JP2016112490A - Dissolved oxygen removal system and dissolved oxygen removal method for well water - Google Patents

Dissolved oxygen removal system and dissolved oxygen removal method for well water Download PDF

Info

Publication number
JP2016112490A
JP2016112490A JP2014251914A JP2014251914A JP2016112490A JP 2016112490 A JP2016112490 A JP 2016112490A JP 2014251914 A JP2014251914 A JP 2014251914A JP 2014251914 A JP2014251914 A JP 2014251914A JP 2016112490 A JP2016112490 A JP 2016112490A
Authority
JP
Japan
Prior art keywords
well
water
pipe
dissolved oxygen
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014251914A
Other languages
Japanese (ja)
Other versions
JP6306497B2 (en
Inventor
間宮 尚
Takashi Mamiya
尚 間宮
淳一 川端
Junichi Kawabata
淳一 川端
昭治 瀬尾
Shoji Seo
昭治 瀬尾
圭太 岩野
Keita Iwano
圭太 岩野
圭二郎 伊藤
Keijiro Ito
圭二郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014251914A priority Critical patent/JP6306497B2/en
Publication of JP2016112490A publication Critical patent/JP2016112490A/en
Application granted granted Critical
Publication of JP6306497B2 publication Critical patent/JP6306497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dissolved oxygen removal system and a dissolved oxygen removal method for well water which can prevent blocking of a structure in the well or in an aquifer due to dissolved oxygen of the well water.SOLUTION: A dissolved oxygen removal system 1A comprises: a well 2 having well water W and being flooded or pumped; a deaeration pipe 3 that one end 31 is inserted in the well 2; and a vacuum pump 4 connected to another end 32 of the deaeration pipe 3 and raising the well water W from the one end 31 into the deaeration pipe 3 to an appointed height h. When the vacuum pump 4 is operated, the well water W is raised from the one end 31 of the deaeration pipe 3 into the deaeration pipe 3, and the surface of the water in the deaeration pipe 3 stops at a height h equivalent to a head pressure depending on degree of decompression. the dissolved oxygen of the well water W is deaerated from the well water W with decompression.SELECTED DRAWING: Figure 2

Description

本発明は、井戸水の溶存酸素除去システム及び溶存酸素除去方法に関する。   The present invention relates to a dissolved oxygen removal system and a dissolved oxygen removal method for well water.

従来、井戸に対して注水又は揚水することにより地下水位を変化させることが行われている。例えば、山留め工事では掘削現場に設けた揚水井戸から地下水を揚水し、他の場所に設けた注水井戸(リチャージ井戸)から地下水を土中に戻している。また、注水又は揚水することによって地下水の流れを制御することができるため、汚染土壌対策においても、汚染域の浄化や拡散防止を目的として注水又は揚水が行われている。   Conventionally, the groundwater level is changed by pouring or pumping water into a well. For example, in mountain retaining work, groundwater is pumped from a pumping well provided at an excavation site, and groundwater is returned to the soil from a water injection well (recharge well) provided at another location. In addition, since the flow of groundwater can be controlled by pouring or pumping water, water is poured or pumped for the purpose of purifying the contaminated area and preventing diffusion in the contaminated soil countermeasures.

注水井戸及び揚水井戸を使用し続けていると、井戸水に含まれる微粒子(細粒分、有機物、微生物等)、及び井戸水の溶存酸素によって形成される酸化物(酸化鉄、酸化カルシウム等)等により、井戸内構造物や帯水層内部に目詰まりが生じてくる。目詰まりが生じると注水又は揚水を行うことが困難になるため、時々、逆方向に通水することによってこれらの目詰まりを解消することが行われている。   If water injection wells and pumping wells continue to be used, fine particles (fine particles, organic matter, microorganisms, etc.) contained in well water, and oxides (iron oxide, calcium oxide, etc.) formed by dissolved oxygen in well water, etc. Clogging occurs in the well structure and in the aquifer. When clogging occurs, it becomes difficult to perform water injection or pumping. Therefore, sometimes, clogging is eliminated by passing water in the opposite direction.

また、目詰まりを防止する方法も考案されている。例えば特許文献1に開示された水処理装置では、山留め工事において揚水した井戸水を他の場所に設けた注水井戸から土中に戻すに際し、揚水した井戸水を地上の設備で濾過及び脱気することによって、井戸水に含まれる微粒子及び溶存酸素を除去している。   A method for preventing clogging has also been devised. For example, in the water treatment device disclosed in Patent Document 1, when returning the well water pumped up in the mountain retaining work from the pouring well provided in another place into the soil, the pumped well water is filtered and deaerated by the above-ground equipment. The fine particles and dissolved oxygen contained in the well water are removed.

特開平10−34134号公報Japanese Patent Laid-Open No. 10-34134

しかしながら、特許文献1の水処理装置は、揚水井戸における揚水前の井戸水、及び、注水井戸における注水後の井戸水は処理対象とされていないため、溶存酸素に起因する井戸内構造物や帯水層内部の目詰まりが依然として生じ得る。   However, in the water treatment apparatus of Patent Document 1, the well water before pumping in the pumping well and the well water after pouring in the pumping well are not treated, so the structures in the well and the aquifer caused by dissolved oxygen Internal clogging can still occur.

そこで本発明は、井戸水の溶存酸素に起因する井戸内構造物又は帯水層内部の目詰まりを一層防止することができる井戸水の溶存酸素除去システム、及び溶存酸素除去方法を提供することを目的とする。   Then, this invention aims at providing the dissolved oxygen removal system and the dissolved oxygen removal method which can prevent further the clogging of the structure in a well or the inside of an aquifer resulting from the dissolved oxygen of well water. To do.

本発明は、井戸水を擁し、注水又は揚水が行われる井戸と、一端が井戸内に挿入された脱気管と、脱気管の他端と連通し、一端から脱気管内に井戸水を所定の高さまで引き上げる真空ポンプと、を備える、井戸水の溶存酸素除去システムを提供する。   The present invention includes a well in which well water is poured and pumped or pumped, a deaeration pipe having one end inserted into the well, and the other end of the deaeration pipe, and the well water is introduced from one end into the deaeration pipe to a predetermined height. A dissolved oxygen removal system for well water comprising a vacuum pump for pulling up.

この溶存酸素除去システムにおいて真空ポンプを稼働させると、脱気管の一端から脱気管内に井戸水が引き上げられ、減圧の程度に応じた水頭圧相当の高さで脱気管内の水面が停止する。そして、減圧に伴い井戸水の溶存酸素が井戸水から脱気され、脱気管内の水面から出て行く。この溶存酸素除去システムは、井戸内の井戸水を直接の脱気対象としているため、従来の溶存酸素除去システムと比べて井戸水の溶存酸素を低減することができ、井戸水の溶存酸素に起因する井戸内構造物又は帯水層内部の目詰まりを一層防止することができる。   When the vacuum pump is operated in this dissolved oxygen removal system, the well water is pulled into the deaeration pipe from one end of the deaeration pipe, and the water surface in the deaeration pipe stops at a height corresponding to the water head pressure corresponding to the degree of decompression. As the pressure is reduced, dissolved oxygen from the well water is degassed from the well water and exits from the water surface in the deaeration pipe. Since this dissolved oxygen removal system directly targets the well water in the well, the dissolved oxygen in the well water can be reduced compared to the conventional dissolved oxygen removal system, and the well oxygen in the well caused by the dissolved oxygen in the well water can be reduced. Clogging inside the structure or aquifer can be further prevented.

ここで、脱気管は、真空ポンプを稼働させたときに当該脱気管内に引き上げられる井戸水の当該脱気管内における水面高さを挟む高さ範囲に、内径が拡幅された拡幅部を有することが好ましい。真空ポンプによる減圧が進むと、溶存酸素が脱気されると共に、井戸水の一部が気化して体積が膨張する。脱気管に拡幅部を設けて内容積を大きくし、且つ、脱気管内における水面を拡幅部内に位置させることで、気液分離が容易となり、井戸水の気化による脱気管の内圧の変化にともなう水位の変化を緩和することもできる。   Here, the deaeration pipe may have a widened portion having an inner diameter widened in a height range sandwiching a water surface height in the deaeration pipe of the well water that is pulled into the deaeration pipe when the vacuum pump is operated. preferable. As pressure reduction by the vacuum pump proceeds, dissolved oxygen is degassed, and part of the well water is vaporized to expand the volume. The deaeration pipe is provided with a widening part to increase the internal volume, and the water surface in the deaeration pipe is positioned in the widening part, thereby facilitating gas-liquid separation, and the water level accompanying changes in the internal pressure of the deaeration pipe due to vaporization of well water It is also possible to mitigate changes.

脱気管の一端は、井戸内における井戸水の水面下に位置していることが好ましい。仮に、一端が井戸水の水面に達していなければ、真空ポンプの稼働後、脱気管から井戸水が引き上げられるようになるためには、井戸内の空気を吸込みながら帯水層から地下水が井戸内に浸入して井戸内の水位が当該一端が水面下に位置するようになるまで上昇することを待たなければならない。このとき、井戸内の水位が大きく変動する。一端があらかじめ井戸水の水面下に位置していれば、こうした井戸内の水位の変動が小さく抑えられる。   It is preferable that one end of the deaeration pipe is located below the surface of the well water in the well. If one end does not reach the surface of the well water, in order for the well water to be pulled up from the deaeration pipe after the vacuum pump is operated, groundwater enters the well from the aquifer while sucking the air in the well. Then we have to wait for the water level in the well to rise until one end is located below the surface. At this time, the water level in the well fluctuates greatly. If one end is located below the surface of the well water in advance, such fluctuations in the water level in the well can be kept small.

本発明の溶存酸素除去システムは、その一態様として、脱気管は、一端から他端の間の位置から分岐し、端部が井戸内に挿入された分岐管を有し、脱気管又は分岐管は、真空ポンプを稼働させたときに当該脱気管内又は当該分岐管内に引き上げられる井戸水の当該脱気管内又は当該分岐管内における水面高さよりも低い位置に、当該脱気管内又は当該分岐管内を流通する井戸水を移送する移送ポンプを有するように構成してもよい。この溶存酸素除去システムによれば、移送ポンプの稼働により、脱気管と分岐管との間で井戸水の流通方向が逆向きになりながら、井戸水が一方向に循環する。これにより、井戸水のうち、溶存酸素が十分に低減された部分と、まだ十分に低減されていない部分とが入れ替わるように井戸水が撹拌されるため、井戸水全体から溶存酸素を効率的に脱気することができる。   As one aspect of the dissolved oxygen removal system of the present invention, the deaeration pipe has a branch pipe branched from a position between one end and the other end, and the end is inserted into the well. Circulates in the deaeration pipe or in the branch pipe at a position lower than the water surface height in the deaeration pipe or in the branch pipe of the well water pulled up into the deaeration pipe or the branch pipe when the vacuum pump is operated. You may comprise so that it may have a transfer pump which transfers well water. According to this dissolved oxygen removal system, the well water circulates in one direction while the flow direction of the well water is reversed between the deaeration pipe and the branch pipe by the operation of the transfer pump. As a result, the well water is agitated so that the portion of the well water in which the dissolved oxygen is sufficiently reduced and the portion in which the dissolved oxygen has not been sufficiently reduced are exchanged, so that the dissolved oxygen is efficiently degassed from the entire well water. be able to.

また、本発明の溶存酸素除去システムは、その一態様として、脱気管は、真空ポンプを稼働させたときに当該脱気管内に引き上げられる井戸水の当該脱気管内における水面高さを挟む高さ範囲に、内径が拡幅された拡幅部を有し、一端が井戸内に挿入され、他端が水面高さよりも低い位置において拡幅部内に突き出している流通管を更に備えるように構成してもよい。拡幅部内の井戸水は、減圧により温度が低下するため、密度が増大する。密度が増大した井戸水には脱気管内を下降する駆動力が生じ、その下降に伴って、井戸内の井戸水は流通管内を上昇して拡幅部内に案内される。すなわち、脱気管と流通管との間で井戸水が一方向に循環する流れが生じる。従って、この溶存酸素除去システムによれば、井戸水の循環のための特別の駆動源を用いることなく、井戸水全体から溶存酸素を効率的に脱気することができる。   Moreover, the dissolved oxygen removal system of the present invention has, as one aspect thereof, a degassing tube having a height range that sandwiches the water surface height in the degassing tube of well water that is pulled into the degassing tube when the vacuum pump is operated. In addition, it may be configured to further include a flow pipe having a widened portion with an enlarged inner diameter, one end inserted into the well, and the other end protruding into the widened portion at a position lower than the water surface height. Since the temperature of the well water in the widened portion decreases due to the reduced pressure, the density increases. The well water having increased density has a driving force that descends in the deaeration pipe, and as the descent, the well water in the well rises in the flow pipe and is guided into the widened portion. That is, a flow in which the well water circulates in one direction occurs between the deaeration pipe and the circulation pipe. Therefore, according to this dissolved oxygen removal system, dissolved oxygen can be efficiently degassed from the entire well water without using a special drive source for circulating the well water.

また、本発明の溶存酸素除去システムは、その一態様として、井戸は、注水管により注水が行われる注水井戸であり、注水管は、脱気管に接続されていてもよい。この溶存酸素除去システムでは、脱気管の一部が注水管を兼ねるため、注水井戸の構造が単純化される。   Moreover, as for the dissolved oxygen removal system of this invention, the well is a water injection well in which water injection is performed with a water injection pipe, and the water injection pipe may be connected to the deaeration pipe. In this dissolved oxygen removal system, since a part of the deaeration pipe also serves as the water injection pipe, the structure of the water injection well is simplified.

また、本発明の溶存酸素除去システムは、その一態様として、井戸は、揚水管により揚水が行われる揚水井戸であってもよい。これによれば、井戸水の溶存酸素に起因する井戸内構造物や揚水ポンプの目詰まりを一層防止することができる。   Moreover, as for the dissolved oxygen removal system of this invention, the well may be a pumping well in which pumping is performed by a pumping pipe as one aspect | mode. According to this, clogging of the in-well structure and the pumping pump due to the dissolved oxygen in the well water can be further prevented.

また、本発明は、井戸水を擁し、注水又は揚水が行われる井戸に対して、脱気管の一端を井戸内に挿入し、真空ポンプを用いて脱気管の一端から脱気管内に井戸水を所定の水頭圧相当の高さまで引き上げる、井戸水の溶存酸素除去方法を提供する。この方法によれば、真空ポンプによる減圧に伴い井戸水の溶存酸素が気化し、井戸水から脱気される。この方法では、井戸内の井戸水を直接の脱気対象としているため、従来の溶存酸素除去システムと比べて井戸水の溶存酸素を低減することができ、井戸水の溶存酸素に起因する井戸内構造物又は帯水層内部の目詰まりを一層防止することができる。   In addition, the present invention has a well water, in which one end of the deaeration pipe is inserted into the well with respect to the well where water injection or pumping is performed, and the well water is supplied from the one end of the deaeration pipe into the deaeration pipe using a vacuum pump. Provided is a method for removing dissolved oxygen from well water that is raised to a height equivalent to the water head pressure. According to this method, dissolved oxygen in the well water is vaporized and degassed from the well water as the vacuum pump is decompressed. In this method, since the well water in the well is directly degassed, the dissolved oxygen in the well water can be reduced as compared with the conventional dissolved oxygen removal system, and the structure in the well caused by the dissolved oxygen in the well water or Clogging inside the aquifer can be further prevented.

本発明によれば、井戸水の溶存酸素に起因する井戸内構造物又は帯水層内部の目詰まりを一層防止することができる井戸水の溶存酸素除去システム、及び溶存酸素除去方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dissolved oxygen removal system and dissolved oxygen removal method which can prevent further the clogging of the structure in a well or the inside of an aquifer resulting from dissolved oxygen of well water can be provided. .

第1の実施形態に係る溶存酸素除去システムを示す図である。It is a figure which shows the dissolved oxygen removal system which concerns on 1st Embodiment. 第1の実施形態に係る溶存酸素除去システムの使用状態を示す図である。It is a figure which shows the use condition of the dissolved oxygen removal system which concerns on 1st Embodiment. 第2の実施形態に係る溶存酸素除去システムの使用状態を示す図である。It is a figure which shows the use condition of the dissolved oxygen removal system which concerns on 2nd Embodiment. 第3の実施形態に係る溶存酸素除去システムの使用状態を示す図である。It is a figure which shows the use condition of the dissolved oxygen removal system which concerns on 3rd Embodiment. 第4の実施形態に係る溶存酸素除去システムを示す図である。It is a figure which shows the dissolved oxygen removal system which concerns on 4th Embodiment. 第4の実施形態に係る溶存酸素除去システムの使用状態を示す図である。It is a figure which shows the use condition of the dissolved oxygen removal system which concerns on 4th Embodiment. 第5の実施形態に係る溶存酸素除去システムの使用状態を示す図である。It is a figure which shows the use condition of the dissolved oxygen removal system which concerns on 5th Embodiment.

以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same part or an equivalent part, and the overlapping description is abbreviate | omitted.

本明細書において、「井戸水」とは、地下水のうち井戸内に浸み出て留まっている水、及び、注水されて井戸内に留まっている水、更には、真空ポンプの稼働によって井戸内から脱気管内に引き上げられている水をいう。   In this specification, “well water” refers to water that has permeated into the well of the ground water, water that has been injected and remains in the well, and further from the well by the operation of the vacuum pump. Water that has been pulled up into the deaeration tube.

<第1の実施形態>
本発明の第1の実施形態として、図1及び図2を参照しながら、注水井戸内の井戸水の溶存酸素を除去するシステムについて説明する。図1に示されたとおり、本実施形態の溶存酸素除去システム1Aは、注水に用いる注水管が取り付けられた注水井戸2、注水井戸2に挿入された脱気管3、及び、脱気管3に接続された真空ポンプ4を備えたものである。注水管は図示を省略している。
<First Embodiment>
As a first embodiment of the present invention, a system for removing dissolved oxygen from well water in a water injection well will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the dissolved oxygen removal system 1 </ b> A of the present embodiment is connected to a water injection well 2 to which a water injection pipe used for water injection is attached, a deaeration pipe 3 inserted into the water injection well 2, and a deaeration pipe 3. The vacuum pump 4 is provided. The water injection pipe is not shown.

注水井戸2は、地下水を湛える帯水層の深さまで地面を掘られて形成されたものであり、内部に井戸水Wを擁している。注水井戸2の内壁面は、崩落を防ぐために井戸内構造物で覆われている。井戸内構造物としては、帯水層よりも浅い地層(例えば、粘土層のように地下水の流れがない層)においては鉄板21が用いられ、帯水層においては網目状のストレーナー22が用いられている。注水時、井戸水Wはストレーナー22を介して帯水層へ浸入する。   The water injection well 2 is formed by digging the ground to the depth of an aquifer that holds groundwater, and has well water W therein. The inner wall surface of the water injection well 2 is covered with a well structure to prevent collapse. As the structure in the well, an iron plate 21 is used in a formation shallower than the aquifer (for example, a layer having no groundwater flow such as a clay layer), and a mesh-like strainer 22 is used in the aquifer. ing. At the time of water injection, the well water W enters the aquifer through the strainer 22.

注水井戸2の上部は、脱気管3が貫通した蓋23によって密閉されている。蓋23には、注水井戸2内の気圧を調整するための開放弁V1が取り付けられている。   The upper part of the water injection well 2 is sealed with a lid 23 through which the deaeration pipe 3 passes. An open valve V <b> 1 for adjusting the atmospheric pressure in the water injection well 2 is attached to the lid 23.

脱気管3は、その長さ方向が鉛直方向を向くように、注水井戸2の内外にわたって延在して取り付けられている。脱気管3の一端(下端)31は、蓋23を貫通して下方に延びるように注水井戸2内に挿入され、井戸水Wの水面下に位置している。脱気管3の他端(上端)32は、地上部分において、真空ポンプ4に接続されている。   The deaeration pipe 3 is attached so as to extend over the inside and outside of the water injection well 2 so that the length direction thereof faces the vertical direction. One end (lower end) 31 of the deaeration pipe 3 is inserted into the water injection well 2 so as to extend downward through the lid 23, and is located below the surface of the well water W. The other end (upper end) 32 of the deaeration pipe 3 is connected to the vacuum pump 4 at the ground portion.

脱気管3の横断面形状は円形であることが好ましく、その内径は、1cm〜5cmであることが好ましい。   The cross-sectional shape of the deaeration tube 3 is preferably circular, and the inner diameter is preferably 1 cm to 5 cm.

脱気管3は、真空ポンプ4を稼働させたときに当該脱気管3内に引き上げられる井戸水Wの当該脱気管3内における水面高さを挟む高さ範囲(図2も参照)に、内径が拡幅された拡幅部33を有している。本実施形態では、拡幅部33は地上部分に存在している。   The deaeration pipe 3 has an inner diameter widened in a height range (see also FIG. 2) that sandwiches the water surface height in the deaeration pipe 3 of the well water W pulled up into the deaeration pipe 3 when the vacuum pump 4 is operated. The widened portion 33 is provided. In this embodiment, the widening part 33 exists in the ground part.

拡幅部33の横断面形状は円形であることが好ましく、その内径は、5cm〜30cmであることが好ましい。或いは、拡幅部33の内径は、拡幅部33以外の部分の内径の3倍〜10倍であることが好ましい。   The cross-sectional shape of the widened portion 33 is preferably circular, and the inner diameter is preferably 5 cm to 30 cm. Or it is preferable that the internal diameter of the wide part 33 is 3 to 10 times the internal diameter of parts other than the wide part 33. FIG.

脱気管3は、拡幅部33よりも上方の位置において、脱気管3内の気圧を調整するための開放弁V2を有している。   The deaeration pipe 3 has an open valve V <b> 2 for adjusting the atmospheric pressure in the deaeration pipe 3 at a position above the widened portion 33.

脱気管3の他端32には、真空ポンプ4が接続されており、脱気管3と真空ポンプ4とが互いに連通されている。脱気管3は他端32に近い位置に、真空ポンプ4との連通を遮断するためのバルブV3が設けられている。   A vacuum pump 4 is connected to the other end 32 of the deaeration pipe 3, and the deaeration pipe 3 and the vacuum pump 4 are communicated with each other. The deaeration pipe 3 is provided with a valve V3 for blocking communication with the vacuum pump 4 at a position close to the other end 32.

次に、溶存酸素除去システム1Aを用いた井戸水Wの溶存酸素除去方法について説明する。開放弁V1,V2及びバルブV3を閉じた状態で真空ポンプ4を稼働させ、バルブV3を開放すると、図2に示されたとおり、脱気管3の一端31から脱気管3内に井戸水Wが引き上げられ、減圧の程度に応じた水頭圧相当の高さまで引き上げられたところで、脱気管3内の水面が停止する。停止した水面は、拡幅部33内に位置する。   Next, a method for removing dissolved oxygen from the well water W using the dissolved oxygen removing system 1A will be described. When the vacuum pump 4 is operated with the open valves V1, V2 and V3 closed and the valve V3 is opened, the well water W is pulled up from the one end 31 of the degas pipe 3 into the degas pipe 3 as shown in FIG. The water surface in the deaeration pipe 3 stops when the pressure is raised to a height corresponding to the water head pressure corresponding to the degree of pressure reduction. The stopped water surface is located in the widened portion 33.

井戸水Wが脱気管3内に引き上げられると、引き上げられた体積の分、注水井戸2内の水位が低下するが、脱気管3の一端31は、それでも井戸水Wの水面下に位置している。   When the well water W is pulled up into the deaeration pipe 3, the water level in the water injection well 2 is lowered by the volume raised, but the one end 31 of the deaeration pipe 3 is still located below the surface of the well water W.

ここで、注水井戸2内の水面を基準とした脱気管3内の水面の高さ(h)は、最大で約10m(真空ポンプ4による減圧で絶対圧が略0kPaとなった場合の水頭圧)となる。   Here, the height (h) of the water surface in the deaeration pipe 3 with respect to the water surface in the water injection well 2 is about 10 m at the maximum (water head pressure when the absolute pressure becomes approximately 0 kPa by the vacuum pump 4) )

そして、減圧に伴い井戸水Wの溶存酸素が井戸水Wから脱気され、脱気管3内の水面から出て行く。脱気された井戸水Wは、溶存酸素の低下に基づき、井戸水Wに残存する酸素の濃度拡散によって順次脱気されてゆく。また、脱気管3内では、井戸水Wの密度差の変化に基づく対流が起こり、井戸の下部に溜まっている井戸水Wが脱気管3内に案内されて脱気が促進される。   Then, the dissolved oxygen in the well water W is degassed from the well water W as the pressure is reduced, and exits from the water surface in the deaeration pipe 3. The degassed well water W is sequentially degassed by the concentration diffusion of oxygen remaining in the well water W based on the decrease in dissolved oxygen. In the deaeration pipe 3, convection occurs based on a change in the density difference of the well water W, and the well water W accumulated in the lower part of the well is guided into the deaeration pipe 3 to promote deaeration.

脱気時間は、井戸水Wの量及び溶存酸素の量によって変動するものの、概ね1分〜10分が好ましい。脱気を終了させるときは、バルブV3を閉じて真空ポンプ4を停止させ、開放弁V1,V2の開閉を調節して脱気管3内及び注水井戸2内の気圧を元に戻す。これに伴い、脱気管3内に引き上げられていた井戸水Wは下降し、水面の位置が図1の状態に戻る。   The deaeration time varies depending on the amount of well water W and the amount of dissolved oxygen, but is preferably about 1 to 10 minutes. When ending deaeration, valve | bulb V3 is closed, the vacuum pump 4 is stopped, opening and closing of open valve V1, V2 is adjusted, and the atmospheric | air pressure in the deaeration pipe | tube 3 and the water injection well 2 is returned. Along with this, the well water W that has been lifted into the deaeration pipe 3 descends, and the position of the water surface returns to the state shown in FIG.

溶存酸素除去システム1Aは、注水井戸2内の井戸水Wを直接の脱気対象としているため、従来の溶存酸素除去システムと比べて井戸水Wの溶存酸素を低減することができ、井戸水Wの溶存酸素に起因する井戸内構造物(ここではストレーナー22)又は帯水層内部の目詰まりを一層防止することができる。また、ストレーナー22が溶存酸素の影響で錆びることも防止することができる。   Since the dissolved oxygen removal system 1A directly targets the well water W in the water injection well 2, the dissolved oxygen in the well water W can be reduced as compared with the conventional dissolved oxygen removal system. It is possible to further prevent clogging of the structure in the well (here, the strainer 22) or the inside of the aquifer caused by. Moreover, it can prevent that the strainer 22 rusts by the influence of dissolved oxygen.

また、溶存酸素除去システム1Aは、真空ポンプ4による減圧が進むと、溶存酸素が脱気されると共に、井戸水の一部が気化して体積が膨張する。ここで、脱気管3は内径が拡幅されて内容積が大きくされた拡幅部33を有し、且つ、脱気管3内における水面が拡幅部33内に位置しているので、気液分離が容易となり、井戸水Wの気化による脱気管3の内圧の変化にともなう水位の変化が緩和される。   Further, in the dissolved oxygen removal system 1A, when the pressure reduction by the vacuum pump 4 proceeds, the dissolved oxygen is degassed, and a part of the well water is vaporized to expand the volume. Here, since the deaeration pipe 3 has a widened part 33 whose inner diameter is increased by increasing the inner diameter, and the water surface in the deaerated pipe 3 is located in the widened part 33, gas-liquid separation is easy. Thus, the change in the water level accompanying the change in the internal pressure of the deaeration pipe 3 due to the vaporization of the well water W is alleviated.

また、本実施形態では脱気管3の一端31が注水井戸2内の井戸水Wの水面下に位置しているため、一端31が水面下にない場合と比べて、井戸水Wの水位への影響を小さく抑えることができる。すなわち、仮に、一端31が井戸水Wの水面に達していなければ、真空ポンプ4の稼働後、脱気管3から井戸水Wが引き上げられるようになるためには、注水井戸2内の空気を吸込みながら帯水層から地下水が注水井戸2内に浸入して注水井戸2内の水位が一端31が水面下に位置するようになるまで上昇することを待たなければならない。このとき、注水井戸2内の水位が大きく変動する。一端31があらかじめ井戸水Wの水面下に位置していれば、こうした注水井戸2内の水位の変動が小さく抑えられる。   Moreover, in this embodiment, since the one end 31 of the deaeration pipe 3 is located under the water surface of the well water W in the water injection well 2, compared with the case where the one end 31 is not under the water surface, the influence on the water level of the well water W is reduced. It can be kept small. That is, if the end 31 does not reach the surface of the well water W, the well water W can be pulled up from the deaeration pipe 3 after the vacuum pump 4 is operated. It must wait for the groundwater from the water layer to enter the water injection well 2 and the water level in the water injection well 2 to rise until one end 31 is located below the water surface. At this time, the water level in the water injection well 2 varies greatly. If the one end 31 is previously positioned below the surface of the well water W, the fluctuation of the water level in the water injection well 2 can be suppressed small.

なお、注水井戸2に対する注水は、脱気中にも行うことができる。   In addition, the water injection with respect to the water injection well 2 can be performed also during deaeration.

<第2の実施形態>
本発明の第2の実施形態について説明する。図3に示されたとおり、第2の実施形態の溶存酸素除去システム1Bが第1の実施形態の溶存酸素除去システム1Aと異なる点は、脱気管3が分岐管3aを有する点、及び、分岐管3aに移送ポンプ34が取り付けられ、脱気管3と共に井戸水Wの循環を積極的に行う点である。
<Second Embodiment>
A second embodiment of the present invention will be described. As shown in FIG. 3, the dissolved oxygen removal system 1B of the second embodiment is different from the dissolved oxygen removal system 1A of the first embodiment in that the deaeration pipe 3 has a branch pipe 3a and a branch. A transfer pump 34 is attached to the pipe 3 a, and the well water W is actively circulated together with the deaeration pipe 3.

本実施形態の脱気管3は、その拡幅部33の最下部33aにおいて分岐した分岐管3aを有している。分岐管3aは、脱気管3と並走するようにして下方へ延び、蓋23を貫通して注水井戸2内に進入し、更には端部31aが井戸水Wの水面下に達している。換言すれば、脱気管3のうち拡幅部33よりも下方の部分と分岐管3aとは、いずれも上端は拡幅部33の最下部33aに開口し、下端31,31aは井戸水Wの水面下に位置している。拡幅部33の最下部33aと脱気管3の下端31,31aとの距離は、10mを超えない長さとされている。   The deaeration pipe 3 of this embodiment has a branch pipe 3 a that branches at the lowermost part 33 a of the widened portion 33. The branch pipe 3 a extends downward so as to run in parallel with the deaeration pipe 3, penetrates the lid 23 and enters the water injection well 2, and the end 31 a reaches below the surface of the well water W. In other words, the upper part of the degassing pipe 3 below the widened part 33 and the branch pipe 3a both open at the lowermost part 33a of the widened part 33 and the lower ends 31 and 31a are below the surface of the well water W. positioned. The distance between the lowermost portion 33a of the widened portion 33 and the lower ends 31 and 31a of the deaeration pipe 3 is set to a length not exceeding 10 m.

分岐管3aの途中の地上部分には、分岐管3a内を流通する井戸水Wを移送する移送ポンプ34が取り付けられている。なお、この取り付け高さは、真空ポンプ4を稼働させたときに分岐管3a内に引き上げられる井戸水Wの分岐管3a内における水面高さよりも低い位置にあたる。   A transfer pump 34 for transferring the well water W flowing through the branch pipe 3a is attached to the ground portion in the middle of the branch pipe 3a. This mounting height corresponds to a position lower than the water surface height in the branch pipe 3a of the well water W pulled up into the branch pipe 3a when the vacuum pump 4 is operated.

移送ポンプ34の種類としては、水を移送することができるものであれば種類を問わない。ここでは、移送ポンプ34は、井戸水Wを上方へ移送する向きに取り付けられている。   The type of the transfer pump 34 is not limited as long as it can transfer water. Here, the transfer pump 34 is attached so as to transfer the well water W upward.

この溶存酸素除去システム1Bでは、真空ポンプ4の稼働によって溶存酸素が脱気されている時に移送ポンプ34を稼働させれば、分岐管3a内を流通する井戸水Wが上方へ移送され、拡幅部33内へ案内される。これと入れ替わるようにして、拡幅部33内の井戸水Wは、脱気管3内を下降し、注水井戸2中へ戻る。すなわち、脱気管3と分岐管3aとの間で井戸水Wの流通方向が逆向きになりながら(図3の矢印を参照)、井戸水Wが一方向に循環する。これにより、井戸水Wのうち、溶存酸素が十分に低減された部分と、まだ十分に低減されていない部分とが入れ替わるように井戸水Wが撹拌されるため、井戸水W全体から溶存酸素を効率的に脱気することができる。   In this dissolved oxygen removal system 1B, if the transfer pump 34 is operated when the dissolved oxygen is degassed by the operation of the vacuum pump 4, the well water W flowing through the branch pipe 3a is transferred upward, and the widening portion 33 You will be guided in. In this manner, the well water W in the widened portion 33 descends in the deaeration pipe 3 and returns into the water injection well 2. That is, the well water W circulates in one direction while the flow direction of the well water W is reversed between the deaeration pipe 3 and the branch pipe 3a (see the arrow in FIG. 3). As a result, the well water W is agitated so that the portion of the well water W where the dissolved oxygen is sufficiently reduced and the portion where the dissolved oxygen is not sufficiently reduced are exchanged. Can be degassed.

本実施形態では、脱気管3内の井戸水Wの通流方向が一方向に定まるため、特に脱気管3の内径が小さい場合等、第1の実施形態において酸素の濃度拡散や自然対流が形成されにくい場合に有用である。   In this embodiment, since the flow direction of the well water W in the deaeration pipe 3 is determined in one direction, oxygen concentration diffusion and natural convection are formed in the first embodiment, particularly when the inner diameter of the deaeration pipe 3 is small. Useful when difficult.

なお、上記説明では、移送ポンプ34によって分岐管3a内を流通する井戸水Wが上方へ移送される態様を示したが、井戸水Wを下方へ移送するように構成してもよい。また、上記説明では分岐管3aに移送ポンプ34が取り付けられた態様を示したが、同様の高さ位置における脱気管3のほうへ移送ポンプ34を取り付けた態様としてもよい。   In the above description, the mode in which the well water W flowing through the branch pipe 3a is transferred upward by the transfer pump 34, but the well water W may be transferred downward. In the above description, the transfer pump 34 is attached to the branch pipe 3a. However, the transfer pump 34 may be attached to the deaeration pipe 3 at the same height position.

また、上記説明では、分岐管3aが一本である態様を示したが、分岐管3aは複数本であってもよい。また、上記実施形態では、拡幅部33よりも下方且つ脱気時の脱気管3内の水面よりも下方の位置において分岐管3aが分岐している態様を示したが、分岐管3aは、例えば拡幅部33よりも上方の位置において分岐していてもよい。   Moreover, in the said description, although the aspect which has one branch pipe 3a was shown, multiple branch pipes 3a may be sufficient. Moreover, in the said embodiment, although the branch pipe 3a was shown in the position below the wide part 33 and the position below the water surface in the deaeration pipe 3 at the time of deaeration, the branch pipe 3a is, for example, It may be branched at a position above the widened portion 33.

<第3の実施形態>
本発明の第3の実施形態について説明する。図4に示されたとおり、第3の実施形態の溶存酸素除去システム1Cが第1の実施形態の溶存酸素除去システム1Aと異なる点は、脱気管3の他に流通管5を有する点、及び、地上部分の構造物の一部が断熱材6で覆われている点である。
<Third Embodiment>
A third embodiment of the present invention will be described. As shown in FIG. 4, the dissolved oxygen removal system 1C of the third embodiment is different from the dissolved oxygen removal system 1A of the first embodiment in that it has a flow pipe 5 in addition to the deaeration pipe 3, and A part of the structure of the ground part is covered with the heat insulating material 6.

本実施形態の溶存酸素除去システム1Cが備えている流通管5は、長さ方向が鉛直方向を向くように配置され、その下端51は蓋23を貫通して注水井戸2内に挿入され、水面下において脱気管3の一端31と同じ高さに位置している。流通管5の上端52は、拡幅部33の最下部33aを貫通して拡幅部33内に突き出しており、真空ポンプ4を稼働させたときに拡幅部33内に引き上げられる井戸水Wの拡幅部33内における水面高さよりも低い位置に到達している。   The flow pipe 5 provided in the dissolved oxygen removal system 1C of the present embodiment is arranged so that the length direction is in the vertical direction, and the lower end 51 thereof is inserted into the water injection well 2 through the lid 23, and the water surface. Below, it is located at the same height as the one end 31 of the deaeration tube 3. The upper end 52 of the flow pipe 5 penetrates the lowermost portion 33a of the widened portion 33 and protrudes into the widened portion 33, and the widened portion 33 of the well water W that is pulled up into the widened portion 33 when the vacuum pump 4 is operated. It has reached a position lower than the water level inside.

溶存酸素除去システム1Cが備える地上部分の構造物のうち、脱気管3の拡幅部33及び拡幅部33より下方の部分、並びに流通管5は、断熱材6に覆われている。断熱材6の素材としては、例えばグラスウール、コンクリートを使用することができる。   Of the structure of the ground portion provided in the dissolved oxygen removal system 1 </ b> C, the widened portion 33 of the deaeration tube 3, the portion below the widened portion 33, and the flow pipe 5 are covered with the heat insulating material 6. As a material of the heat insulating material 6, for example, glass wool or concrete can be used.

この溶存酸素除去システム1Cでは、真空ポンプ4の稼働によって拡幅部33内の井戸水Wは、減圧により温度が低下するため、密度が増大する。密度が増大した井戸水Wには脱気管3内を下降する駆動力が生じ、その下降に伴って、注水井戸2内の井戸水Wは流通管5内を上昇して拡幅部33内に案内される(図4の矢印参照)。すなわち、脱気管3と流通管5との間で井戸水Wが一方向に循環する流れが生じる。従って、この溶存酸素除去システム1Cによれば、井戸水Wの循環のための特別の駆動源を用いることなく、井戸水W全体から溶存酸素を効率的に脱気することができる。   In the dissolved oxygen removal system 1C, the density of the well water W in the widened portion 33 is decreased by the reduced pressure due to the operation of the vacuum pump 4, and thus the density is increased. The well water W having an increased density has a driving force that descends in the deaeration pipe 3, and the well water W in the water injection well 2 rises in the flow pipe 5 and is guided into the widened portion 33 along with the descent. (See arrow in FIG. 4). That is, a flow in which the well water W circulates in one direction occurs between the deaeration pipe 3 and the circulation pipe 5. Therefore, according to this dissolved oxygen removal system 1C, dissolved oxygen can be efficiently degassed from the entire well water W without using a special drive source for circulating the well water W.

また、断熱材6によって脱気管3及び流通管5の一部が覆われていることから、減圧により冷却された拡幅部33内の井戸水Wが保温されるため、密度が増大した井戸水W下降の駆動力が維持されやすい。   In addition, since a part of the deaeration pipe 3 and the flow pipe 5 is covered with the heat insulating material 6, since the well water W in the widened portion 33 cooled by the reduced pressure is kept warm, the density of the well water W descending with increased density is decreased. Driving force is easily maintained.

なお、本実施形態では、断熱材6に覆われている部分の井戸水Wが冷却されすぎて凝結しないように、当該井戸水Wの温度を監視する温度監視センサ、及び、当該監視部分の井戸水が冷却されすぎた場合に熱を供給して井戸水Wを加温する加温手段を設けてもよい。   In the present embodiment, the temperature monitoring sensor for monitoring the temperature of the well water W and the well water in the monitoring portion are cooled so that the well water W in the portion covered with the heat insulating material 6 is not cooled and condensed. A heating means may be provided for heating the well water W by supplying heat when it is too much.

また、上記説明では、溶存酸素除去システム1Cが流通管5を一本備える態様を示したが、流通管5を複数本備えていてもよい。   Moreover, in the said description, although 1 C of dissolved oxygen removal systems showed the aspect provided with the one distribution pipe 5, you may provide the multiple distribution pipes 5. FIG.

<第4の実施形態>
本発明の第4の実施形態について説明する。図5及び図6に示されたとおり、第4の実施形態の溶存酸素除去システム1Dが第1の実施形態の溶存酸素除去システム1Aと異なる点は、脱気管3に注水管7が接続されている点である。
<Fourth Embodiment>
A fourth embodiment of the present invention will be described. As shown in FIGS. 5 and 6, the dissolved oxygen removal system 1 </ b> D of the fourth embodiment is different from the dissolved oxygen removal system 1 </ b> A of the first embodiment in that a water injection pipe 7 is connected to the deaeration pipe 3. It is a point.

本実施形態の脱気管3は、拡幅部33を有する位置よりも上方の位置において、注水管7が接続されている。注水管7の他端は注水ポンプ(図示せず)に接続されており、脱気管3との接続部と注水ポンプとの間には、バルブV4が設けられており、これにより注水の実施と停止とを切替えることができる。また、注水管7のうち、脱気管3との接続部とバルブV4との間には、排水弁V5が設けられている。排水弁V5を開放することにより、注水管7に溜まっている水を排水することができ、同時に注水管7内及び脱気管3内の気圧を調整することができる。   The deaeration pipe 3 of the present embodiment is connected to the water injection pipe 7 at a position above the position having the widened portion 33. The other end of the water injection pipe 7 is connected to a water injection pump (not shown), and a valve V4 is provided between the connection portion with the deaeration pipe 3 and the water injection pump. It can be switched to stop. In addition, a drain valve V5 is provided between the connecting portion of the water injection pipe 7 to the deaeration pipe 3 and the valve V4. By opening the drain valve V5, water accumulated in the water injection pipe 7 can be drained, and at the same time, the air pressure in the water injection pipe 7 and the deaeration pipe 3 can be adjusted.

図5は、注水井戸2に対して注水が行われている様子を示している。開放弁V1,V2、バルブV3及び排水弁V5を閉じ、バルブV4を開いた状態で注水ポンプを稼働させると、水が注水管7から供給されて、脱気管3内を満たしながら進入し(図5の矢印参照)、注水井戸2内に到達する。   FIG. 5 shows a state in which water is injected into the water injection well 2. When the water injection pump is operated with the open valves V1, V2, V3 and the drain valve V5 closed and the valve V4 opened, water is supplied from the water injection pipe 7 and enters the deaeration pipe 3 while filling it (see FIG. 5), reach the water injection well 2.

図6は、井戸水Wの脱気を行っている様子を示している。図5に示された注水の状態から図6に示された脱気の状態に移行するには、バルブV4を閉じて注水ポンプを停止し、排水弁V5を開いて注水管7内に溜まっている水を排水し、排水弁V5を閉じる。その後、第1の実施形態と同様の脱気手順を踏む。   FIG. 6 shows a state where the well water W is degassed. In order to shift from the water injection state shown in FIG. 5 to the deaeration state shown in FIG. 6, the valve V4 is closed to stop the water injection pump, and the drain valve V5 is opened to accumulate in the water injection pipe 7. Drain the water and close the drain valve V5. Thereafter, the same deaeration procedure as in the first embodiment is performed.

この溶存酸素除去システム1Dでは、脱気管3の一部が注水管7を兼ねているため、注水井戸2の構造が単純化される。   In this dissolved oxygen removal system 1D, since a part of the deaeration pipe 3 also serves as the water injection pipe 7, the structure of the water injection well 2 is simplified.

なお、上記説明では、注水管7が拡幅部33を有する位置よりも上方の位置において接続されている態様を示したが、注水管7が拡幅部33を有する位置よりも下方の位置(すなわち、脱気中の脱気管3内の水面よりも下方)において接続されていてもよい。   In addition, in the said description, although the aspect in which the water injection pipe 7 was connected in the position above the position which has the wide part 33 was shown, the position (namely, the water injection pipe 7 is lower than the position which has the wide part 33 (that is, It may be connected on the lower side of the water surface in the deaeration pipe 3 during deaeration.

<第5の実施形態>
本発明の第4の実施形態として、図7を参照しながら、揚水井戸内の井戸水の溶存酸素を除去するシステムについて説明する。図7に示されたとおり、第5の実施形態の溶存酸素除去システム1Eが第1の実施形態の溶存酸素除去システム1Aと異なる点は、脱気対象が注水井戸ではなく揚水井戸8であって、注水に用いる注水管の代わりに揚水に用いる揚水管9を有する点、及び、脱気管3の形状に特徴を有する点である。
<Fifth Embodiment>
As a fourth embodiment of the present invention, a system for removing dissolved oxygen from well water in a pumping well will be described with reference to FIG. As shown in FIG. 7, the dissolved oxygen removal system 1E of the fifth embodiment is different from the dissolved oxygen removal system 1A of the first embodiment in that the deaeration target is not the water injection well but the pumping well 8 The point which has the pumping pipe 9 used for pumping instead of the water injection pipe used for water pouring, and the point which has the characteristics in the shape of the deaeration pipe 3 are.

揚水井戸8には、揚水管9が取り付けられている。揚水管9の地上部分には揚水ポンプ91が取り付けられており、揚水井戸8の内部へ延びる端部は井戸水Wの水面下に位置している。汲み上げられる井戸水Wに含まれる微粒子が揚水ポンプ91に過度に取り込まれないように、揚水管9の端部には微粒子の吸込みを防止するストレーナー92が巻かれている。   A pumping pipe 9 is attached to the pumping well 8. A pumping pump 91 is attached to the ground portion of the pumping pipe 9, and an end extending to the inside of the pumping well 8 is located below the surface of the well water W. A strainer 92 that prevents suction of fine particles is wound around the end of the pumping pipe 9 so that the fine particles contained in the well water W to be pumped are not excessively taken into the pumping pump 91.

脱気管3は、井戸水Wに浸かった部分の側面において開口部35を有する。開口部35は、脱気管の内側から外側への一方向のみに水が流れうる逆止弁により構成されていることが好ましい。   The deaeration pipe 3 has an opening 35 on the side surface of the portion immersed in the well water W. The opening 35 is preferably constituted by a check valve that allows water to flow only in one direction from the inside to the outside of the deaeration pipe.

脱気管3の拡幅部33は、第1の実施形態における拡幅部よりもその高さ幅が大きくされており、拡幅部33の下端側が蓋23を貫通して揚水井戸8内に進入している。拡幅部33の高さは、直径の3倍〜10倍であることが好ましい。   The widened portion 33 of the deaeration pipe 3 is larger in height than the widened portion in the first embodiment, and the lower end side of the widened portion 33 penetrates the lid 23 and enters the pumping well 8. . The height of the widened portion 33 is preferably 3 to 10 times the diameter.

溶存酸素除去システム1Eによれば、井戸水Wの溶存酸素に起因する井戸内構造物(ここでは揚水管9のストレーナー92)や揚水ポンプ91の目詰まりを一層防止することができる。   According to the dissolved oxygen removal system 1E, clogging of the in-well structure (here, the strainer 92 of the pumping pipe 9) and the pumping pump 91 due to the dissolved oxygen of the well water W can be further prevented.

また、一般に揚水井戸では、帯水層から浸みだしてくる地下水の揚水を断続的に繰り返しているが、実施期間が長くなるにつれて、井戸内の底部に滞留部分が生じてくる。この滞留部分には、地下水に由来する微粒子が溜まっており、これを大量に含む井戸水Wが揚水されると、揚水管9のストレーナー92や揚水ポンプ91に目詰まりを生じる原因となり得る。従って、微粒子等の目詰まり要因物質が溜まる前に、早期に排出しておくことが望まれる。   In general, pumping wells intermittently repeat the pumping of groundwater that begins to ooze from the aquifer, but as the implementation period becomes longer, a staying portion occurs at the bottom of the well. Fine particles derived from groundwater are accumulated in the staying portion, and when well water W containing a large amount of the fine water is pumped, the strainer 92 and the pumping pump 91 of the pumping pipe 9 may be clogged. Therefore, it is desired to discharge the clogging substances such as fine particles at an early stage before they accumulate.

ここで、本実施形態の溶存酸素除去システム1Eでは、脱気管3が井戸水Wに浸かった部分の側面において開口部35を有しているため、脱気終了後に脱気管3内及び揚水井戸8内の気圧を大気圧に戻し、脱気管3内の井戸水Wが揚水井戸8内に下降する際に、下端31からのみならず、開口部35を通じて脱気管3の外側へ向う水流が生じる。この水流により、揚水井戸8内の滞留部分が撹拌されて微粒子が拡散し、微粒子の濃度が薄められる。そして、微粒子が揚水管9によって排出されやすくなり、揚水管9のストレーナー92や揚水ポンプ91に目詰まりを生じることが抑制される。またここで、本実施形態では拡幅部33の容積が第1の実施形態の拡幅部33の容積よりも大きくされているため、上記開口部35からの水流の量が多くなり、当該水流による揚水井戸8内の滞留部分の撹拌効率が高められている。   Here, in the dissolved oxygen removal system 1E of the present embodiment, since the deaeration pipe 3 has the opening 35 on the side surface of the portion immersed in the well water W, the inside of the deaeration pipe 3 and the pumping well 8 after the completion of the deaeration. When the well water W in the deaeration pipe 3 descends into the pumping well 8, water flows toward the outside of the deaeration pipe 3 not only from the lower end 31 but also through the opening 35. Due to this water flow, the staying portion in the pumping well 8 is agitated, the fine particles diffuse, and the concentration of the fine particles is reduced. And it becomes easy to discharge | emit microparticles | fine-particles with the pumping pipe 9, and it is suppressed that the strainer 92 and the pumping pump 91 of the pumping pipe 9 clog. Further, in this embodiment, since the volume of the widened portion 33 is larger than the volume of the widened portion 33 of the first embodiment, the amount of water flow from the opening 35 is increased, and pumping by the water flow is performed. The stirring efficiency of the staying part in the well 8 is increased.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、上記各実施形態は、適宜組み合わせて実施することができる。例えば、第2の実施形態、第3の実施形態及び第4の実施形態は注水井戸に対する適用例を示したが、これらの構成を揚水井戸に対して適用することもできる。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the above embodiments can be implemented in combination as appropriate. For example, although 2nd Embodiment, 3rd Embodiment, and 4th Embodiment showed the application example with respect to a water injection well, these structures are also applicable to a pumping well.

また、上記各実施形態では、脱気管3の一端31が井戸水Wの水面下に位置している態様を示したが、当該一端31は、水面よりも高い位置に位置してもよい。   Moreover, in each said embodiment, although the one end 31 of the deaeration pipe 3 showed the aspect located under the water surface of the well water W, the said one end 31 may be located in a position higher than a water surface.

また、上記各実施形態では、井戸の上部が蓋23で密閉された態様を示したが、井戸は上部が開放されていてもよい。   Moreover, in each said embodiment, although the upper part of the well showed the aspect sealed with the lid | cover 23, the upper part of the well may be open | released.

また、拡幅部は必ずしも地上部にある必要は無い。   Further, the widened portion does not necessarily have to be on the ground portion.

また、上記各実施形態では、注水管又は揚水管を常時備えている態様を示したが(ただし、第1の実施形態〜第3の実施形態では図示を省略している)、脱気時に注水管又は揚水管を脱気管と差替えて使用する態様としてもよい。   Moreover, although each said embodiment showed the aspect always equipped with the water injection pipe or the pumping pipe (however, illustration is abbreviate | omitted in 1st Embodiment-3rd Embodiment), it is poured at the time of deaeration. It is good also as an aspect which replaces and uses a water pipe or a pumping-up pipe with a deaeration pipe.

1A,1B,1C,1D,1E…溶存酸素除去システム、2…注水井戸、3…脱気管、3a…分岐管、4…真空ポンプ、5…流通管、6…断熱材、7…注水管、8…揚水井戸、9…揚水管、31…脱気管の下端(一端)、31a…分岐管の下端(端部)、32…脱気管の上端(他端)、33…拡幅部、34…移送ポンプ、51…流通管の下端(一端)、52…流通管の上端(他端)、W…井戸水。   1A, 1B, 1C, 1D, 1E ... dissolved oxygen removal system, 2 ... water injection well, 3 ... deaeration pipe, 3a ... branch pipe, 4 ... vacuum pump, 5 ... flow pipe, 6 ... heat insulating material, 7 ... water injection pipe, DESCRIPTION OF SYMBOLS 8 ... Pumping well, 9 ... Pumping pipe, 31 ... Lower end (one end) of deaeration pipe, 31a ... Lower end (end part) of branch pipe, 32 ... Upper end (other end) of deaeration pipe, 33 ... Widening part, 34 ... Transfer Pump, 51 ... lower end (one end) of the flow pipe, 52 ... upper end (the other end) of the flow pipe, W ... well water.

Claims (8)

井戸水を擁し、注水又は揚水が行われる井戸と、
一端が前記井戸内に挿入された脱気管と、
前記脱気管の他端と連通し、前記一端から前記脱気管内に前記井戸水を所定の高さまで引き上げる真空ポンプと、を備える、井戸水の溶存酸素除去システム。
A well that has well water and is filled or pumped,
A deaeration tube having one end inserted into the well;
A dissolved oxygen removal system for well water, comprising: a vacuum pump that communicates with the other end of the deaeration pipe and pulls the well water up to a predetermined height from the one end into the deaeration pipe.
前記脱気管は、前記真空ポンプを稼働させたときに当該脱気管内に引き上げられる前記井戸水の当該脱気管内における水面高さを挟む高さ範囲に、内径が拡幅された拡幅部を有する、請求項1記載の井戸水の溶存酸素除去システム。   The deaeration pipe has a widened portion with an inner diameter widened in a height range sandwiching a water surface height in the deaeration pipe of the well water that is pulled into the deaeration pipe when the vacuum pump is operated. Item 2. The dissolved oxygen removal system for well water according to Item 1. 前記一端は、前記井戸内における前記井戸水の水面下に位置している、請求項1又は2記載の井戸水の溶存酸素除去システム。   The dissolved oxygen removal system for well water according to claim 1 or 2, wherein the one end is located below the surface of the well water in the well. 前記脱気管は、前記一端から前記他端の間の位置から分岐し、端部が前記井戸内に挿入された分岐管を有し、
前記脱気管又は前記分岐管は、前記真空ポンプを稼働させたときに当該脱気管内又は当該分岐管内に引き上げられる井戸水の当該脱気管内又は当該分岐管内における水面高さよりも低い位置に、当該脱気管内又は当該分岐管内を流通する前記井戸水を移送する移送ポンプを有する、請求項1〜3のいずれか一項記載の井戸水の溶存酸素除去システム。
The deaeration pipe branches from a position between the one end and the other end, and has a branch pipe having an end inserted into the well.
The deaeration pipe or the branch pipe is located at a position lower than the water surface height in the deaeration pipe or in the branch pipe of well water that is pulled up into the deaeration pipe or the branch pipe when the vacuum pump is operated. The dissolved oxygen removal system for well water according to any one of claims 1 to 3, further comprising a transfer pump configured to transfer the well water flowing through the trachea or the branch pipe.
前記脱気管は、前記真空ポンプを稼働させたときに当該脱気管内に引き上げられる井戸水の当該脱気管内における水面高さを挟む高さ範囲に、内径が拡幅された拡幅部を有し、
一端が前記井戸内に挿入され、他端が前記水面高さよりも低い位置において前記拡幅部内に突き出している流通管を更に備える、請求項1〜3のいずれか一項記載の井戸水の溶存酸素除去システム。
The degassing pipe has a widened portion with an inner diameter widened in a height range sandwiching a water surface height in the degassing pipe of well water pulled into the degassing pipe when the vacuum pump is operated,
The dissolved oxygen removal of well water according to any one of claims 1 to 3, further comprising a flow pipe having one end inserted into the well and the other end protruding into the widened portion at a position lower than the water surface height. system.
前記井戸は、注水管により注水が行われる注水井戸であり、
前記注水管は、前記脱気管に接続されている、請求項1〜3のいずれか一項記載の井戸水の溶存酸素除去システム。
The well is a water injection well in which water is injected by a water injection pipe,
The dissolved water removal system for well water according to any one of claims 1 to 3, wherein the water injection pipe is connected to the deaeration pipe.
前記井戸は、揚水管により揚水が行われる揚水井戸である、請求項1〜3のいずれか一項記載の井戸水の溶存酸素除去システム。   The dissolved oxygen removal system for well water according to any one of claims 1 to 3, wherein the well is a pumping well in which pumping is performed by a pumping pipe. 井戸水を擁し、注水又は揚水が行われる井戸に対して、脱気管の一端を前記井戸内に挿入し、
真空ポンプを用いて前記脱気管の一端から前記脱気管内に前記井戸水を所定の水頭圧相当の高さまで引き上げる、井戸水の溶存酸素除去方法。
Hold well water, insert one end of the deaeration pipe into the well for wells to be poured or pumped,
A method for removing dissolved oxygen from well water, wherein the well water is pulled up from one end of the deaeration pipe into the deaeration pipe to a height corresponding to a predetermined head pressure using a vacuum pump.
JP2014251914A 2014-12-12 2014-12-12 Well water dissolved oxygen removal system and dissolved oxygen removal method Expired - Fee Related JP6306497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251914A JP6306497B2 (en) 2014-12-12 2014-12-12 Well water dissolved oxygen removal system and dissolved oxygen removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014251914A JP6306497B2 (en) 2014-12-12 2014-12-12 Well water dissolved oxygen removal system and dissolved oxygen removal method

Publications (2)

Publication Number Publication Date
JP2016112490A true JP2016112490A (en) 2016-06-23
JP6306497B2 JP6306497B2 (en) 2018-04-04

Family

ID=56139475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251914A Expired - Fee Related JP6306497B2 (en) 2014-12-12 2014-12-12 Well water dissolved oxygen removal system and dissolved oxygen removal method

Country Status (1)

Country Link
JP (1) JP6306497B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254537A (en) * 1993-03-03 1994-09-13 Toshiba Corp Method for purifying underground water and its device
JPH06322795A (en) * 1993-05-13 1994-11-22 Nitsusaku:Kk Pumping-up method for underground water to be pressurized from group well attended with water injection
JPH1034134A (en) * 1996-07-23 1998-02-10 Takenaka Komuten Co Ltd Water treatment apparatus
US6321837B1 (en) * 2000-05-22 2001-11-27 Falk Doering Method and device for the in-situ elimination of hazardous substances from the groundwater and perched water
JP2003126884A (en) * 2001-07-26 2003-05-07 Ryosaku Fujisato Apparatus and method of water treatment
WO2004071635A1 (en) * 2003-02-13 2004-08-26 Masayuki Fukagawa Method, device, and system for controlling dissolved amount of gas
JP2010194454A (en) * 2009-02-25 2010-09-09 Seiko Epson Corp Apparatus and method for preventing oxidation of groundwater
JP2011208363A (en) * 2010-03-29 2011-10-20 Terumu:Kk Device and method for well cleaning and system and method for well cleaning/detergent injection

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254537A (en) * 1993-03-03 1994-09-13 Toshiba Corp Method for purifying underground water and its device
JPH06322795A (en) * 1993-05-13 1994-11-22 Nitsusaku:Kk Pumping-up method for underground water to be pressurized from group well attended with water injection
JPH1034134A (en) * 1996-07-23 1998-02-10 Takenaka Komuten Co Ltd Water treatment apparatus
US6321837B1 (en) * 2000-05-22 2001-11-27 Falk Doering Method and device for the in-situ elimination of hazardous substances from the groundwater and perched water
JP2003126884A (en) * 2001-07-26 2003-05-07 Ryosaku Fujisato Apparatus and method of water treatment
WO2004071635A1 (en) * 2003-02-13 2004-08-26 Masayuki Fukagawa Method, device, and system for controlling dissolved amount of gas
US20060144241A1 (en) * 2003-02-13 2006-07-06 Masayuki Fukagawa Method, device, and system for controlling dissolved amount of gas
JP2010194454A (en) * 2009-02-25 2010-09-09 Seiko Epson Corp Apparatus and method for preventing oxidation of groundwater
JP2011208363A (en) * 2010-03-29 2011-10-20 Terumu:Kk Device and method for well cleaning and system and method for well cleaning/detergent injection

Also Published As

Publication number Publication date
JP6306497B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP5724222B2 (en) Pumping unit, soft soil improvement method, ground excavation method, contaminated soil purification method, and condensate method
JP5291927B2 (en) Fresh water storage and intake system
JP5659566B2 (en) Pumping equipment, soft ground improvement method, ground excavation method, contaminated soil purification method, and condensate method
JP5314394B2 (en) Geothermal and hot spring heat collection and recovery equipment
JP2012215377A (en) Underground heat exchange system and installing method of heat exchange well
JP2007285090A (en) Underground water level lowering method for excavated ground, and filling/pumping well for use in the method
JP6306497B2 (en) Well water dissolved oxygen removal system and dissolved oxygen removal method
JP5659693B2 (en) Condensation method and condensate system
JP2007177434A (en) Underground device in underground water heat utilizing facility
JP2006262878A (en) Action storage-type siphon unit
JP4223035B2 (en) Pumping equipment
JP4497072B2 (en) Purification method and apparatus for soil soil contaminated with oil
CN215403301U (en) Multiple-effect reaction type underground water circulating well
JP2006320842A (en) Method and device for cleaning contaminated soil
JP5176753B2 (en) In-situ containment method
JP2015031124A (en) Groundwater guidance system and groundwater guiding method
JP6138024B2 (en) Contaminated water block area generation method and apparatus
JP3567411B2 (en) Pumping equipment
JP2015217351A (en) Groundwater purification system and groundwater purification method
JP6248696B2 (en) Groundwater purification method and groundwater purification system
JP3706368B2 (en) Method and apparatus for pumping up groundwater and returning it to the basement again
JP7238649B2 (en) Groundwater pumping device and groundwater pumping method
CN211564030U (en) On-site ex-situ remediation system for irritant odor field
US20160230527A1 (en) VacCirc-Vacuum Driven In-well Air Stripping and Recirculation
JP4585221B2 (en) Condensation method and condensate structure used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180308

R150 Certificate of patent or registration of utility model

Ref document number: 6306497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees