JP2016183583A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2016183583A
JP2016183583A JP2015063582A JP2015063582A JP2016183583A JP 2016183583 A JP2016183583 A JP 2016183583A JP 2015063582 A JP2015063582 A JP 2015063582A JP 2015063582 A JP2015063582 A JP 2015063582A JP 2016183583 A JP2016183583 A JP 2016183583A
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
cooling water
restart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015063582A
Other languages
Japanese (ja)
Inventor
直樹 大治
Naoki Oji
直樹 大治
英偉士 中森
Eishi Nakamori
英偉士 中森
智弘 八木
Tomohiro Yagi
智弘 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2015063582A priority Critical patent/JP2016183583A/en
Publication of JP2016183583A publication Critical patent/JP2016183583A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a start failure when restarting an internal combustion engine which is stopped before the completion of warmup in a short time after the stop.SOLUTION: A control device of an internal combustion engine which sets a fuel injection amount at a restart of a stopped internal combustion engine larger as a temperature of the cooling water of the internal combustion engine at the restart is low reduces a fuel injection amount in the case that deviation between a temperature of a combustion chamber of a cylinder at the restart and the temperature of the cooling water is large by comparing it with a fuel injection amount in the case that the deviation between the temperature of the combustion chamber and the temperature of the cooling water is small on condition that the temperature of the cooling water at the restart is the same.SELECTED DRAWING: Figure 3

Description

本発明は、車両等に搭載される内燃機関の運転制御を司る制御装置に関する。   The present invention relates to a control device that controls operation of an internal combustion engine mounted on a vehicle or the like.

内燃機関の始動時の燃料噴射量、より具体的には始動のためのクランキングの最中の燃料噴射量は、内燃機関の温度を示唆する冷却水温に応じて増減調整することが通例である(例えば、下記特許文献を参照)。内燃機関が低温であると、フリクションロスが大きくなる上、気筒の燃焼室内で燃料が気化しにくく、噴射しても燃焼に寄与しない燃料の量が増えるからである。   The fuel injection amount at the start of the internal combustion engine, more specifically, the fuel injection amount during cranking for start-up is usually adjusted to increase or decrease according to the coolant temperature indicating the temperature of the internal combustion engine. (For example, see the following patent document). This is because, when the internal combustion engine is at a low temperature, the friction loss increases, the fuel is less likely to vaporize in the combustion chamber of the cylinder, and the amount of fuel that does not contribute to combustion even when injected is increased.

また、インジェクタを気筒の吸気ポート近傍に配置しているポート噴射式の内燃機関においては、インジェクタから噴射された燃料の一部が液状となって吸気ポートの壁面や吸気バルブの傘部等に付着するポートウェットが起こる。ポート噴射式の内燃機関の始動制御では、このポートウェットの発生をも見越して燃料噴射量を設定する必要もある。   Also, in a port injection type internal combustion engine in which the injector is arranged near the intake port of the cylinder, part of the fuel injected from the injector becomes liquid and adheres to the wall surface of the intake port, the umbrella portion of the intake valve, etc. Port wet occurs. In starting control of a port injection type internal combustion engine, it is necessary to set the fuel injection amount in anticipation of the occurrence of this port wet.

特開2012−077718号公報JP 2012-0777718 A

始動した内燃機関の温度を十分に高める暖機が完了する前に内燃機関の運転を停止させ、その停止後短時間で再び内燃機関を始動させるとき、当該内燃機関の冷却水温のみを基に燃料噴射量を決定することで、始動不良を引き起こすことがある。   When the operation of the internal combustion engine is stopped before the warm-up to sufficiently raise the temperature of the started internal combustion engine is completed and the internal combustion engine is started again in a short time after the stop, the fuel is based only on the cooling water temperature of the internal combustion engine. By determining the injection amount, a starting failure may be caused.

図3に、内燃機関の始動後、暖機が完了する前に内燃機関を停止させた場合における、冷却水の温度及び気筒の燃焼室(の壁)の温度の推移の一例を示す。図3中、内燃機関の冷却水の温度を破線で表し、燃焼室の温度を実線で表している。また、時刻0秒の時点が内燃機関の運転を停止させた時点であり、それ以前が内燃機関を運転していた期間である。時刻−30秒の時点で冷間始動した内燃機関の燃焼室の温度は比較的速やかに上昇する一方、冷却水の温度は比較的緩やかに上昇する。このため、暖機完了前に内燃機関を停止させた時刻0秒の時点で、燃焼室の温度と冷却水の温度とは大きく乖離している。   FIG. 3 shows an example of changes in the temperature of the cooling water and the temperature of the combustion chamber (wall) of the cylinder when the internal combustion engine is stopped after the internal combustion engine is started and before the warm-up is completed. In FIG. 3, the temperature of the cooling water of the internal combustion engine is represented by a broken line, and the temperature of the combustion chamber is represented by a solid line. The time 0 second is the time when the operation of the internal combustion engine is stopped, and the period before that is the time when the internal combustion engine is operated. While the temperature of the combustion chamber of the internal combustion engine that has been cold-started at time -30 seconds rises relatively quickly, the temperature of the cooling water rises relatively slowly. For this reason, the temperature of the combustion chamber and the temperature of the cooling water are greatly different at the time of 0 second when the internal combustion engine is stopped before the warm-up is completed.

そして、運転停止から数十秒以内に内燃機関を再始動させる際には、依然として、燃焼室の温度が冷却水の温度よりもかなり高くなっている。従って、冷却水の温度を参照して燃料噴射量を決定すると、低い冷却水温に対応した量の燃料、即ち高い燃焼室温に見合わない多量の燃料をインジェクタから噴射することとなり、噴射された燃料の大部分が燃焼室内で気化して混合気の空燃比がオーバーリッチとなる。結果、混合気の着火燃焼がうまくゆかず、内燃機関の始動の遅延または失敗を招いてしまう。このような事象は、例えば運転者が路上で停車して他の搭乗者を待つような状況下で生起し得る。   When the internal combustion engine is restarted within several tens of seconds after the operation is stopped, the temperature of the combustion chamber is still considerably higher than the temperature of the cooling water. Therefore, when the fuel injection amount is determined with reference to the temperature of the cooling water, an amount of fuel corresponding to the low cooling water temperature, that is, a large amount of fuel that does not meet the high combustion room temperature is injected from the injector. Most of the gas is vaporized in the combustion chamber, and the air-fuel ratio of the air-fuel mixture becomes overrich. As a result, ignition / combustion of the air-fuel mixture does not work well, causing a delay or failure in starting the internal combustion engine. Such an event may occur, for example, in a situation where the driver stops on the road and waits for another passenger.

以上の問題に初めて着目してなされた本発明は、暖機完了前に停止させた内燃機関をその停止後短時間で再び始動させる場合の始動不良を防止することを所期の目的する。   The present invention, which has been made by paying attention to the above problems for the first time, is intended to prevent a starting failure when an internal combustion engine that has been stopped before the completion of warm-up is restarted in a short time after the stop.

本発明では、停止した内燃機関の再始動時の燃料噴射量を、再始動時の内燃機関の冷却水の温度が低いほど多くなるように設定するものであって、再始動時の冷却水の温度が同等であるという条件の下で、再始動時における気筒の燃焼室の温度と冷却水の温度との乖離が大きい場合における燃料噴射量を、燃焼室の温度と冷却水の温度との乖離がより小さい場合における燃料噴射量と比較して少なくする内燃機関の制御装置を構成した。   In the present invention, the fuel injection amount at the time of restarting the stopped internal combustion engine is set so as to increase as the temperature of the cooling water of the internal combustion engine at the time of restarting decreases. If the temperature difference between the combustion chamber of the cylinder and the temperature of the cooling water at the time of restart is large under the condition that the temperatures are the same, the fuel injection amount is the difference between the temperature of the combustion chamber and the temperature of the cooling water. The control device for the internal combustion engine is configured so as to be smaller than the fuel injection amount when the is smaller.

なお、内燃機関の直近の停止時の燃焼室の温度または再始動時の燃焼室の温度を推定した上で、その推定した燃焼室の温度に応じて再始動時の燃焼噴射量を設定することも好ましい。   Estimate the temperature of the combustion chamber at the time of the most recent stop of the internal combustion engine or the temperature of the combustion chamber at the time of restart, and set the combustion injection amount at the time of restart according to the estimated temperature of the combustion chamber Is also preferable.

再始動時における気筒の燃焼室の温度と冷却水の温度との乖離が大きいか否かは、直近の内燃機関の運転の停止から再始動までの経過時間及び冷却水の温度に基づいて簡便に判断できる。即ち、直近の停止から所定時間が経過する前に内燃機関を再始動するときであって、かつその停止時または再始動時における冷却水の温度が所定値未満である場合に、再始動時における気筒の燃焼室の温度と冷却水の温度との乖離が大きいと判断することができる。   Whether or not the difference between the temperature of the combustion chamber of the cylinder and the temperature of the cooling water at the time of restarting is large is easily determined based on the elapsed time from the last stop of the operation of the internal combustion engine to the restart and the temperature of the cooling water. I can judge. That is, when the internal combustion engine is restarted before a predetermined time has elapsed since the most recent stop, and when the temperature of the cooling water at the stop or restart is less than a predetermined value, It can be determined that the difference between the temperature of the combustion chamber of the cylinder and the temperature of the cooling water is large.

直近の内燃機関の停止時における燃焼室の温度は、前回の内燃機関の始動時の冷却水の温度、及び前回の内燃機関の始動から停止までの間に気筒に供給した吸気量または燃料噴射量の総累積量を基に推定することができる。   The temperature of the combustion chamber at the time of the most recent stop of the internal combustion engine is the temperature of the cooling water at the start of the previous internal combustion engine, and the intake amount or fuel injection amount supplied to the cylinder between the start and stop of the previous internal combustion engine It can be estimated based on the total accumulated amount.

本発明によれば、暖機完了前に停止させた内燃機関をその停止後短時間で再び始動させる場合の始動不良を防止できる。   According to the present invention, it is possible to prevent a start failure when an internal combustion engine that has been stopped before the completion of warm-up is restarted in a short time after the stop.

本発明の一実施形態における車両用内燃機関の概略構成を示す図。The figure which shows schematic structure of the internal combustion engine for vehicles in one Embodiment of this invention. 同実施形態の制御装置が実行する処理の手順例を示すフロー図。The flowchart which shows the example of the procedure of the process which the control apparatus of the embodiment performs. 内燃機関の始動後、暖機が完了する前に内燃機関を停止させる場合における、冷却水の温度及び燃焼室の温度の推移を例示する図。The figure which illustrates transition of the temperature of a cooling water and the temperature of a combustion chamber in the case of stopping an internal combustion engine after starting of an internal combustion engine, before warming-up is completed.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態における内燃機関は、火花点火式の4ストロークエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an internal combustion engine for a vehicle in the present embodiment. The internal combustion engine in the present embodiment is a spark ignition type four-stroke engine and includes a plurality of cylinders 1 (one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 for injecting fuel is provided. A spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 receives spark voltage generated by the ignition coil and causes spark discharge between the center electrode and the ground electrode. The ignition coil is integrally incorporated in a coil case together with an igniter that is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。   The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32, a surge tank 33, and an intake manifold 34 are arranged in this order from the upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。   The exhaust passage 4 for discharging the exhaust guides the exhaust generated as a result of burning the fuel in the cylinder 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and an exhaust purification three-way catalyst 41 are disposed on the exhaust passage 4.

外部EGR(Exhaust Gas Recirculation)装置2は、いわゆる高圧ループEGRを実現するものである。EGR装置2は、排気通路4における触媒41の上流側と吸気通路3におけるスロットルバルブ32の下流側とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における排気マニホルド42またはその下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所、具体的にはサージタンク33に接続している。   An external EGR (Exhaust Gas Recirculation) device 2 realizes a so-called high-pressure loop EGR. The EGR device 2 includes an external EGR passage 21 that communicates the upstream side of the catalyst 41 in the exhaust passage 4 and the downstream side of the throttle valve 32 in the intake passage 3, an EGR cooler 22 provided on the EGR passage 21, and an EGR passage 21. And an EGR valve 23 that controls the flow rate of the EGR gas flowing through the EGR passage 21. The inlet of the EGR passage 21 is connected to the exhaust manifold 42 in the exhaust passage 4 or a predetermined location downstream thereof. The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3, specifically to a surge tank 33.

本実施形態の内燃機関の制御装置たるECU(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。   An ECU (Electronic Control Unit) 0 serving as a control device for an internal combustion engine according to the present embodiment is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like.

入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度(いわば、要求負荷)として検出するセンサから出力されるアクセル開度信号c、内燃機関の温度を示唆する冷却水温を検出する水温センサから出力される冷却水温信号d、車載のバッテリの電流及び/または電圧を検出する電流/電圧センサから出力されるバッテリ電流/電圧信号e、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号f、吸気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号g、大気圧を検出するセンサから出力される大気圧信号h等が入力される。   The input interface includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, a crank angle signal b output from an engine rotation sensor that detects the rotation angle and engine speed of the crankshaft, and depression of an accelerator pedal. An accelerator opening signal c output from a sensor that detects the amount or the opening of the throttle valve 32 as an accelerator opening (in other words, a required load), and a water temperature sensor that detects a cooling water temperature indicating the temperature of the internal combustion engine. The coolant temperature signal d, the battery current / voltage signal e output from the current / voltage sensor for detecting the current and / or voltage of the vehicle-mounted battery, the intake air temperature and the intake pressure in the intake passage 3 (particularly, the surge tank 33). The intake air temperature / intake pressure signal f output from the temperature / pressure sensor to be detected and the multiple cam angles of the intake camshaft A cam angle signal g output from the angular sensor, an atmospheric pressure signal h or the like to be output from the sensor for detecting the atmospheric pressure is inputted.

出力インタフェースからは、イグナイタ13に対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。   From the output interface, an ignition signal i is output to the igniter 13, a fuel injection signal j is output to the injector 11, an opening operation signal k is output to the throttle valve 32, an opening operation signal l is output to the EGR valve 23, and the like. To do.

ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、要求EGR率(または、EGR量)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。   The processor of the ECU 0 interprets and executes a program stored in the memory in advance, calculates operation parameters, and controls the operation of the internal combustion engine. The ECU 0 acquires various information a, b, c, d, e, f, g, and h necessary for operation control of the internal combustion engine via the input interface, knows the engine speed, and is filled in the cylinder 1. Estimate the intake volume. Based on the engine speed, the intake air amount, etc., the required fuel injection amount, fuel injection timing (including the number of times of fuel injection for one combustion), fuel injection pressure, ignition timing, required EGR rate (or EGR rate) Various operating parameters such as volume). The ECU 0 applies various control signals i, j, k, and l corresponding to the operation parameters via the output interface.

また、ECU0は、内燃機関の始動(冷間始動であることもあれば、アイドリングストップからの復帰であることもある)時において、電動機(スタータモータまたはISG(Integrated Starter Generator))に制御信号oを入力し、当該電動機によりクランクシャフトを回転させるクランキングを行う。クランキングは、内燃機関が初爆から連爆へと至り、エンジン回転数即ちクランクシャフトの回転速度が冷却水温等に応じて定まる判定値を超えたときに(完爆したものと見なして)終了する。   Further, the ECU 0 inputs a control signal o to an electric motor (starter motor or ISG (Integrated Starter Generator)) when the internal combustion engine is started (a cold start or a return from an idling stop). Then, cranking is performed by rotating the crankshaft by the electric motor. Cranking ends when the internal combustion engine starts from the first explosion to a continuous explosion and the engine speed, that is, the rotation speed of the crankshaft, exceeds a judgment value determined according to the coolant temperature, etc. (assuming that the explosion has been completed) To do.

クランキング中の燃料噴射量は、内燃機関の冷却水の温度を参照して決定する。原則として、内燃機関の始動時の冷却水温が低いほど、燃料噴射量の基本量を多くする。ECU0のメモリには予め、冷却水温と燃料噴射量の基本量との関係を規定したマップデータまたは関数式が格納されている。ECU0は、始動時の冷却水温をキーとして当該マップを検索するか、始動時の冷却水温を当該関数式に代入して、燃料噴射量の基本量を得る。   The fuel injection amount during cranking is determined with reference to the temperature of the cooling water of the internal combustion engine. As a general rule, the lower the coolant temperature at the start of the internal combustion engine, the greater the basic fuel injection amount. In the memory of the ECU 0, map data or a function expression that defines the relationship between the coolant temperature and the basic fuel injection amount is stored in advance. The ECU 0 searches the map using the coolant temperature at the start as a key, or substitutes the coolant temperature at the start into the function formula to obtain a basic amount of fuel injection amount.

これに加えて、クランキング中のエンジン回転数、吸気温、及び/または、大気圧に応じた補正を基本量に加味してもよい。即ち、エンジン回転数の上昇の速度(単位時間あたりのエンジン回転数の上昇量)が低い場合にはそれが高い場合と比較して燃料噴射量の基本量を増量することができ、吸気温が低い場合には吸気温が高い場合と比較して燃料噴射量の基本量を増量することができ、及び/または、大気圧が低い場合には大気圧が高い場合と比較して燃料噴射量の基本量を減量することができる。   In addition to this, correction according to engine speed, intake air temperature, and / or atmospheric pressure during cranking may be added to the basic amount. That is, when the rate of increase in engine speed (the amount of increase in engine speed per unit time) is low, the basic fuel injection amount can be increased compared to when the engine speed is high. When the intake air temperature is low, the basic fuel injection amount can be increased compared to when the intake air temperature is high, and / or when the atmospheric pressure is low, the fuel injection amount can be increased compared to when the atmospheric pressure is high. The basic amount can be reduced.

尤も、本実施形態のECU0は、上に述べた燃料噴射量の基本量をそのまま用いて内燃機関のクランキングを実行するとは限らない。図2に示すように、ECU0は、内燃機関の始動時における気筒1の燃焼室の温度と冷却水の温度との乖離が大きいと考えられる場合(ステップS1)、始動時の冷却水温に基づく燃料噴射量の基本量をそのまま用いず、基本量よりも少ない量の燃料をインジェクタ11から噴射する(ステップS2)。   However, the ECU 0 of the present embodiment does not always execute cranking of the internal combustion engine using the basic fuel injection amount described above as it is. As shown in FIG. 2, when the ECU 0 is considered to have a large difference between the temperature of the combustion chamber of the cylinder 1 and the temperature of the cooling water when starting the internal combustion engine (step S1), the fuel based on the cooling water temperature at the time of starting The basic amount of the injection amount is not used as it is, and an amount of fuel smaller than the basic amount is injected from the injector 11 (step S2).

ステップS1に関して、内燃機関の始動時の燃焼室の温度と冷却水の温度との乖離が大きいか否かを判断するための手法は、複数考えられる。例えば、直近の内燃機関の運転停止から所定時間(例えば、10秒)が経過する前に内燃機関を再始動するときであって、かつその運転停止時または再始動時における冷却水温が所定値(例えば、50℃)未満である場合には、燃焼室温と冷却水温との乖離が大きいと判断することができる。逆に言えば、直近の内燃機関の停止後所定時間が経過した後に内燃機関を再始動するときや、直近の運転停止時または今回の再始動時における冷却水温が所定値以上である(即ち、前回の運転中に内燃機関の暖機が進んでいるか完了している)ときには、燃焼室温と冷却水温との乖離が小さいと判断する。この手法を採用する際には、内燃機関の停止時に計測した冷却水温をメモリに記憶保持するとともに、少なくとも所定時間が経過するまでは車載のバッテリからECU0への電力の供給を維持しておく。当該所定時間の経過後は、ECU0への通電を遮断し、バッテリに蓄えている電力の消費を避けることが可能である。   With regard to step S1, a plurality of methods are conceivable for determining whether or not the difference between the temperature of the combustion chamber and the temperature of the cooling water at the start of the internal combustion engine is large. For example, when the internal combustion engine is restarted before a predetermined time (for example, 10 seconds) has elapsed since the most recent stop of the internal combustion engine, and the cooling water temperature at the time of the stop or restart is a predetermined value ( For example, when the temperature is less than 50 ° C., it can be determined that the difference between the combustion room temperature and the cooling water temperature is large. In other words, when the internal combustion engine is restarted after a lapse of a predetermined time after the most recent internal combustion engine is stopped, or the cooling water temperature at the time of the latest operation stop or the current restart is equal to or higher than a predetermined value (that is, When the internal combustion engine has been warmed up or completed during the previous operation), it is determined that the difference between the combustion room temperature and the cooling water temperature is small. When this method is adopted, the coolant temperature measured when the internal combustion engine is stopped is stored in the memory and the supply of electric power from the in-vehicle battery to the ECU 0 is maintained until at least a predetermined time has elapsed. After the predetermined time has elapsed, it is possible to cut off the power supply to the ECU 0 and avoid the consumption of the electric power stored in the battery.

ステップS1にて、直近の内燃機関の運転停止時の燃焼室の温度を推定して、今回の始動時の燃焼室の温度と冷却水の温度との乖離が大きいか否かを判断してもよい。前回の内燃機関の始動時において燃焼室温と冷却水温との乖離が小さかったと仮定すると、前回の内燃機関の始動時の冷却水温(前回の始動時の燃焼室温と擬製できる)、及び前回の内燃機関の始動から停止までの間に気筒1に供給した吸気量または燃料噴射量の総累積量つまりは燃焼室内で発生した熱の総量(前回の始動から停止までの期間における燃焼室温の上昇量はこの熱量に概ね比例する)を基に、直近の内燃機関の停止時における燃焼室温を推定できる。このような推定方法により、気筒1に燃焼室の温度を検出するための温度センサを別途実装する必要がない。その上で、直近の内燃機関の運転停止時の冷却水温が所定値未満であり、かつその停止時からある判定時間が経過する前に内燃機関を再始動する場合に、燃焼室温と冷却水温との乖離が大きいと判断することとし、当該判定時間を、推定した内燃機関の停止時の燃焼室の温度が高いほど長く設定する。あるいは、推定した内燃機関の停止時の燃焼室の温度と、直近の内燃機関の停止時または今回の再始動時の冷却水の温度との差分を求め、この差分が所定値を上回る場合に、始動時の燃焼室温と冷却水温との乖離が大きいと判断することも考えられる。   Even in step S1, the temperature of the combustion chamber at the time of the most recent internal combustion engine stoppage is estimated, and it is determined whether or not the difference between the temperature of the combustion chamber at the start of this time and the temperature of the cooling water is large. Good. Assuming that the difference between the combustion room temperature and the coolant temperature at the start of the previous internal combustion engine was small, the coolant temperature at the start of the previous internal combustion engine (can be counterfeited with the combustion room temperature at the previous start), and the previous internal combustion engine The total amount of intake air or fuel injection supplied to the cylinder 1 from the start to the stop of the engine, that is, the total amount of heat generated in the combustion chamber (the increase in the combustion room temperature during the period from the previous start to the stop is this It is possible to estimate the combustion room temperature when the most recent internal combustion engine is stopped. With such an estimation method, it is not necessary to separately mount a temperature sensor for detecting the temperature of the combustion chamber in the cylinder 1. In addition, when the cooling water temperature at the time when the operation of the most recent internal combustion engine is stopped is less than a predetermined value and the internal combustion engine is restarted before a certain determination time has elapsed since the stop, the combustion room temperature and the cooling water temperature are The determination time is set to be longer as the estimated temperature of the combustion chamber when the internal combustion engine is stopped is higher. Alternatively, the difference between the estimated temperature of the combustion chamber when the internal combustion engine is stopped and the temperature of the cooling water when the latest internal combustion engine is stopped or restarted this time is obtained, and when this difference exceeds a predetermined value, It may be determined that the difference between the combustion room temperature at the start and the coolant temperature is large.

さらには、今回の内燃機関の始動時における燃焼室の温度を推定し、これを直接始動時の冷却水の温度と比較しても構わない。内燃機関の再始動時の燃焼室温は、直近の内燃機関の停止時の燃焼室温、直近の停止から再始動までの間の経過時間、及び内燃機関の停止中の冷却水温を基に推定できる。ニュートンの冷却の法則(近似的な経験則)によれば、燃焼室から冷却水に熱が伝わる速度は、燃焼室温と冷却水温との温度差に比例する。推定した始動時の燃焼室の温度と、始動時の冷却水の温度との差分を求め、この差分が所定値を上回る場合に、燃焼室温と冷却水温との乖離が大きいと判断することは言うまでもない。   Further, the temperature of the combustion chamber at the start of the current internal combustion engine may be estimated and compared directly with the temperature of the cooling water at the start. The combustion room temperature at the time of restart of the internal combustion engine can be estimated based on the combustion room temperature at the time of the latest stop of the internal combustion engine, the elapsed time from the latest stop to the restart, and the cooling water temperature during the stop of the internal combustion engine. According to Newton's cooling law (approximate empirical rule), the speed at which heat is transferred from the combustion chamber to the cooling water is proportional to the temperature difference between the combustion room temperature and the cooling water temperature. It goes without saying that the difference between the estimated temperature of the combustion chamber at the start and the temperature of the cooling water at the start is obtained, and that the difference between the combustion room temperature and the cooling water temperature is determined to be large when this difference exceeds a predetermined value. Yes.

ステップS2に関して、クランキング中の燃料噴射量を、内燃機関の始動時の冷却水温に基づく基本量からどのように減量するのかについても、複数の手法が考えられる。例えば、始動時の燃焼室温と冷却水温との乖離が大きいと判断した場合に、クランキング中の燃料噴射量を、その基本量から一律の量減らし、または基本量から一律の割合で減らす。あるいは、燃料噴射量を基本量から減らす量または割合を、直近の内燃機関の運転の停止時点から今回の再始動の時点までの経過時間が短いほど大きくとるようにする。これは、直近の内燃機関の停止から再始動までの時間が短いほど、気筒1の燃焼室の温度と冷却水の温度との差が大きいと考えられることによる。   Regarding step S2, a plurality of methods are conceivable as to how to reduce the fuel injection amount during cranking from the basic amount based on the coolant temperature at the start of the internal combustion engine. For example, when it is determined that the difference between the combustion room temperature at the start and the coolant temperature is large, the fuel injection amount during cranking is reduced by a uniform amount from the basic amount or by a uniform rate from the basic amount. Alternatively, the amount or ratio of reducing the fuel injection amount from the basic amount is set to increase as the elapsed time from the latest stop time of the internal combustion engine to the current restart time becomes shorter. This is because the difference between the temperature of the combustion chamber of the cylinder 1 and the temperature of the cooling water is considered to be larger as the time from the stop to restart of the internal combustion engine is shorter.

直近の内燃機関の運転停止時における燃焼室の温度を推定している場合には、その推定した燃焼室温と今回の始動時の冷却水温との差分が大きいほど、燃料噴射量を基本量から減らす量または割合を大きくとることができる。さらに、これに加えて、直近の内燃機関の停止から再始動までの時間が短いほど、燃料噴射量を基本量から減らす量または割合を大きくとるようにしてもよい。   When the temperature of the combustion chamber at the time of the most recent internal combustion engine shutdown is estimated, the fuel injection amount is reduced from the basic amount as the difference between the estimated combustion room temperature and the coolant temperature at the start of this time is larger The quantity or proportion can be large. Further, in addition to this, as the time from the latest stop to restart of the internal combustion engine is shorter, the amount or ratio of reducing the fuel injection amount from the basic amount may be increased.

また、今回の内燃機関の始動時における燃焼室の温度を推定している場合には、その推定した燃焼室温と今回の始動時の冷却水温との差分が大きいほど、燃料噴射量を基本量から減らす量または割合を大きくとる。なお、再始動時の冷却水温に基づく燃料噴射量の基本量は、ポート噴射式の内燃機関において発生するポートウェット分の燃料を加味した量となっている。ポートウェットとして吸気ポートの壁面や吸気バルブの傘部等に付着した液状の燃料は、内燃機関の始動のためのクランキング中に気筒1の燃焼室内に吸引されず、燃焼そして内燃機関の加速に寄与しない。ポートウェットの量は、燃料が噴射される吸気ポート近傍の部位の温度が低いほど多くなるが、内燃機関の再始動時におけるこの吸気ポート近傍の部位の温度は、気筒1の燃焼室の温度よりも冷却水の温度に近い。それ故、内燃機関の再始動時の燃焼室温を推定して把握している場合であっても、再始動時の冷却水温に基づく燃料噴射量の基本量をベースとして(基本量から減算する形で)実際に噴射する燃料の量を決定することには意義がある。但し、ステップS2にて、再始動時の冷却水温に基づく基本量を全く参酌せずにクランキング中の燃料噴射量を決定する、即ち推定した再始動時の燃焼室温が低いほどクランキング中に噴射する燃料の量を増やすように制御してもよい。   In addition, when the temperature of the combustion chamber at the start of the current internal combustion engine is estimated, the fuel injection amount is reduced from the basic amount as the difference between the estimated combustion room temperature and the coolant temperature at the start of the current start is larger. Increase the amount or rate of reduction. The basic fuel injection amount based on the cooling water temperature at the time of restart is an amount that takes into account the fuel for the port wet generated in the port injection internal combustion engine. The liquid fuel adhering to the wall surface of the intake port or the umbrella portion of the intake valve as the port wet is not sucked into the combustion chamber of the cylinder 1 during cranking for starting the internal combustion engine, and is used for combustion and acceleration of the internal combustion engine. Does not contribute. The amount of port wet increases as the temperature in the vicinity of the intake port where fuel is injected is lower. However, the temperature in the vicinity of the intake port when the internal combustion engine is restarted is higher than the temperature of the combustion chamber of the cylinder 1. Even the temperature of the cooling water is close. Therefore, even if the combustion room temperature at the time of restart of the internal combustion engine is estimated and grasped, the basic amount of the fuel injection amount based on the coolant temperature at the time of restart is used as a base (subtracted from the basic amount). It is meaningful to determine the amount of fuel actually injected. However, in step S2, the fuel injection amount during cranking is determined without taking into account the basic amount based on the coolant temperature at the time of restart. That is, the lower the estimated combustion room temperature at the time of restart, the more during the cranking. You may control to increase the quantity of the fuel to inject.

翻って、内燃機関の始動時における気筒1の燃焼室の温度と冷却水の温度との乖離が小さいと考えられる場合には、始動時の冷却水温に基づいた基本量の燃料をクランキング中にインジェクタ11から噴射する(ステップS3)。内燃機関の再始動時の冷却水温が同等であるならば、ステップS2を通じて決定する燃焼噴射量は、ステップS3で用いる燃料噴射量の基本量を下回る。   Conversely, when it is considered that the difference between the temperature of the combustion chamber of the cylinder 1 and the temperature of the cooling water at the start of the internal combustion engine is small, the basic amount of fuel based on the cooling water temperature at the start is being cranked. Inject from the injector 11 (step S3). If the cooling water temperature at the restart of the internal combustion engine is equal, the combustion injection amount determined through step S2 is less than the basic fuel injection amount used in step S3.

本実施形態では、停止した内燃機関の再始動時の燃料噴射量を、再始動時の内燃機関の冷却水の温度が低いほど多くなるように設定するものであって、再始動時の冷却水の温度が同等であるという条件の下で、再始動時における気筒1の燃焼室の温度と冷却水の温度との乖離が大きい場合における燃料噴射量を、燃焼室の温度と冷却水の温度との乖離がより小さい場合における燃料噴射量と比較して少なくする内燃機関の制御装置0を構成した。本実施形態によれば、暖機完了前に停止させた内燃機関をその停止後短時間で再び始動させる場合の始動不良を防止することが可能となる。   In the present embodiment, the fuel injection amount at the restart of the stopped internal combustion engine is set so as to increase as the temperature of the coolant of the internal combustion engine at the time of restart decreases. If the difference between the temperature of the combustion chamber of the cylinder 1 and the temperature of the cooling water at the time of restart is large, the fuel injection amount is expressed as the temperature of the combustion chamber and the temperature of the cooling water. The control device 0 for the internal combustion engine is configured so as to be smaller than the fuel injection amount in the case where the difference between the two is smaller. According to the present embodiment, it is possible to prevent a starting failure when the internal combustion engine that has been stopped before the completion of warm-up is restarted in a short time after the stop.

加えて、内燃機関の直近の停止時の燃焼室の温度または再始動時の燃焼室の温度を推定した上、その推定した燃焼室の温度及び再始動時の冷却水の温度に応じて再始動時の燃焼噴射量を設定するようにすれば、クランキング中の燃料噴射量を最適化することができ、無駄な燃料消費が避けられる。   In addition, the temperature of the combustion chamber at the time of the most recent stop of the internal combustion engine or the temperature of the combustion chamber at the time of restart is estimated, and then restarted according to the estimated temperature of the combustion chamber and the temperature of the cooling water at the time of restart If the fuel injection amount at the time is set, the fuel injection amount during cranking can be optimized, and unnecessary fuel consumption can be avoided.

なお、本発明は以上に詳述した実施形態に限られるものではない。各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The present invention is not limited to the embodiment described in detail above. The specific configuration of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載された内燃機関の制御に適用することができる。   The present invention can be applied to control of an internal combustion engine mounted on a vehicle or the like.

0…制御装置(ECU)
1…気筒
11…インジェクタ
12…点火プラグ
3…吸気通路
32…スロットルバルブ
4…排気通路
d…冷却水温信号
j…燃料噴射信号
0 ... Control unit (ECU)
DESCRIPTION OF SYMBOLS 1 ... Cylinder 11 ... Injector 12 ... Spark plug 3 ... Intake passage 32 ... Throttle valve 4 ... Exhaust passage d ... Cooling water temperature signal j ... Fuel injection signal

Claims (4)

停止した内燃機関の再始動時の燃料噴射量を、再始動時の内燃機関の冷却水の温度が低いほど多くなるように設定するものであって、
再始動時の冷却水の温度が同等であるという条件の下で、再始動時における気筒の燃焼室の温度と冷却水の温度との乖離が大きい場合における燃料噴射量を、燃焼室の温度と冷却水の温度との乖離がより小さい場合における燃料噴射量と比較して少なくする内燃機関の制御装置。
The fuel injection amount at the restart of the stopped internal combustion engine is set so as to increase as the temperature of the cooling water of the internal combustion engine at the restart is lower,
Under the condition that the temperature of the coolant at the time of restart is the same, the fuel injection amount when the difference between the temperature of the combustion chamber of the cylinder at the time of restart and the temperature of the coolant is large is the temperature of the combustion chamber. A control apparatus for an internal combustion engine that reduces the fuel injection amount when the deviation from the temperature of the cooling water is smaller.
内燃機関の直近の停止時の燃焼室の温度または再始動時の燃焼室の温度を推定した上で、その推定した燃焼室の温度に応じて再始動時の燃焼噴射量を設定する請求項1記載の内燃機関の制御装置。 The combustion injection amount at the time of restart is set according to the estimated temperature of the combustion chamber after estimating the temperature of the combustion chamber at the latest stop of the internal combustion engine or the temperature of the combustion chamber at the time of restart. The internal combustion engine control device described. 内燃機関の直近の停止から所定時間が経過する前に内燃機関を再始動するときであって、かつその停止時または再始動時における冷却水の温度が所定値未満である場合に、再始動時における気筒の燃焼室の温度と冷却水の温度との乖離が大きいと判断する請求項1または2記載の内燃機関の制御装置。 When restarting the internal combustion engine before the predetermined time has passed since the most recent stop of the internal combustion engine, and when the temperature of the cooling water at the stop or restart is less than the predetermined value The control apparatus for an internal combustion engine according to claim 1 or 2, wherein it is determined that the difference between the temperature of the combustion chamber of the cylinder and the temperature of the cooling water is large. 前回の内燃機関の始動時の冷却水の温度、及び前回の内燃機関の始動から停止までの間に気筒に供給した吸気量または燃料噴射量の総累積量を基に、直近の内燃機関の停止時における燃焼室の温度を推定する請求項2記載の内燃機関。 The most recent stop of the internal combustion engine based on the temperature of the cooling water at the start of the previous internal combustion engine and the total cumulative amount of intake air or fuel injection supplied to the cylinder between the start and stop of the previous internal combustion engine The internal combustion engine according to claim 2, wherein the temperature of the combustion chamber at the time is estimated.
JP2015063582A 2015-03-26 2015-03-26 Control device of internal combustion engine Pending JP2016183583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063582A JP2016183583A (en) 2015-03-26 2015-03-26 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063582A JP2016183583A (en) 2015-03-26 2015-03-26 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016183583A true JP2016183583A (en) 2016-10-20

Family

ID=57241608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063582A Pending JP2016183583A (en) 2015-03-26 2015-03-26 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016183583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148233A (en) * 2018-02-27 2019-09-05 ダイハツ工業株式会社 Control device of internal combustion engine
JP2020139410A (en) * 2019-02-26 2020-09-03 ダイハツ工業株式会社 Internal combustion engine control device
JP2020197128A (en) * 2019-05-30 2020-12-10 ダイハツ工業株式会社 Control device of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499879A (en) * 1983-04-28 1985-02-19 General Motors Corporation Fuel supply system for an internal combustion engine
JPH11315741A (en) * 1998-04-28 1999-11-16 Toyota Motor Corp Ignition timing controller of internal combustion engine
JP2006299816A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Control device for internal combustion engine
JP2007002737A (en) * 2005-06-23 2007-01-11 Toyota Motor Corp Control device for internal combustion engine
JP2010101287A (en) * 2008-10-27 2010-05-06 Nissan Motor Co Ltd Engine start control device and start control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499879A (en) * 1983-04-28 1985-02-19 General Motors Corporation Fuel supply system for an internal combustion engine
JPH11315741A (en) * 1998-04-28 1999-11-16 Toyota Motor Corp Ignition timing controller of internal combustion engine
JP2006299816A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Control device for internal combustion engine
JP2007002737A (en) * 2005-06-23 2007-01-11 Toyota Motor Corp Control device for internal combustion engine
JP2010101287A (en) * 2008-10-27 2010-05-06 Nissan Motor Co Ltd Engine start control device and start control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148233A (en) * 2018-02-27 2019-09-05 ダイハツ工業株式会社 Control device of internal combustion engine
JP7013090B2 (en) 2018-02-27 2022-01-31 ダイハツ工業株式会社 Internal combustion engine control device
JP2020139410A (en) * 2019-02-26 2020-09-03 ダイハツ工業株式会社 Internal combustion engine control device
JP2020197128A (en) * 2019-05-30 2020-12-10 ダイハツ工業株式会社 Control device of internal combustion engine
JP7345965B2 (en) 2019-05-30 2023-09-19 ダイハツ工業株式会社 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JP3741087B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP2010037968A (en) Fuel injection control device for internal combustion engine
JP2016183583A (en) Control device of internal combustion engine
JP4458019B2 (en) Control device for vehicle engine
JP6395025B2 (en) Fuel injection device for internal combustion engine
JP2011074779A (en) Fuel supply device for internal combustion engine
JP2018105164A (en) Device for controlling internal combustion engine
JP2014227937A (en) Controller of internal combustion engine
JP3900895B2 (en) Temperature sensor abnormality detection device
JP6261326B2 (en) Control device for internal combustion engine
JP2010216375A (en) Engine stop/start control device
US20140261300A1 (en) Fuel injection control apparatus for internal combustion engine
JP7218054B2 (en) Control device for internal combustion engine
JP6188346B2 (en) Control device for internal combustion engine
JP2011208560A (en) Fuel supply control device of cylinder injection engine with idle stop function
JP6395026B2 (en) Fuel injection device for internal combustion engine
JP6736207B2 (en) Control device for internal combustion engine
JP2022119661A (en) Control device of internal combustion engine
JP2015040511A (en) Injection control device for internal combustion engine
JP2008163860A (en) Intake device of fuel injection type engine
JP2014058926A (en) Control device of internal combustion engine
JP2006194110A (en) Control method of fuel feeder of internal combustion engine
JP2016070125A (en) Internal combustion engine control engine
JP6866008B2 (en) Internal combustion engine control device
JP2015048722A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205