JP2016142453A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016142453A
JP2016142453A JP2015018533A JP2015018533A JP2016142453A JP 2016142453 A JP2016142453 A JP 2016142453A JP 2015018533 A JP2015018533 A JP 2015018533A JP 2015018533 A JP2015018533 A JP 2015018533A JP 2016142453 A JP2016142453 A JP 2016142453A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
compressor
indoor heat
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018533A
Other languages
Japanese (ja)
Other versions
JP6431393B2 (en
Inventor
亮祐 大畑
Ryosuke Ohata
亮祐 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015018533A priority Critical patent/JP6431393B2/en
Publication of JP2016142453A publication Critical patent/JP2016142453A/en
Application granted granted Critical
Publication of JP6431393B2 publication Critical patent/JP6431393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable air conditioner.SOLUTION: An air conditioner A comprises: an outdoor unit 10, indoor units 20a-20d; high pressure gas-side piping 3 connecting a discharge side of a compressor 11 and other-end sides u of indoor heat exchangers 21a-21d; high pressure gas-side solenoid valves 61a-61d switching communication/cutoff states between the outlet side of the compressor 11 and the indoor heat exchangers 21a-21d; low pressure gas-side piping 4 connecting an intake side of the compressor 11 and sides of the high pressure gas-side piping 3 downstream from the high pressure gas-side solenoid valves 61a-61d; low pressure gas-side solenoid valves 62a-62d switching communication/cutoff states between the intake side of the compressor 11 and the indoor heat exchangers 21a-21d; and liquid-side piping 5 connecting one-end sides n of the indoor heat exchangers 21a-21d and the other end 12u of the outdoor heat exchanger 12 through indoor expansion valves 23a-23d and an outdoor expansion valve 16.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和機に関する。   The present invention relates to an air conditioner.

一台の室外機に複数台の室内機を接続し、それぞれの室内機を個別で運転/停止することが可能なマルチ型の空気調和機が知られている。マルチ型の空気調和機は、室外機の設置スペースが小さくて済むという利点や、室内機の増設が容易であるという利点があり、オフィス等の空調に広く利用されている。   There is known a multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit, and each indoor unit can be individually operated / stopped. Multi-type air conditioners have the advantage of requiring a small installation space for outdoor units and the advantage of easy expansion of indoor units, and are widely used for air conditioning in offices and the like.

ところで、マルチ型の空気調和機において、複数台の室内機のうち一部は暖房運転を行い、残りの室内機は停止状態(スイッチオフの状態、又は、室内温度が設定温度に達して一時的に停止した状態)になっていることがある。停止している室内機に関しては、一般に、無駄な熱消費を抑えるために室内膨張弁を微開にして、この室内機に流れる冷媒の流量を小さくするようにしている。   By the way, in a multi-type air conditioner, some of the plurality of indoor units perform heating operation, and the remaining indoor units are in a stopped state (switch-off state or the room temperature reaches a set temperature and temporarily May be in a stopped state). With regard to the stopped indoor unit, generally, the indoor expansion valve is opened slightly in order to suppress wasteful heat consumption, and the flow rate of the refrigerant flowing through the indoor unit is reduced.

しかしながら、前記した方法において停止状態の室内機の台数が多くなると、圧縮機から吐出される冷媒のうち、暖房運転中の室内機に供給される冷媒の割合が少なくなるため、運転効率が低くなるという問題がある。   However, when the number of indoor units in the stopped state increases in the above-described method, the ratio of the refrigerant supplied to the indoor unit during the heating operation among the refrigerant discharged from the compressor decreases, and thus the operation efficiency decreases. There is a problem.

このような問題を考慮し、暖房運転を行っている室内機での冷媒不足を解消する技術として、例えば、以下に示すものが知られている。すなわち、特許文献1には、一部の室内機で暖房運転を行い、残りの室内機が停止している場合、主流側ガス接続配管に設けられた電磁弁を閉じることによって、停止状態の室内機に液冷媒が溜まることを防止することが記載されている。   Considering such a problem, for example, the following technologies are known as techniques for solving the shortage of refrigerant in an indoor unit that is performing a heating operation. That is, in Patent Document 1, when a heating operation is performed with some of the indoor units and the remaining indoor units are stopped, the indoor valve in the stopped state is closed by closing the electromagnetic valve provided in the mainstream side gas connection pipe. It is described that liquid refrigerant is prevented from accumulating in the machine.

特開2006−145185号公報JP 2006-145185 A

特許文献1では、例えば、多数の室内機で暖房運転を行い、少数の室内機が停止している場合には、前記した電磁弁を閉じることで、停止している室内機の室内熱交換器がガス冷媒で満たされる。これによって、停止している多数の室内機の室内熱交換器において冷媒の凝縮が抑制され、前記した冷媒不足が解消される。   In Patent Literature 1, for example, when a heating operation is performed with a large number of indoor units and a small number of indoor units are stopped, the indoor heat exchanger of the stopped indoor unit is closed by closing the electromagnetic valve described above. Is filled with a gas refrigerant. Thereby, the condensation of the refrigerant is suppressed in the indoor heat exchangers of a large number of stopped indoor units, and the above-described refrigerant shortage is solved.

しかしながら、特許文献1において、逆に少数の室内機で暖房運転を行い、多数の室内機が停止している場合において、停止している室内機の室内熱交換器をガス冷媒で満たすと多量の余剰冷媒が発生する。特に、外気温度が比較的高いときには、暖房運転を行っている室内機の室内熱交換器が余剰冷媒(液冷媒)で満たされ、その凝縮能力の低下を招くという問題がある。さらに、前記した凝縮能力の低下によって圧縮機に過大な負荷がかかり、暖房運転が一時的に停止される可能性もある。   However, in Patent Document 1, when a heating operation is performed with a small number of indoor units and a large number of indoor units are stopped, a large amount of gas is generated when the indoor heat exchanger of the stopped indoor units is filled with a gas refrigerant. Surplus refrigerant is generated. In particular, when the outside air temperature is relatively high, there is a problem that the indoor heat exchanger of the indoor unit that is performing the heating operation is filled with surplus refrigerant (liquid refrigerant), leading to a reduction in its condensing capacity. Furthermore, there is a possibility that an excessive load is applied to the compressor due to the decrease in the condensing capacity, and the heating operation is temporarily stopped.

また、特許文献1において少数の室内機が冷房運転を行い、多数の室内機が停止している場合、室内熱交換器の蒸発能力に対して、室外熱交換器の凝縮能力が過大になりやすい。特に、外気温度が比較的低いときには、圧縮機の吐出側の圧力が許容範囲を下回ったり、冷房運転を行っている室内機の室内熱交換器が着霜したりすることで、冷房運転が一時的に停止される可能性がある。   In Patent Document 1, when a small number of indoor units perform cooling operation and a large number of indoor units are stopped, the condensation capacity of the outdoor heat exchanger tends to be excessive with respect to the evaporation capacity of the indoor heat exchanger. . In particular, when the outside air temperature is relatively low, the pressure on the discharge side of the compressor falls below the allowable range, or the indoor heat exchanger of the indoor unit that is performing the cooling operation is frosted. May be suspended.

このように、特許文献1に記載の技術では、少数の室内機が空調運転(暖房運転又は冷房運転)を行っているとき、圧縮機の保護制御等によって空調運転が一時的に停止される可能性があり、信頼性をさらに高める余地がある。   As described above, in the technique described in Patent Document 1, when a small number of indoor units are performing air conditioning operation (heating operation or cooling operation), the air conditioning operation may be temporarily stopped by protection control of the compressor or the like. There is room for further improvement of reliability.

そこで、本発明は、信頼性の高い空気調和機を提供することを課題とする。   Then, this invention makes it a subject to provide an air conditioner with high reliability.

前記した課題を解決するために、本発明に係る空気調和機は、圧縮機と、室外熱交換器と、前記室外熱交換器の一端の接続先を前記圧縮機の吸入側/吐出側に切り替える流路切替手段と、前記室外熱交換器の他端に接続される室外膨張弁と、を有する室外機と、室内熱交換器と、前記室内熱交換器の一端に接続される室内膨張弁と、を有する複数台の室内機と、前記圧縮機の吐出側と、それぞれの前記室内熱交換器の他端と、を接続する第1配管と、前記第1配管に設けられ、前記圧縮機の吐出側と前記室内熱交換器との連通/遮断を、それぞれの前記室内熱交換器について切り替える複数の第1開閉手段と、前記圧縮機の吸入側と、前記第1配管における前記第1開閉手段の下流側と、をそれぞれ接続する第2配管と、前記第2配管に設けられ、前記圧縮機の吸入側と前記室内熱交換器との連通/遮断を、それぞれの前記室内熱交換器について切り替える複数の第2開閉手段と、それぞれの前記室内熱交換器の前記一端と、前記室外熱交換器の前記他端と、を前記室内膨張弁及び前記室外膨張弁を介して接続する第3配管と、を備えることを特徴とする。   In order to solve the above-described problem, an air conditioner according to the present invention switches a connection destination of one end of a compressor, an outdoor heat exchanger, and the outdoor heat exchanger to the suction side / discharge side of the compressor. An outdoor unit having a flow path switching means, an outdoor expansion valve connected to the other end of the outdoor heat exchanger, an indoor heat exchanger, and an indoor expansion valve connected to one end of the indoor heat exchanger; A plurality of indoor units, a discharge side of the compressor, a first pipe connecting the other end of each of the indoor heat exchangers, and the first pipe, A plurality of first opening / closing means for switching communication / blocking between the discharge side and the indoor heat exchanger for each of the indoor heat exchangers, the suction side of the compressor, and the first opening / closing means in the first pipe A second pipe connecting the downstream side of the second pipe and the second pipe A plurality of second opening / closing means for switching the communication between the suction side of the compressor and the indoor heat exchanger for each of the indoor heat exchangers, and the one end of each of the indoor heat exchangers; 3rd piping which connects the said other end of the said outdoor heat exchanger via the said indoor expansion valve and the said outdoor expansion valve, It is characterized by the above-mentioned.

本発明によれば、信頼性の高い空気調和機を提供できる。   According to the present invention, a highly reliable air conditioner can be provided.

本発明の一実施形態に係る空気調和機の構成図である。It is a block diagram of the air conditioner which concerns on one Embodiment of this invention. 制御装置が実行する処理を示すフローチャートである。It is a flowchart which shows the process which a control apparatus performs. 第1モードにおける各弁の状態と、冷媒の流れと、を示す説明図である。It is explanatory drawing which shows the state of each valve in a 1st mode, and the flow of a refrigerant | coolant. 第2モードにおける各弁の状態と、冷媒の流れと、を示す説明図である。It is explanatory drawing which shows the state of each valve in a 2nd mode, and the flow of a refrigerant | coolant. 第3モードにおける各弁の状態と、冷媒の流れと、を示す説明図である。It is explanatory drawing which shows the state of each valve in a 3rd mode, and the flow of a refrigerant | coolant. 第5モードにおける各弁の状態と、冷媒の流れと、を示す説明図である。It is explanatory drawing which shows the state of each valve in a 5th mode, and the flow of a refrigerant | coolant.

≪実施形態≫
<空気調和機の構成>
以下では、例えば、室内機20a,20b,20c,20d(図1参照)を、「室内機20a〜20d」と記すものとする。
図1は、本実施形態に係る空気調和機Aの構成図である。空気調和機Aは、ヒートポンプサイクルで冷媒を循環させることによって、室内空気の温度・湿度等の空調を行う装置である。図1に示すように、空気調和機Aは、室外機10と、室内機20a〜20dと、高圧ガス側配管3(第1配管)と、低圧ガス側配管4(第2配管)と、液側配管5(第3配管)と、冷媒切替ユニット60a〜60dと、を備えている。
<Embodiment>
<Configuration of air conditioner>
Hereinafter, for example, the indoor units 20a, 20b, 20c, and 20d (see FIG. 1) are referred to as “indoor units 20a to 20d”.
FIG. 1 is a configuration diagram of an air conditioner A according to the present embodiment. The air conditioner A is an apparatus that performs air conditioning such as temperature and humidity of indoor air by circulating a refrigerant in a heat pump cycle. As shown in FIG. 1, the air conditioner A includes an outdoor unit 10, indoor units 20a to 20d, a high-pressure gas side pipe 3 (first pipe), a low-pressure gas side pipe 4 (second pipe), a liquid A side pipe 5 (third pipe) and refrigerant switching units 60a to 60d are provided.

(室外機)
室外機10は、圧縮機11と、室外熱交換器12と、室外送風ファン13と、四方弁14(流路切替手段)と、逆止弁15と、室外膨張弁16と、制御装置17(制御手段)と、を備えている。
圧縮機11は、低圧ガス側主流管42を介して吸入した冷媒を圧縮し、圧縮した冷媒を高圧ガス側主流管31を介して吐出する装置である。なお、図1では図示を省略したが、気液分離を行うためのアキュムレータが圧縮機11の吸入側に設けられている。
(Outdoor unit)
The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, an outdoor blower fan 13, a four-way valve 14 (flow path switching means), a check valve 15, an outdoor expansion valve 16, and a control device 17 ( Control means).
The compressor 11 is a device that compresses the refrigerant sucked through the low pressure gas side main flow pipe 42 and discharges the compressed refrigerant through the high pressure gas side main flow pipe 31. Although not shown in FIG. 1, an accumulator for performing gas-liquid separation is provided on the suction side of the compressor 11.

室外熱交換器12は、冷媒と、室外送風ファン13から送り込まれる外気と、の熱交換を行うための熱交換器である。室外熱交換器12の一端12nは、四方弁14の切替えによって圧縮機11の吸入側又は吐出側に接続され、他端12uは液側配管5に接続されている。
室外送風ファン13は、室外熱交換器12に外気を送り込むファンであり、室外熱交換器12の付近に設置されている。
The outdoor heat exchanger 12 is a heat exchanger for exchanging heat between the refrigerant and the outside air sent from the outdoor blower fan 13. One end 12 n of the outdoor heat exchanger 12 is connected to the suction side or discharge side of the compressor 11 by switching the four-way valve 14, and the other end 12 u is connected to the liquid side pipe 5.
The outdoor fan 13 is a fan that sends outside air to the outdoor heat exchanger 12, and is installed in the vicinity of the outdoor heat exchanger 12.

四方弁14は、室外熱交換器12の一端12nの接続先を圧縮機11の吸入側/吐出側に切り替える弁である。
四方弁14の二つの接続状態のうち実線は、室外熱交換器12の一端12nが、配管p1、四方弁14、配管p2、及び低圧ガス側主流管42(一部)を介して圧縮機11の吸入側に接続された状態を示している。また、破線は、室外熱交換器12の一端12nが、配管p1、四方弁14、配管p3、及び高圧ガス側主流管31(一部)を介して圧縮機11の吐出側に接続された状態を示している。
なお、実際に冷媒が流れる経路は、四方弁14の接続状態と、後記する高圧ガス側電磁弁61a〜61d及び低圧ガス側電磁弁62a〜62dの開閉状態と、によって決まる。
The four-way valve 14 is a valve that switches the connection destination of the one end 12 n of the outdoor heat exchanger 12 to the suction side / discharge side of the compressor 11.
Of the two connected states of the four-way valve 14, the solid line indicates that the end 12n of the outdoor heat exchanger 12 is connected to the compressor 11 via the pipe p1, the four-way valve 14, the pipe p2, and the low-pressure gas side main flow pipe 42 (part). It shows the state connected to the suction side. The broken line indicates a state in which one end 12n of the outdoor heat exchanger 12 is connected to the discharge side of the compressor 11 via the pipe p1, the four-way valve 14, the pipe p3, and the high-pressure gas side main flow pipe 31 (part). Is shown.
Note that the path through which the refrigerant actually flows is determined by the connection state of the four-way valve 14 and the open / close states of the high pressure gas side solenoid valves 61a to 61d and the low pressure gas side solenoid valves 62a to 62d described later.

逆止弁15は、圧縮機11から高圧ガス側主流管31を介して吐出されたガス冷媒が、低圧ガス側主流管42に流入することを阻止するための弁である。なお、四方弁14及び逆止弁15に代えて、室外熱交換器12の一端12nの接続先を圧縮機11の吸入側/吐出側に切り替える三方弁(流路切替手段)を設けるようにしてもよい。
室外膨張弁16は、室外熱交換器12に流れる冷媒の流量を調整したり、室外熱交換器12を蒸発器として使用する際に冷媒を減圧するものであり、液側主流管52に設けられている。
The check valve 15 is a valve for preventing the gas refrigerant discharged from the compressor 11 via the high pressure gas side main flow pipe 31 from flowing into the low pressure gas side main flow pipe 42. Instead of the four-way valve 14 and the check valve 15, a three-way valve (flow path switching means) that switches the connection destination of the one end 12n of the outdoor heat exchanger 12 to the suction side / discharge side of the compressor 11 is provided. Also good.
The outdoor expansion valve 16 adjusts the flow rate of the refrigerant flowing through the outdoor heat exchanger 12 or depressurizes the refrigerant when the outdoor heat exchanger 12 is used as an evaporator, and is provided in the liquid side main flow pipe 52. ing.

制御装置17は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成される。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。制御装置17は、室外機10の各機器を制御したり、冷媒切替ユニット60a〜60dの各電磁弁を制御したりする機能を有している。なお、制御装置17が実行する処理については後記する。   Although not shown, the control device 17 includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes. The control device 17 has a function of controlling each device of the outdoor unit 10 and controlling each electromagnetic valve of the refrigerant switching units 60a to 60d. The processing executed by the control device 17 will be described later.

(室内機)
室内機20aは、室内熱交換器21aと、室内送風ファン22aと、室内膨張弁23aと、を備えている。室内熱交換器21aは、冷媒と、室内送風ファン22aから送り込まれる室内空気と、の熱交換を行うための熱交換器である。室内送風ファン22aは、室内熱交換器21aに室内空気を送り込むファンであり、室内熱交換器21aの付近に設置されている。
(Indoor unit)
The indoor unit 20a includes an indoor heat exchanger 21a, an indoor blower fan 22a, and an indoor expansion valve 23a. The indoor heat exchanger 21a is a heat exchanger for exchanging heat between the refrigerant and the indoor air sent from the indoor blower fan 22a. The indoor blower fan 22a is a fan that sends indoor air into the indoor heat exchanger 21a, and is installed in the vicinity of the indoor heat exchanger 21a.

室内膨張弁23aは、室内熱交換器21aに流れる冷媒の流量を調整したり、室内熱交換器21aを蒸発器として使用する際に冷媒を減圧するものであり、液側接続管51aに設けられている。つまり、室内膨張弁23aは、液側接続管51a(一部)を介して室内熱交換器21aの一端nに接続されている。
その他、室内機20aは、室外機10の制御装置17から入力される情報に基づいて室内送風ファン22a、室内膨張弁23a等を制御する制御装置(図示せず)を備えている。
The indoor expansion valve 23a adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger 21a, or depressurizes the refrigerant when the indoor heat exchanger 21a is used as an evaporator, and is provided in the liquid side connection pipe 51a. ing. That is, the indoor expansion valve 23a is connected to one end n of the indoor heat exchanger 21a via the liquid side connection pipe 51a (part).
In addition, the indoor unit 20a includes a control device (not shown) that controls the indoor blower fan 22a, the indoor expansion valve 23a, and the like based on information input from the control device 17 of the outdoor unit 10.

室内機20aと並列接続されている他の室内機20b〜20dについては、室内機20aと同様の構成であるから説明を省略する。   The other indoor units 20b to 20d connected in parallel with the indoor unit 20a have the same configuration as that of the indoor unit 20a, and thus the description thereof is omitted.

(高圧ガス側配管)
高圧ガス側配管3は、圧縮機11の吐出側と、それぞれの室内熱交換器21a〜21dの他端uと、を接続する配管である。高圧ガス側配管3は、高圧ガス側主流管31と、高圧ガス側接続管32a〜32dと、を備え、室内熱交換器21a〜21dに対応して四つに分岐している。
(High pressure gas side piping)
The high-pressure gas side pipe 3 is a pipe that connects the discharge side of the compressor 11 and the other ends u of the indoor heat exchangers 21a to 21d. The high-pressure gas side pipe 3 includes a high-pressure gas side main pipe 31 and high-pressure gas side connection pipes 32a to 32d, and is branched into four corresponding to the indoor heat exchangers 21a to 21d.

高圧ガス側主流管31は、圧縮機11から吐出される高温高圧のガス冷媒を高圧ガス側接続管32a〜32dに導く配管であり、圧縮機11の吐出側に接続されている。
高圧ガス側接続管32aは、高圧ガス側主流管31から流入(分流)するガス冷媒を室内熱交換器21aに導く配管であり、高圧ガス側主流管31と、室内熱交換器21aの他端uと、に接続されている(他の高圧ガス側接続管32b〜32dについても同様)。
The high-pressure gas side main flow pipe 31 is a pipe that guides the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 to the high-pressure gas side connection pipes 32 a to 32 d, and is connected to the discharge side of the compressor 11.
The high-pressure gas side connecting pipe 32a is a pipe that guides the gas refrigerant flowing (divided) from the high-pressure gas side main flow pipe 31 to the indoor heat exchanger 21a. The high-pressure gas side main pipe 31 and the other end of the indoor heat exchanger 21a (The same applies to the other high-pressure gas side connection pipes 32b to 32d).

(低圧ガス側配管)
低圧ガス側配管4は、圧縮機11の吸入側と、高圧ガス側配管3における高圧ガス側電磁弁61aの下流側と、を接続する配管である。低圧ガス側配管4は、低圧ガス側接続管41a〜41dと、低圧ガス側主流管42と、を備え、室内熱交換器21a〜21dに対応して四つに分岐している。
(Low pressure gas side piping)
The low pressure gas side pipe 4 is a pipe connecting the suction side of the compressor 11 and the downstream side of the high pressure gas side solenoid valve 61a in the high pressure gas side pipe 3. The low pressure gas side pipe 4 includes low pressure gas side connection pipes 41a to 41d and a low pressure gas side main flow pipe 42, and is branched into four corresponding to the indoor heat exchangers 21a to 21d.

低圧ガス側接続管41aは、室内熱交換器21aから流入する低圧のガス冷媒を、低圧ガス側主流管42に導く配管である。低圧ガス側接続管41aは、高圧ガス側接続管32aにおいて高圧ガス側電磁弁61aよりも下流側と、低圧ガス側主流管42と、に接続されている(他の低圧ガス側接続管41b〜41dについても同様)。
低圧ガス側主流管42は、低圧ガス側接続管41a〜41dから流入(合流)するガス冷媒を圧縮機11の吸入側に導く配管であり、圧縮機11の吸入側に接続されている。
The low pressure gas side connection pipe 41 a is a pipe that guides the low pressure gas refrigerant flowing from the indoor heat exchanger 21 a to the low pressure gas side main flow pipe 42. The low pressure gas side connection pipe 41a is connected to the downstream side of the high pressure gas side solenoid valve 61a in the high pressure gas side connection pipe 32a and the low pressure gas side main flow pipe 42 (the other low pressure gas side connection pipes 41b to 41b). The same applies to 41d).
The low-pressure gas side main flow pipe 42 is a pipe that guides the gas refrigerant flowing (merged) from the low-pressure gas side connection pipes 41 a to 41 d to the suction side of the compressor 11, and is connected to the suction side of the compressor 11.

(液側配管)
液側配管5は、それぞれの室内熱交換器21a〜21dの一端nと、室外熱交換器12の他端12uと、を、室内膨張弁23a〜23d及び室外膨張弁16を介して接続する配管である。液側配管5は、液側接続管51a〜51dと、液側主流管52と、を備え、室内熱交換器21a〜21dに対応して四つに分岐している。
(Liquid side piping)
The liquid side pipe 5 is a pipe that connects one end n of each of the indoor heat exchangers 21 a to 21 d and the other end 12 u of the outdoor heat exchanger 12 via the indoor expansion valves 23 a to 23 d and the outdoor expansion valve 16. It is. The liquid side pipe 5 includes liquid side connection pipes 51a to 51d and a liquid side main flow pipe 52, and is branched into four corresponding to the indoor heat exchangers 21a to 21d.

液側接続管51aは、室内熱交換器21aの一端nと、液側主流管52と、に接続されている。前記したように、液側接続管51aには室内膨張弁23aが設けられている(他の液側接続管51b〜51dについても同様)。
液側主流管52は、室外熱交換器12の他端12uに接続されている。なお、液側主流管52において、液側接続管51a〜51dとの接続箇所よりも室外熱交換器12に近い位置に室外膨張弁16が設けられている。
The liquid side connection pipe 51a is connected to one end n of the indoor heat exchanger 21a and the liquid side main flow pipe 52. As described above, the liquid-side connection pipe 51a is provided with the indoor expansion valve 23a (the same applies to the other liquid-side connection pipes 51b to 51d).
The liquid side main flow pipe 52 is connected to the other end 12 u of the outdoor heat exchanger 12. In the liquid side main flow pipe 52, the outdoor expansion valve 16 is provided at a position closer to the outdoor heat exchanger 12 than the connection places with the liquid side connection pipes 51a to 51d.

(冷媒切替ユニット)
冷媒切替ユニット60aは、室内熱交換器21aに流入する冷媒の向きを切り替えるものであり、高圧ガス側電磁弁61a(第1開閉手段)と、低圧ガス側電磁弁62a(第2開閉手段)と、を備えている。なお、他の冷媒切替ユニット60b〜60dについても同様であるから、以下では冷媒切替ユニット60aについて説明する。
(Refrigerant switching unit)
The refrigerant switching unit 60a switches the direction of the refrigerant flowing into the indoor heat exchanger 21a, and includes a high pressure gas side electromagnetic valve 61a (first opening / closing means) and a low pressure gas side electromagnetic valve 62a (second opening / closing means). It is equipped with. In addition, since it is the same also about the other refrigerant | coolant switching units 60b-60d, below, the refrigerant | coolant switching unit 60a is demonstrated.

高圧ガス側電磁弁61aは、圧縮機11の吐出側と室内熱交換器21aとの連通/遮断を切り替える電磁弁であり、高圧ガス側接続管32aに設けられている。高圧ガス側電磁弁61aは、制御装置17からの指令に応じて開閉するようになっている。   The high-pressure gas side solenoid valve 61a is a solenoid valve that switches communication / blocking between the discharge side of the compressor 11 and the indoor heat exchanger 21a, and is provided in the high-pressure gas side connection pipe 32a. The high-pressure gas side electromagnetic valve 61a opens and closes in response to a command from the control device 17.

低圧ガス側電磁弁62aは、圧縮機11の吸入側と室内熱交換器21aとの連通/遮断を切り替える電磁弁であり、低圧ガス側接続管41aに設けられている。低圧ガス側電磁弁62aは、制御装置17からの指令に応じて開閉するようになっている。   The low pressure gas side electromagnetic valve 62a is an electromagnetic valve that switches communication / blocking between the suction side of the compressor 11 and the indoor heat exchanger 21a, and is provided in the low pressure gas side connection pipe 41a. The low-pressure gas side electromagnetic valve 62a opens and closes in response to a command from the control device 17.

<空気調和機の動作>
図2は、制御装置が実行する処理を示すフローチャートである。なお、以下の説明では、室外機10の制御装置17(図1参照)と、室内機20a〜20dの制御装置(図示せず)と、をまとめて「制御装置」と記すものとする。
ステップS101において制御装置は、室内機20a〜20dのうち、暖房運転を行う室内機が存在するか否かを判定する。暖房運転を行う室内機が存在する場合(S101:Yes)、制御装置の処理はステップS102に進む。
<Operation of air conditioner>
FIG. 2 is a flowchart illustrating processing executed by the control device. In the following description, the control device 17 (see FIG. 1) of the outdoor unit 10 and the control devices (not shown) of the indoor units 20a to 20d are collectively referred to as “control device”.
In step S101, the control device determines whether there is an indoor unit that performs the heating operation among the indoor units 20a to 20d. When there is an indoor unit that performs the heating operation (S101: Yes), the processing of the control device proceeds to step S102.

ステップS102において制御装置は、室内機20a〜20dのうち、冷房運転を行う室内機が存在しないか否かを判定する。冷房運転を行う室内機が存在しない場合(S102:Yes)、制御装置の処理はステップS103に進む。
ステップS103において制御装置は、室内機20a〜20dのうち暖房運転を行う室内機の台数が占める割合fを算出する。
In step S102, the control device determines whether there is no indoor unit that performs the cooling operation among the indoor units 20a to 20d. When there is no indoor unit that performs the cooling operation (S102: Yes), the control device proceeds to step S103.
In step S103, the control device calculates a ratio f occupied by the number of indoor units performing the heating operation among the indoor units 20a to 20d.

ステップS104において制御装置は、ステップS103で算出した割合fが所定閾値Fよりも大きいか否かを判定する。この所定閾値F(例えば、0.25)は、停止している室内機の室内熱交換器をガス冷媒で満たすか否かの判定基準となる閾値である。
暖房運転の室内機が占める割合fが所定閾値Fよりも大きい場合(S104:Yes)、制御装置の処理はステップS105に進む。
In step S104, the control device determines whether or not the ratio f calculated in step S103 is greater than a predetermined threshold F. This predetermined threshold value F (for example, 0.25) is a threshold value that is a criterion for determining whether or not the indoor heat exchanger of the stopped indoor unit is filled with the gas refrigerant.
When the ratio f occupied by the indoor unit in the heating operation is larger than the predetermined threshold F (S104: Yes), the process of the control device proceeds to step S105.

ステップS105において制御装置は、第1モードを実行する。
図3は、第1モードにおける各弁の開閉状態と、冷媒の流れと、を示す説明図である。なお、図3では、開いている弁や駆動しているファンを白抜きで図示し、閉じている弁や停止しているファンを塗潰しで図示している(図4〜図6も同様)。また、図3に示す例では、4台の室内機20a〜20dのうち、暖房運転を行う室内機20a〜20c(3台)が占める割合fが0.75(>F=0.25)であり、暖房負荷が比較的大きい状態になっている。
In step S105, the control device executes the first mode.
FIG. 3 is an explanatory diagram showing the open / close state of each valve and the flow of the refrigerant in the first mode. In FIG. 3, the open valve and the driving fan are illustrated in white, and the closed valve and the stopped fan are illustrated in black (the same applies to FIGS. 4 to 6). . Moreover, in the example shown in FIG. 3, the ratio f which the indoor units 20a-20c (three units) which perform heating operation among the four indoor units 20a-20d occupies 0.75 (> F = 0.25). Yes, the heating load is relatively large.

制御装置は、第1モードを実行する際、室外熱交換器12の一端12nの接続先が圧縮機11の吸入側となるように四方弁14を制御する。
また、制御装置は、暖房運転を行う室内機20a〜20cに関しては、圧縮機11の吐出側と室内熱交換器21a〜21cとが連通するように高圧ガス側電磁弁61a〜61cを開き、低圧ガス側電磁弁62a〜62cを閉じる。言い換えると、制御装置は、高圧ガス側電磁弁61a〜61cによって圧縮機11の吐出側と室内熱交換器21a〜21cとを連通させる場合には、低圧ガス側電磁弁62a〜62cを閉止する。
When executing the first mode, the control device controls the four-way valve 14 so that the connection destination of the one end 12 n of the outdoor heat exchanger 12 is the suction side of the compressor 11.
Moreover, regarding the indoor units 20a to 20c that perform the heating operation, the control device opens the high pressure gas side electromagnetic valves 61a to 61c so that the discharge side of the compressor 11 and the indoor heat exchangers 21a to 21c communicate with each other. The gas side solenoid valves 62a to 62c are closed. In other words, the control device closes the low pressure gas side electromagnetic valves 62a to 62c when the discharge side of the compressor 11 and the indoor heat exchangers 21a to 21c are communicated with each other by the high pressure gas side electromagnetic valves 61a to 61c.

また、制御装置は、停止状態の室内機20dに関しては、圧縮機11の吸入側と室内熱交換器21dとが連通するように低圧ガス側電磁弁62dを開き、高圧ガス側電磁弁61dを閉じる。言い換えると、制御装置は、低圧ガス側電磁弁62dによって圧縮機11の吸入側と室内熱交換器21dとを連通させる場合には、高圧ガス側電磁弁61dを閉止する。さらに、制御装置は、室内送風ファン22dを停止し、室内膨張弁23dを閉止する。   Further, for the stopped indoor unit 20d, the control device opens the low pressure gas side electromagnetic valve 62d and closes the high pressure gas side electromagnetic valve 61d so that the suction side of the compressor 11 and the indoor heat exchanger 21d communicate with each other. . In other words, the control device closes the high pressure gas side solenoid valve 61d when the suction side of the compressor 11 and the indoor heat exchanger 21d are communicated with each other by the low pressure gas side solenoid valve 62d. Further, the control device stops the indoor blower fan 22d and closes the indoor expansion valve 23d.

圧縮機11から吐出された高温高圧のガス冷媒は、高圧ガス側配管3を介して室内熱交換器21a〜21cに流入する。室内熱交換器21a〜21cを通流するガス冷媒は、室内送風ファン22a〜22cから送り込まれる室内空気と熱交換して凝縮し、液冷媒になる。室内熱交換器21a〜21cから流出した液冷媒は、液側配管5を通流する過程で室外膨張弁16によって減圧され、減圧された冷媒が室外熱交換器12に流入する。室外熱交換器12を通流する冷媒は、室外送風ファン13から送り込まれる外気と熱交換して蒸発し、低圧のガス冷媒になる。室外熱交換器12から流出したガス冷媒は、四方弁14を介して圧縮機11の吸入側に向かう。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchangers 21 a to 21 c through the high-pressure gas side pipe 3. The gas refrigerant flowing through the indoor heat exchangers 21a to 21c exchanges heat with the indoor air sent from the indoor air blowing fans 22a to 22c, and is condensed to become liquid refrigerant. The liquid refrigerant flowing out of the indoor heat exchangers 21 a to 21 c is decompressed by the outdoor expansion valve 16 in the process of flowing through the liquid side pipe 5, and the decompressed refrigerant flows into the outdoor heat exchanger 12. The refrigerant flowing through the outdoor heat exchanger 12 evaporates by exchanging heat with the outside air sent from the outdoor blower fan 13 and becomes a low-pressure gas refrigerant. The gas refrigerant that has flowed out of the outdoor heat exchanger 12 goes to the suction side of the compressor 11 via the four-way valve 14.

また、停止状態の室内機20dに関しては、低圧ガス側電磁弁62dが開いているため、室内熱交換器21dは、低圧ガス側配管4を介して圧縮機11の吸入側に連通している。したがって、室内熱交換器21d内の冷媒は、低圧ガス側配管4を介して圧縮機11の吸入側に回収される(吸い込まれる)。これによって、室内熱交換器21dが保有する冷媒を少なくし、暖房運転を行う室内機20a〜20cに循環する冷媒を十分に確保できる。   Further, with respect to the stopped indoor unit 20d, the low-pressure gas side solenoid valve 62d is open, so that the indoor heat exchanger 21d communicates with the suction side of the compressor 11 via the low-pressure gas side pipe 4. Therefore, the refrigerant in the indoor heat exchanger 21d is recovered (sucked) to the suction side of the compressor 11 via the low-pressure gas side pipe 4. Thereby, the refrigerant | coolant which 21d of indoor heat exchangers hold | maintains can be decreased, and the refrigerant | coolant which circulates to the indoor units 20a-20c which perform heating operation can fully be ensured.

図2のステップS104において、暖房運転の室内機が占める割合fが所定閾値F以下である場合(S104:No)、制御装置の処理はステップS106に進む。
ステップS106において制御装置は、第2モードを実行する。なお、第2モードを行う際の条件として、外気温度(≦室内温度)と室内温度との差の絶対値が所定閾値以下である(つまり、暖房負荷が小さい)という条件を追加してもよい。
In step S104 of FIG. 2, when the ratio f occupied by the indoor unit in the heating operation is equal to or less than the predetermined threshold F (S104: No), the process of the control device proceeds to step S106.
In step S106, the control device executes the second mode. As a condition for performing the second mode, a condition that the absolute value of the difference between the outside air temperature (≦ the room temperature) and the room temperature is not more than a predetermined threshold (that is, the heating load is small) may be added. .

図4は、第2モードにおける各弁の開閉状態と、冷媒の流れと、を示す説明図である。なお、図4に示す例では、4台の室内機20a〜20dのうち暖房運転を行う室内機(1台)が占める割合fが0.25(≦F=0.25)であり、暖房負荷が比較的小さい状態になっている。   FIG. 4 is an explanatory diagram showing the open / close state of each valve and the flow of the refrigerant in the second mode. In the example shown in FIG. 4, the ratio f occupied by the indoor unit (one unit) that performs the heating operation among the four indoor units 20a to 20d is 0.25 (≦ F = 0.25), and the heating load Is relatively small.

制御装置は、第2モードを実行する際、室外熱交換器12の一端12nの接続先が圧縮機11の吸入側となるように四方弁14を制御する。
また、制御装置は、暖房運転を行う室内機20aに関しては、圧縮機11の吐出側と室内熱交換器21aとが連通するように高圧ガス側電磁弁61aを開き、低圧ガス側電磁弁62aを閉じる。
また、制御装置は、停止状態の室内機20b〜20dに関しても、圧縮機11の吐出側と室内熱交換器21b〜21dとが連通するように高圧ガス側電磁弁61b〜61dを開き、低圧ガス側電磁弁62d〜62dを閉じる。この点が、前記した第1モード(図3参照)とは異なっている。さらに、制御装置は、停止状態の室内機20b〜20dが有する室内膨張弁23b〜23dを閉止又は微開にする。
When executing the second mode, the control device controls the four-way valve 14 so that the connection destination of the one end 12 n of the outdoor heat exchanger 12 is the suction side of the compressor 11.
Moreover, regarding the indoor unit 20a that performs the heating operation, the control device opens the high-pressure gas side solenoid valve 61a so that the discharge side of the compressor 11 communicates with the indoor heat exchanger 21a, and opens the low-pressure gas side solenoid valve 62a. close up.
The control device also opens the high pressure gas side electromagnetic valves 61b to 61d so that the discharge side of the compressor 11 and the indoor heat exchangers 21b to 21d communicate with each other for the stopped indoor units 20b to 20d. The side solenoid valves 62d to 62d are closed. This is different from the first mode (see FIG. 3). Further, the control device closes or slightly opens the indoor expansion valves 23b to 23d included in the stopped indoor units 20b to 20d.

圧縮機11から吐出された高温高圧のガス冷媒は、高圧ガス側配管3を介して、それぞれの室内熱交換器21a〜21dに流入する。ここで、停止状態の室内機20b〜20dに関しては、室内膨張弁23b〜23dが閉止されている(又は微開になっている)ため、圧縮機11からの冷媒が室内熱交換器21b〜21dに溜められる。すなわち、室内熱交換器21b〜21dでは、室内空気との熱交換(自然対流)によって高圧のガス冷媒が凝縮し、液冷媒として溜められる。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchangers 21 a to 21 d via the high-pressure gas side pipe 3. Here, with respect to the stopped indoor units 20b to 20d, since the indoor expansion valves 23b to 23d are closed (or slightly opened), the refrigerant from the compressor 11 is transferred to the indoor heat exchangers 21b to 21d. Accumulated. That is, in the indoor heat exchangers 21b to 21d, the high-pressure gas refrigerant is condensed by heat exchange (natural convection) with room air and stored as liquid refrigerant.

このように、室内熱交換器21b〜21dに液冷媒を保有することで、暖房運転を行っている室内機20aの室内熱交換器21a内に余剰の液冷媒が溜まることを抑制できる。したがって、室内熱交換器21aの凝縮能力を最大限に引き出し、暖房運転を行う際の運転効率を従来よりも高めることができる。また、室内熱交換器21aでは、室内送風ファン22aから送り込まれる室内空気との熱交換によって冷媒が十分に凝縮するため、高圧ガス側配管3における圧力上昇が抑制される。これによって、圧縮機11を一時的に停止させることなく暖房運転を継続できるため、従来よりも信頼性が高く、また、快適性に優れた空気調和機Aを提供できる。   In this way, by holding the liquid refrigerant in the indoor heat exchangers 21b to 21d, it is possible to suppress excess liquid refrigerant from being accumulated in the indoor heat exchanger 21a of the indoor unit 20a that is performing the heating operation. Therefore, the condensing capacity of the indoor heat exchanger 21a can be maximized, and the operation efficiency at the time of performing the heating operation can be increased as compared with the conventional case. Further, in the indoor heat exchanger 21a, the refrigerant is sufficiently condensed by heat exchange with the indoor air sent from the indoor blower fan 22a, so that an increase in pressure in the high-pressure gas side pipe 3 is suppressed. Thereby, since the heating operation can be continued without temporarily stopping the compressor 11, the air conditioner A having higher reliability and superior comfort can be provided.

図2のステップS102において冷房運転を行う室内機が存在する場合(S102:No)、制御装置の処理はステップS107に進む。例えば、一部の室内機では年間を通して冷房運転を行うことでサーバ室を冷やし、残りの室内機では冬季に暖房運転を行って室内を温めることがある。このようなときには、暖房運転・冷房運転が別々の室内機で同時に(時間的に重複して)行われる。   When there is an indoor unit that performs the cooling operation in Step S102 of FIG. 2 (S102: No), the process of the control device proceeds to Step S107. For example, in some indoor units, the server room is cooled by performing a cooling operation throughout the year, and in the remaining indoor units, the room is heated by performing a heating operation in winter. In such a case, the heating operation and the cooling operation are performed simultaneously (duplicated in time) in different indoor units.

ステップS107において制御装置は、冷房運転を行う室内機の台数に対して、暖房運転を行う室内機の台数が占める割合gを算出する。
ステップS108において制御装置は、ステップS107で算出した割合gが所定閾値G以下であるか否かを判定する。この所定閾値G(例えば、1.0)は、室外熱交換器12を凝縮器として用いるか(第3モード)、又は、蒸発器として用いるか(第4モード)を決める際の判定基準となる閾値である。割合gが所定閾値G以下である場合(S108:Yes)、制御装置の処理はステップS109に進む。
In step S107, the control device calculates a ratio g of the number of indoor units performing the heating operation to the number of indoor units performing the cooling operation.
In step S108, the control device determines whether or not the ratio g calculated in step S107 is equal to or less than a predetermined threshold G. This predetermined threshold G (for example, 1.0) is a criterion for determining whether to use the outdoor heat exchanger 12 as a condenser (third mode) or as an evaporator (fourth mode). It is a threshold value. When the ratio g is less than or equal to the predetermined threshold G (S108: Yes), the process of the control device proceeds to step S109.

ステップS109において制御装置は、第3モードを実行する。
図5は、第3モードにおける各弁の開閉状態と、冷媒の流れと、を示す説明図である。なお、図5に示す例では、冷房運転を行う室内機の台数(3台)に対して、暖房運転を行う室内機の台数(1台)占める割合gが0.33(≦G=1.0)になっている。
In step S109, the control device executes the third mode.
FIG. 5 is an explanatory diagram showing the open / close state of each valve and the flow of the refrigerant in the third mode. In the example illustrated in FIG. 5, the ratio g of the number of indoor units (one unit) performing the heating operation to the number of indoor units (three units) performing the cooling operation is 0.33 (≦ G = 1. 0).

制御装置は、第3モードを実行する際、室外熱交換器12の一端12nの接続先が圧縮機11の吐出側となるように四方弁14を制御する。
また、制御装置は、冷房運転を行う室内機20a〜20cに関しては、圧縮機11の吸入側と室内熱交換器21a〜21cとが低圧ガス側配管4を介して連通するように低圧ガス側電磁弁62a〜62cを開き、高圧ガス側電磁弁61a〜61cを閉じる。
また、制御装置は、暖房運転を行う室内機20dに関しては、圧縮機11の吐出側と室内熱交換器21dとが高圧ガス側配管3を介して連通するように高圧ガス側電磁弁61dを開き、低圧ガス側電磁弁62dを閉じる。
When executing the third mode, the control device controls the four-way valve 14 so that the connection destination of the one end 12 n of the outdoor heat exchanger 12 is on the discharge side of the compressor 11.
In addition, regarding the indoor units 20 a to 20 c that perform the cooling operation, the control device communicates the low pressure gas side electromagnetic so that the suction side of the compressor 11 and the indoor heat exchangers 21 a to 21 c communicate with each other via the low pressure gas side pipe 4. The valves 62a to 62c are opened, and the high pressure gas side electromagnetic valves 61a to 61c are closed.
Further, the control device opens the high-pressure gas side electromagnetic valve 61d so that the discharge side of the compressor 11 and the indoor heat exchanger 21d communicate with each other via the high-pressure gas side pipe 3 for the indoor unit 20d that performs the heating operation. The low pressure gas side electromagnetic valve 62d is closed.

圧縮機11から吐出された高温高圧のガス冷媒のうち一部は、高圧ガス側配管3を介して室内熱交換器21dに流入し、残りのガス冷媒は四方弁14を介して室外熱交換器12に流入する。室外熱交換器12において凝縮した冷媒、及び、室内熱交換器21dにおいて凝縮した冷媒は、液側配管5を通流する過程で室内膨張弁23a〜23cによって減圧され、室内熱交換器21a〜21cに向かう。室内熱交換器21a〜21cにおいて蒸発した冷媒は、低圧ガス側配管4を介して圧縮機11の吸入側に向かう。
このように、冷房運転を行う室内機が、暖房運転を行う室内機よりも多い場合には室外熱交換器12を凝縮器として機能させることで、凝縮能力の不足分を補うことができる。
A part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 21d via the high-pressure gas side pipe 3, and the remaining gas refrigerant passes through the four-way valve 14 to the outdoor heat exchanger. 12 flows in. The refrigerant condensed in the outdoor heat exchanger 12 and the refrigerant condensed in the indoor heat exchanger 21d are decompressed by the indoor expansion valves 23a to 23c in the process of flowing through the liquid side pipe 5, and the indoor heat exchangers 21a to 21c. Head for. The refrigerant evaporated in the indoor heat exchangers 21 a to 21 c is directed to the suction side of the compressor 11 through the low-pressure gas side pipe 4.
Thus, when there are more indoor units that perform the cooling operation than indoor units that perform the heating operation, the lack of the condensing capacity can be compensated by causing the outdoor heat exchanger 12 to function as a condenser.

図2のステップS108において、冷房運転の室内機に対して暖房運転の室内機が占める割合gが所定閾値Gよりも大きい場合(S108:No)、制御装置の処理はステップS110に進む。
ステップS110において制御装置は、第4モードを実行する。なお、第4モードについては詳細な説明を省略するが、制御装置は、室外熱交換器12を蒸発器として機能させるように四方弁14を切り替え、高圧ガス側電磁弁61a〜61d及び低圧ガス側電磁弁62a〜62dの開閉状態を、冷房運転/暖房運転に応じて適宜切り替える。
In step S108 of FIG. 2, when the ratio g of the indoor unit in the heating operation to the indoor unit in the cooling operation is larger than the predetermined threshold G (S108: No), the process of the control device proceeds to step S110.
In step S110, the control device executes the fourth mode. Although the detailed description of the fourth mode is omitted, the control device switches the four-way valve 14 so that the outdoor heat exchanger 12 functions as an evaporator, and switches the high-pressure gas side solenoid valves 61a to 61d and the low-pressure gas side. The open / close states of the solenoid valves 62a to 62d are switched as appropriate according to the cooling operation / heating operation.

図2のステップS101で暖房運転を行う室内機が存在しない場合(S101:No)、制御装置の処理はステップS111に向かう。ステップS111において制御装置は、室内機20a〜20dのうち、冷房運転を行う室内機が存在するか否かを判定する。冷房運転を行う室内機が存在する場合(S111:Yes)、制御装置の処理はステップS112に進む。
ステップS112において制御装置は、室内機20a〜20dのうち冷房運転を行う室内機の台数が占める割合hを算出する。
When there is no indoor unit that performs the heating operation in step S101 of FIG. 2 (S101: No), the process of the control device proceeds to step S111. In step S111, the control device determines whether there is an indoor unit that performs a cooling operation among the indoor units 20a to 20d. When there is an indoor unit that performs the cooling operation (S111: Yes), the control device proceeds to step S112.
In step S112, the control device calculates a ratio h of the number of indoor units performing the cooling operation among the indoor units 20a to 20d.

ステップS113において制御装置は、ステップS112で算出した割合hが所定閾値H以下であるか否かを判定する。この所定閾値H(例えば、0.25)は、停止している室内機の室内熱交換器を凝縮器として機能させるか否かの判定基準となる閾値である。
冷房運転の室内機が占める割合hが所定閾値H以下である場合(S113:Yes)、制御装置の処理はステップS114に進む。
ステップS114において制御装置は、第5モードを実行する。なお、第5モードを実行する条件として、外気温度(≧室内温度)と室内温度との差の絶対値が所定閾値以下である(つまり、冷房負荷が小さい)という条件を追加してもよい。
In step S113, the control device determines whether or not the ratio h calculated in step S112 is equal to or less than a predetermined threshold value H. The predetermined threshold value H (for example, 0.25) is a threshold value that serves as a criterion for determining whether or not the indoor heat exchanger of the stopped indoor unit functions as a condenser.
When the ratio h of the indoor units in the cooling operation is equal to or less than the predetermined threshold H (S113: Yes), the processing of the control device proceeds to step S114.
In step S114, the control device executes the fifth mode. As a condition for executing the fifth mode, a condition that the absolute value of the difference between the outside air temperature (≧ indoor temperature) and the indoor temperature is not more than a predetermined threshold (that is, the cooling load is small) may be added.

図6は、第5モードにおける各弁の状態と、冷媒の流れと、を示す説明図である。図6に示す例では、4台の室内機20a〜20dのうち、冷房運転を行う室内機20a(1台)が占める割合hが0.25(≦H=0.25)であり、冷房負荷が比較的小さい状態になっている。   FIG. 6 is an explanatory diagram showing the state of each valve and the flow of the refrigerant in the fifth mode. In the example shown in FIG. 6, the ratio h occupied by the indoor unit 20a (one unit) performing the cooling operation among the four indoor units 20a to 20d is 0.25 (≦ H = 0.25), and the cooling load Is relatively small.

制御装置は、第5モードを実行する際、室外熱交換器12の一端12nの接続先が圧縮機11の吸入側となるように四方弁14を制御するとともに、室外膨張弁16を閉止する。
また、制御装置は、冷房運転を行う室内機20aに関しては、圧縮機11の吸入側と室内熱交換器21aとが連通するように低圧ガス側電磁弁62aを開き、高圧ガス側電磁弁61aを閉じる。
また、制御装置は、停止している室内機20b〜20dに関しては、圧縮機11の吐出側と室内熱交換器21b〜21dとが連通するように高圧ガス側電磁弁61b〜61dを開き、低圧ガス側電磁弁62b〜62dを閉じる。
When executing the fifth mode, the control device controls the four-way valve 14 so that the connection destination of the one end 12n of the outdoor heat exchanger 12 is the suction side of the compressor 11, and closes the outdoor expansion valve 16.
In addition, for the indoor unit 20a that performs the cooling operation, the control device opens the low pressure gas side electromagnetic valve 62a so that the suction side of the compressor 11 and the indoor heat exchanger 21a communicate with each other, and opens the high pressure gas side electromagnetic valve 61a. close up.
In addition, for the stopped indoor units 20b to 20d, the control device opens the high pressure gas side solenoid valves 61b to 61d so that the discharge side of the compressor 11 and the indoor heat exchangers 21b to 21d communicate with each other, and the low pressure The gas side solenoid valves 62b to 62d are closed.

圧縮機11から吐出された高温高圧のガス冷媒は、高圧ガス側配管3を介して室内熱交換器21b〜21dに流入する。室内熱交換器21b〜21dを通流するガス冷媒は、自然対流によって室内空気と熱交換して凝縮する。このように第5モードでは、停止している室内機20b〜20dの室内熱交換器21b〜21dを凝縮器として機能させている。
室内熱交換器21b〜21dから流出した冷媒は、液側配管5を通流する過程で室内膨張弁23aによって減圧され、減圧された冷媒が室内熱交換器21aに流入する。室内熱交換器21aを通流する冷媒は、室内送風ファン22aから送り込まれる室内空気から吸熱して蒸発し、低圧のガス冷媒になる。室内熱交換器21aから流出したガス冷媒は、低圧ガス側配管4を介して圧縮機11の吸入側に戻る。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchangers 21 b to 21 d through the high-pressure gas side pipe 3. The gas refrigerant flowing through the indoor heat exchangers 21b to 21d is condensed by exchanging heat with room air by natural convection. As described above, in the fifth mode, the indoor heat exchangers 21b to 21d of the stopped indoor units 20b to 20d are functioned as a condenser.
The refrigerant that has flowed out of the indoor heat exchangers 21b to 21d is decompressed by the indoor expansion valve 23a in the process of flowing through the liquid side pipe 5, and the decompressed refrigerant flows into the indoor heat exchanger 21a. The refrigerant flowing through the indoor heat exchanger 21a absorbs heat from the indoor air sent from the indoor blower fan 22a and evaporates to become a low-pressure gas refrigerant. The gas refrigerant that has flowed out of the indoor heat exchanger 21 a returns to the suction side of the compressor 11 through the low-pressure gas side pipe 4.

なお、室外熱交換器12は、室内機20a〜20dの全てが冷房運転を行っている場合にも凝縮能力が不足しないよう、その容量が十分に確保されている。仮に、室外膨張弁16を開き、室外熱交換器12(凝縮器)及び室内熱交換器21a(蒸発器)を介して冷媒を循環させると、前記したように、室外熱交換器12の凝縮能力が十分に確保されているため、その凝縮能力が過大になってしまう。その結果、特に外気温度が低い場合には室内熱交換器21aが着霜し、除霜を行うために冷房運転が一時的に停止される可能性が高くなる。   The outdoor heat exchanger 12 has a sufficient capacity so that the condensation capacity is not insufficient even when all of the indoor units 20a to 20d are performing the cooling operation. If the outdoor expansion valve 16 is opened and the refrigerant is circulated through the outdoor heat exchanger 12 (condenser) and the indoor heat exchanger 21a (evaporator), the condensation capacity of the outdoor heat exchanger 12 as described above. Is sufficiently secured, and its condensation capacity becomes excessive. As a result, when the outside air temperature is low, the indoor heat exchanger 21a is frosted, and there is a high possibility that the cooling operation is temporarily stopped to perform defrosting.

これに対して、本実施形態(第5モード)では、停止している室内機20b〜20dの室内熱交換器21b〜21dを凝縮器として機能させることで、外気温度が低い場合に凝縮能力を抑え、室内熱交換器21aの着霜を防止できる。すなわち、冷房運転を継続して行うことができるため、従来よりも信頼性が高く、また、快適性に優れた空気調和機Aを提供できる。   On the other hand, in the present embodiment (fifth mode), the indoor heat exchangers 21b to 21d of the stopped indoor units 20b to 20d are caused to function as condensers, so that the condensation capacity is increased when the outside air temperature is low. It is possible to suppress frosting of the indoor heat exchanger 21a. That is, since the cooling operation can be continued, the air conditioner A having higher reliability and superior comfort can be provided.

図2のステップS113において、冷房運転の室内機が占める割合hが所定閾値Hよりも大きい場合(S113:No)、制御装置の処理はステップS115に進む。
ステップS115において制御装置は、第6モードを実行する。第6モードについては詳細な説明を省略するが、制御装置は、室外熱交換器12を凝縮器として機能させるように四方弁14を切り替え、さらに室内機20a〜20dの運転状態に応じて、高圧ガス側電磁弁61a〜61d及び低圧ガス側電磁弁62a〜62dの開閉状態を適宜切り替える。
In step S113 of FIG. 2, when the ratio h that the indoor unit in the cooling operation occupies is larger than the predetermined threshold value H (S113: No), the process of the control device proceeds to step S115.
In step S115, the control device executes the sixth mode. Although a detailed description of the sixth mode is omitted, the control device switches the four-way valve 14 so that the outdoor heat exchanger 12 functions as a condenser, and further increases the pressure according to the operating state of the indoor units 20a to 20d. The open / close states of the gas side solenoid valves 61a to 61d and the low pressure gas side solenoid valves 62a to 62d are appropriately switched.

また、ステップS111において冷房運転を行う室内機が存在しない場合(S111:No)、つまり、全ての室内機が停止している場合には、制御装置の処理は「START」に戻る(RETURN)。
なお、制御装置は、リモコン(図示せず)の操作によって、室内機の暖房運転/冷房運転が切り替えられたり、室内機の運転/停止が切り替えられたりするたびに、図2に示す処理を繰り返す。
If there is no indoor unit that performs the cooling operation in step S111 (S111: No), that is, if all the indoor units are stopped, the process of the control device returns to “START” (RETURN).
The control device repeats the process shown in FIG. 2 every time the heating / cooling operation of the indoor unit is switched or the operation / stop of the indoor unit is switched by an operation of a remote controller (not shown). .

<効果>
本実施形態によれば、暖房運転又は冷房運転を行う室内機の台数や、外気温度の変化に応じて各弁を制御することで、空調に要する適量の冷媒を循環させることができる。したがって、従来よりも広い条件で対人空調としての快適性を確保できるとともに、高いCOP(Coefficient Of Performance:成績係数)で空調を行うことができる。また、本実施形態によれば、圧縮機11の保護のために暖房運転を一時的に停止したり、室内熱交換器の除霜のために冷房運転を一時的に停止したりすることがほとんどなくなるため、空気調和機Aの信頼性を従来よりも高めることができる。
<Effect>
According to the present embodiment, an appropriate amount of refrigerant required for air conditioning can be circulated by controlling each valve in accordance with the number of indoor units that perform heating operation or cooling operation and changes in the outside air temperature. Therefore, comfort as interpersonal air conditioning can be ensured under wider conditions than before, and air conditioning can be performed with high COP (Coefficient Of Performance). Moreover, according to this embodiment, heating operation is temporarily stopped for the protection of the compressor 11, and cooling operation is temporarily stopped for defrosting of an indoor heat exchanger. Therefore, the reliability of the air conditioner A can be improved as compared with the prior art.

≪変形例≫
以上、本発明に係る空気調和機Aについて実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、実施形態では、暖房運転又は冷房運転を行う室内機の台数に基づいて各運転モード(第1〜第6モード)を決定する場合について説明したが、これに限らない。すなわち、暖房運転又は冷房運転を行う室内機に関して、その室内熱交換器の容量に基づいて運転モードを決定するようにしてもよい。これによって、例えば、室内熱交換器21a〜21dの容量が同一でない場合でも、以下で説明するように最適な運転モードを選択できる。
≪Modification≫
As mentioned above, although air conditioner A concerning the present invention was explained by an embodiment, the present invention is not limited to these statements and can change variously.
For example, in the embodiment, a case has been described in which each operation mode (first to sixth modes) is determined based on the number of indoor units that perform heating operation or cooling operation, but the present invention is not limited thereto. That is, regarding the indoor unit that performs the heating operation or the cooling operation, the operation mode may be determined based on the capacity of the indoor heat exchanger. Thereby, for example, even when the capacities of the indoor heat exchangers 21a to 21d are not the same, an optimum operation mode can be selected as described below.

すなわち、前記した実施形態では、暖房運転を行う室内機の台数が占める割合fが所定閾値Fよりも大きいときに第1モードを実行する場合について説明したが(S104:Yes、S105)、これに限らない。すなわち、室外熱交換器12の容量に対して、暖房運転を行う室内機が有する室内熱交換器の容量の合計値が占める割合が所定閾値よりも大きいときに、第1モードを実行するようにしてもよい。これによって、停止している室内機の室内熱交換器に多量の液冷媒が溜まることを防止できる。   That is, in the above-described embodiment, the case where the first mode is executed when the ratio f occupied by the number of indoor units performing the heating operation is larger than the predetermined threshold F has been described (S104: Yes, S105). Not exclusively. That is, the first mode is executed when the ratio of the total capacity of the indoor heat exchangers of the indoor units performing the heating operation to the capacity of the outdoor heat exchanger 12 is greater than a predetermined threshold. May be. This can prevent a large amount of liquid refrigerant from accumulating in the indoor heat exchanger of the stopped indoor unit.

また、実施形態では、暖房運転を行う室内機の台数が占める割合fが所定閾値F以下であるときに第2モードを実行する場合について説明したが(S104:No、S106)、これに限らない。すなわち、室外熱交換器12の容量に対して、暖房運転を行う室内機が有する室内熱交換器の容量の合計値が占める割合が所定閾値以下であるときに、第2モードを実行するようにしてもよい。これによって、停止している室内機の室内熱交換器に液冷媒を溜めることができる。
なお、前記した条件が成立し、かつ、外気温度(≦室内温度)と室内温度との差の絶対値が所定閾値以下であるときに第2モードを実行するようにしてもよい。
Moreover, although embodiment demonstrated the case where 2nd mode was performed when the ratio f which the number of indoor units which perform heating operation is below the predetermined threshold F (S104: No, S106), it is not restricted to this. . That is, the second mode is executed when the ratio of the total capacity of the indoor heat exchangers of the indoor units performing the heating operation to the capacity of the outdoor heat exchanger 12 is equal to or less than a predetermined threshold. May be. Thereby, the liquid refrigerant can be stored in the indoor heat exchanger of the stopped indoor unit.
Note that the second mode may be executed when the above-described conditions are satisfied and the absolute value of the difference between the outside air temperature (≦ the room temperature) and the room temperature is equal to or less than a predetermined threshold value.

また、実施形態では、冷房運転を行う室内機に対して、暖房運転を行う室内機が占める割合gが所定閾値G以下であるときに第3モードを実行する場合について説明したが(S108:Yes、S109)、これに限らない。すなわち、冷房運転を行う室内機の室内熱交換器の容量の合計値に対して、暖房運転を行う室内機の室内熱交換器の容量の合計値が占める割合が所定閾値以下であるときに、第3モードを実行するようにしてもよい。これによって、室外熱交換器12を凝縮器として機能させることができる。
なお、室外熱交換器12を蒸発器として機能させる第4モードについても同様である。
Moreover, although embodiment demonstrated the case where a 3rd mode was performed when the ratio g for which the indoor unit which performs heating operation is below the predetermined threshold G with respect to the indoor unit which performs cooling operation (S108: Yes) S109), but is not limited thereto. That is, when the ratio of the total value of the capacity of the indoor heat exchanger of the indoor unit that performs the heating operation to the total value of the capacity of the indoor heat exchanger of the indoor unit that performs the cooling operation is equal to or less than a predetermined threshold, The third mode may be executed. Thereby, the outdoor heat exchanger 12 can function as a condenser.
The same applies to the fourth mode in which the outdoor heat exchanger 12 functions as an evaporator.

また、実施形態では、冷房運転を行う室内機の台数が占める割合hが所定閾値H以下であるときに第5モードを実行する場合について説明したが(S113:Yes、S114)、これに限らない。すなわち、室外熱交換器12の容量に対して、冷房運転を行う室内機が有する室内熱交換器の容量の合計値が占める割合が所定閾値以下であるときに、第5モードを実行するようにしてもよい。これによって、停止している室内機の室内熱交換器を凝縮器として機能させることができる。
なお、前記した条件が成立し、かつ、外気温度(≧室内温度)と室内温度との差の絶対値が所定閾値以下であるときに第5モードを実行するようにしてもよい。
In the embodiment, the case where the fifth mode is executed when the ratio h of the number of indoor units performing the cooling operation is equal to or less than the predetermined threshold H has been described (S113: Yes, S114). . That is, the fifth mode is executed when the ratio of the total capacity of the indoor heat exchangers of the indoor units performing the cooling operation to the capacity of the outdoor heat exchanger 12 is equal to or less than a predetermined threshold. May be. Thereby, the indoor heat exchanger of the stopped indoor unit can function as a condenser.
Note that the fifth mode may be executed when the above-described conditions are satisfied and the absolute value of the difference between the outside air temperature (≧ indoor temperature) and the indoor temperature is equal to or less than a predetermined threshold value.

また、実施形態では、空気調和機Aが4台の室内機20a〜20dを備える構成(図1参照)について説明したが、互いに並列接続される室内機の台数は3台以下であってもよいし、また、5台以上であってもよい。   Moreover, although the air conditioner A demonstrated the structure (refer FIG. 1) provided with the four indoor units 20a-20d in embodiment, the number of the indoor units connected mutually in parallel may be three or less. Moreover, five or more may be used.

また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Each embodiment is described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the described configurations. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
In addition, the above-described mechanisms and configurations are those that are considered necessary for the description, and do not necessarily indicate all the mechanisms and configurations on the product.

A 空気調和機
10 室外機
11 圧縮機
12 室外熱交換器
12n 室外熱交換器の一端
12u 室外熱交換器の他端
13 室外送風ファン
14 四方弁(流路切替手段)
15 逆止弁
16 室外膨張弁
17 制御装置(制御手段)
20a,20b,20c,20d 室内機
21a,21b,21c,21d 室内熱交換器
n 室内熱交換器の一端
u 室内熱交換器の他端
22a,22b,22c,22d 室内送風ファン
23a,23b,23c,23d 室内膨張弁
3 高圧ガス側配管(第1配管)
4 低圧ガス側配管(第2配管)
5 液側配管(第3配管)
61a,61b,61c,61d 高圧ガス側電磁弁(第1開閉手段)
62a,62b,62c,62d 低圧ガス側電磁弁(第2開閉手段)
A air conditioner 10 outdoor unit 11 compressor 12 outdoor heat exchanger 12n one end of the outdoor heat exchanger 12u other end of the outdoor heat exchanger 13 outdoor blower fan 14 four-way valve (flow path switching means)
15 Check valve 16 Outdoor expansion valve 17 Control device (control means)
20a, 20b, 20c, 20d Indoor unit 21a, 21b, 21c, 21d Indoor heat exchanger n One end of indoor heat exchanger u Other end of indoor heat exchanger 22a, 22b, 22c, 22d Indoor fan 23a, 23b, 23c , 23d Indoor expansion valve 3 High-pressure gas side piping (first piping)
4 Low-pressure gas side piping (second piping)
5 Liquid side piping (3rd piping)
61a, 61b, 61c, 61d High pressure gas side solenoid valve (first opening / closing means)
62a, 62b, 62c, 62d Low pressure gas side solenoid valve (second opening / closing means)

Claims (5)

圧縮機と、室外熱交換器と、前記室外熱交換器の一端の接続先を前記圧縮機の吸入側/吐出側に切り替える流路切替手段と、前記室外熱交換器の他端に接続される室外膨張弁と、を有する室外機と、
室内熱交換器と、前記室内熱交換器の一端に接続される室内膨張弁と、を有する複数台の室内機と、
前記圧縮機の吐出側と、それぞれの前記室内熱交換器の他端と、を接続する第1配管と、
前記第1配管に設けられ、前記圧縮機の吐出側と前記室内熱交換器との連通/遮断を、それぞれの前記室内熱交換器について切り替える複数の第1開閉手段と、
前記圧縮機の吸入側と、前記第1配管における前記第1開閉手段の下流側と、をそれぞれ接続する第2配管と、
前記第2配管に設けられ、前記圧縮機の吸入側と前記室内熱交換器との連通/遮断を、それぞれの前記室内熱交換器について切り替える複数の第2開閉手段と、
それぞれの前記室内熱交換器の前記一端と、前記室外熱交換器の前記他端と、を前記室内膨張弁及び前記室外膨張弁を介して接続する第3配管と、を備えること
を特徴とする空気調和機。
The compressor, the outdoor heat exchanger, the flow path switching means for switching the connection destination of one end of the outdoor heat exchanger to the suction side / discharge side of the compressor, and the other end of the outdoor heat exchanger An outdoor unit having an outdoor expansion valve;
A plurality of indoor units having an indoor heat exchanger and an indoor expansion valve connected to one end of the indoor heat exchanger;
A first pipe connecting the discharge side of the compressor and the other end of each indoor heat exchanger;
A plurality of first opening / closing means provided on the first pipe, for switching communication / blocking between the discharge side of the compressor and the indoor heat exchanger for each of the indoor heat exchangers;
A second pipe connecting the suction side of the compressor and the downstream side of the first opening / closing means in the first pipe;
A plurality of second opening / closing means provided in the second pipe, for switching communication / blocking between the suction side of the compressor and the indoor heat exchanger for each of the indoor heat exchangers;
And a third pipe connecting the one end of each of the indoor heat exchangers and the other end of the outdoor heat exchanger via the indoor expansion valve and the outdoor expansion valve. Air conditioner.
前記空気調和機の各機器を制御する制御手段を備え、
前記制御手段は、
前記第1開閉手段によって前記圧縮機の吐出側と前記室内熱交換器とを連通させる場合には、当該室内熱交換器に対応する前記第2開閉手段を閉止し、
前記第2開閉手段によって前記圧縮機の吸入側と前記室内熱交換器とを連通させる場合には、当該室内熱交換器に対応する前記第1開閉手段を閉止すること
を特徴とする請求項1に記載の空気調和機。
Comprising control means for controlling each device of the air conditioner,
The control means includes
When communicating the discharge side of the compressor and the indoor heat exchanger by the first opening / closing means, the second opening / closing means corresponding to the indoor heat exchanger is closed,
The first opening / closing means corresponding to the indoor heat exchanger is closed when the suction side of the compressor and the indoor heat exchanger are communicated with each other by the second opening / closing means. Air conditioner as described in.
前記制御手段は、
複数台の前記室内機のうち一部で暖房運転を行い、残りの室内機を停止させる場合において、
複数台の前記室内機のうち暖房運転を行う室内機の台数が占める割合が所定閾値よりも大きいとき、
又は、
前記室外熱交換器の容量に対して、暖房運転を行う室内機が有する前記室内熱交換器の容量の合計値が占める割合が所定閾値よりも大きいとき、
前記室外熱交換器の前記一端を、前記流路切替手段を介して前記圧縮機の吸入側に接続するとともに、
暖房運転を行う室内機に関しては、前記圧縮機の吐出側と前記室内熱交換器とが連通するように前記第1開閉手段及び前記第2開閉手段を制御し、
停止状態の室内機に関しては、前記圧縮機の吸入側と前記室内熱交換器とが連通するように前記第1開閉手段及び前記第2開閉手段を制御し、さらに、当該室内機が有する前記室内膨張弁を閉止すること
を特徴とする請求項2に記載の空気調和機。
The control means includes
In the case where the heating operation is performed in a part of the plurality of indoor units and the remaining indoor units are stopped,
When the ratio of the number of indoor units performing heating operation among the plurality of indoor units is greater than a predetermined threshold,
Or
When the ratio of the total capacity of the indoor heat exchanger that the indoor unit performing the heating operation occupies with respect to the capacity of the outdoor heat exchanger is larger than a predetermined threshold,
While connecting the one end of the outdoor heat exchanger to the suction side of the compressor via the flow path switching means,
For the indoor unit that performs the heating operation, the first opening and closing means and the second opening and closing means are controlled so that the discharge side of the compressor and the indoor heat exchanger communicate with each other.
With respect to the stopped indoor unit, the first opening / closing means and the second opening / closing means are controlled so that the suction side of the compressor and the indoor heat exchanger communicate with each other, and the indoor unit has the indoor unit. The air conditioner according to claim 2, wherein the expansion valve is closed.
前記制御手段は、
複数台の前記室内機のうち一部で暖房運転を行い、残りの室内機を停止させる場合において、
複数台の前記室内機のうち暖房運転を行う室内機の台数が占める割合が所定閾値以下であるとき、
又は、
前記室外熱交換器の容量に対して、暖房運転を行う室内機が有する前記室内熱交換器の容量の合計値が占める割合が所定閾値以下であるとき、
前記室外熱交換器の前記一端を、前記流路切替手段を介して前記圧縮機の吸入側に接続するとともに、
それぞれの前記室内機に関して、前記圧縮機の吐出側と前記室内熱交換器とが連通するように前記第1開閉手段及び前記第2開閉手段を制御し、
さらに、停止状態の室内機が有する前記室内膨張弁を閉止又は微開にすること
を特徴とする請求項2に記載の空気調和機。
The control means includes
In the case where the heating operation is performed in a part of the plurality of indoor units and the remaining indoor units are stopped,
When the ratio of the number of indoor units performing heating operation among the plurality of indoor units is equal to or less than a predetermined threshold,
Or
When the ratio of the total value of the capacity of the indoor heat exchanger that the indoor unit performing the heating operation occupies with respect to the capacity of the outdoor heat exchanger is equal to or less than a predetermined threshold value,
While connecting the one end of the outdoor heat exchanger to the suction side of the compressor via the flow path switching means,
For each of the indoor units, the first opening and closing means and the second opening and closing means are controlled so that the discharge side of the compressor and the indoor heat exchanger communicate with each other.
The air conditioner according to claim 2, wherein the indoor expansion valve of the stopped indoor unit is closed or slightly opened.
前記制御手段は、
複数台の前記室内機のうち一部で冷房運転を行い、残りの室内機を停止させる場合において、
複数台の前記室内機のうち冷房運転を行う室内機の台数が占める割合が所定閾値以下であるとき、
又は、
前記室外熱交換器の容量に対して、冷房運転を行う室内機が有する前記室内熱交換器の容量の合計値が占める割合が所定閾値以下であるとき、
前記室外熱交換器の前記一端を、前記流路切替手段を介して前記圧縮機の吸入側に接続するとともに、
冷房運転を行う室内機に関しては、前記圧縮機の吸入側と前記室内熱交換器とが連通するように前記第1開閉手段及び前記第2開閉手段を制御し、
停止状態の室内機に関しては、前記圧縮機の吐出側と前記室内熱交換器とが連通するように前記第1開閉手段及び前記第2開閉手段を制御し、
さらに、前記室外膨張弁を閉止すること
を特徴とする請求項2に記載の空気調和機。
The control means includes
When performing a cooling operation in a part of the plurality of indoor units and stopping the remaining indoor units,
When the ratio of the number of indoor units performing cooling operation among the plurality of indoor units is equal to or less than a predetermined threshold,
Or
When the ratio of the total value of the capacity of the indoor heat exchanger that the indoor unit performing the cooling operation occupies with respect to the capacity of the outdoor heat exchanger is equal to or less than a predetermined threshold value,
While connecting the one end of the outdoor heat exchanger to the suction side of the compressor via the flow path switching means,
For the indoor unit that performs the cooling operation, the first opening and closing means and the second opening and closing means are controlled so that the suction side of the compressor and the indoor heat exchanger communicate with each other.
For the stopped indoor unit, the first opening and closing means and the second opening and closing means are controlled so that the discharge side of the compressor and the indoor heat exchanger communicate with each other,
The air conditioner according to claim 2, further comprising closing the outdoor expansion valve.
JP2015018533A 2015-02-02 2015-02-02 Air conditioner Active JP6431393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018533A JP6431393B2 (en) 2015-02-02 2015-02-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018533A JP6431393B2 (en) 2015-02-02 2015-02-02 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016142453A true JP2016142453A (en) 2016-08-08
JP6431393B2 JP6431393B2 (en) 2018-11-28

Family

ID=56568553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018533A Active JP6431393B2 (en) 2015-02-02 2015-02-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP6431393B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077010A (en) * 2016-11-10 2018-05-17 関東精機株式会社 Temperature control device
CN113669849A (en) * 2021-07-26 2021-11-19 三菱重工海尔(青岛)空调机有限公司 Method for rapidly refrigerating multi-split air conditioner
CN115111819A (en) * 2022-07-13 2022-09-27 广东美的制冷设备有限公司 Multi-connected air conditioning system, air conditioning control method, controller and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167657A (en) * 1984-03-09 1984-09-21 松下冷機株式会社 Heat pump type multi-chamber air conditioner
JPH03129260A (en) * 1989-10-13 1991-06-03 Matsushita Refrig Co Ltd Multi-room type air conditioner
JPH0599526A (en) * 1991-10-11 1993-04-20 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH05172418A (en) * 1991-11-21 1993-07-09 Matsushita Refrig Co Ltd Multi-chamber air conditioner
JPH06249542A (en) * 1993-02-23 1994-09-06 Mitsubishi Heavy Ind Ltd Air conditioner
JPH08233377A (en) * 1995-02-28 1996-09-13 Sanyo Electric Co Ltd Air conditioner
JP2001033119A (en) * 1999-07-19 2001-02-09 Fujitsu General Ltd Multi-room type air conditioner
JP2006145185A (en) * 2004-11-25 2006-06-08 Hitachi Ltd Multiple type air conditioner
JP2007120937A (en) * 2005-10-28 2007-05-17 Lg Electronics Inc Control method and device for multiple air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167657A (en) * 1984-03-09 1984-09-21 松下冷機株式会社 Heat pump type multi-chamber air conditioner
JPH03129260A (en) * 1989-10-13 1991-06-03 Matsushita Refrig Co Ltd Multi-room type air conditioner
JPH0599526A (en) * 1991-10-11 1993-04-20 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JPH05172418A (en) * 1991-11-21 1993-07-09 Matsushita Refrig Co Ltd Multi-chamber air conditioner
JPH06249542A (en) * 1993-02-23 1994-09-06 Mitsubishi Heavy Ind Ltd Air conditioner
JPH08233377A (en) * 1995-02-28 1996-09-13 Sanyo Electric Co Ltd Air conditioner
JP2001033119A (en) * 1999-07-19 2001-02-09 Fujitsu General Ltd Multi-room type air conditioner
JP2006145185A (en) * 2004-11-25 2006-06-08 Hitachi Ltd Multiple type air conditioner
JP2007120937A (en) * 2005-10-28 2007-05-17 Lg Electronics Inc Control method and device for multiple air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077010A (en) * 2016-11-10 2018-05-17 関東精機株式会社 Temperature control device
CN113669849A (en) * 2021-07-26 2021-11-19 三菱重工海尔(青岛)空调机有限公司 Method for rapidly refrigerating multi-split air conditioner
CN113669849B (en) * 2021-07-26 2022-08-16 三菱重工海尔(青岛)空调机有限公司 Method for rapidly refrigerating multi-split air conditioner
CN115111819A (en) * 2022-07-13 2022-09-27 广东美的制冷设备有限公司 Multi-connected air conditioning system, air conditioning control method, controller and storage medium
CN115111819B (en) * 2022-07-13 2024-03-19 广东美的制冷设备有限公司 Multi-connected air conditioning system, air conditioning control method, controller and storage medium

Also Published As

Publication number Publication date
JP6431393B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
EP3062031B1 (en) Air conditioner
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
WO2013099047A1 (en) Air conditioner
JP4909093B2 (en) Multi-type air conditioner
US11199342B2 (en) Air conditioner
KR102330339B1 (en) Multi-type air conditioner and control method for the same
WO2016194098A1 (en) Air-conditioning device and operation control device
JP2008128498A (en) Multi-type air conditioner
JP3575484B2 (en) Heat source unit of air conditioner and air conditioner
WO2016208042A1 (en) Air-conditioning device
US10928105B2 (en) Air conditioner
EP3106768B1 (en) Heat source-side unit and air conditioning device
JP4418936B2 (en) Air conditioner
WO2018221052A1 (en) Control device, multi-split air conditioning system provided with same, and control method, and control program
JP6431393B2 (en) Air conditioner
WO2015182585A1 (en) Refrigeration device
JP2010048506A (en) Multi-air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
KR20190041091A (en) Air Conditioner
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP6081283B2 (en) Air conditioner
KR100885566B1 (en) Controlling method for air conditioner
WO2017094172A1 (en) Air conditioning device
JP7258129B2 (en) air conditioner
KR102250983B1 (en) Method for controlling multi-type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181102

R150 Certificate of patent or registration of utility model

Ref document number: 6431393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150