JP2016167527A - Semiconductor module and manufacturing method of the same - Google Patents

Semiconductor module and manufacturing method of the same Download PDF

Info

Publication number
JP2016167527A
JP2016167527A JP2015046623A JP2015046623A JP2016167527A JP 2016167527 A JP2016167527 A JP 2016167527A JP 2015046623 A JP2015046623 A JP 2015046623A JP 2015046623 A JP2015046623 A JP 2015046623A JP 2016167527 A JP2016167527 A JP 2016167527A
Authority
JP
Japan
Prior art keywords
semiconductor module
sintered
electrode
semiconductor
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015046623A
Other languages
Japanese (ja)
Inventor
俊章 守田
Toshiaki Morita
俊章 守田
元脇 成久
Narihisa Motowaki
成久 元脇
玄也 能川
Genya Nokawa
玄也 能川
雄亮 保田
Yusuke Yasuda
雄亮 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015046623A priority Critical patent/JP2016167527A/en
Publication of JP2016167527A publication Critical patent/JP2016167527A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor module excellent in connection reliability even under a high temperature environment.SOLUTION: A semiconductor module according to the present embodiment comprises: a substrate having a wiring layer; a semiconductor element which is mounted on the substrate and has an electrode on a surface; and a conductive plate bonded to the electrode of the semiconductor element via a sintered metal layer. The electrode on the surface of the semiconductor element is divided into a plurality of electrodes by gate wiring parts which are inactive areas, and in the sintered metal layer, a sintered density of regions on the inactive areas is lower than that of the other regions.SELECTED DRAWING: Figure 4

Description

本発明は、焼結接合層を有する半導体モジュール及びその製造方法に関する。   The present invention relates to a semiconductor module having a sintered bonding layer and a manufacturing method thereof.

IGBTモジュール等の半導体モジュールは、半導体チップあたり数10〜数100Aの大電流を扱うため、半導体チップの大きな発熱を伴う。近年、半導体モジュールの更なる小型化が求められており、発熱密度がますます上昇する傾向にある。半導体チップと配線層の接合には、従来、耐熱性を確保するために融点が300℃程度、鉛含有率85%以上のはんだが用いられてきた。   A semiconductor module such as an IGBT module handles a large current of several tens to several hundreds A per semiconductor chip, and thus generates a large amount of heat from the semiconductor chip. In recent years, further miniaturization of semiconductor modules has been demanded, and the heat generation density tends to increase more and more. Conventionally, solder having a melting point of about 300 ° C. and a lead content of 85% or more has been used for joining a semiconductor chip and a wiring layer in order to ensure heat resistance.

しかし、地球環境への負荷を低限の観点から半導体装置の鉛フリー化が必要とされるようになった。鉛フリーのはんだ材としては、Sn−Cu系はんだ、Sn−Ag系はんだ、Sn−Sb系はんだ等が知られているが、いずれも融点が200℃程度であり、耐熱性を確保できない。   However, lead-free semiconductor devices have become necessary from the viewpoint of limiting the burden on the global environment. As lead-free solder materials, Sn—Cu solder, Sn—Ag solder, Sn—Sb solder, etc. are known, but all have a melting point of about 200 ° C. and cannot secure heat resistance.

そこで、はんだによる接合に代わるものとして、金属ナノ粒子の低温焼成機能を利用した焼結接合が期待されている。粒径が100nm以下の金属ナノ粒子では、構成原子数が少なくなると粒子の体積に対する表面積は急激に増大するため、粒子の融点や焼結温度がバルクの状態に比較して大幅に低下する。この現象を利用して金属粒子同士を低温で焼結させて接合することにより、接合後の金属粒子はバルク金属へと変化する。これと同時に被接合材同士は金属結合により接合さるため、非常に高い耐熱性と高放熱性を有する。   Therefore, as an alternative to solder bonding, sintered bonding utilizing the low-temperature firing function of metal nanoparticles is expected. In the case of metal nanoparticles having a particle size of 100 nm or less, as the number of constituent atoms decreases, the surface area with respect to the volume of the particles increases rapidly, so that the melting point and sintering temperature of the particles are significantly reduced compared to the bulk state. By utilizing this phenomenon and joining metal particles by sintering them at a low temperature, the metal particles after joining change into a bulk metal. At the same time, the materials to be joined are joined by metal bonding, and thus have extremely high heat resistance and high heat dissipation.

一方、SiやSiCで構成される半導体チップの主電極は、銅やアルミニウムなどで構成されるワイヤ、リボン等の配線材料で他のチップや電極と接続される。半導体チップの動作温度が高くなると半導体チップと配線材料の熱膨張率に差があるために、スイッチング動作(通電のONとOFFの動作)を繰り返すうちに、熱疲労で接合部が破壊されるという問題があった。   On the other hand, the main electrode of a semiconductor chip made of Si or SiC is connected to another chip or electrode by a wiring material such as a wire or ribbon made of copper or aluminum. When the operating temperature of the semiconductor chip is increased, the thermal expansion coefficient of the semiconductor chip and the wiring material are different, so that the joint portion is destroyed due to thermal fatigue while switching operation (energization ON / OFF operation) is repeated. There was a problem.

そこで、配線接続の信頼性を向上させる技術として、特許文献1には、応力緩衝の観点から配線部材と半導体チップの中間の熱膨張係数を有する金属板を用いて、熱膨張係数差の大きな接続部を無くす方法が提案されている。さらに特許文献1には半導体チップと金属板とを接合する接合材として、焼結性の銀微粒子を含有する材料を用いることが記載されている。   Therefore, as a technique for improving the reliability of wiring connection, Patent Document 1 discloses a connection with a large difference in thermal expansion coefficient using a metal plate having a thermal expansion coefficient intermediate between the wiring member and the semiconductor chip from the viewpoint of stress buffering. A method of eliminating the part has been proposed. Further, Patent Document 1 describes that a material containing sinterable silver fine particles is used as a bonding material for bonding a semiconductor chip and a metal plate.

また特許文献2には、ゲート配線部上が凸状となるような構造を有する金属板を用い、半導体チップ上のゲート配線部には接着剤を塗布せずに、導電性接着剤で半導体チップと金属板を接着させた半導体モジュールが開示されている。   Further, Patent Document 2 uses a metal plate having a structure in which a gate wiring part has a convex shape, and without applying an adhesive to the gate wiring part on the semiconductor chip, the semiconductor chip is formed with a conductive adhesive. And a semiconductor module in which a metal plate is bonded.

特開2012−28674号公報JP 2012-28684 A 特開2008−108780号公報JP 2008-108780 A

特許文献1のように、半導体チップ上に接合材を用いて接続された金属板(導電板)を介して配線材料と接続すれば、配線接合部の熱応力を低減でき、接続信頼性向上に有効である。しかし、絶縁基板の回路面と半導体チップとの接合部(以下、チップ下接合部という)、及び半導体チップ上面の主電極と導電板との接合部(以下、チップ上接合部という)を焼結金属層とした場合には、半導体チップの動作時または半導体装置周囲の温度変化に伴う熱ひずみがチップ上接合部に集中するという課題がある。これは、チップ下接合部では絶縁基板によって変形が拘束されるのに対して、チップ上接合部は変形が拘束されず動きやすい構造となるためである。特に、銅で構成される焼結金属層は従来のはんだ材に比べて硬く、接合部で熱ひずみを吸収しにくいという問題がある。さらに、半導体チップの動作温度が高くなり、特にジャンクション温度(Tj)が150℃を超えると、チップ上接合部に集中する熱応力が大きくなる。熱ひずみや熱応力がチップ上接合部に集中すると、チップ上接合部の接合層端部を起点する接合界面での破壊や半導体チップ端部の破損を招くおそれがあり、高温動作環境における所望の信頼性が得られない。   If it connects with a wiring material via the metal plate (conductive plate) connected on the semiconductor chip using the joining material like patent document 1, the thermal stress of a wiring junction part can be reduced and connection reliability improves. It is valid. However, the bonded portion between the circuit surface of the insulating substrate and the semiconductor chip (hereinafter referred to as a lower chip bonded portion) and the bonded portion between the main electrode on the upper surface of the semiconductor chip and the conductive plate (hereinafter referred to as an upper chip bonded portion) are sintered. In the case of the metal layer, there is a problem that thermal strain accompanying a temperature change around the semiconductor device during operation of the semiconductor chip concentrates on the on-chip junction. This is because, while deformation is restrained by the insulating substrate at the joint portion below the chip, the joint portion on the chip has a structure that is easy to move without restraining deformation. In particular, a sintered metal layer made of copper is harder than conventional solder materials and has a problem that it is difficult to absorb thermal strain at the joint. Furthermore, when the operating temperature of the semiconductor chip increases, and particularly when the junction temperature (Tj) exceeds 150 ° C., the thermal stress concentrated on the on-chip junction increases. Concentration of thermal strain and thermal stress on the on-chip junction may cause damage at the bonding interface starting from the bonding layer end of the on-chip bonding or damage to the semiconductor chip end, which is desirable in a high-temperature operating environment. Reliability cannot be obtained.

また、焼結金属層の形成には加圧プロセスを要するため、加圧時にゲート配線部にダメージが加わり、初期不良としてゲート配線部とエミッタ配線部間の短絡を生じることがあり、製造歩留りを低減させる主要因となっていた。   In addition, the formation of the sintered metal layer requires a pressurization process, which may damage the gate wiring part during pressurization and may cause a short circuit between the gate wiring part and the emitter wiring part as an initial failure. It was the main factor to reduce.

特許文献2のように金属板に曲部を設けると、ばね作用により曲部端部に応力集中が生じ、金属板が導電性接着剤による接着部から剥れる不良が生じやすくなる。   When a bent portion is provided on the metal plate as in Patent Document 2, stress concentration occurs at the end portion of the bent portion due to the spring action, and a defect that the metal plate peels off from the bonded portion due to the conductive adhesive tends to occur.

そこで本発明は、高温環境であっても接続信頼性に優れる半導体モジュールを提供することを目的とする。   Accordingly, an object of the present invention is to provide a semiconductor module that is excellent in connection reliability even in a high temperature environment.

本発明の半導体モジュールは、配線層を有する基板と、基板に搭載され、表面に電極を有する半導体素子と、半導体素子の電極と焼結金属層を介して接合された導電板と、を備え、電極は、ゲート配線部によって複数の電極に分割されており、焼結金属層は、ゲート配線部の上部の領域が電極の上部の領域よりも焼結密度が低いことを特徴とする。   A semiconductor module of the present invention includes a substrate having a wiring layer, a semiconductor element mounted on the substrate and having an electrode on the surface, and a conductive plate bonded to the electrode of the semiconductor element via a sintered metal layer, The electrode is divided into a plurality of electrodes by the gate wiring portion, and the sintered metal layer is characterized in that the upper region of the gate wiring portion has a lower sintering density than the upper region of the electrode.

本発明により、高温環境であっても接続信頼性に優れる半導体モジュールを提供できる。   According to the present invention, a semiconductor module having excellent connection reliability even in a high temperature environment can be provided.

本発明の一実施形態に係る絶縁型半導体装置の平面図である。It is a top view of the insulation type semiconductor device concerning one embodiment of the present invention. 本発明の一実施形態に係る絶縁型半導体装置の断面図である。It is sectional drawing of the insulation type semiconductor device which concerns on one Embodiment of this invention. 図1(b)に係る半導体装置の拡大図である。FIG. 2 is an enlarged view of the semiconductor device according to FIG. 本発明の実施例1に係る半導体チップ搭載部の詳細構造を示す図である。It is a figure which shows the detailed structure of the semiconductor chip mounting part which concerns on Example 1 of this invention. 実施例1に係る接合材料の塗布パターンを示す図である。It is a figure which shows the application pattern of the joining material which concerns on Example 1. FIG. 比較例1に係る半導体素子搭載部の詳細構造を示す図である。6 is a diagram illustrating a detailed structure of a semiconductor element mounting portion according to Comparative Example 1. FIG. 比較例1に係る接合材料の塗布パターンを示す図である。It is a figure which shows the application pattern of the joining material which concerns on the comparative example 1. FIG. 実施例1および比較例1のパワーサイクル耐性を示す図である。It is a figure which shows the power cycle tolerance of Example 1 and Comparative Example 1. パワーサイクル試験後の比較例1の半導体モジュールの断面状態を示した模式図である。It is the schematic diagram which showed the cross-sectional state of the semiconductor module of the comparative example 1 after a power cycle test.

本発明を実施するための形態を、図1(a)(b)を用いて説明する。図1(a)は本発明を適用した絶縁型半導体モジュールの平面図を示したものであり、図1(b)は図1(a)におけるA−A’の断面図を示したものである。   A mode for carrying out the present invention will be described with reference to FIGS. FIG. 1A is a plan view of an insulating semiconductor module to which the present invention is applied, and FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. .

図1に係るパワー半導体モジュールは、基板103と、基板に搭載され、表面に電極106´を有する半導体素子101と、焼結金属層105を介して電極106´と接合された導電板150と、を備える。なお、図1における他の符号は、それぞれ、ケース111、外部端子112、ボンディングワイヤ113、封止材114を示している。   The power semiconductor module according to FIG. 1 includes a substrate 103, a semiconductor element 101 mounted on the substrate and having an electrode 106 ′ on the surface, a conductive plate 150 joined to the electrode 106 ′ via a sintered metal layer 105, Is provided. 1 indicate the case 111, the external terminal 112, the bonding wire 113, and the sealing material 114, respectively.

半導体素子の表面電極と接続される導電板にはワイヤやリボンなどの配線部材が接続され、配線部材によって他のチップや電極と接続される。導電板には、半導体素子と配線部材の熱膨張率差による熱応力を緩和する役割と、半導体素子からの熱を放熱する役割が求められる。   A wiring member such as a wire or a ribbon is connected to the conductive plate connected to the surface electrode of the semiconductor element, and is connected to another chip or electrode by the wiring member. The conductive plate is required to have a role of relieving thermal stress due to a difference in thermal expansion coefficient between the semiconductor element and the wiring member and a role of radiating heat from the semiconductor element.

導電板としては、半導体素子と配線部材の中間の熱膨張率を有し、熱伝導率が100W/mK以上の材料を用いることが好ましい。さらに導電部材として、半導体素子の電極面に水平な方向が垂直な方向より熱伝導率が高い材料を用いることが好ましい。半導体素子の発熱が上部のワイヤやリボンなどの配線に伝わる前に導電板の素子面に沿った面内で熱が拡散し、良好な均熱効果が得られるため、素子の特定部分だけが高温になってワイヤもしくはリボンが剥がれることが無くなり、チップ全体として配線接続信頼性が向上するためである。例えば、ある面の熱伝導率が20W/mK、その直交方向の熱伝導率が2000W/mKといった熱伝導異方性を有するグラファイト繊維と金属(銅、アルミニウムなど)を複合化した材料を用いることができる。また、銅/インバー/銅のクラッド材料など、異なる熱伝導率を有する層を積層した材料を用いることもできる。これはインバー(鉄ニッケル合金)の熱伝導率(13W/mK)が銅の熱伝導率(400W/mK)よりも小さいため半導体チップの発熱を上部に伝えにくく、チップ面に沿って銅内部を熱が伝播し均熱化されるためである。さらに、銅(熱膨張率約16ppm/K)とインバー(熱膨張率約1ppm/K)の比率によって熱膨張率をSiやSiC(3〜5ppm/K)と配線部材(Al約23ppm/K、Cu約16ppm/K)の中間の好ましい値に調整することが可能であり、熱応力を低減できるためである。例えば銅/インバー/銅比を1/1/1にすることで約11ppm/Kの熱膨張率が得られ、熱膨張差の大きい材料の接続部を作らずに済む。その結果、配線接続信頼性も、導電部材のチップへの接続信頼性も向上させることができる。   As the conductive plate, it is preferable to use a material having a thermal expansion coefficient intermediate between the semiconductor element and the wiring member and having a thermal conductivity of 100 W / mK or more. Furthermore, it is preferable to use a material having a higher thermal conductivity in the horizontal direction than the direction perpendicular to the electrode surface of the semiconductor element as the conductive member. Before the heat generated in the semiconductor element is transmitted to the wiring such as the upper wires and ribbons, heat is diffused in the plane along the element surface of the conductive plate, and a good soaking effect is obtained. This is because the wire or ribbon is not peeled off and the wiring connection reliability is improved as a whole chip. For example, use a material in which graphite fiber and metal (copper, aluminum, etc.) having thermal conductivity anisotropy such as thermal conductivity of a certain surface of 20 W / mK and orthogonal thermal conductivity of 2000 W / mK are combined. Can do. Further, a material in which layers having different thermal conductivities such as a copper / invar / copper cladding material are laminated can also be used. This is because the thermal conductivity (13 W / mK) of Invar (iron-nickel alloy) is smaller than the thermal conductivity (400 W / mK) of copper, so it is difficult for the heat generated in the semiconductor chip to be transmitted to the upper part. This is because the heat propagates and is soaked. Furthermore, the coefficient of thermal expansion is changed to Si or SiC (3 to 5 ppm / K) and the wiring member (Al about 23 ppm / K, Al by the ratio of copper (thermal expansion coefficient about 16 ppm / K) and Invar (thermal expansion coefficient about 1 ppm / K). This is because it can be adjusted to an intermediate preferable value of Cu of about 16 ppm / K) and thermal stress can be reduced. For example, by setting the copper / invar / copper ratio to 1/1/1, a thermal expansion coefficient of about 11 ppm / K can be obtained, and it is not necessary to make a connection portion of a material having a large thermal expansion difference. As a result, both the wiring connection reliability and the connection reliability of the conductive member to the chip can be improved.

なお、応力緩和、加工コスト等の観点から、導電板は平板形状であることが好ましい。   In addition, it is preferable that a electrically conductive board is flat form from viewpoints, such as stress relaxation and processing cost.

本実施形態で用いる基板103は、絶縁基板と配線層とから構成される。絶縁基板は半導体装置で必要とされる耐電圧性と強度を保持していればよく、セラミックス板が適当である。セラミックス板としては、Al等の酸化物材料、または熱伝導率および強度の高いAlNやSiNの窒化物系材料が好ましい。以下では、絶縁基板としてセラミックス絶縁基板を用いた半導体モジュールについて説明する。 The substrate 103 used in this embodiment includes an insulating substrate and a wiring layer. The insulating substrate only needs to retain the voltage resistance and strength required by the semiconductor device, and a ceramic plate is appropriate. As the ceramic plate, an oxide material such as Al 2 O 3 or a nitride material of AlN or SiN having high thermal conductivity and strength is preferable. Hereinafter, a semiconductor module using a ceramic insulating substrate as the insulating substrate will be described.

図2は、図1に係る半導体モジュールの素子周辺部の断面詳細図である。図2において、セラミックス絶縁基板103上の配線層102と半導体素子101のコレクタ電極106’とは焼結金属層105(第1の焼結金属層)で接合されている。半導体素子のエミッタ電極106と導電板150とは焼結金属層105’(第2の焼結金属層)で接合されている。また、導電板150は銅リボン113によってセラミックス絶縁基板103上の配線層104と接続されている。セラミックス絶縁基板103の裏面に設けられた配線層102は支持部材110にはんだ層109を介して接合されている。配線層102、ゲート配線部104は、例えば銅配線である。   2 is a detailed cross-sectional view of the periphery of the element of the semiconductor module according to FIG. In FIG. 2, the wiring layer 102 on the ceramic insulating substrate 103 and the collector electrode 106 'of the semiconductor element 101 are joined by a sintered metal layer 105 (first sintered metal layer). The emitter electrode 106 of the semiconductor element and the conductive plate 150 are joined by a sintered metal layer 105 ′ (second sintered metal layer). The conductive plate 150 is connected to the wiring layer 104 on the ceramic insulating substrate 103 by a copper ribbon 113. The wiring layer 102 provided on the back surface of the ceramic insulating substrate 103 is bonded to the support member 110 via the solder layer 109. The wiring layer 102 and the gate wiring portion 104 are, for example, copper wiring.

半導体素子としては、IGBTチップ、MOS・FET、サイリスタ、ゲートターンオフサイリスタ、トライアック等を用いることができる。半導体素子は、表面及び裏面に電極を有し、表面に備える電極はゲート配線部により複数の電極に分割されている。なお、ゲート電極の位置は、半導体素子の端部であっても真ん中であってもよい。   As the semiconductor element, an IGBT chip, a MOS • FET, a thyristor, a gate turn-off thyristor, a triac, or the like can be used. The semiconductor element has electrodes on the front surface and the back surface, and the electrode provided on the front surface is divided into a plurality of electrodes by the gate wiring portion. Note that the position of the gate electrode may be the end portion or the middle of the semiconductor element.

半導体素子101と導電板150とを接合する焼結金属層105´について、図3を用いて説明する。半導体素子表面の電極は、非アクティブエリアであるゲート配線部104によって複数の電極(アクティブエリア106)に分割されており、焼結金属層105´は、ゲート配線部上の領域が電極上の領域よりも焼結密度が低い。このように、半導体素子101と導電板150とを接合する焼結金属層(第2の焼結接合層)105´に、半導体素子の非アクティブエリアであるゲート配線上に位置する領域の焼結密度をアクティブエリア上の部位より低くすることにより、ゲート配線部に集中する熱ひずみを抑えることができる。これにより、チップ上の接合層の接続信頼性を向上することが可能となる。   A sintered metal layer 105 ′ for joining the semiconductor element 101 and the conductive plate 150 will be described with reference to FIG. The electrode on the surface of the semiconductor element is divided into a plurality of electrodes (active area 106) by the gate wiring portion 104 which is an inactive area, and the sintered metal layer 105 ′ has a region on the gate wiring region. The sintered density is lower than that. As described above, the sintered metal layer (second sintered bonding layer) 105 ′ for bonding the semiconductor element 101 and the conductive plate 150 is sintered in the region located on the gate wiring which is the inactive area of the semiconductor element. By making the density lower than the portion on the active area, thermal strain concentrated on the gate wiring portion can be suppressed. As a result, the connection reliability of the bonding layer on the chip can be improved.

さらに半導体素子の主電極が、非アクティブエリアであるゲート配線部によって複数の電極に分割されている構造のとき、チップ上接合部の焼結層によりこのゲート配線部位にダメージが加えられ、例えばゲートと主電極であるエミッタ間の短絡不良、エミッタとコレクタ間の主耐圧低下不良などを生じてしまうことがあった。半導体素子と導電板とを接合する焼結金属層の焼結密度を制御することにより、ゲート配線部位へのダメージを抑制することが可能となる。   Further, when the main electrode of the semiconductor element is divided into a plurality of electrodes by the gate wiring part which is an inactive area, the gate wiring part is damaged by the sintered layer of the joint part on the chip. In some cases, a short circuit failure occurs between the main electrode and the emitter and a main breakdown voltage drop failure occurs between the emitter and the collector. By controlling the sintering density of the sintered metal layer that joins the semiconductor element and the conductive plate, damage to the gate wiring region can be suppressed.

ここで、焼結金属層とは、金属粒子同士が金属結合した焼結層をいい、未焼結金属を含んでいてもよい。未焼結部位が含まれることにより、焼結層の耐熱疲労寿命の向上が見込める。   Here, the sintered metal layer refers to a sintered layer in which metal particles are metal-bonded, and may include an unsintered metal. By including an unsintered part, the heat-resistant fatigue life of a sintered layer can be improved.

半導体素子表面の主電極上の焼結金属層の厚さは、ゲート配線部の高さ(厚さ)よりも大きいことが好ましい。このような構成とすることで、焼結金属層を形成する際の加圧プロセスにおいて、ゲート配線部を無加圧もしくは低加圧とすることができる。その結果、ゲート配線部へのダメージを抑制し、ゲート配線部とエミッタ配線部間の短絡を抑制することができる。   The thickness of the sintered metal layer on the main electrode on the surface of the semiconductor element is preferably larger than the height (thickness) of the gate wiring portion. With such a configuration, the gate wiring portion can be made non-pressurized or low-pressurized in the pressurization process when forming the sintered metal layer. As a result, damage to the gate wiring portion can be suppressed, and a short circuit between the gate wiring portion and the emitter wiring portion can be suppressed.

本発明において、基板と半導体素子とを焼結金属層により接合する場合、半導体素子の電極と導電板を接合する焼結金属層(第2の焼結金属層)よりも、基板と半導体素子とを接合する焼結金属層(第1の焼結金属層)の剛性が高いことが放熱性向上の観点から好ましい。   In the present invention, when the substrate and the semiconductor element are bonded together by the sintered metal layer, the substrate and the semiconductor element are more bonded than the sintered metal layer (second sintered metal layer) that bonds the electrode of the semiconductor element and the conductive plate. From the viewpoint of improving heat dissipation, it is preferable that the sintered metal layer (first sintered metal layer) for bonding the layers has a high rigidity.

熱抵抗低減、接着性向上の観点から、焼結金属層は、ゲート配線部上の領域の焼結密度が30〜 60%(空隙率40〜70%)、電極上の領域の焼結密度が60〜90%(空隙率10〜40%)であることが好ましい。ゲート配線部上に空洞部を有していてもよい。また、非アクティブエリア上の焼結密度より、アクティブエリア上接合層の焼結密度を10%以上高くすることが望ましい。シミュレーション解析によると、アクティブエリア上接合層の焼結密度を10%以上高くすることにより熱応力耐性が約2倍向上するためである。その結果、パワーサイクル耐性を従来はんだの10倍以上向上することが可能となる。なお、焼結密度は、接合部断面写真から、金属部と空隙部を二値化処理により分離し、観察した接合層に対する空隙部の割合を算出処理することにより測定することができる。   From the viewpoint of reducing thermal resistance and improving adhesiveness, the sintered metal layer has a sintered density of 30 to 60% in the region on the gate wiring portion (porosity of 40 to 70%) and a sintered density in the region on the electrode. It is preferable that it is 60 to 90% (porosity 10 to 40%). A hollow portion may be provided on the gate wiring portion. Moreover, it is desirable that the sintering density of the bonding layer on the active area is higher by 10% or more than the sintering density on the non-active area. This is because, according to the simulation analysis, by increasing the sintered density of the bonding layer on the active area by 10% or more, the thermal stress resistance is improved about twice. As a result, it becomes possible to improve the power cycle resistance by 10 times or more compared to the conventional solder. The sintered density can be measured by separating the metal part and the void part from the cross-sectional photograph of the joint part by binarization and calculating the ratio of the void part to the observed joining layer.

焼結密度は、焼結金属層を形成する際の加熱時の昇温条件や加圧条件、接合材料の塗布量を変更することにより調整することができる。また、接合材料の塗布量は、ペースト塗布に用いるマスクパターンの粗密を変えたり、ディスペンス時の滴下量を変えることで、調整できる。   The sintered density can be adjusted by changing the heating conditions and pressure conditions during heating when forming the sintered metal layer, and the application amount of the bonding material. Moreover, the application amount of the bonding material can be adjusted by changing the density of the mask pattern used for applying the paste or changing the dropping amount during dispensing.

半導体素子と導電板とを接合する焼結金属層(第2の焼結金属層)の焼結密度を調整する方法は特に限定されないが、例えば、アクティブエリアに対応するようにディスペンサを用いてペースト状の接合材を塗布した後、導電板を所定位置に設置し、導電板と半導体チップとを回路基板上に加圧し、加熱する方法、半導体チ素子上のアクティブエリアに接合材を印刷して加圧加熱接合する方法、導電板に半導体チップのアクティブエリアパターンに対応するように接合材を印刷形成して加圧加熱接合する方法などが挙げられる。例えば、ゲート配線部上に空洞部を有する構造とする場合には、半導体素子表面の電極上にのみ接合材料を塗布した後、接合材料の上から導電板を載せ、加圧下で焼結することにより半導体素子と導電板とを接合する工程により、半導体素子と導電板とを接合する焼結金属層において、ゲート配線部上の焼結密度より、電極上接合層の焼結密度を高くすることができる。   The method for adjusting the sintered density of the sintered metal layer (second sintered metal layer) for joining the semiconductor element and the conductive plate is not particularly limited. For example, a paste is used using a dispenser so as to correspond to the active area. After applying the bonding material, the conductive plate is placed in place, the conductive plate and the semiconductor chip are pressed onto the circuit board and heated, and the bonding material is printed on the active area on the semiconductor device. Examples thereof include a method of pressurizing and heating, a method of printing and forming a bonding material on the conductive plate so as to correspond to the active area pattern of the semiconductor chip, and pressurizing and heating. For example, in the case of a structure having a hollow portion on the gate wiring portion, after applying a bonding material only on the electrode on the surface of the semiconductor element, a conductive plate is placed on the bonding material and sintered under pressure. In the sintered metal layer for joining the semiconductor element and the conductive plate by the step of joining the semiconductor element and the conductive plate, the sintering density of the on-electrode joining layer is made higher than the sintered density on the gate wiring portion. Can do.

焼結接合層を形成するための接合材料は、少なくとも平均粒径1nm以上5μm以下の金属粒子、金属酸化物粒子、金属塩粒子のいずれかと、溶剤とを含む。金属粒子として、例えば、銀、銅、金、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、珪素、アルミニウム等の中から1種類の金属あるいは2種類以上の金属からなる合金を用いることが可能である。酸化物粒子としては酸化金、酸化第一銀、酸化第二銀、酸化第二銅を用いることが可能である。金属塩粒子としてはカルボン酸金属塩として酢酸銀、ネオデカン酸銀塩などをもちいることが可能である。平均粒径が5μmより大きくなると、接合中に粒径が100nm以下の金属銅粒子が生成されにくくなり、これにより粒子間の隙間が多くなり、緻密な接合層を得ることが困難になるためである。また、1nm以上としたのは、平均粒子が1nm未満とすると粒子前駆体を実際に作製することが困難なためである。   The bonding material for forming the sintered bonding layer includes at least one of metal particles, metal oxide particles, metal salt particles having an average particle diameter of 1 nm to 5 μm, and a solvent. Examples of metal particles include silver, copper, gold, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, silicon, and aluminum. It is possible to use an alloy composed of one kind of metal or two or more kinds of metals. As oxide particles, gold oxide, primary silver oxide, secondary silver oxide, and cupric oxide can be used. As the metal salt particles, silver acetate, silver neodecanoate or the like can be used as the carboxylic acid metal salt. When the average particle size is larger than 5 μm, it becomes difficult to form copper metal particles having a particle size of 100 nm or less during bonding, which increases gaps between the particles and makes it difficult to obtain a dense bonding layer. is there. The reason why the thickness is 1 nm or more is that it is difficult to actually produce a particle precursor when the average particle is less than 1 nm.

接合材料としては、酸化銅粒子を含む材料を用いることが好ましい。酸化銅粒子を用いて水素雰囲気下で部材間を接合することにより、特にCu電極、Ni電極に対して優れた接合強度を得ることができるためである。また、酸化銅からなる金属酸化物粒子は還元時に酸素のみを発生するために、接合後における残渣も残りにくく、体積減少率も非常に小さい。   As the bonding material, it is preferable to use a material containing copper oxide particles. This is because by bonding copper oxide particles to each other in a hydrogen atmosphere, excellent bonding strength can be obtained particularly for Cu electrodes and Ni electrodes. In addition, since metal oxide particles made of copper oxide generate only oxygen during reduction, residues after bonding are hardly left and the volume reduction rate is very small.

有機溶媒中での分散性を向上させるためには、金属粒子に有機物で被覆するのが良い。例えば、窒素原子を含むアミノ基、酸素原子を含むアルコール基、カルボキシル基、硫黄基を含むスルフォン基等の有機物が適している。この中でもカルボキシル基が金属粒子との結合性が高いことから分散材としては好ましい。例えば、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、オレイン酸があげられる。この中でも特に炭素数の多い方が分散性に優れていることから、炭素数が10以上の上記アルキルカルボン酸を選択することが好ましい。   In order to improve dispersibility in an organic solvent, it is preferable to coat metal particles with an organic substance. For example, organic substances such as amino groups containing nitrogen atoms, alcohol groups containing oxygen atoms, carboxyl groups, and sulfone groups containing sulfur groups are suitable. Among these, a carboxyl group is preferable as a dispersion material because of its high binding property to metal particles. For example, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, icosanoic acid, Examples include oleic acid. Among them, the alkyl carboxylic acid having 10 or more carbon atoms is preferably selected because the one having a larger number of carbon atoms is excellent in dispersibility.

溶剤は、金属粒子を有機溶媒に分散させ、かつ接合後に接合層中に残存しない有機物が好ましい。例えば、トルエン、メタノール、エタノール等のアルコール類、また、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロペンタン、シクロヘキサン、シクロオクタン、ベンゼン、トルエン、キシレン、エチルベンゼン、水等を用いることができる。この中でもアルコール類に関しては特にグリコール系の融点が低く、またアルコール系であることから環境への負荷も小さいことから好ましい。   The solvent is preferably an organic substance in which metal particles are dispersed in an organic solvent and does not remain in the bonding layer after bonding. For example, alcohols such as toluene, methanol, and ethanol, hexane, heptane, octane, decane, dodecane, cyclopentane, cyclohexane, cyclooctane, benzene, toluene, xylene, ethylbenzene, water, and the like can be used. Among these, alcohols are preferred because they have a particularly low glycol-based melting point and a low environmental load because they are alcohol-based.

焼結接合層を形成するための接合方法としては公知の方法を適用することが可能である。接合材料の塗布方法は、例えば、塗布部分を開口したメタルマスクを用いて必要部分にのみ塗布を行う方法、ディスペンサを用いて必要部分に塗布する方法、シリコーンやフッ素等を含む撥水性の樹脂を必要な部分のみ開口したメタルマスクやメッシュ状マスクで塗布する方法、感光性のある撥水性樹脂を基板あるいは電子部品上に塗布し、露光および現像することにより接合材料を塗布する部分を除去し、接合用ペーストをその開口部に塗布する方法や、さらには撥水性樹脂を基板あるいは電子部品に塗布後、接合材料を塗布する部分をレーザーにより除去した後、接合用ペーストをその開口部に塗布する方法などが挙げられる。これらの塗布方法は、接合する電極の面積、形状に応じて組み合わせ可能である。   As a bonding method for forming the sintered bonding layer, a known method can be applied. The bonding material is applied by, for example, a method of applying only to a necessary portion using a metal mask having an opening on the application portion, a method of applying to a required portion using a dispenser, a water-repellent resin containing silicone, fluorine, or the like. A method of applying with a metal mask or a mesh-like mask that opens only the necessary part, applying a photosensitive water-repellent resin on a substrate or electronic component, removing the part where the bonding material is applied by exposure and development, A method of applying the bonding paste to the opening, or after applying the water-repellent resin to the substrate or electronic component, removing the portion to which the bonding material is applied with a laser, and then applying the bonding paste to the opening The method etc. are mentioned. These application methods can be combined according to the area and shape of the electrodes to be joined.

焼結金属層を形成させるためには、加圧下で焼結するプロセスを経ることが好ましい。熱と0.01〜5MPaの圧力を加えることにより、金属粒子前駆体から粒径が100nm以下の金属粒子が生成する。金属粒子同士は有機物を排出しながら融着することにより、金属結合が形成される。接合時の雰囲気は水素、ギ酸を含んだ還元雰囲気、非酸化雰囲気でもよい。接合材料に含まれる金属粒子は、接合時の加熱還元によって純金属超微粒子となった後、相互に融合してバルクになる。バルクになった後の溶融温度は通常のバルクの状態での金属の溶融温度と同じであり、純金属超微粒子は低温の加熱で溶融し、溶融後はバルクの状態での溶融温度に加熱されるまで再溶融しないという特徴を有する。したがって、低い温度で接合することができるが、接合後は溶融温度が向上することから、その後、他の電子部品を接合している際に接合部が再溶融しないというメリットをもたらす。なお、焼結接合層としては、焼結銅の他にも焼結銀も適用が可能であるが、焼結銅を用いることがより好ましい。これは、焼結銀よりも焼結銅の方が空孔拡散が少なく温度上昇に起因するボイド発生が抑制されるためである。   In order to form a sintered metal layer, it is preferable to go through a process of sintering under pressure. By applying heat and a pressure of 0.01 to 5 MPa, metal particles having a particle size of 100 nm or less are generated from the metal particle precursor. A metal bond is formed by fusing metal particles while discharging organic substances. The atmosphere during bonding may be a reducing atmosphere containing hydrogen or formic acid, or a non-oxidizing atmosphere. The metal particles contained in the bonding material become pure metal ultrafine particles by heat reduction at the time of bonding, and then fuse together to become a bulk. The melting temperature after becoming bulk is the same as the melting temperature of metals in the normal bulk state, and the ultrafine metal particles are melted by low-temperature heating, and after melting, they are heated to the melting temperature in the bulk state. It does not re-melt until Therefore, although it can join at low temperature, since a melting temperature improves after joining, when joining other electronic components after that, there exists a merit that a junction part does not remelt. As the sintered bonding layer, sintered silver can be applied in addition to sintered copper, but it is more preferable to use sintered copper. This is because sintered copper has less vacancy diffusion than sintered silver, and void generation due to temperature rise is suppressed.

以下、本発明の実施例を説明するが、本発明は、以下の実施形態に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following embodiments.

実施例1では、図3に係るパワー半導体モジュールを作製した。半導体素子101は12mm×12mmのIGBTチップを用いた。このIGBTのコレクタ側の電極構造はAl/Ti/Niで最表面はNiである。IGBTのエミッタ側はAl/Niで最表面はNiである。   In Example 1, a power semiconductor module according to FIG. 3 was produced. As the semiconductor element 101, a 12 mm × 12 mm IGBT chip was used. The electrode structure on the collector side of this IGBT is Al / Ti / Ni and the outermost surface is Ni. The emitter side of the IGBT is Al / Ni and the outermost surface is Ni.

実施例1の焼結接合層105と焼結接合層105’の形成方法を説明する。接合材料は、平均粒径が1nm〜5μmの酸化銅粒子と有機溶剤とを含む材料を用いた。焼結金属層105、105´を形成するための接合材料は、88wt%の酸化第二銅粒子(接合後は純銅化している)と12wt%のジエチレングリコールモノブチルエーテルを混合したものを用いた。   A method for forming the sintered bonding layer 105 and the sintered bonding layer 105 ′ of Example 1 will be described. As the bonding material, a material containing copper oxide particles having an average particle diameter of 1 nm to 5 μm and an organic solvent was used. As a bonding material for forming the sintered metal layers 105 and 105 ′, a mixture of 88 wt% cupric oxide particles (purified after bonding) and 12 wt% diethylene glycol monobutyl ether was used.

セラミックス絶縁基板103の配線層102上の接合箇所にメタルマスクによって接合材料を印刷した。印刷した接合材料の上に半導体チップ101を配置し、大気中で60℃の熱を約10分間加える予備加熱を行った。予備加熱により、不要な有機溶剤成分を除去し、ガス発生を抑制することが可能である。予備加熱後の構造物について、加圧状態(0.5MPa)、水素中で、温度を300℃に上昇させた後15分間保持した。なお、本実施例では圧力を加えたままとしたが、300℃保持時での加圧は必須ではない。以上のプロセスにより、半導体素子101のコレクタ電極106’と配線層102とを焼結接合層105で接合した。   A bonding material was printed with a metal mask at a bonding portion on the wiring layer 102 of the ceramic insulating substrate 103. The semiconductor chip 101 was placed on the printed bonding material, and preheating was performed by applying heat at 60 ° C. for about 10 minutes in the atmosphere. Preliminary heating can remove unnecessary organic solvent components and suppress gas generation. About the structure after preheating, after raising the temperature to 300 degreeC in the pressurization state (0.5 MPa) and hydrogen, it hold | maintained for 15 minutes. In this embodiment, the pressure is kept applied, but pressurization at the time of holding at 300 ° C. is not essential. Through the above process, the collector electrode 106 ′ of the semiconductor element 101 and the wiring layer 102 were joined by the sintered joining layer 105.

次に、半導体チップ101のエミッタ電極106の接合箇所(アクティブエリア)にディスペンサによって接合材料を塗布した。図4に半導体素子上の接合材料の塗布状態を示す。図4に示すように接合材料はエミッタ電極部上にのみ塗布した。この半導体チップ101上に導電板150を配置し、0.8MPaで加圧状態に置く。この後の工程は焼結金属層105と同様の条件で、半導体チップ101のエミッタ電極106とを焼結金属層105’で接合した。   Next, a bonding material was applied to the bonding portion (active area) of the emitter electrode 106 of the semiconductor chip 101 by a dispenser. FIG. 4 shows the application state of the bonding material on the semiconductor element. As shown in FIG. 4, the bonding material was applied only on the emitter electrode portion. A conductive plate 150 is placed on the semiconductor chip 101 and placed in a pressurized state at 0.8 MPa. Subsequent steps were performed by joining the emitter electrode 106 of the semiconductor chip 101 with the sintered metal layer 105 ′ under the same conditions as the sintered metal layer 105.

以上の製造工程により、焼結密度が約70%(空隙率30%)の焼結金属層105と、アクティブエリア上の焼結密度が約70%(空隙率30%)、非アクティブエリア上の焼結密度が約50%(空隙率50%)の焼結金属層105´を備えるパワー半導体モジュールを作製した。エミッタ電極の接合箇所にのみ接合材料を塗布しても、加圧により接合材料がはみ出し、非アクティブエリアにも焼結金属層が形成された。なお、実施例1において焼結接合層105、105´の厚さは80μmであった。   Through the above manufacturing process, the sintered metal layer 105 having a sintered density of about 70% (porosity 30%) and the sintered density on the active area of about 70% (porosity 30%) A power semiconductor module including a sintered metal layer 105 ′ having a sintered density of about 50% (a porosity of 50%) was produced. Even when the bonding material was applied only to the junction of the emitter electrode, the bonding material protruded by pressurization, and a sintered metal layer was formed also in the inactive area. In Example 1, the thickness of the sintered bonding layers 105 and 105 ′ was 80 μm.

実施例2では、接合時の予備乾燥条件を調整することによって焼結密度の異なる焼結接合層105’を形成した例を説明する。なお、焼結金属層の形成方法が異なるだけで、パワー半導体モジュールの構造は実施例1と同様である。   In Example 2, an example will be described in which sintered bonding layers 105 ′ having different sintering densities are formed by adjusting predrying conditions during bonding. The structure of the power semiconductor module is the same as that of the first embodiment except that the method for forming the sintered metal layer is different.

セラミックス絶縁基板103の配線層102上の接合箇所にメタルマスクによって接合材料を印刷し、その上に半導体チップ101を配置した。次に、半導体チップ101のエミッタ電極106の接合箇所であるアクティブエリアにディスペンサによって接合材料を塗布し、その上に導電板150を配置する。その状態で大気中60℃の熱を約20分間加える。次に、0.1MPaで加圧状態にし、水素中で温度を昇温速度5℃/minで300℃に上昇させて15分間保持する。以上のプロセスにより、半導体チップ101と配線層102、及び半導体チップ101のエミッタ電極106と導電板150を焼結接合層105’を介して接合した。   A bonding material was printed with a metal mask on a bonding portion on the wiring layer 102 of the ceramic insulating substrate 103, and the semiconductor chip 101 was disposed thereon. Next, a bonding material is applied by a dispenser to the active area, which is a bonding position of the emitter electrode 106 of the semiconductor chip 101, and the conductive plate 150 is disposed thereon. In that state, heat at 60 ° C. in the atmosphere is applied for about 20 minutes. Next, a pressure is applied at 0.1 MPa, and the temperature is increased to 300 ° C. in hydrogen at a rate of temperature increase of 5 ° C./min and held for 15 minutes. Through the above process, the semiconductor chip 101 and the wiring layer 102, and the emitter electrode 106 and the conductive plate 150 of the semiconductor chip 101 were bonded via the sintered bonding layer 105 '.

焼結接合層105の焼結密度は約70%(空隙率30%)、焼結接合層105’の焼結密度は、アクティブエリア上が約80%(空隙率20%)、非アクティブエリア上が未塗布状態であった。半導体チップと導電板を同時加圧接合したため接合層105よりも接合層105‘の焼結密度が高くなった。さらに、接合材を塗布後、長時間予備乾燥したため、導電板を配置して加圧しても接合材が非アクティブエリア上を覆うことなく焼結が進行した。   The sintered density of the sintered bonding layer 105 is about 70% (porosity 30%), and the sintered density of the sintered bonding layer 105 ′ is about 80% on the active area (porosity 20%), on the inactive area. Was in an uncoated state. Since the semiconductor chip and the conductive plate were simultaneously pressure bonded, the sintered density of the bonding layer 105 ′ was higher than that of the bonding layer 105. Furthermore, since the pre-drying was performed for a long time after the bonding material was applied, sintering proceeded without covering the non-active area even when the conductive plate was placed and pressed.

(比較例1)
比較例1では、図5に係るパワー半導体モジュールを作製した。比較例1に係るパワー半導体モジュールと、実施例1に係るパワー半導体モジュールの違いは、半導体素子の電極と導電板とを接合する焼結金属層105´のみである。比較例1に係るパワー半導体モジュールでは、焼結金属層105´において、ゲート配線上の領域と、電極上の領域で焼結密度が一定である。
(Comparative Example 1)
In Comparative Example 1, a power semiconductor module according to FIG. 5 was produced. The only difference between the power semiconductor module according to Comparative Example 1 and the power semiconductor module according to Example 1 is the sintered metal layer 105 ′ that joins the electrode of the semiconductor element and the conductive plate. In the power semiconductor module according to Comparative Example 1, in the sintered metal layer 105 ′, the sintered density is constant in the region on the gate wiring and the region on the electrode.

半導体素子101のエミッタ電極に接合材料を塗布する際に、図6のように半導体素子上全面に接合材料をメタルマスクを用いて印刷塗布したこと以外は、実施例1と同様の条件で焼結金属層105´を形成させ、パワー半導体モジュールを作製した。アクティブエリア上、非アクティブエリア上とも焼結密度は約70%(空隙率30%)であった。   When the bonding material is applied to the emitter electrode of the semiconductor element 101, sintering is performed under the same conditions as in Example 1 except that the bonding material is printed and applied on the entire surface of the semiconductor element using a metal mask as shown in FIG. A metal layer 105 ′ was formed to produce a power semiconductor module. The sintered density was about 70% (porosity 30%) on both the active area and the non-active area.

<パワーサイクル試験>
実施例1、2および比較例1で作製した半導体モジュールに対してパワーサイクル試験を実施した。パワーサイクル試験とは、半導体モジュールの信頼性試験の一つである。
<Power cycle test>
A power cycle test was performed on the semiconductor modules manufactured in Examples 1 and 2 and Comparative Example 1. The power cycle test is one of reliability tests for semiconductor modules.

半導体素子に所定の電流を所定時間流し、半導体チップ自体を発熱させ、150℃(以下、Tjmax150℃と記す。)に上昇した後電流をオフし、室温に冷却後、再び通電することにより半導体素子自体の発熱、冷却を繰り返した。   The semiconductor element is caused to flow by supplying a predetermined current to the semiconductor element for a predetermined period of time, causing the semiconductor chip itself to generate heat, raising the temperature to 150 ° C. (hereinafter referred to as Tjmax 150 ° C.), turning off the current, cooling to room temperature, and energizing again. The heat generation and cooling of itself were repeated.

実施例1と比較例1のパワーサイクル試験の結果を図5に示す。図5の横軸は発熱、冷却のサイクル数、縦軸はTjmax値の推移を示している。今後、半導体チップや半導体モジュールの小型化に伴う高発熱化が考えられる。このためより高温に対応でき得るためにTjmax値は150℃設定としているが、半導体素子と絶縁基板との接合部、半導体素子と導電板との接合部に損傷が生じ、さらにそれが進展するとその値が上昇する。本試験では上昇割合が初期値の15%を超えたときを寿命と判断した。   The results of the power cycle test of Example 1 and Comparative Example 1 are shown in FIG. In FIG. 5, the horizontal axis represents the number of cycles of heat generation and cooling, and the vertical axis represents the transition of the Tjmax value. In the future, it is conceivable that heat generation will increase with the miniaturization of semiconductor chips and semiconductor modules. For this reason, the Tjmax value is set to 150 ° C. in order to be able to cope with higher temperatures. However, when the junction between the semiconductor element and the insulating substrate and the junction between the semiconductor element and the conductive plate are damaged and further progressed, The value rises. In this test, the lifetime was determined when the rate of increase exceeded 15% of the initial value.

図5において、比較例1では約1万回でゲート配線とエミッタ配線間で短絡不良を生じ、試験継続不能となった。一方、実施例1では、サイクル寿命は約50万回と、大幅な信頼性向上を図ることができた。また、実施例2のサイクル寿命であった。実施例1に比べて実施例2の寿命が向上したのは、焼結金属層を形成する際の焼成プロセスにおける加圧力を小さくしたため、半導体素子へのダメージが低減したためであると考えられる。   In FIG. 5, in Comparative Example 1, a short circuit failure occurred between the gate wiring and the emitter wiring at about 10,000 times, and the test could not be continued. On the other hand, in Example 1, the cycle life was about 500,000 times, and the reliability could be greatly improved. Moreover, it was the cycle life of Example 2. The reason why the life of Example 2 was improved compared to Example 1 is considered to be that the damage to the semiconductor element was reduced because the applied pressure in the firing process when forming the sintered metal layer was reduced.

パワーサイクル試験後の比較例1の半導体モジュールの損傷個所、及び損傷状態を調べたところ、半導体チップ上の導電板と焼結接合層、及び半導体チップ下焼結接合層にはクラック進展は確認できなかった。しかし半導体チップ上のゲート配線部には小さなクラックが確認でき、損傷を受けていることが確認できた。図8に、パワーサイクル試験後の比較例1の半導体モジュールの断面状態を示した模式図を示す。ゲート配線部のクラックが生じると、ゲート配線の高抵抗化のおそれがある。また、クラックがさらに進展し、アクティブエリア電極を形成するエミッタ電極下部にまで達するとゲートとエミッタ間で短絡することがある。これが低寿命の原因であったことが判った。本原因を調査するため、半導体チップ上に導電板を設置した構造において、有限要素法による熱ひずみ分布解析を行った。この結果、ゲート電極部に大きな熱ひずみが生じていることが確認でき、この部位の熱ひずみ低減が必要であることが確認された。また、加圧時の影響も大きい。すなわち焼結層によりゲート配線部に必要以上の圧力が加わり、ダメージが生じた。このダメージ部がクラック発生の基点となっていることが考えられる。   When the damaged part and damage state of the semiconductor module of Comparative Example 1 after the power cycle test were examined, crack progress could be confirmed in the conductive plate on the semiconductor chip, the sintered bonding layer, and the sintered bonding layer under the semiconductor chip. There wasn't. However, a small crack was confirmed in the gate wiring portion on the semiconductor chip, and it was confirmed that the gate wiring was damaged. In FIG. 8, the schematic diagram which showed the cross-sectional state of the semiconductor module of the comparative example 1 after a power cycle test is shown. If cracks occur in the gate wiring portion, the gate wiring may be increased in resistance. Further, when the crack further progresses and reaches the lower part of the emitter electrode forming the active area electrode, a short circuit may occur between the gate and the emitter. It was found that this was the cause of the low life. In order to investigate this cause, thermal strain distribution analysis was performed by a finite element method in a structure in which a conductive plate was installed on a semiconductor chip. As a result, it was confirmed that a large thermal strain was generated in the gate electrode portion, and it was confirmed that it was necessary to reduce the thermal strain at this portion. Moreover, the influence at the time of pressurization is also large. That is, the sintered layer applied more pressure than necessary to the gate wiring portion, resulting in damage. It is conceivable that this damaged portion is the base point for occurrence of cracks.

一方、本実施例の半導体モジュールでは、チップ上接合部のゲート電極部に集中する熱ひずみが小さくなっており、接合部の長寿命化を図ることができる。   On the other hand, in the semiconductor module of this example, the thermal strain concentrated on the gate electrode portion of the on-chip junction is reduced, and the life of the junction can be extended.

本構造の半導体モジュールは、半導体チップ101と熱膨張係数が約9ppm/℃の絶縁配線基板、半導体チップと熱膨張係数が約9ppm/℃の導電板とが接合材を介して接合されているため、高温環境で顕著になる各部材の熱膨張差に起因する熱応力を小さくすることができる。理想的には接合材の熱膨張係数を配線基板のそれに一致させることで、接合材に生じる熱応力が最小になり、長期信頼性が向上する。導電板には銅製のリボンで結線しているため、従来のアルミ製ワイヤボンディングよりも高信頼性を確保できている。   In the semiconductor module of this structure, the semiconductor chip 101 and the insulating wiring board having a thermal expansion coefficient of about 9 ppm / ° C., and the semiconductor chip and the conductive plate having a thermal expansion coefficient of about 9 ppm / ° C. are bonded via a bonding material. Further, it is possible to reduce the thermal stress caused by the difference in thermal expansion of each member that becomes prominent in a high temperature environment. Ideally, by matching the thermal expansion coefficient of the bonding material to that of the wiring board, the thermal stress generated in the bonding material is minimized, and long-term reliability is improved. Since the conductive plate is connected with a copper ribbon, higher reliability can be secured than conventional aluminum wire bonding.

本発明の半導体装置は各種の電力変換装置に適用することができる。電力変換装置に本発明の半導体装置を適用することによって、高温環境の場所に搭載でき、かつ専用の冷却器を持たなくても長期的な信頼性を確保することが可能になる。   The semiconductor device of the present invention can be applied to various power conversion devices. By applying the semiconductor device of the present invention to the power conversion device, long-term reliability can be ensured even if it can be mounted in a place of a high temperature environment and does not have a dedicated cooler.

また、インバータ装置及び電動機は、高速車両や電気自動車にその動力源として組み込むことができる。この自動車においては、動力源から車輪に至る駆動機構を簡素化できたため、ギヤーの噛込み比率の違いにより変速していた従来の自動車に比べ、変速時のショックが軽減され、スムーズな走行が可能で、振動や騒音の面でも従来よりも軽減することができる。   Further, the inverter device and the electric motor can be incorporated as a power source in a high-speed vehicle or an electric vehicle. In this car, the drive mechanism from the power source to the wheels has been simplified, so the shock at the time of shifting is reduced and smooth running is possible compared to the conventional car that has been shifting due to the difference in gear engagement ratio. Thus, vibration and noise can be reduced as compared with the conventional case.

更に、本実施例の半導体装置を組み込んだインバータ装置は冷暖房機に組み込むことも可能である。この際、従来の交流電動機を用いた場合よりも高い効率を得ることができる。これにより、冷暖房機使用時の電力消費を低減することができる。また、室内の温度が運転開始から設定温度に到達するまでの時間を、従来の交流電動機を用いた場合よりも短縮できる。   Furthermore, the inverter device incorporating the semiconductor device of this embodiment can be incorporated into an air conditioner. In this case, higher efficiency can be obtained than when a conventional AC motor is used. Thereby, the power consumption at the time of air-conditioning machine use can be reduced. Moreover, the time until the room temperature reaches the set temperature from the start of operation can be shortened compared to the case where the conventional AC motor is used.

本実施例と同様の効果は、半導体装置が他の流体を撹拌又は流動させる装置、例えば洗濯機、流体循環装置等に組み込まれた場合でも享受できる。   The same effect as that of the present embodiment can be enjoyed even when the semiconductor device is incorporated in a device that stirs or flows another fluid, such as a washing machine or a fluid circulation device.

101…半導体素子、102…配線層、103…絶縁基板、104…ゲート配線部(非アクティブエリア)、104´…ゲート電極部、105、105´…焼結接合層、106…エミッタ電極(アクティブエリア)、106´…コレクタ電極、107…保護膜、108…接合材、110…支持部材、150…導電板、113…ボンディングワイヤ DESCRIPTION OF SYMBOLS 101 ... Semiconductor element, 102 ... Wiring layer, 103 ... Insulating substrate, 104 ... Gate wiring part (inactive area), 104 '... Gate electrode part, 105, 105' ... Sintered joining layer, 106 ... Emitter electrode (active area) ), 106 '... collector electrode, 107 ... protective film, 108 ... bonding material, 110 ... support member, 150 ... conductive plate, 113 ... bonding wire

Claims (10)

配線層を有する基板と、前記基板に搭載され、表面に電極を有する半導体素子と、前記半導体素子の電極と焼結金属層を介して接合された導電板と、を備える半導体モジュールであって、
前記電極は、ゲート配線部によって複数の電極に分割されており、
前記焼結金属層は、前記ゲート配線部上部の領域が前記電極上部の領域よりも焼結密度が低いことを特徴とする半導体モジュール。
A semiconductor module comprising: a substrate having a wiring layer; a semiconductor element mounted on the substrate and having an electrode on a surface; and a conductive plate joined via an electrode of the semiconductor element and a sintered metal layer;
The electrode is divided into a plurality of electrodes by a gate wiring portion,
The sintered metal layer has a lower sintered density in a region above the gate wiring portion than in a region above the electrode.
請求項1に記載の半導体モジュールであって、
前記焼結金属層は、前記ゲート配線部上の領域に空洞部を有することを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
The semiconductor module according to claim 1, wherein the sintered metal layer has a cavity in a region on the gate wiring portion.
請求項1に記載の半導体モジュールであって、
前記導電板は平板形状であることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
The semiconductor module according to claim 1, wherein the conductive plate has a flat plate shape.
請求項1に記載の半導体モジュールであって、
前記電極上部の焼結金属層の厚さは前記ゲート配線部の厚さよりも大きいことを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
The semiconductor module according to claim 1, wherein a thickness of the sintered metal layer above the electrode is larger than a thickness of the gate wiring portion.
請求項1乃至4のいずれかに記載の半導体モジュールであって、
前記焼結金属層は未焼結金属を含むことを特徴とする半導体モジュール。
A semiconductor module according to claim 1,
The semiconductor module, wherein the sintered metal layer includes an unsintered metal.
請求項1乃至4のいずれかに記載の半導体モジュールであって、
前記焼結金属層は、銅を含むことを特徴とする半導体モジュール。
A semiconductor module according to claim 1,
The semiconductor module, wherein the sintered metal layer contains copper.
請求項1乃至4のいずれかに記載の半導体モジュールであって、
前記基板と前記半導体素子は、金属粒子が金属結合した焼結層で接合されていることを特徴とする半導体モジュール。
A semiconductor module according to claim 1,
The semiconductor module, wherein the substrate and the semiconductor element are joined by a sintered layer in which metal particles are metal-bonded.
請求項7に記載の半導体モジュールであって、
前記基板と前記半導体素子を接合する焼結層は、前記電極と前記導電板を接合する焼結金属層よりも剛性が高いことを特徴とする半導体モジュール。
The semiconductor module according to claim 7,
The sintered module for joining the substrate and the semiconductor element has higher rigidity than the sintered metal layer for joining the electrode and the conductive plate.
請求項1に記載の半導体モジュールであって、
前記導電板と前記配線層とを電気的に接続する銅製の配線部材を備え、
前記配線部材は、ワイヤまたはリボン状であることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A copper wiring member for electrically connecting the conductive plate and the wiring layer;
The semiconductor module according to claim 1, wherein the wiring member is in the form of a wire or a ribbon.
請求項1乃至4のいずれかに記載の半導体モジュールの製造方法であって、
前記導電板と前記半導体素子表面の電極上にのみ接合材料を塗布した後、前記接合材料の上に前記導電板を載せ、加圧下で焼結することにより前記半導体素子と前記導電板とを接合する工程を含むことを特徴とする半導体モジュールの製造方法。
A method of manufacturing a semiconductor module according to claim 1,
After the bonding material is applied only on the conductive plate and the electrode on the surface of the semiconductor element, the conductive plate is placed on the bonding material and sintered under pressure to bond the semiconductor element and the conductive plate. The manufacturing method of the semiconductor module characterized by including the process to do.
JP2015046623A 2015-03-10 2015-03-10 Semiconductor module and manufacturing method of the same Pending JP2016167527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046623A JP2016167527A (en) 2015-03-10 2015-03-10 Semiconductor module and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046623A JP2016167527A (en) 2015-03-10 2015-03-10 Semiconductor module and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2016167527A true JP2016167527A (en) 2016-09-15

Family

ID=56898705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046623A Pending JP2016167527A (en) 2015-03-10 2015-03-10 Semiconductor module and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2016167527A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108122786A (en) * 2016-11-29 2018-06-05 恩智浦美国有限公司 The microelectronic modules of heat dissipation structure with sinter bonded and its manufacturing method
JPWO2018207856A1 (en) * 2017-05-10 2020-05-14 ローム株式会社 Power semiconductor device
WO2020148960A1 (en) * 2019-01-15 2020-07-23 株式会社日本マイクロニクス Probe substrate and electrical connection device
JP2021007182A (en) * 2020-10-19 2021-01-21 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US11181784B2 (en) 2019-03-27 2021-11-23 Japan Display Inc. Display device
WO2023112195A1 (en) * 2021-12-15 2023-06-22 三菱電機株式会社 Semiconductor device and method for producing semiconductor device
US11749731B2 (en) 2019-02-13 2023-09-05 Denso Corporation Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108122786A (en) * 2016-11-29 2018-06-05 恩智浦美国有限公司 The microelectronic modules of heat dissipation structure with sinter bonded and its manufacturing method
CN108122786B (en) * 2016-11-29 2023-08-22 恩智浦美国有限公司 Microelectronic module with sinter bonded heat dissipating structure and method of making same
JPWO2018207856A1 (en) * 2017-05-10 2020-05-14 ローム株式会社 Power semiconductor device
US11848295B2 (en) 2017-05-10 2023-12-19 Rohm Co., Ltd. Power semiconductor apparatus and fabrication method for the same
WO2020148960A1 (en) * 2019-01-15 2020-07-23 株式会社日本マイクロニクス Probe substrate and electrical connection device
KR20210096258A (en) * 2019-01-15 2021-08-04 가부시키가이샤 니혼 마이크로닉스 Probe board and electrical connection device
US11747365B2 (en) 2019-01-15 2023-09-05 Kabushiki Kaisha Nihon Micronics Probe substrate and electrical connecting apparatus
KR102659300B1 (en) 2019-01-15 2024-04-19 가부시키가이샤 니혼 마이크로닉스 Probe board and electrical connection device
US11749731B2 (en) 2019-02-13 2023-09-05 Denso Corporation Semiconductor device
US11181784B2 (en) 2019-03-27 2021-11-23 Japan Display Inc. Display device
JP2021007182A (en) * 2020-10-19 2021-01-21 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2023112195A1 (en) * 2021-12-15 2023-06-22 三菱電機株式会社 Semiconductor device and method for producing semiconductor device

Similar Documents

Publication Publication Date Title
JP2016167527A (en) Semiconductor module and manufacturing method of the same
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8513534B2 (en) Semiconductor device and bonding material
JP5388661B2 (en) Semiconductor device and manufacturing method thereof
JP2014029897A (en) Conductive bonded body and semiconductor device using the same
KR102422064B1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP5598592B2 (en) Power module
JP5359644B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2014097529A (en) Joining method by foam metal, manufacturing method of semiconductor device, and semiconductor device
JP2006352080A (en) Semiconductor device and its manufacturing method
KR102154373B1 (en) Power module
JP5938390B2 (en) Power module
JP4542926B2 (en) Joining method
JP2014135411A (en) Semiconductor device and semiconductor device manufacturing method
JP2014127537A (en) Semiconductor device using conductive bonding material and method of manufacturing semiconductor device
JP2013209720A (en) Method for jointing metal body
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
JP6399906B2 (en) Power module
WO2015029152A1 (en) Semiconductor device
JP5018250B2 (en) Semiconductor device and manufacturing method thereof
WO2013125022A1 (en) Semiconductor device
JP2016143685A (en) Semiconductor module
JP5866075B2 (en) Bonding material manufacturing method, bonding method, and power semiconductor device
JP2017092168A (en) Semiconductor module and power converter
KR101929750B1 (en) Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113