material is added. .

以下、本発明の実施形態として、製造工程から排出される不良品、使用済のリチウムイオン電池等の廃棄されるリチウムイオン電池からリチウムを抽出するリチウム抽出方法について説明する。   Hereinafter, as an embodiment of the present invention, a lithium extraction method for extracting lithium from a defective lithium ion battery discharged from a manufacturing process, a used lithium ion battery or the like will be described.

[焙焼工程]
本実施形態のリチウム抽出方法では、まず、リチウムイオン電池を焙焼して焙焼物を得る(焙焼工程)。リチウムイオン電池中の電解液、ポリフッ化ビニリデン等の正極材料及び負極材料中のバインダー等、比較的低温度で熱分解する有機物質をガス化燃焼し、系外に除去するためである。
[Roasting process]
In the lithium extraction method of this embodiment, first, a lithium ion battery is roasted to obtain a roasted product (roasting step). This is because organic substances that thermally decompose at a relatively low temperature, such as an electrolyte in a lithium ion battery, a positive electrode material such as polyvinylidene fluoride and a binder in a negative electrode material, are gasified and burned and removed from the system.

リチウムイオン電池を焙焼して得られた焙焼物は、リチウムイオン電池の正極材料のLiFePO、LiMnPO等のオリビン型化合物、電解質に添加されるLiFP等に含まれているリンを含有する焙焼物である。
リチウムイオン電池の正極材料は、オリビン型化合物以外に、リンを含まないLiCoO、LiNiO等の層状岩塩型化合物、LiMn、Li[Ni0.5Mn0.5]O等のスピネル型化合物等などもあるが、焙焼し得られた粉粒体中にリンが含まれていればよい。
The roasted product obtained by roasting the lithium ion battery contains phosphorus contained in olivine type compounds such as LiFePO 4 and LiMnPO 4 as positive electrode materials of the lithium ion battery, LiFP 6 added to the electrolyte, and the like. It is a roasted product.
In addition to the olivine type compound, the positive electrode material of the lithium ion battery includes layered rock salt type compounds such as LiCoO 2 and LiNiO 2 that do not contain phosphorus, LiMn 2 O 4 , Li [Ni 0.5 Mn 0.5 ] O 4, etc. There are spinel compounds and the like, but it is sufficient that phosphorus is contained in the powder obtained by baking.

焙焼温度は、400[℃]〜700[℃]の範囲の温度であることが好ましい。焙焼温度が400[℃]未満の場合、リチウムイオン電池中の電解液等に含まれる有機物質の熱分解、そして系外除去が不十分となり、焙焼工程により得られる焙焼物である焙焼灰が塊状に形成される。そのため、後工程の篩分け工程において、所望の粒径の粉粒体を得ることが困難になる場合があり、リチウムの抽出率を低下させる可能性がある。   The roasting temperature is preferably in the range of 400 [° C.] to 700 [° C.]. When the roasting temperature is less than 400 [° C.], the pyrolysis of the organic material contained in the electrolyte solution in the lithium ion battery and the removal outside the system become insufficient, and the roasted product is obtained by the roasting process. Ash is formed in a lump. Therefore, in the subsequent sieving step, it may be difficult to obtain a granular material having a desired particle size, which may reduce the lithium extraction rate.

また、焙焼温度が700[℃]を超える場合、リチウムイオン電池中のアルミ箔及び銅箔が溶融するため、正極材料を含む焙焼物である焙焼灰が塊状に形成される。そのため、篩分け工程において、所望の粒径の粉粒体を得ることが困難になる場合があり、リチウムの抽出率を低下させる可能性がある。   Further, when the roasting temperature exceeds 700 [° C.], the aluminum foil and the copper foil in the lithium ion battery are melted, so that the roasted ash that is a roasted product including the positive electrode material is formed in a lump. Therefore, in the sieving step, it may be difficult to obtain a granular material having a desired particle size, which may reduce the extraction rate of lithium.

リチウムイオン電池が焙焼される焙焼炉として、電気炉、トンネル炉、ロータリーキルン等の炉が挙げられる。尚、焙焼工程で使用される炉の雰囲気として、大気雰囲気、並びに、CO、H等の還元ガス種を含む還元雰囲気、N、Ar等の不活性ガスからなる不活性雰囲気、及び真空雰囲気を含む非酸化雰囲気が挙げられる。リチウムイオン電池の筐体が樹脂製の場合、樹脂の着火による熱上昇を抑えるために、還元雰囲気又は不活性雰囲気が好ましい。 Examples of the roasting furnace in which the lithium ion battery is roasted include furnaces such as an electric furnace, a tunnel furnace, and a rotary kiln. The furnace atmosphere used in the roasting process includes an air atmosphere, a reducing atmosphere containing a reducing gas species such as CO and H 2 , an inert atmosphere composed of an inert gas such as N 2 and Ar, and a vacuum. A non-oxidizing atmosphere including an atmosphere is mentioned. When the casing of the lithium ion battery is made of resin, a reducing atmosphere or an inert atmosphere is preferable in order to suppress an increase in heat due to resin ignition.

[破砕工程]
次に、焙焼工程により得られた焙焼物を破砕して破砕物を得る(破砕工程)。リチウムイオン電池を構成する正極材料と、金属製容器と、金属製部品又は樹脂製部品と、アルミ箔、銅箔等の塊状物等とを破砕し、後工程の篩分け工程で所定の粒径の粉粒体を分級するためである。破砕工程の「破砕」の意味は、焙焼物を破砕することだけでなく、焙焼物を解体することも含む。尚、リチウムイオン電池を破砕した後に焙焼するために、焙焼工程の前工程として破砕工程を備えてもよい。
[Crushing process]
Next, the roasted product obtained by the roasting step is crushed to obtain a crushed product (crushing step). Crushing the positive electrode material, the metal container, the metal part or the resin part, and the lump such as aluminum foil and copper foil, etc. constituting the lithium ion battery, and the predetermined particle size in the subsequent sieving step It is for classifying the granular material. The meaning of “crushing” in the crushing process includes not only crushing the roasted product but also dismantling the roasted product. In addition, in order to bake after crushing a lithium ion battery, you may provide a crushing process as a pre-process of a roasting process.

本実施形態の破砕工程の破砕は、破砕機を含む破砕設備を用いて行われるが、せん断力、衝突、圧縮等による公知の方法を用いてもよい。   Although the crushing of the crushing process of this embodiment is performed using the crushing equipment containing a crusher, you may use the well-known method by a shear force, a collision, compression, etc.

[篩分け工程]
次に、破砕工程により得られた破砕物を篩分けして、所定の粒径の粉粒体を得る(篩分け工程)。具体的には、振動篩、回転篩等の篩を用いて、金属製部品、銅、アルミニウム、鉄、燃え残った樹脂等を含む塊状物と、正極材料等に含有されるリチウム、カーボン等を含む焙焼灰の粉粒体とを分別する。
[Sieving process]
Next, the crushed material obtained in the crushing step is sieved to obtain a granular material having a predetermined particle size (sieving step). Specifically, using a sieve such as a vibration sieve or a rotary sieve, metal parts, a lump containing copper, aluminum, iron, unburned resin, etc., lithium contained in the positive electrode material, carbon, etc. It separates from the granular material of the roasted ash containing.

篩分け工程により得られる粉粒体の粒径は、1.0[mm]以下が好ましい。粉粒体の粒径が1.0[mm]を超える場合、後工程の水熱処理工程においてリチウムが溶出し難くなるからである。   The particle size of the powder obtained by the sieving step is preferably 1.0 [mm] or less. This is because when the particle size of the powder particles exceeds 1.0 [mm], lithium is difficult to elute in the subsequent hydrothermal treatment step.

尚、粉粒体以外の篩分け工程により得られた塊状物は、比重選別、磁力選別等の公知の分別操作により、銅、アルミニウム、鉄等を回収することができる。   In addition, the lump obtained by the sieving process other than the granular material can recover copper, aluminum, iron or the like by a known sorting operation such as specific gravity sorting or magnetic force sorting.

[水熱処理工程]
次に、所定量の粉粒体を添加したアルカリ金属塩水溶液を圧力容器に投入し混合した後、当該アルカリ金属塩水溶液が亜臨界状態になるように加熱して、水熱処理する(水熱処理工程)。篩分け工程により得られた粉粒体(焙焼灰)からリチウムを水溶液中に溶出させるためである。尚、本実施形態における水熱処理とは、所定量の粉粒体を添加したアルカリ金属塩水溶液を密閉状態の圧力容器内で加熱することをいう。
[Hydrothermal treatment process]
Next, an alkali metal salt aqueous solution to which a predetermined amount of powder is added is put into a pressure vessel and mixed, and then heated so that the alkali metal salt aqueous solution is in a subcritical state and subjected to hydrothermal treatment (hydrothermal treatment step). ). This is because lithium is eluted into the aqueous solution from the granular material (roasted ash) obtained by the sieving step. In addition, the hydrothermal treatment in this embodiment means heating the aqueous alkali metal salt solution to which a predetermined amount of powder is added in a sealed pressure vessel.

アルカリ金属塩水溶液は、アルカリ金属塩を水に溶解した溶液に、所定量の粉粒体を添加して調製される。尚、粉粒体、水及びアルカリ金属塩を混合する方法として、水に粉粒体とアルカリ金属塩を添加して混合する方法、所定濃度に調製されたアルカリ金属塩水溶液に粉粒体を添加して混合する方法等が挙げられる。   The aqueous alkali metal salt solution is prepared by adding a predetermined amount of powder particles to a solution obtained by dissolving an alkali metal salt in water. In addition, as a method of mixing powder, water and alkali metal salt, a method of adding powder and alkali metal salt to water and mixing, and adding powder to an aqueous alkali metal salt solution prepared to a predetermined concentration And a method of mixing them.

尚、アルカリ金属塩は、アルカリ金属水酸化物、アルカリ金属塩化物、アルカリ金属硝酸塩、アルカリ金属硫酸塩、アルカリ金属酢酸塩等である。アルカリ金属塩の中でも、ナトリウム塩又はカリウム塩が好ましい。   The alkali metal salt is an alkali metal hydroxide, alkali metal chloride, alkali metal nitrate, alkali metal sulfate, alkali metal acetate, or the like. Among the alkali metal salts, sodium salt or potassium salt is preferable.

アルカリ金属水酸化物として、水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ金属塩化物として、塩化ナトリウム、塩化カリウム等が挙げられる。アルカリ金属硝酸塩として、硝酸ナトリウム、硝酸カリウム等が挙げられる。アルカリ金属硫酸塩として、硫酸ナトリウム、硫酸カリウム等が挙げられる。アルカリ金属酢酸塩として、酢酸ナトリウム、酢酸カリウム等が挙げられる。   Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Examples of the alkali metal chloride include sodium chloride and potassium chloride. Examples of the alkali metal nitrate include sodium nitrate and potassium nitrate. Examples of the alkali metal sulfate include sodium sulfate and potassium sulfate. Examples of the alkali metal acetate include sodium acetate and potassium acetate.

アルカリ金属塩として、例えばナトリウム塩、カリウム塩を添加することで、溶出したリン酸とナトリウム、カリウムが反応し、溶解度の高いリン酸ナトリウム、リン酸カリウムを生成させて、リチウムとリン酸の反応により生成する溶解度の小さいリン酸リチウムの析出を抑制することで、溶液中にリンを溶解させた状態で維持し、抽出率を高くすることができる。   As an alkali metal salt, for example, by adding sodium salt or potassium salt, the eluted phosphoric acid reacts with sodium or potassium to produce highly soluble sodium phosphate or potassium phosphate, and the reaction between lithium and phosphoric acid. By suppressing the precipitation of lithium phosphate having a low solubility produced by the above, it is possible to maintain the state in which phosphorus is dissolved in the solution and to increase the extraction rate.

水熱処理工程は、150[℃]〜200[℃]の範囲の温度で行われることが好ましい。水熱処理工程の温度が150[℃]未満の場合、水溶液中に溶解するリチウム量が低下し、リチウムの抽出率が低下する。一方、水熱処理工程の温度が200[℃]を超える場合、例えば、加熱用の熱媒体の蒸気圧が高くなり、高価な圧力容器を使用する必要性が生じ、リチウムの抽出コストの上昇の原因になる。   The hydrothermal treatment step is preferably performed at a temperature in the range of 150 [° C.] to 200 [° C.]. When the temperature of the hydrothermal treatment step is lower than 150 [° C.], the amount of lithium dissolved in the aqueous solution is lowered, and the extraction rate of lithium is lowered. On the other hand, when the temperature of the hydrothermal treatment process exceeds 200 [° C.], for example, the vapor pressure of the heat medium for heating becomes high, and it becomes necessary to use an expensive pressure vessel, which causes an increase in the extraction cost of lithium. become.

水熱処理工程の処理時間は、6[時間]〜48[時間]が好ましい。処理時間が6[時間]未満の場合、粉粒体からリチウムが十分に溶出できず、水熱処理工程後のアルカリ金属塩水溶液中のリチウム濃度が低くなる。この結果、リチウムの抽出率が低下する。一方、処理時間を長くすることにより水溶液中へのリチウムの溶出量を増加させることができるが、処理時間が48[時間]を超える場合、水溶液中に溶出したリチウムの濃度が飽和濃度に到達するため、リチウムの抽出コストの観点から好ましくない。   The treatment time of the hydrothermal treatment step is preferably 6 [hour] to 48 [hour]. When the treatment time is less than 6 [hours], lithium cannot be sufficiently eluted from the powder and the concentration of lithium in the aqueous alkali metal salt solution after the hydrothermal treatment step becomes low. As a result, the extraction rate of lithium decreases. On the other hand, the amount of lithium eluted into the aqueous solution can be increased by lengthening the treatment time. However, when the treatment time exceeds 48 hours, the concentration of lithium eluted in the aqueous solution reaches the saturation concentration. Therefore, it is not preferable from the viewpoint of lithium extraction cost.

アルカリ金属塩水溶液中のアルカリ金属は、添加、混合するアルカリ金属塩の量により調整することができ、粉粒体に含まれるリチウムに対して、モル比(アルカリ金属のモル数/リチウムのモル数)で、0.05〜1.0の範囲の値であることが好ましい。モル比が0.05未満である場合、リン酸鉄リチウムが生成し、リチウムの抽出率が低下する。一方、モル比が1.0を超える場合、リチウムの抽出率の増加は小さく、添加剤のコストなどを考慮すると好ましくない。   The alkali metal in the aqueous alkali metal salt solution can be adjusted by the amount of the alkali metal salt to be added and mixed, and the molar ratio (number of moles of alkali metal / number of moles of lithium with respect to lithium contained in the granular material). ) In the range of 0.05 to 1.0. When the molar ratio is less than 0.05, lithium iron phosphate is generated and the extraction rate of lithium is lowered. On the other hand, when the molar ratio exceeds 1.0, the increase in the extraction rate of lithium is small, which is not preferable in view of the cost of the additive.

アルカリ金属塩水溶液における粉粒体の質量に対するアルカリ金属塩水溶液の液量、すなわち、固液比(粉粒体[g]/アルカリ金属塩水溶液[l(リットル)])は、3.3[g/l]〜20[g/l]が好ましい。   The amount of the alkali metal salt aqueous solution with respect to the mass of the powder in the alkali metal salt aqueous solution, that is, the solid-liquid ratio (powder [g] / alkali metal salt aqueous solution [l (liter)]) is 3.3 [g. / L] to 20 [g / l] are preferable.

固液比が3.3[g/l]未満の場合、粉粒体の量が少なく、リチウムの含有量が少ないため、水熱処理工程後のアルカリ金属塩水溶液中のリチウム濃度が低くなる。この結果、抽出液からのリチウムを回収しようとする場合、リチウムの回収が困難となり、抽出液からリチウム化合物としての回収率が低下する。一方、固液比が20[g/l]を超える場合、アルカリ金属塩水溶液中の粉粒体からなる固体成分が多くなり、水溶液中に溶解するリチウム量が低下する。この結果、リチウムの抽出率が低下する。   When the solid-liquid ratio is less than 3.3 [g / l], the amount of powder is small and the lithium content is small, so the lithium concentration in the aqueous alkali metal salt solution after the hydrothermal treatment step is low. As a result, when recovering lithium from the extract, it becomes difficult to recover lithium, and the recovery rate as a lithium compound from the extract is reduced. On the other hand, when the solid-liquid ratio exceeds 20 [g / l], the solid component composed of the granular material in the alkali metal salt aqueous solution increases, and the amount of lithium dissolved in the aqueous solution decreases. As a result, the extraction rate of lithium decreases.

[回収工程]
水熱処理工程の加熱処理を停止した後、圧力容器内のアルカリ金属塩水溶液を冷却する。その後、冷却した水溶液に対してろ過を行い、ろ液中のリチウムを回収する(回収工程)。冷却後の水溶液をろ過すると、純度の高いリチウムをろ液側に移行させることができるので、炭酸ガスを吹き込む方法、炭酸アンモニウム、炭酸ナトリウム等の炭酸塩を添加する方法等を公知の方法を用いた炭酸化反応により、炭酸リチウムとしてリチウムを高収率で回収することができる。
[Recovery process]
After stopping the heat treatment in the hydrothermal treatment step, the alkali metal salt aqueous solution in the pressure vessel is cooled. Thereafter, the cooled aqueous solution is filtered to recover lithium in the filtrate (recovery step). When the aqueous solution after cooling is filtered, high purity lithium can be transferred to the filtrate side. Therefore, a known method such as a method of blowing carbon dioxide or a method of adding a carbonate such as ammonium carbonate or sodium carbonate is used. Through the carbonation reaction, lithium can be recovered in high yield as lithium carbonate.

また、本方法によれば、高価な薬剤を必要とせず、複雑な設備及び操作を必要としないので、リチウムの抽出コストの低減化及び容易に装置の大型化を図ることができる。   Moreover, according to this method, an expensive chemical | medical agent is not required and a complicated installation and operation are not required, Therefore The reduction of the extraction cost of lithium and the enlargement of an apparatus can be achieved easily.

また、ろ過により得られた固形分(残渣)から、固形分中に含まれる鉄等の金属を、磁力選別、酸処理及びアルカリ処理により水酸化物沈殿、金属製錬等を用いて回収することができる。   In addition, from solids (residues) obtained by filtration, metals such as iron contained in the solids are recovered using hydroxide precipitation, metal smelting, etc. by magnetic separation, acid treatment and alkali treatment. Can do.

以下に、本実施形態のリチウム抽出方法を用いて、リン酸鉄リチウムの正極材料を有するリチウムイオン電池からリチウムを抽出した実施例及び比較例を示す。   Below, the Example and comparative example which extracted lithium from the lithium ion battery which has the positive electrode material of lithium iron phosphate using the lithium extraction method of this embodiment are shown.

(実施例1)
廃棄された自動車用のリチウムイオン電池をN雰囲気で600[℃]の温度で焙焼した後、剪断破砕機を用いて破砕し、分級機を用いて得られた破砕物を篩分けし、粒径1.0[mm]以下の粉粒体を得た。表1に粉粒体の組成比率を示す。尚、表1のその他の欄は、負極材料のカーボン、正極材料に含まれる酸素等を含む微量成分である。
Example 1
After the discarded lithium-ion battery for automobiles is roasted at a temperature of 600 [° C.] in an N 2 atmosphere, it is crushed using a shear crusher, and the crushed material obtained using a classifier is sieved. A granular material having a particle size of 1.0 [mm] or less was obtained. Table 1 shows the composition ratio of the granular material. The other columns in Table 1 are trace components including carbon of the negative electrode material, oxygen contained in the positive electrode material, and the like.

次に、粉粒体中のリチウム量に対してナトリウム量がモル比で0.10になるように、水酸化ナトリウム水溶液に粉粒体を添加した。具体的には、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液0.76[g]と蒸留水とを混合した水酸化ナトリウム水溶液60[ml]を100[ml]の圧力容器に投入した。   Next, the granular material was added to the sodium hydroxide aqueous solution so that the amount of sodium was 0.10 in terms of molar ratio with respect to the amount of lithium in the granular material. Specifically, sodium hydroxide aqueous solution 60 [ml] which mixed sodium hydroxide aqueous solution 0.76 [g] prepared by dissolving sodium hydroxide 4 [g] in distilled water 996 [g] and distilled water was mixed. Was put into a 100 [ml] pressure vessel.

そして、固液比が3.3[g/l]となるように粉粒体0.2[g]を圧力容器内の水酸化ナトリウム水溶液60[ml]に添加して分散させた後、圧力容器を密封した。圧力容器の内部の温度(処理温度)を200[℃]、圧力(処理圧力)を1.55[MPa]で24[時間]保持した水熱処理を行った後、粉粒体が添加された水酸化ナトリウム水溶液を30[℃]以下に冷却した。   Then, after adding 0.2 [g] of the granular material to the sodium hydroxide aqueous solution 60 [ml] in the pressure vessel and dispersing so that the solid-liquid ratio becomes 3.3 [g / l], the pressure is increased. The container was sealed. Water subjected to hydrothermal treatment in which the temperature inside the pressure vessel (treatment temperature) is 200 [° C.] and the pressure (treatment pressure) is 1.55 [MPa] for 24 [hours], and then water to which powder is added The aqueous sodium oxide solution was cooled to 30 [° C.] or less.

冷却後、圧力容器内の水溶液に対してろ過を行った。ろ液中の成分測定を行い、粉粒体からのリチウムの抽出率[%]を以下に計算式に従って求めた。リチウムの抽出率は82[%]であった。
リチウム抽出率 =ろ液中に溶解しているリチウム[mg]/粉粒体中のリチウム[mg]×100
After cooling, the aqueous solution in the pressure vessel was filtered. The components in the filtrate were measured, and the extraction rate [%] of lithium from the granular material was determined according to the following calculation formula. The extraction rate of lithium was 82 [%].
Lithium extraction rate = lithium dissolved in filtrate [mg] / lithium in powder [mg] × 100

(実施例2)
水熱処理の保持時間を48[時間]にした以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は89[%]であった。
(Example 2)
Hydrothermal treatment was performed in the same manner as in Example 1 except that the hydrothermal treatment retention time was set to 48 [hours]. The lithium extraction rate was 89 [%].

(実施例3)
水熱処理の保持時間を6[時間]にした以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は72[%]であった。
Example 3
The hydrothermal treatment was performed in the same manner as in Example 1 except that the holding time of the hydrothermal treatment was set to 6 [hours]. The lithium extraction rate was 72 [%].

(実施例4)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.29になるように、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液2.3[g]と蒸留水を混合した水酸化ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は90[%]であった。
Example 4
1. Sodium hydroxide aqueous solution prepared by dissolving sodium hydroxide 4 [g] in distilled water 996 [g] so that the sodium amount is 0.29 in a molar ratio with respect to the lithium amount in the granular material. Hydrothermal treatment was performed in the same manner as in Example 1 except that the powder 0.2 [g] was added to and dispersed in an aqueous solution of sodium hydroxide 60 [ml] in which 3 [g] and distilled water were mixed. The lithium extraction rate was 90 [%].

(実施例5)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.48になるように、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液3.8[g]と蒸留水を混合した水酸化ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は90[%]であった。
(Example 5)
2. A sodium hydroxide aqueous solution prepared by dissolving sodium hydroxide 4 [g] in distilled water 996 [g] so that the sodium amount is 0.48 in molar ratio with respect to the lithium amount in the granular material. Hydrothermal treatment was performed in the same manner as in Example 1 except that the powder 0.2 [g] was added to and dispersed in an aqueous solution of sodium hydroxide 60 [ml] in which 8 [g] and distilled water were mixed. The lithium extraction rate was 90 [%].

(実施例6)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.97になるように、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液7.6[g]と蒸留水を混合した水酸化ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は88[%]であった。
(Example 6)
6. Sodium hydroxide aqueous solution prepared by dissolving sodium hydroxide 4 [g] in distilled water 996 [g] so that the amount of sodium is 0.97 in terms of molar ratio with respect to the amount of lithium in the granular material. Hydrothermal treatment was performed in the same manner as in Example 1 except that the powder 0.2 [g] was added to and dispersed in an aqueous solution of sodium hydroxide 60 [ml] in which 6 [g] and distilled water were mixed. The lithium extraction rate was 88 [%].

(実施例7)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.29になるように、固液比が16.7[g/l]になるように、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液11.5[g]と蒸留水を混合した水酸化ナトリウム水溶液60[ml]に粉粒体1.0[g]を添加して分散させた以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は68[%]であった。
(Example 7)
4 [g] of sodium hydroxide was distilled so that the solid-liquid ratio was 16.7 [g / l] so that the sodium amount was 0.29 in terms of molar ratio with respect to the lithium amount in the granular material. Disperse by adding 1.0 [g] of granular material to sodium hydroxide aqueous solution 60 [ml] mixed with 11.5 [g] sodium hydroxide aqueous solution prepared by dissolving in water 996 [g] and distilled water. Except for this, hydrothermal treatment was performed in the same manner as in Example 1. The lithium extraction rate was 68 [%].

(実施例8)
処理温度を150[℃]、処理圧力を0.47[MPa]にした以外は、実施例4と同様の水熱処理を行った。リチウム抽出率は67[%]であった。
(Example 8)
Hydrothermal treatment was performed in the same manner as in Example 4 except that the treatment temperature was 150 [° C.] and the treatment pressure was 0.47 [MPa]. The lithium extraction rate was 67 [%].

(実施例9)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.08になるように、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液0.64[g]と蒸留水を混合した水酸化ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は77[%]であった。
Example 9
Sodium hydroxide aqueous solution prepared by dissolving sodium hydroxide 4 [g] in distilled water 996 [g] so that the sodium amount is 0.08 in terms of molar ratio with respect to the amount of lithium in the granular material. Hydrothermal treatment was performed in the same manner as in Example 1 except that powder [0.2 [g] was added and dispersed in sodium hydroxide aqueous solution 60 [ml] in which 64 [g] and distilled water were mixed. The lithium extraction rate was 77 [%].

(実施例10)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.05になるように、水酸化ナトリウム4[g]を蒸留水996[g]に溶解させて調製した水酸化ナトリウム水溶液0.38[g]と蒸留水を混合した水酸化ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例1と同様の水熱処理を行った。リチウム抽出率は69[%]であった。
(Example 10)
A sodium hydroxide aqueous solution prepared by dissolving sodium hydroxide 4 [g] in distilled water 996 [g] so that the sodium amount is 0.05 in terms of molar ratio with respect to the lithium amount in the granular material. Hydrothermal treatment was performed in the same manner as in Example 1 except that powder [0.2 [g] was added and dispersed in sodium hydroxide aqueous solution 60 [ml] in which 38 [g] and distilled water were mixed. The lithium extraction rate was 69 [%].

(実施例11)
実施例1で用いた粉粒体中のリチウムに対してカリウム量がモル比で1.0になるように、水酸化カリウム5.61[g]を蒸留水994.4[g]に溶解させて調製した水酸化カリウム水溶液7.88[g]と蒸留水を混合した水酸化カリウム水溶液60[ml]を投入した。
そして、固液比が3.3[g/l]となるように粉粒体0.2[g]を圧力容器内の水酸化カリウム水溶液60[ml]に添加して分散させた後、圧力容器を密封した。圧力容器の内部の温度(処理温度)を200[℃]、圧力(処理圧力)を1.55[MPa]で6[時間]保持した水熱処理を行った後、粉粒体が添加された水酸化カリウム水溶液を30[℃]以下に冷却した。
冷却後、圧力容器内の水溶液に対してろ過を行った。ろ液中の成分測定を行い、粉粒体からのリチウムの抽出率[%]を求めた。リチウムの抽出率は68[%]であった。
(Example 11)
Potassium hydroxide (5.61 [g]) was dissolved in distilled water (994.4 [g]) so that the molar amount of potassium was 1.0 with respect to lithium in the granular material used in Example 1. A potassium hydroxide aqueous solution 60 [ml] mixed with 7.88 [g] potassium hydroxide aqueous solution and distilled water was added.
And after adding and disperse | distributing the granular material 0.2 [g] to 60 [ml] potassium hydroxide aqueous solution in a pressure vessel so that a solid-liquid ratio may be 3.3 [g / l], pressure The container was sealed. Water subjected to hydrothermal treatment in which the temperature inside the pressure vessel (treatment temperature) is 200 [° C.] and the pressure (treatment pressure) is 1.55 [MPa] and held for 6 [hours], and then water to which powder is added The aqueous potassium oxide solution was cooled to 30 [° C.] or less.
After cooling, the aqueous solution in the pressure vessel was filtered. The components in the filtrate were measured, and the extraction rate [%] of lithium from the granular material was determined. The extraction rate of lithium was 68 [%].

(実施例12)
実施例1で用いた粉粒体中のリチウム量に対してナトリウム量がモル比で1.0になるように、塩化ナトリウム水溶液に粉粒体を添加した。具体的には、塩化ナトリウム5.84[g]を蒸留水994.2[g]に溶解させて調製した塩化ナトリウム水溶液7.88[g]と蒸留水を混合した塩化ナトリウム水溶液60[ml]を100[ml]の圧力容器に投入した。
そして、固液比が3.3[g/l]となるように粉粒体0.2[g]を圧力容器内の塩化ナトリウム水溶液60[ml]に添加して分散させた後、圧力容器を密封した。圧力容器の内部の温度(処理温度)を200[℃]、圧力(処理圧力)を1.55[MPa]で6[時間]保持した水熱処理を行った後、粉粒体が添加された塩化ナトリウム水溶液を30[℃]以下に冷却した。
冷却後、圧力容器内の水溶液に対してろ過を行った。ろ液中の成分測定を行い、粉粒体からのリチウムの抽出率[%]を実施例1に記載の計算式に従って求めた。リチウムの抽出率は100[%]であった。
(Example 12)
The granular material was added to the aqueous sodium chloride solution so that the amount of sodium in the molar ratio was 1.0 with respect to the amount of lithium in the granular material used in Example 1. Specifically, sodium chloride aqueous solution 60 [ml] which mixed sodium chloride aqueous solution 7.88 [g] prepared by dissolving sodium chloride 5.84 [g] in distilled water 994.2 [g] and distilled water was mixed. Was put into a 100 [ml] pressure vessel.
Then, after adding 0.2 [g] of the granular material to 60 [ml] of the sodium chloride aqueous solution in the pressure vessel and dispersing so that the solid-liquid ratio becomes 3.3 [g / l], the pressure vessel Sealed. Hydrochloric treatment with the internal temperature of the pressure vessel (treatment temperature) held at 200 [° C.] and the pressure (treatment pressure) held at 1.55 [MPa] for 6 [hours] followed by chlorination with the addition of powder particles The aqueous sodium solution was cooled to 30 [° C.] or less.
After cooling, the aqueous solution in the pressure vessel was filtered. The components in the filtrate were measured, and the extraction rate [%] of lithium from the granular material was determined according to the calculation formula described in Example 1. The extraction rate of lithium was 100 [%].

(実施例13)
粉粒体中のリチウム量に対してナトリウム量がモル比で0.50になるように、塩化ナトリウム5.84[g]を蒸留水994.2[g]に溶解させて調製した塩化ナトリウム水溶液3.94[g]と蒸留水を混合した塩化ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例12と同様の水熱処理を行った。リチウム抽出率は83[%]であった。
(Example 13)
Sodium chloride aqueous solution prepared by dissolving sodium chloride 5.84 [g] in distilled water 994.2 [g] so that the amount of sodium is 0.50 in molar ratio to the amount of lithium in the granular material. The hydrothermal treatment was performed in the same manner as in Example 12 except that 0.2 [g] of the granular material was added and dispersed in 60 [ml] of an aqueous sodium chloride solution obtained by mixing 3.94 [g] and distilled water. . The lithium extraction rate was 83 [%].

(実施例14)
実施例12で用いた塩化ナトリウムに代えて、塩化カリウムを用いた。具体的には、粉粒体中のリチウムに対してカリウム量がモル比で1.0になるように、塩化カリウム7.45[g]を蒸留水994.2[g]に溶解させて調製した塩化カリウム水溶液7.88[g]と蒸留水を混合した塩化カリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例12と同様の水熱処理を行った。リチウムの抽出率は77[%]であった。
(Example 14)
Instead of sodium chloride used in Example 12, potassium chloride was used. Specifically, prepared by dissolving 7.45 [g] of potassium chloride in 994.2 [g] of distilled water so that the molar amount of potassium is 1.0 with respect to lithium in the granular material. The same water as in Example 12 except that the powder 0.2 [g] was added to and dispersed in the potassium chloride aqueous solution 60 [ml] obtained by mixing the potassium chloride aqueous solution 7.88 [g] and distilled water. Heat treatment was performed. The extraction rate of lithium was 77 [%].

(実施例15)
実施例12で用いた塩化ナトリウムに代えて、硝酸ナトリウムを用いた。具体的には、粉粒体中のリチウムに対してナトリウム量がモル比で1.0になるように、硝酸ナトリウム8.50gを蒸留水992[g]に溶解させて調製した硝酸ナトリウム水溶液7.88[g]と蒸留水を混合した硝酸ナトリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例12と同様の水熱処理を行った。リチウムの抽出率は71[%]であった。
(Example 15)
Instead of sodium chloride used in Example 12, sodium nitrate was used. Specifically, sodium nitrate aqueous solution 7 prepared by dissolving 8.50 g of sodium nitrate in 992 [g] of distilled water so that the sodium amount is 1.0 in terms of molar ratio with respect to lithium in the granular material. Hydrothermal treatment was performed in the same manner as in Example 12 except that 0.2 [g] of the granular material was added and dispersed in 60 [ml] of sodium nitrate aqueous solution in which .88 [g] and distilled water were mixed. The extraction rate of lithium was 71 [%].

(実施例16)
実施例12で用いた塩化ナトリウムに代えて、硝酸カリウムを用いた。具体的には、粉粒体中のリチウムに対してカリウム量がモル比で1.0になるように、硝酸カリウム10.1[g]を蒸留水990[g]に溶解させて調製した硝酸カリウム水溶液7.88[g]と蒸留水を混合した硝酸カリウム水溶液60[ml]に粉粒体0.2[g]を添加して分散させた以外は、実施例12と同様の水熱処理を行った。リチウムの抽出率は70[%]であった。
(Example 16)
Instead of sodium chloride used in Example 12, potassium nitrate was used. Specifically, an aqueous potassium nitrate solution prepared by dissolving 10.1 [g] of potassium nitrate in 990 [g] of distilled water so that the amount of potassium is 1.0 in terms of molar ratio with respect to lithium in the granular material. Hydrothermal treatment was performed in the same manner as in Example 12 except that powder [0.2 [g] was added and dispersed in potassium nitrate aqueous solution 60 [ml] mixed with 7.88 [g] and distilled water. The extraction rate of lithium was 70 [%].

(比較例1)
水酸化ナトリウム水溶液を添加せず蒸留水を60[ml]とし、水熱処理の保持時間を6[時間]にした以外は実施例1と同様の水熱処理を行った。リチウム抽出率は36[%]であった。
(Comparative Example 1)
Hydrothermal treatment was performed in the same manner as in Example 1 except that the sodium hydroxide aqueous solution was not added and distilled water was changed to 60 [ml] and the hydrothermal treatment retention time was changed to 6 [hours]. The lithium extraction rate was 36 [%].

表2に、ナトリウムのモル数のリチウムのモル数に対するモル比[−]、水熱処理を行った処理時間[時間]、水熱処理における圧力容器内部の温度(処理温度)[℃]、及び、粉粒体が添加された水酸化ナトリウム水溶液の固液比[g/l]からなるリチウム抽出条件とリチウム抽出率[%]とを示す。   Table 2 shows the molar ratio [−] of the number of moles of sodium to the number of moles of lithium, the treatment time [hour] of hydrothermal treatment, the temperature inside the pressure vessel in hydrothermal treatment (treatment temperature) [° C.], and the powder A lithium extraction condition and a lithium extraction rate [%] consisting of a solid-liquid ratio [g / l] of an aqueous sodium hydroxide solution to which granules are added are shown.

表2の実施例1〜実施例16に示されるように、リチウムイオン電池を焙焼して得られた粉粒体を添加した水酸化ナトリウム水溶液、塩化ナトリウム水溶液等のアルカリ金属塩水溶液を水熱処理するという簡易な操作で、リチウムイオン電池中のリチウムを効率的に抽出できることがわかる。これは、アルカリ金属水酸化物、アルカリ金属塩化物、アルカリ金属硝酸塩などのアルカリ金属塩を添加することで、溶出したリン酸とナトリウム、カリウムが反応し、溶解度の高いリン酸ナトリウム、リン酸カリウムを生成させて、リチウムとリン酸の反応により生成する溶解度の小さいリン酸リチウムの析出を抑制することで、溶液中にリンを溶解させた状態で維持し、抽出率を高くすることができると推測される。   As shown in Examples 1 to 16 of Table 2, hydrothermal treatment of aqueous solutions of alkali metal salts such as aqueous sodium hydroxide and aqueous sodium chloride to which powders obtained by roasting lithium ion batteries were added It can be seen that the lithium in the lithium ion battery can be extracted efficiently by a simple operation. By adding alkali metal salts such as alkali metal hydroxide, alkali metal chloride, alkali metal nitrate, etc., the eluted phosphoric acid reacts with sodium and potassium, and sodium phosphate and potassium phosphate with high solubility By suppressing the precipitation of lithium phosphate with a low solubility generated by the reaction between lithium and phosphoric acid, it is possible to maintain the phosphorus dissolved in the solution and increase the extraction rate. Guessed.

比較例1に示されるように、水酸化ナトリウム水溶液を添加しない場合、リチウム化合物の分解反応が促進されず、粉粒体からのリチウムの溶出量が低下したことがわかる。   As shown in Comparative Example 1, it can be seen that when no sodium hydroxide aqueous solution was added, the decomposition reaction of the lithium compound was not promoted, and the amount of lithium eluted from the granular material decreased.

Claims (4)

リチウムイオン電池を焙焼してリンを含有する焙焼物を得る焙焼工程と、
前記焙焼物を破砕して破砕物を得る破砕工程と、
前記破砕物を篩分けして、所定の粒径の粉粒体を得る篩分け工程と、
所定量の粉粒体を添加したアルカリ金属塩水溶液を加熱する水熱処理工程とを備えるリチウム抽出方法。
A roasting step of roasting a lithium ion battery to obtain a roasted product containing phosphorus;
Crushing step of crushing the roasted material to obtain a crushed material;
Sieving the crushed material to obtain a granular material having a predetermined particle size; and
A lithium extraction method comprising: a hydrothermal treatment step of heating an alkali metal salt aqueous solution to which a predetermined amount of powder is added.
請求項1記載のリチウム抽出方法であって、
前記アルカリ金属塩水溶液中のアルカリ金属塩は、ナトリウム塩又はカリウム塩であるリチウム抽出方法。
The lithium extraction method according to claim 1,
The lithium extraction method, wherein the alkali metal salt in the alkali metal salt aqueous solution is a sodium salt or a potassium salt.
請求項1又は2記載のリチウム抽出方法であって、
前記アルカリ金属塩水溶液におけるアルカリ金属のリチウムに対するモル比が0.05〜1.0になるように調製するリチウム抽出方法。
The lithium extraction method according to claim 1 or 2,
The lithium extraction method prepared so that the molar ratio of the alkali metal to lithium in the alkali metal salt aqueous solution may be 0.05 to 1.0.
請求項1〜3のいずれか一項に記載のリチウム抽出方法であって、
前記水熱処理工程は、150[℃]〜200[℃]の範囲の温度で、前記アルカリ金属塩水溶液を水熱処理するリチウム抽出方法。
It is a lithium extraction method as described in any one of Claims 1-3,
The hydrothermal treatment step is a lithium extraction method in which the alkali metal salt aqueous solution is hydrothermally treated at a temperature in the range of 150 [° C.] to 200 [° C.].
JP2016040140A 2015-03-30 2016-03-02 Lithium extraction method Active JP6644314B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068777 2015-03-30
JP2015068777 2015-03-30

Publications (2)

Publication Number Publication Date
JP2016191143A true JP2016191143A (en) 2016-11-10
JP6644314B2 JP6644314B2 (en) 2020-02-12

Family

ID=57245356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040140A Active JP6644314B2 (en) 2015-03-30 2016-03-02 Lithium extraction method

Country Status (1)

Country Link
JP (1) JP6644314B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052997A (en) * 2015-09-09 2017-03-16 太平洋セメント株式会社 Lithium extraction method
JP2020066795A (en) * 2018-10-26 2020-04-30 住友金属鉱山株式会社 Method for leaching lithium and method for recovering lithium
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
WO2023007868A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 Treatment method and treatment system for waste lithium ion battery
WO2023007869A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 System and method for treating waste lithium ion battery
CN116078344A (en) * 2023-03-16 2023-05-09 南京工程学院 Whisker spinel type magnesium aluminum oxide lithium ion sieve adsorbent for extracting lithium from salt lake and preparation method thereof
JP7450149B1 (en) 2023-10-19 2024-03-15 artience株式会社 How to recover lithium compounds
JP7479883B2 (en) 2020-03-17 2024-05-09 出光興産株式会社 Method and apparatus for producing lithium aqueous solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055312A (en) * 2012-09-11 2014-03-27 Hitachi Ltd Method for recycling lithium ion battery, and apparatus therefor
JP2014156648A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055312A (en) * 2012-09-11 2014-03-27 Hitachi Ltd Method for recycling lithium ion battery, and apparatus therefor
JP2014156648A (en) * 2013-02-18 2014-08-28 Jx Nippon Mining & Metals Corp Metal recovery method from waste positive electrode material and waste battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宮永洋 他: "水熱処理法によるリチウムイオン二次電池からの有価・有害元素の回収プロセスの開発", 第18回秋季シンポジウム 第1回アジア−オセアニアセラミック連盟国際会議 講演予稿集, JPN6019038262, 27 September 2005 (2005-09-27), pages 152 - 2, ISSN: 0004127676 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052997A (en) * 2015-09-09 2017-03-16 太平洋セメント株式会社 Lithium extraction method
JP2020066795A (en) * 2018-10-26 2020-04-30 住友金属鉱山株式会社 Method for leaching lithium and method for recovering lithium
JP7225681B2 (en) 2018-10-26 2023-02-21 住友金属鉱山株式会社 Lithium leaching method and lithium recovery method
JP2022506626A (en) * 2018-11-07 2022-01-17 エスケー イノベーション カンパニー リミテッド Lithium precursor regeneration method and lithium precursor regeneration system
JP7479883B2 (en) 2020-03-17 2024-05-09 出光興産株式会社 Method and apparatus for producing lithium aqueous solution
WO2023007868A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 Treatment method and treatment system for waste lithium ion battery
WO2023007869A1 (en) 2021-07-27 2023-02-02 川崎重工業株式会社 System and method for treating waste lithium ion battery
CN116078344A (en) * 2023-03-16 2023-05-09 南京工程学院 Whisker spinel type magnesium aluminum oxide lithium ion sieve adsorbent for extracting lithium from salt lake and preparation method thereof
JP7450149B1 (en) 2023-10-19 2024-03-15 artience株式会社 How to recover lithium compounds

Also Published As

Publication number Publication date
JP6644314B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6644314B2 (en) Lithium extraction method
CA3058572C (en) Lithium ion battery scrap treatment method
TWI729543B (en) Treatment method of anode active material waste of lithium ion secondary battery
KR102354730B1 (en) A method for dissolving a lithium compound, a method for manufacturing lithium carbonate, and a method for recovering lithium from scrap of a lithium ion secondary battery
JP5535717B2 (en) Lithium recovery method
TWI675922B (en) Lithium recovery method
JP6766014B2 (en) Lithium Ion Rechargeable Battery How to recover lithium from scrap
JP5535716B2 (en) Lithium recovery method
JP5847741B2 (en) Waste cathode material and method for recovering metal from waste battery
JP2012229481A (en) Method for separating and recovering valuable material from used lithium ion battery
US9359659B2 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
JP2019160429A (en) Lithium recovery method
JP2022542879A (en) Method for recovering lithium and other metals from waste ion batteries
JP6516240B2 (en) Lithium extraction method
JP2022542362A (en) How Lithium is Recovered from Waste Lithium Ion Batteries
BR112021020943B1 (en) PROCESS FOR THE PREPARATION OF PRECURSOR COMPOUNDS FOR LITHIUM BATTERY CATHODES
JP2016037661A (en) Method for recovering valuable metal
JP7286085B2 (en) Method for recovering lithium from lithium-ion batteries
JP2012121780A (en) Method for manufacturing lithium oxide
JP2019173106A (en) Lithium recovery method
JP2023530325A (en) Cathode material recovery method
JP6571123B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
JP7229197B2 (en) Lithium recovery method
JP7220340B1 (en) METHOD FOR RECOVERING METAL FROM LITHIUM-ION BATTERY
JP2023177724A (en) Waste residue of lithium ion battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6644314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250