JP2016090365A - Hammer impact test device and hammer impact test method - Google Patents

Hammer impact test device and hammer impact test method Download PDF

Info

Publication number
JP2016090365A
JP2016090365A JP2014224567A JP2014224567A JP2016090365A JP 2016090365 A JP2016090365 A JP 2016090365A JP 2014224567 A JP2014224567 A JP 2014224567A JP 2014224567 A JP2014224567 A JP 2014224567A JP 2016090365 A JP2016090365 A JP 2016090365A
Authority
JP
Japan
Prior art keywords
pressing member
lid
storage means
percussion
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014224567A
Other languages
Japanese (ja)
Other versions
JP6439387B2 (en
Inventor
健 村瀬
Takeshi Murase
健 村瀬
中山 和彦
Kazuhiko Nakayama
和彦 中山
森 健司
Kenji Mori
健司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2014224567A priority Critical patent/JP6439387B2/en
Publication of JP2016090365A publication Critical patent/JP2016090365A/en
Application granted granted Critical
Publication of JP6439387B2 publication Critical patent/JP6439387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a simple configuration to prevent a first oscillation generated by giving an electromagnetic impact from propagating to a can body.SOLUTION: A hammer impact test device 1 comprising: a hammer impact head 10 that gives a can body C an electromagnetic impact, receives a hammer impact sound to be emitted from a hammer impact oscillation part of the can body C, converts the hammer impact sound to a hammer impact signal, and outputs the hammer impact signal; and a computation device 20 that analyzes the hammer impact signal and discriminates a can inner pressure of the can body C, the hammer impact test device comprises first oscillation suppression means 40 that prevents a first oscillation generating in a can lid C3 of the can body C when the electromagnetic impact is given.SELECTED DRAWING: Figure 1

Description

本発明は、電磁的衝撃が与えられた缶体の打検振動部から発せられる打検音を受け、この打検音から変換された打検信号を解析して缶内圧を判別し、不良缶を検出する打検装置及び打検方法に関し、特に、缶体における打検振動部以外の部分での共振音の発生を抑制して不良缶の検出精度を向上させる打検装置及び打検方法に関する。   The present invention receives a tapping sound emitted from a tapping vibration unit of a can body subjected to electromagnetic shock, analyzes a tapping signal converted from this tapping sound, determines a can internal pressure, In particular, the present invention relates to a percussion apparatus and a percussion method that improve the detection accuracy of defective cans by suppressing the generation of resonance noise in portions other than the percussion vibration portion in the can body. .

従来、密封容器、特に腐敗が起きやすい飲食物を充填した缶詰等の缶内圧を、非破壊的に検査する方法として打検法が広く採用されている。
打検法は、缶体の所定部位、例えば、倒立させた缶体では上部に位置する缶体底部を打検振動部とし、ここに電磁的衝撃を与えることで発生した反響振動音(打検音)をマイクロフォンによって検出し、この反響振動音の周波数を測定し、事前に把握した缶内圧と測定した周波数との相関から缶内圧を判別して、当該缶体の良否を判定する検査法である。
Conventionally, the percussion method has been widely adopted as a method for nondestructively inspecting the internal pressure of cans such as cans filled with sealed containers, particularly foods and beverages that are susceptible to corruption.
In the percussion method, a reverberation vibration sound (percussion test) generated by applying an electromagnetic shock to a predetermined part of the can body, for example, the bottom of the can body located at the top of the can body is used as a percussion vibration section. Sound) is detected by a microphone, the frequency of this reverberation vibration sound is measured, the internal pressure of the can is discriminated from the correlation between the internal pressure of the can previously grasped and the measured frequency, and an inspection method for judging the quality of the can body is there.

ここで、マイクロフォンにより検出された反響振動音の周波数と、音響レベルとの関係をグラフ化すると(図22参照)、良品の缶体では、ある一定の周波数において、突出した音響レベルのピーク値を示すようになる。このピーク値は、缶体の固有振動であり、このピーク値が表れた周波数が適正缶内圧に対応する周波数帯域に入っているか否かを判定することで、缶体の良否を判定できる。   Here, when the relationship between the frequency of the reverberation vibration sound detected by the microphone and the sound level is graphed (see FIG. 22), in a non-defective can body, the peak value of the protruding sound level is obtained at a certain frequency. As shown. This peak value is the natural vibration of the can body, and the quality of the can body can be determined by determining whether or not the frequency at which the peak value appears is in the frequency band corresponding to the appropriate can internal pressure.

ところが、実際に、良品の缶体について反響振動音を解析し、この反響振動音の周波数と音響レベルとの関係をグラフ化すると(図24参照)、複数の周波数においてピーク値が表れることがある。
これは、缶体底部に電磁的衝撃を与えたときに、底部以外の胴部や蓋部で共振が起こり、この振動音がマイクロフォンで検出されることで、この振動音を示すピーク値が周波数分布に表れるためであると考えられる。特に、近年では、缶体の胴部や蓋部の材料変更、さらには薄肉軽量化によって、缶体の振動形態が複雑化する傾向にあることから、振動音の発生箇所に応じてピーク値が表れる周波数も異なってくる。
However, when the reverberation vibration sound is actually analyzed for a good can body and the relationship between the frequency of the reverberation vibration sound and the sound level is graphed (see FIG. 24), peak values may appear at a plurality of frequencies. .
This is because when an electromagnetic shock is applied to the bottom of the can body, resonance occurs in the body and lid other than the bottom, and this vibration sound is detected by a microphone, so that the peak value indicating this vibration sound is a frequency. This is probably because it appears in the distribution. In particular, since the vibration form of the can tends to become more complex due to changes in the material of the body and lid of the can body and the reduction in thickness and weight in recent years, the peak value depends on the location of the vibration sound. The frequency that appears is also different.

このようにして、反響振動音の周波数分布に複数のピーク値が表れてしまうと、缶底で発生した反響振動音の周波数が適正缶内圧に対応する周波数帯域に入っていた場合でも、缶底以外の部分で発生した共振の周波数が、適正缶内圧に対応する周波数帯域に入っていないために、良品であるはずの缶体を不良品と判定することも想定され、缶体の良否判定の精度が低下する原因となってしまう。
そこで、缶底以外の部分における共振を抑制して、缶体の良否判定の精度を向上させるための技術が提案されている。
例えば、倒立した状態の缶体の底部を強制励振させる際に、当該底部の外周縁部を全周にわたって押圧する押圧体を備えた内圧検査装置が提案されている(例えば、特許文献1参照。)。
この内圧検査装置によれば、底部の外周縁部を全周にわたって押圧体が押圧するので、缶底から缶胴への振動の伝搬が抑制される。これにより、缶胴での共振が低減するので、缶体の良否判定の精度を向上させることができる。
In this way, if a plurality of peak values appear in the frequency distribution of the reverberation vibration sound, even if the frequency of the reverberation vibration sound generated at the bottom of the can is within the frequency band corresponding to the appropriate can internal pressure, Because the frequency of the resonance generated in the part other than is not in the frequency band corresponding to the appropriate internal pressure of the can, it is assumed that the can body that should be a good product is judged as a defective product. This will cause a decrease in accuracy.
In view of this, there has been proposed a technique for suppressing the resonance in the portion other than the bottom of the can and improving the accuracy of the quality determination of the can body.
For example, an internal pressure inspection apparatus including a pressing body that presses the outer peripheral edge portion of the bottom portion over the entire circumference when the bottom portion of the can body in an inverted state is forcibly excited has been proposed (see, for example, Patent Document 1). ).
According to this internal pressure inspection apparatus, since the pressing body presses the outer peripheral edge of the bottom part over the entire circumference, propagation of vibration from the can bottom to the can body is suppressed. Thereby, since the resonance in the can body is reduced, the accuracy of the quality determination of the can body can be improved.

また、電磁的衝撃を与えたときに缶体が飛び上がり、着地したときに生じる振動を二次振動としたときに、この二次振動の発生を抑制する技術が提案されている(例えば、特許文献2参照。)。すなわち、この技術では、缶体に下方向の力を加える二次振動抑止手段を設けることで、缶体の飛び上がりを阻止して、着地が起こらないようにしている。
これにより、着地に伴う二次振動の発生が抑制され、二次振動に起因する振動音のピーク値が検出されなくなるので、缶体の良否判定の精度を向上させることができる。
In addition, a technique has been proposed that suppresses the occurrence of secondary vibration when the vibration that occurs when the can body jumps up and lands when it is subjected to electromagnetic shock is defined as secondary vibration (for example, Patent Documents). 2). That is, in this technique, by providing secondary vibration suppression means for applying a downward force to the can body, the can body is prevented from jumping up and landing is prevented from occurring.
As a result, the occurrence of secondary vibration accompanying landing is suppressed, and the peak value of the vibration sound resulting from the secondary vibration is not detected, so that the accuracy of the quality determination of the can can be improved.

特開2005−170442号公報JP 2005-170442 A 特開2006−153496号公報JP 2006-153696 A

しかしながら、上述した特許文献1、2に記載の技術においては、次のような問題があった。   However, the techniques described in Patent Documents 1 and 2 described above have the following problems.

例えば、特許文献1に記載の技術である内圧検査装置は、打検時に缶底部の外周縁部を全周にわたって押圧することで、この缶底部から缶胴への振動の伝搬を抑制する装置である。
この装置では、缶底部の外周縁部を全周にわたって押圧するために、押圧体を複数設ける必要があった。しかも、これら複数の押圧体を缶底部の外周縁部に対応させて円周状に配置しなければならず、このため、装置が複雑化していた。
また、具体的に、押圧体の数は、一つの缶体に対して五つとし、しかも、缶体がケース内に6列4行で収納されている場合には、一列分四つの缶体を押圧するために押圧体を十四個も備えなければならず、このため、装置が複雑化するとともに、押圧体の配置位置の調整が必要となっていた。
このように、同装置は、構成の複雑化と配置位置の調整が問題となっていた。このことから、より簡易な構成で、缶胴への振動の伝搬を抑制可能とする技術の提案が求められていた。
For example, an internal pressure inspection device that is a technique described in Patent Document 1 is a device that suppresses the propagation of vibration from the bottom of the can to the can body by pressing the outer peripheral edge of the bottom of the can during the percussion. is there.
In this device, it is necessary to provide a plurality of pressing bodies in order to press the outer peripheral edge of the can bottom over the entire circumference. In addition, the plurality of pressing bodies must be arranged circumferentially in correspondence with the outer peripheral edge of the can bottom, which complicates the apparatus.
Further, specifically, the number of pressing bodies is five for one can body, and when the can bodies are accommodated in 6 columns and 4 rows in the case, four can bodies for one column. In order to press the pressing member, it is necessary to provide fourteen pressing members, which complicates the apparatus and requires adjustment of the arrangement position of the pressing member.
As described above, this apparatus has a problem in that the configuration is complicated and the arrangement position is adjusted. For this reason, there has been a demand for a proposal of a technique that can suppress propagation of vibration to the can body with a simpler configuration.

また、同装置においては、次のような問題があった。
同装置では、押圧体としてローラを用いることを想定している。また、缶体は、ケースに収納されており、コンベアなどで搬送することを想定している。さらに、ケースの内部においては、このケースの上蓋部の下面と缶底部の外周縁部が、離間した状態となっている。
そして、搬送中のケースの前面が押圧体の下方に到達すると、押圧体であるローラがケースの前面上部を乗り越えて、当該ケースの上蓋部の上面上を転動するようになる。
一方、押圧体は、缶体の上方に達すると、ケースの上蓋部を上方から押し下げることで、このケースの上蓋部の下面を缶底部の外周縁部に接触させる。
ところが、押圧体がケースの上蓋部を押し下げ可能とするためには、下方にケースが到達していないフリーな状態で、既に当該押圧体がケースの上蓋部を押し下げている位置と同じ位置にセットされている必要がある。
また、その一方で、押圧体は、下方にケースの前面が到達したときには、このケースの前面上部を乗り越えなければならない。
このような動きを実現するために、同装置では、押圧体を下方へ付勢する弾性バネなどの付勢手段を押圧体の上部に付設している。これにより、ケースの前面上部からの押し上げを受けて付勢手段が収縮し、押圧体が上方へ移動して、ケースの前面上部を乗り越えるようにしている。
そして、その直後に、押圧体は、ケースの上蓋部を押し下げなければならない。
この結果、押圧体に付設された付勢手段は、ケースの前面からの押し上げによって容易に収縮するものの、ケースの上蓋部に対しては、これが凹状に変形するほどの強制的な力を加えて下方へ押し下げなければならない。
このような動きを、バネである付勢手段のみで実現させるのは、事実上不可能であり、現実的でないという問題があった。
In addition, this apparatus has the following problems.
In this apparatus, it is assumed that a roller is used as the pressing body. Moreover, the can body is accommodated in the case and is assumed to be conveyed by a conveyor or the like. Further, inside the case, the lower surface of the upper lid portion of the case and the outer peripheral edge portion of the can bottom portion are in a separated state.
When the front surface of the case being conveyed reaches below the pressing body, the roller that is the pressing body rides over the upper portion of the front surface of the case and rolls on the upper surface of the upper lid portion of the case.
On the other hand, when the pressing body reaches above the can body, the upper lid portion of the case is pushed down from above to bring the lower surface of the upper lid portion of the case into contact with the outer peripheral edge portion of the can bottom portion.
However, in order for the pressing body to be able to push down the upper lid portion of the case, it is set in the same position as the position where the pressing body has already pushed down the upper lid portion of the case in a free state where the case has not reached the lower side. Need to be.
On the other hand, when the front surface of the case reaches the lower side, the pressing body must get over the upper front portion of the case.
In order to realize such a movement, in the apparatus, an urging means such as an elastic spring for urging the pressing body downward is attached to the upper part of the pressing body. As a result, the urging means contracts in response to the push-up from the upper front part of the case, and the pressing body moves upward so as to get over the upper front part of the case.
And immediately after that, the pressing body must push down the upper lid part of the case.
As a result, the urging means attached to the pressing body is easily contracted by being pushed up from the front surface of the case, but a forcible force is applied to the upper lid portion of the case to deform it into a concave shape. Must be pushed down.
There is a problem that it is practically impossible to realize such a movement only by the urging means, which is a spring, and it is not practical.

また、特許文献2に記載の打検装置は、電磁的衝撃を与えたときに、缶体が飛び上がり、着地したときに生じる二次振動を抑制する二次振動抑止手段を備えている。
この二次振動抑止手段は、缶体が飛び上がらないようにするために、缶体に下方向の力を加えている。
ところが、二次振動が発生する前に、缶体には、一次振動が発生し、この一次振動は、缶底に電磁的衝撃を与えたときに発生する振動であり、缶底で発生した後、缶体の胴部や蓋部に伝搬する。
これに対し二次振動は、一次振動の発生に伴って缶体が飛び上がり、着地したときに生じる振動であり、二次振動は、一次振動に起因して発生する。
そして、二次振動抑止手段は、この二次振動を抑制するものであり、一次振動の伝搬の抑制を目的としたものではない。
In addition, the percussion inspection device described in Patent Document 2 includes secondary vibration suppression means for suppressing secondary vibration generated when the can body jumps up and lands when an electromagnetic shock is applied.
This secondary vibration suppression means applies a downward force to the can body in order to prevent the can body from jumping up.
However, before the secondary vibration occurs, the primary vibration is generated in the can body, and this primary vibration is generated when an electromagnetic shock is applied to the bottom of the can. Propagates to the body and lid of the can.
On the other hand, the secondary vibration is a vibration generated when the can body jumps and lands with the generation of the primary vibration, and the secondary vibration is generated due to the primary vibration.
The secondary vibration suppression means suppresses the secondary vibration and is not intended to suppress the propagation of the primary vibration.

本発明は、上記の事情にかんがみなされたものであり、電磁的衝撃の付与によって発生する一次振動に着目し、一次振動の缶底以外への伝搬を簡易な構成で抑制し、押圧部材と付勢手段とを有する構成であっても、ケースに収納された缶体における一次振動の伝搬を抑制できる打検装置及び打検方法の提供を目的とする。   The present invention has been considered in view of the above circumstances, focusing on the primary vibration generated by the application of electromagnetic shock, suppressing the propagation of the primary vibration to other than the bottom of the can with a simple configuration, and attaching the pressing member. It is an object of the present invention to provide a tapping device and a tapping method that can suppress propagation of primary vibrations in a can housed in a case even with a configuration having a biasing means.

この目的を達成するため、本発明の打検装置は、缶体に電磁的衝撃を与え、前記缶体の打検振動部から発せられる打検音を受け、前記打検音を打検信号に変換して出力する打検ヘッドと、前記打検信号を解析して前記缶体の缶内圧を判別する演算装置とを備えた打検装置であって、
前記電磁的衝撃を与えたときに、前記缶体の缶蓋で生じる一次振動を抑制する一次振動抑止手段を備えた構成としてある。
In order to achieve this object, the percussion apparatus of the present invention applies an electromagnetic shock to the can body, receives a percussion sound emitted from the percussion vibration unit of the can body, and uses the percussion sound as a percussion signal. A punching device comprising a punching head that converts and outputs, and an arithmetic unit that analyzes the punching signal and determines the can internal pressure of the can body,
When the electromagnetic shock is applied, primary vibration suppression means for suppressing primary vibration generated in the can lid of the can body is provided.

また、本発明の打検方法は、缶体に電磁的衝撃を与えるステップと、前記缶体の打検振動部から発せられる打検音を受け取る打検音受取ステップと、前記打検音を打検信号に変換して出力するステップと、前記打検信号を解析して前記缶体の缶内圧を判別するステップとを有する打検方法であって、前記打検音受取ステップが、前記電磁的衝撃を与えたときに前記缶体の缶蓋で生じる一次振動を、一次振動抑止手段により抑制された状態で、前記缶体の打検振動部から発せられる打検音を受け取るステップである方法としてある。   Further, the percussion inspection method of the present invention includes a step of applying an electromagnetic shock to the can body, a percussion sound receiving step of receiving a percussion sound emitted from the percussion vibration portion of the can body, and a percussion sound. And a step of analyzing the tapping signal and determining a can internal pressure of the can body, wherein the tapping sound receiving step includes the electromagnetic sound receiving step. As a method of receiving a tapping sound emitted from a tapping vibration unit of the can body in a state in which primary vibration generated in the can lid of the can body is suppressed by a primary vibration suppressing means when an impact is applied. is there.

本発明の打検装置及び打検方法によれば、打検装置に一次振動抑止手段を備える構成としたので、電磁的衝撃を与えたときに缶体の缶蓋で生じる一次振動を抑制できる。
また、本発明の打検装置は、特許文献1に記載されている内圧検査装置のように缶底の外周縁部を全周にわたって押圧する構成ではなく、缶体の蓋部に接触等する構成としたので、多数の押圧体を用意する必要はなく、一つの缶体に対して一次振動抑止手段を少なくとも一つ備えることで実現できる。このため、缶蓋で生じる一次振動を、簡易な構成で確実に抑制できる。
さらに、本発明の打検装置及び打検方法における一次振動抑止手段は、電磁的衝撃を与えたときに、缶底で発生した一次振動が缶蓋に伝搬し、この缶蓋で生じる共振振動を抑制する手段であるので、特許文献2に記載の二次振動抑止手段が抑制の対象としていない一次振動を抑制することができる。
According to the percussion inspection apparatus and percussion inspection method of the present invention, since the percussion inspection apparatus includes the primary vibration suppressing means, it is possible to suppress the primary vibration generated in the can lid of the can body when an electromagnetic shock is applied.
Further, the percussion inspection device of the present invention is not configured to press the outer peripheral edge of the can bottom over the entire circumference like the internal pressure inspection device described in Patent Document 1, but is configured to contact the lid of the can body, etc. Therefore, it is not necessary to prepare a large number of pressing bodies, and this can be realized by providing at least one primary vibration suppressing means for one can body. For this reason, the primary vibration generated in the can lid can be reliably suppressed with a simple configuration.
Furthermore, the primary vibration suppression means in the percussion inspection apparatus and percussion method of the present invention, when an electromagnetic shock is applied, the primary vibration generated at the bottom of the can propagates to the can lid, and the resonance vibration generated at the can lid is suppressed. Since it is a suppression means, the secondary vibration suppression means of patent document 2 can suppress the primary vibration which is not made into the object of suppression.

本発明の第一実施形態の打検装置の構成を示す図である。It is a figure which shows the structure of the inspection apparatus of 1st embodiment of this invention. 缶体、押圧部材、被載置部材、支持部材の構成を示す正面図である。It is a front view which shows the structure of a can, a pressing member, a mounting member, and a supporting member. 円柱形状又は円筒形状である上部平面形の押圧部材の形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape of the pressing member of the upper plane shape which is a column shape or a cylindrical shape. 角柱形状又は角筒形状である上部平面形の押圧部材の形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape of the upper planar pressing member which is a prismatic shape or a rectangular tube shape. 上部に曲面を有した上部曲面形の押圧部材の形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape of the press member of the upper curved surface shape which has the curved surface in the upper part. 円板状又はロール状である回転形の押圧部材の形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape of the rotary press member which is disk shape or roll shape. 円板状及びロール状以外の形状である回転形の押圧部材の形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape of the rotation type press member which is shapes other than disk shape and roll shape. 回転形の押圧部材に軸と支持体とを備えた形状を示す外観斜視図である。It is an external appearance perspective view which shows the shape provided with the axis | shaft and the support body in the rotation type press member. 本発明の第一実施形態の打検方法の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the inspection method of 1st embodiment of this invention. 本発明の第二実施形態の打検装置及び搬送装置の構成を示す図である。It is a figure which shows the structure of the inspection apparatus and conveyance apparatus of 2nd embodiment of this invention. 複数のローラで構成された搬送装置により収納手段を搬送する様子を示す側方外観図である。It is a side external view which shows a mode that a storage means is conveyed with the conveying apparatus comprised with several rollers. 複数のコンベアで構成された搬送装置により収納手段を搬送する様子を示す側方外観図である。It is a side external view which shows a mode that a storage means is conveyed with the conveying apparatus comprised with the some conveyor. 図5(ii)に示した上部曲面形の押圧部材の形状を示す外観斜視図及び断面図である。It is the external appearance perspective view and sectional drawing which show the shape of the press member of the upper curved surface shape shown in FIG.5 (ii). 図5(i)に示した上部曲面形の押圧部材の形状を示す外観斜視図及び断面図である。It is the external appearance perspective view and sectional drawing which show the shape of the press member of the upper curved surface shape shown in FIG.5 (i). 搬送中の収納手段が押圧部材に到達する前の状態を示す側方断面図である。It is side sectional drawing which shows the state before the accommodating means in conveyance reaches | attains a pressing member. 搬送中の収納手段が押圧部材に到達したときの状態を示す側方断面図である。It is side sectional drawing which shows a state when the accommodating means in conveyance reaches | attains a pressing member. 搬送中の収納手段が押圧部材に乗り上げた状態を示す側方断面図である。It is side sectional drawing which shows the state which the storage means in conveyance got on the press member. 収納手段に収納された複数の缶体のうちの第一列目の缶体の下方に押圧部材が位置した状態を示す側方断面図である。It is a side sectional view showing the state where the pressing member is located below the first row of cans stored in the storage means. 収納手段に収納された複数の缶体のうちの第一列目と第二列目の缶体の下方に押圧部材が位置した状態を示す側方断面図である。It is a side sectional view showing the state where the pressing member is located below the first row and second row of cans stored in the storage means. 収納手段に収納された複数の缶体のうちの第二列目の缶体の下方に押圧部材が位置した状態を示す側方断面図である。It is a side sectional view showing the state where the pressing member is located below the second row of cans stored in the storage means. 本発明の第二実施形態の打検方法の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the inspection method of 2nd embodiment of this invention. 本発明の打検装置により測定された反響振動音の周波数分布を示す波形図である。It is a wave form diagram which shows the frequency distribution of the echo vibration sound measured by the percussion inspection apparatus of this invention. 本発明の打検装置により測定された反響振動音の周波数にもとづくデジットと缶体の内圧との関係を示すグラフである。It is a graph which shows the relationship between the digit based on the frequency of the echo vibration sound measured by the percussion inspection apparatus of this invention, and the internal pressure of a can body. 従来の打検装置により測定された反響振動音の周波数分布を示す波形図である。It is a wave form diagram which shows the frequency distribution of the reverberation vibration sound measured by the conventional percussion inspection apparatus. 従来の打検装置により測定された反響振動音の周波数にもとづくデジットと缶体の内圧との関係を示すグラフである。It is a graph which shows the relationship between the digit based on the frequency of the reverberation vibration sound measured by the conventional percussion apparatus, and the internal pressure of a can body. 本発明の第三実施形態の打検装置を構成する押圧部材が備えられる収納手段の断面図と、この収納手段の要部拡大図である。It is sectional drawing of the storage means with which the press member which comprises the inspection apparatus of 3rd embodiment of this invention is provided, and the principal part enlarged view of this storage means.

以下、本発明に係る打検装置及び打検方法の好ましい実施形態について、図面を参照して説明する。   Hereinafter, preferred embodiments of a percussion apparatus and percussion method according to the present invention will be described with reference to the drawings.

[第一実施形態]
まず、本発明の打検装置及び打検方法の第一実施形態について、図1を参照して説明する。
同図は、本実施形態の打検装置の構成を示す概略構成図である。
[First embodiment]
First, a first embodiment of the percussion apparatus and percussion method of the present invention will be described with reference to FIG.
FIG. 2 is a schematic configuration diagram showing the configuration of the percussion inspection apparatus according to the present embodiment.

(I)打検装置
図1に示すように、打検装置1は、打検ヘッド10と、演算装置20と、被載置部材30と、一次振動抑止手段40とを備えている。
打検ヘッド10は、電磁コイル11と、マイクロフォン12とを有している。
電磁コイル11は、倒立させた缶体Cの上部に位置する缶底C2に電磁的衝撃を与えて強制励振させるための電界発生手段である。本実施形態において、電磁コイル11が電磁的衝撃を与えるのは缶体Cの缶底C2であり、この缶底C2が、電磁的衝撃を受けて振動を生じる打検振動部となる。
なお、電磁コイル11には、例えば、エキサイタコイルなどを用いることができる。
(I) Percussion device As shown in FIG. 1, the percussion device 1 includes a percussion head 10, a calculation device 20, a placement member 30, and primary vibration suppression means 40.
The percussion head 10 includes an electromagnetic coil 11 and a microphone 12.
The electromagnetic coil 11 is an electric field generating means for applying an electromagnetic shock to the can bottom C2 positioned above the inverted can body C to forcibly excite it. In this embodiment, it is the can bottom C2 of the can body C that the electromagnetic coil 11 gives an electromagnetic shock, and this can bottom C2 becomes a percussion vibration part that generates vibration upon receiving the electromagnetic shock.
As the electromagnetic coil 11, for example, an exciter coil can be used.

マイクロフォン12は、缶体Cの打検振動部で生じた振動に伴って発生した振動音を打検音として検出し、この打検音を電気的信号である打検信号に変換して出力し、演算装置20へ送る。   The microphone 12 detects a vibration sound generated as a result of the vibration generated in the percussion vibration unit of the can C as a percussion sound, converts the percussion sound into a percussion signal that is an electrical signal, and outputs the result. To the arithmetic unit 20.

演算装置20は、周波数解析部21と、良否判定部22とを有している。
周波数解析部21は、マイクロフォン12から出力された打検信号を入力し、この打検信号の示す打検音の周波数解析を行って、打検音の周波数と音響レベルとを算出する。また、周波数解析部21は、算出した音響レベルが、ピークを示す周波数と予め設定された缶内圧値との相関にもとづいて、缶体Cの内圧値を算出する。
良否判定部22は、周波数解析部21での解析結果にもとづいて缶体Cの良否判定を行う。例えば、周波数解析部21により算出された内圧値と、予め設定された適正缶内圧とを比較し、算出された内圧値が適正缶内圧の範囲内にあるときは、その内圧値を適正と判定し、当該缶体Cを良品と判定する。一方、算出された内圧値が適正缶内圧の範囲内にないときは、その内圧値を不適正と判定し、当該缶体Cを不良品と判定する。
なお、ここでは、算出された内圧値を用いて缶体Cの良否判定を行うこととしたが、この良否判定は、打検音の周波数を用いて行うこともできる。すなわち、良否判定部22は、その周波数が適正缶内圧に対応する周波数帯域内にあるときには、当該缶体Cを良品と判定する。一方、その周波数が適正缶内圧に対応する周波数帯域内にないときには、当該缶体Cを不良品と判定する。
The computing device 20 includes a frequency analysis unit 21 and a pass / fail determination unit 22.
The frequency analysis unit 21 inputs the tapping signal output from the microphone 12, performs frequency analysis of the tapping sound indicated by the tapping signal, and calculates the frequency and sound level of the tapping sound. Further, the frequency analysis unit 21 calculates the internal pressure value of the can body C based on the correlation between the frequency at which the calculated sound level indicates a peak and a preset can internal pressure value.
The pass / fail determination unit 22 determines pass / fail of the can body C based on the analysis result of the frequency analysis unit 21. For example, the internal pressure value calculated by the frequency analysis unit 21 is compared with a preset appropriate can internal pressure, and when the calculated internal pressure value is within the range of the proper can internal pressure, the internal pressure value is determined to be appropriate. The can body C is determined to be a non-defective product. On the other hand, when the calculated internal pressure value is not within the range of the appropriate can internal pressure, the internal pressure value is determined to be inappropriate, and the can C is determined to be defective.
Here, the quality determination of the can body C is performed using the calculated internal pressure value, but this quality determination can also be performed using the frequency of the tapping sound. That is, the pass / fail determination unit 22 determines that the can body C is a non-defective product when the frequency is within the frequency band corresponding to the appropriate can internal pressure. On the other hand, when the frequency is not within the frequency band corresponding to the appropriate can internal pressure, the can body C is determined to be defective.

被載置部材30は、缶体Cが倒立状態で載置される上面31を有した部材である。
本実施形態において、被載置部材30は、固定された板状の部材とする。ただし、被載置部材30は、移動可能な板状の部材や、ベルトコンベアの搬送板などであってもよい。
缶体Cは、本実施形態の打検装置1を用いて、内圧検査が行われる検査対象である。図1に示すように、飲料等が充填、密封された缶体Cの缶胴C1、缶底C2、及び缶蓋C3とで構成されている。なお、本実施形態においては、缶胴C1と缶底C2が一体成形され、缶蓋C3が卷締められた2ピース缶を例示している。
この缶体Cは、アルミニウム又はアルミニウム合金製の陽圧缶(窒素ガス充填)、あるいはスチール製の負圧缶のいずれであってもよい。
The placement member 30 is a member having an upper surface 31 on which the can body C is placed in an inverted state.
In the present embodiment, the placement member 30 is a fixed plate-like member. However, the placement member 30 may be a movable plate-like member, a conveyor plate of a belt conveyor, or the like.
The can body C is an inspection object in which an internal pressure inspection is performed using the percussion apparatus 1 of the present embodiment. As shown in FIG. 1, it is comprised by the can body C1, the can bottom C2, and the can lid C3 of the can body C with which the drink etc. were filled and sealed. In the present embodiment, a two-piece can in which a can body C1 and a can bottom C2 are integrally formed and a can lid C3 is clamped is illustrated.
The can body C may be either a positive pressure can (filled with nitrogen gas) made of aluminum or an aluminum alloy, or a negative pressure can made of steel.

一次振動抑止手段40は、缶体Cに電磁的衝撃を与えたときに当該缶体Cの缶蓋C3で生じる一次振動を抑制するための手段である。
本実施形態において、一次振動抑止手段40は、缶体Cの缶蓋C3に直接接触する押圧部材41である。押圧部材41は、この接触により、当該缶蓋C3に生じる一次振動を抑制する。
The primary vibration suppression means 40 is means for suppressing primary vibration generated in the can lid C3 of the can body C when an electromagnetic shock is applied to the can body C.
In the present embodiment, the primary vibration suppression means 40 is a pressing member 41 that directly contacts the can lid C3 of the can body C. The pressing member 41 suppresses the primary vibration generated in the can lid C3 by this contact.

押圧部材41は、缶体Cの缶蓋C3に直接接触することができる箇所、例えば、被載置部材30の上面31に缶体Cが載置された場合に、当該缶体Cの下方から缶蓋C3に直接接触可能な箇所に配置される。
具体的に、押圧部材41は、図1、図2に示すように、被載置部材30において、缶体Cが載置される箇所に開口32が形成されており、その開口32に対して下方から挿入され、当該押圧部材41の上部が被載置部材30の上面31から上方に突出する位置に配置する。
これにより、押圧部材41は、被載置部材30の上面31に載置された缶体Cの缶蓋C3に対して、その突出した上部を直接接触させることができる。
なお、開口32は、例えば、被載置部材30に形成された円形状あるいは矩形状の貫通孔であってもよく、あるいは、二枚の被載置部材30の間隙として形成したものであってもよい。前者の場合、開口32の面積は、缶体Cの缶蓋C3の面積よりも小さい面積とする。一方、後者の場合、二枚の被載置部材30の間隔は、缶体Cの缶蓋C3の直径よりも短い長さとする。
When the can body C is placed on a place where the pressing member 41 can directly contact the can lid C3 of the can body C, for example, the upper surface 31 of the placement member 30, the pressing member 41 is viewed from below the can body C. It arrange | positions in the location which can contact the can lid | cover C3 directly.
Specifically, as shown in FIG. 1 and FIG. 2, the pressing member 41 has an opening 32 formed at a place where the can body C is placed on the placement member 30, The pressing member 41 is inserted from below, and the upper portion of the pressing member 41 is disposed at a position protruding upward from the upper surface 31 of the placement member 30.
Thereby, the pressing member 41 can directly contact the protruding upper portion with the can lid C <b> 3 of the can body C placed on the upper surface 31 of the placement member 30.
The opening 32 may be, for example, a circular or rectangular through-hole formed in the placement member 30 or may be formed as a gap between the two placement members 30. Also good. In the former case, the area of the opening 32 is smaller than the area of the can lid C3 of the can body C. On the other hand, in the latter case, the interval between the two placement members 30 is shorter than the diameter of the can lid C3 of the can body C.

押圧部材41の上部が被載置部材30の上面31から上方へ突出する高さT1(図2(i)参照)は、次のような高さとする。
缶体Cには、缶胴C1の端部周縁部に缶蓋C3を卷締めた巻き締め部C5が形成されている。缶体Cを倒立させたとき、巻き締め部C5は、缶蓋C3の周囲から下方へ突出した状態となり、缶蓋C3の天面部C4よりも下方に位置する。
ここで、巻き締め部C5の下端の頂部C6を通る仮想的な平面を第一仮想平面K1とすると、第一仮想平面K1と缶蓋C3の天面部C4との間には、蓋側空間C7が仮想的に形成される。
A height T1 (see FIG. 2I) at which the upper portion of the pressing member 41 protrudes upward from the upper surface 31 of the placement member 30 is set as follows.
The can body C is formed with a tightening portion C5 in which a can lid C3 is fastened to the periphery of the end portion of the can body C1. When the can body C is inverted, the tightening portion C5 protrudes downward from the periphery of the can lid C3 and is located below the top surface portion C4 of the can lid C3.
Here, if a virtual plane passing through the top C6 at the lower end of the tightening portion C5 is a first virtual plane K1, a lid side space C7 is provided between the first virtual plane K1 and the top surface portion C4 of the can lid C3. Is virtually formed.

この蓋側空間C7において、缶蓋C3の天面部C4から第一仮想平面K1までの距離を、蓋側空間C7の高さC71とすると、押圧部材41の突出高さT1(図2(i)参照)は、少なくとも蓋側空間C7の高さC71と同じ高さ、あるいは、この高さC71よりも高くなっていることを要する。
突出高さT1をこのような高さとすることにより、倒立状態の缶体Cを被載置部材30の上面31に載置したときに、押圧部材41の上部が缶体Cの缶蓋C3の天面部C4に接触し、この天面部C4を押圧する(図2(ii)参照)。
なお、押圧部材41の突出高さT1は、例えば、0.1mm〜10.0mm、好適には3.0mm〜5.5mmの範囲内とすることができる。また、突出高さT1は、缶胴径、缶蓋径、あるいは缶蓋C3の天面部C4側の構成(タブC8の形状、天面部C4の形状)を考慮し、適切な数値を選択する。
In this lid side space C7, when the distance from the top surface portion C4 of the can lid C3 to the first virtual plane K1 is the height C71 of the lid side space C7, the protruding height T1 of the pressing member 41 (FIG. 2 (i)). Need to be at least the same height as the height C71 of the lid side space C7 or higher than the height C71.
By setting the protruding height T1 to such a height, when the can body C in an inverted state is placed on the upper surface 31 of the placement member 30, the upper portion of the pressing member 41 is the can lid C3 of the can body C. The top surface portion C4 is contacted and pressed to the top surface portion C4 (see FIG. 2 (ii)).
In addition, protrusion height T1 of the pressing member 41 can be in the range of 0.1 mm to 10.0 mm, preferably 3.0 mm to 5.5 mm, for example. Further, the projection height T1 is selected in consideration of the can body diameter, the can lid diameter, or the configuration on the top surface portion C4 side of the can lid C3 (the shape of the tab C8, the shape of the top surface portion C4).

また、缶体Cの缶蓋C3の天面部C4には、通常、開口用のタブC8が設けられており(図26参照)、押圧部材41の上部をタブC8に接触させてもよい。
この場合、押圧部材41の突出高さT1は、蓋側空間C7の高さC71からタブC8の厚みを引いた高さと同じ高さ、又は、この高さよりも高くする。
このように、押圧部材41の上部を、缶蓋C3の天面部C4、あるいは缶蓋C3の天面部C4に設けたタブC8に接触させるいずれの場合であっても、押圧部材41が缶蓋C3に接触するので、この缶蓋C3の振動を抑制できる。
なお、以下の説明においては、押圧部材41の蓋部C3への接触は、上述した押圧部材41の缶蓋C3(天面部C4、あるいはタブC8)に対する接触を意味する。
Moreover, the tab C8 for opening is normally provided in the top | upper surface part C4 of the can lid C3 of the can body C (refer FIG. 26), and you may make the upper part of the press member 41 contact the tab C8.
In this case, the protrusion height T1 of the pressing member 41 is the same as the height obtained by subtracting the thickness of the tab C8 from the height C71 of the lid-side space C7 or higher than this height.
Thus, in any case where the upper portion of the pressing member 41 is brought into contact with the top surface portion C4 of the can lid C3 or the tab C8 provided on the top surface portion C4 of the can lid C3, the pressing member 41 is connected to the can lid C3. Therefore, the vibration of the can lid C3 can be suppressed.
In the following description, the contact of the pressing member 41 with the lid portion C3 means the contact of the pressing member 41 with the can lid C3 (the top surface portion C4 or the tab C8).

押圧部材41は、被載置部材30の開口32の下方に位置する板状の支持部材43の上に、付勢手段42を介して支持される。
そして、この付勢手段42は、押圧部材41を上方へ向かって付勢し、当該押圧部材41を缶体Cの缶蓋C3に接触させ、かつ、押圧する。
この付勢手段42には、例えば、コイルバネなどの弾性部材を用いることができる。
The pressing member 41 is supported on a plate-like support member 43 located below the opening 32 of the placement member 30 via an urging means 42.
The urging means 42 urges the pressing member 41 upward, brings the pressing member 41 into contact with the can lid C3 of the can body C, and presses it.
For this urging means 42, for example, an elastic member such as a coil spring can be used.

また、押圧部材41の突出高さT1が蓋側空間C7の高さC71よりも高い場合は、被載置部材30の上面31に缶体Cを載置したとき、当該缶体Cの缶蓋C3の天面部C4が押圧部材41の上部に接触すると、内容物が充填、密封された缶体Cの自重により、押圧部材41が下方へ押し下げられる(図2(ii)参照)。このとき、付勢手段42が付勢方向とは反対方向の下方へ収縮して押圧部材41は下降し、さらに、押圧部材41は、下降後も付勢手段42による付勢を受け、缶体Cの缶蓋C3に確実に接触して当該缶蓋C3を押圧する。   Further, when the protruding height T1 of the pressing member 41 is higher than the height C71 of the lid-side space C7, when the can body C is placed on the upper surface 31 of the placement member 30, the can lid of the can body C When the top surface portion C4 of C3 comes into contact with the upper portion of the pressing member 41, the pressing member 41 is pushed downward by the dead weight of the can body C filled and sealed with the contents (see FIG. 2 (ii)). At this time, the urging means 42 contracts downward in the direction opposite to the urging direction, the pressing member 41 descends, and the pressing member 41 is urged by the urging means 42 even after the lowering, and the can body The can lid C3 is securely contacted and pressed against the can lid C3.

また、押圧部材41の形状は、缶体Cの缶蓋C3に接触可能な形状であればよく、ここでは、押圧部材41の形状の例として、上部平面形と、上部曲面形と、回転形などを挙げることができる。   Moreover, the shape of the pressing member 41 should just be a shape which can contact the can lid C3 of the can body C, and here, as an example of the shape of the pressing member 41, an upper plane shape, an upper curved surface shape, and a rotation type And so on.

上部平面形は、押圧部材41の上面が水平面となっている形状である。
具体的には、例えば、図3、図4に示すように、円柱形状(図3(i))、円筒形状(図3(ii))、円筒形状の上部に切欠き411が形成された形状(図3(iii))、角柱形状(図4(i))、角筒形状(図4(ii))、角筒形状の上部に切欠き411が形成された形状(図4(iii))などの形状とすることができる。
押圧部材41の形状を上部平面形とすることにより、当該押圧部材41の上部の水平面を缶体Cの缶蓋C3に接触させることができる。これにより、この缶蓋C3に生じる一次振動を抑制することができる。
また、円筒形状の上部や角筒形状の上部に切欠き411が形成された形状とすることにより(図3(iii)、図4(iii))、缶蓋C3の天面部C4に設けられたタブC8への接触を回避しつつ、天面部C4に直接接触させて、一次振動を抑制することができる。
The upper planar shape is a shape in which the upper surface of the pressing member 41 is a horizontal plane.
Specifically, for example, as shown in FIGS. 3 and 4, a columnar shape (FIG. 3 (i)), a cylindrical shape (FIG. 3 (ii)), and a shape in which a notch 411 is formed on the upper portion of the cylindrical shape. (FIG. 3 (iii)), prismatic shape (FIG. 4 (i)), rectangular tube shape (FIG. 4 (ii)), and shape in which a notch 411 is formed in the upper portion of the rectangular tube shape (FIG. 4 (iii)). Or the like.
By making the shape of the pressing member 41 into an upper plane shape, the horizontal surface above the pressing member 41 can be brought into contact with the can lid C3 of the can body C. Thereby, the primary vibration which arises in this can lid C3 can be suppressed.
Further, by forming a notch 411 in the upper part of the cylindrical shape or the upper part of the rectangular tube shape (FIGS. 3 (iii) and 4 (iii)), the top surface portion C4 of the can lid C3 is provided. The primary vibration can be suppressed by directly contacting the top surface portion C4 while avoiding contact with the tab C8.

上部曲面形は、押圧部材41の上部に曲面CSを有した形状である。
具体的には、例えば、図5に示すように、砲弾型(同図(i))、アーチ型(同図(ii))、斜面付アーチ型(同図(iii))、円板の上に砲弾型を設けた形状(同図(iv))、山形形状(同図(v))などの形状とすることができる。
押圧部材41の形状を上部曲面形とすることにより、当該押圧部材41の曲面CSの頂部を缶体Cの缶蓋C3に接触させることができる。これにより、この缶蓋C3に生じる一次振動を抑制することができる。
また、上部曲面形の場合、当該押圧部材41の曲面CSの頂部と、缶体Cの缶蓋C3との接触面積が小さくなり、当該押圧部材41が缶蓋C3を押圧する力がその接触部分に集中するので、この缶蓋C3に生じる一次振動を確実に抑制することができる。
The upper curved surface shape is a shape having a curved surface CS above the pressing member 41.
Specifically, for example, as shown in FIG. 5, a shell type (FIG. (I)), an arch type (FIG. (Ii)), a sloped arch type (FIG. (Iii)), a disk top It is possible to adopt a shape such as a shape in which a bullet shape is provided (Fig. (Iv)), a mountain shape (Fig. (V)), and the like.
By making the shape of the pressing member 41 an upper curved surface, the top of the curved surface CS of the pressing member 41 can be brought into contact with the can lid C3 of the can body C. Thereby, the primary vibration which arises in this can lid C3 can be suppressed.
In the case of the upper curved surface, the contact area between the top of the curved surface CS of the pressing member 41 and the can lid C3 of the can body C is reduced, and the force by which the pressing member 41 presses the can lid C3 is the contact portion. Therefore, the primary vibration generated in the can lid C3 can be reliably suppressed.

回転形は、当該押圧部材41の中央部分に水平方向に通された回転軸を中心として回転又は回動するものである。
具体的には、例えば、図6、図7に示すように、円板状(図6(i))、ロール状(図6(ii))、傾斜面付きロール状(図6(iii))、立方体状又は直方体状(図7(i))、多角柱形状(図7(ii))、歯車形状(図7(iii))、カム形状(図7(iv))、円柱形状の周面に複数の凸部413が形成された形状(図7(v))などの形状とすることができる。
押圧部材41の形状を回転形とすることにより、当該押圧部材41の周面DSや歯車形状の歯端、カム形状の突出部412、円柱形状の周面に形成された凸部413を缶体Cの缶蓋C3に接触させることができる。これにより、この缶蓋C3に生じる一次振動を抑制することができる。
また、回転形は、缶体Cが一方向に移動するような場合に、この移動に追随しながら回転しつつ、缶蓋C3に接触し続けることができるので、この缶蓋C3に生じる一次振動を確実に抑制することができる。
The rotation type rotates or rotates around a rotation axis that is passed through the central portion of the pressing member 41 in the horizontal direction.
Specifically, for example, as shown in FIGS. 6 and 7, a disk shape (FIG. 6 (i)), a roll shape (FIG. 6 (ii)), and a roll shape with an inclined surface (FIG. 6 (iii)). , Cubic or rectangular parallelepiped (Fig. 7 (i)), polygonal column shape (Fig. 7 (ii)), gear shape (Fig. 7 (iii)), cam shape (Fig. 7 (iv)), cylindrical peripheral surface A shape such as a shape in which a plurality of convex portions 413 are formed (FIG. 7 (v)) can be used.
By making the shape of the pressing member 41 into a rotational shape, the peripheral surface DS of the pressing member 41, the gear-shaped tooth end, the cam-shaped protruding portion 412, and the convex portion 413 formed on the cylindrical peripheral surface can C can lid C3. Thereby, the primary vibration which arises in this can lid C3 can be suppressed.
In addition, when the can body C moves in one direction, the rotary type can keep contacting the can lid C3 while rotating while following the movement, so that the primary vibration generated in the can lid C3. Can be reliably suppressed.

なお、押圧部材41が回転形である場合、図8に示すように、当該押圧部材41は軸414によって軸支され、この軸414を支持する支持体415が設けられる。
そして、これら軸414及び支持体415が付設された押圧部材41は、支持部材43の上面に配置される。
When the pressing member 41 is a rotary type, as shown in FIG. 8, the pressing member 41 is supported by a shaft 414, and a support body 415 that supports the shaft 414 is provided.
The pressing member 41 provided with the shaft 414 and the support body 415 is disposed on the upper surface of the support member 43.

このように、押圧部材41の形状は、図3〜図7に挙げた形状の中から適宜選択することができるが、押圧部材41の形状は、これらの形状に限定されるものではなく、缶体Cの缶蓋C3に接触可能な形状であればよい。   Thus, the shape of the pressing member 41 can be appropriately selected from the shapes shown in FIGS. 3 to 7, but the shape of the pressing member 41 is not limited to these shapes, and cans Any shape that can contact the can lid C3 of the body C may be used.

押圧部材41を構成する材料は、例えば、合成樹脂、硬質ゴム、金属などを用いることができる。ただし、押圧部材41を構成する材料としては、当該押圧部材41を所望の形状に加工可能であって、所定の硬さ、耐摩耗性を有し、かつ、缶体Cの缶蓋C3の天面部C4やタブC8を損傷させることがない材料が望ましい。   As the material constituting the pressing member 41, for example, synthetic resin, hard rubber, metal, or the like can be used. However, as the material constituting the pressing member 41, the pressing member 41 can be processed into a desired shape, has a predetermined hardness and wear resistance, and has a top of the can lid C3 of the can body C. A material that does not damage the surface C4 and the tab C8 is desirable.

(II)打検方法
次に、打検装置の動作である本実施形態の打検方法について、図9を参照して説明する。
同図は、本実施形態の打検方法の各ステップを示すフローチャートである。
なお、打検装置1の構成、特に、押圧部材41、被載置部材30、支持部材43等の構成は、図1、図2に示した構成とする。
(II) Percussion Method Next, the percussion method of the present embodiment, which is the operation of the percussion apparatus, will be described with reference to FIG.
This figure is a flowchart showing each step of the percussion inspection method of the present embodiment.
Note that the configuration of the percussion apparatus 1, particularly the configuration of the pressing member 41, the mounted member 30, the support member 43, etc., is the configuration shown in FIGS. 1 and 2.

被載置部材30の上面31において、開口32の上方に、缶体Cが倒立した状態で載置される(缶体載置ステップ、S10)。
これにより、押圧部材41は、缶体Cの缶蓋C3に接触し、かつ、この缶蓋C3を押圧する。
On the upper surface 31 of the placement member 30, the can body C is placed in an inverted state above the opening 32 (can body placing step, S10).
Thereby, the pressing member 41 contacts the can lid C3 of the can body C, and presses this can lid C3.

缶体Cの缶底C2の上方に、打検ヘッド10を配置させる(打検ヘッド配置ステップ、S11)。
そして、打検ヘッド10の電磁コイル11に電流を流す。これにより、缶体Cの缶底C2に電磁的衝撃が与えられる(電磁的衝撃付与ステップ、S12)。
電磁的衝撃が与えられた缶体Cの缶底C2では、一次振動が生じて振動音が発生する。この振動音が打検音として打検ヘッド10のマイクロフォン12で検出される(打検音受取ステップ、S13)。
検出された打検音が、マイクロフォン12で電気的信号が打検信号に変換されて当該マイクロフォン12から出力され、演算装置20へ送信される(打検信号出力ステップ)。
The punching head 10 is placed above the bottom C2 of the can body C (punching head placement step, S11).
Then, a current is passed through the electromagnetic coil 11 of the inspection head 10. Thereby, an electromagnetic shock is given to the can bottom C2 of the can body C (electromagnetic shock giving step, S12).
In the can bottom C2 of the can body C to which electromagnetic shock is applied, primary vibrations are generated and vibration noise is generated. This vibration sound is detected as a tapping sound by the microphone 12 of the tapping head 10 (tacking sound receiving step, S13).
The detected tapping sound is converted into a tapping signal by the microphone 12 and output from the microphone 12 and transmitted to the arithmetic unit 20 (tacking signal output step).

演算装置20の周波数解析部21では、打検信号の周波数解析が行われ(打検信号解析ステップ、S14)、この解析結果にもとづいて、缶体Cの缶内圧が判別される(缶内圧検知ステップ、S15)。
そして、演算装置20の良否判定部22では、その判別された缶内圧にもとづいて、缶体Cの良否判定が行われる(良否判定ステップ、S16)。
The frequency analysis unit 21 of the arithmetic unit 20 performs frequency analysis of the tapping signal (tacking signal analysis step, S14), and determines the can internal pressure of the can body C based on the analysis result (can internal pressure detection). Step, S15).
And in the quality determination part 22 of the arithmetic unit 20, the quality determination of the can body C is performed based on the determined can internal pressure (quality determination step, S16).

また、S12に示す電磁的衝撃付与ステップにおいて、缶体Cの缶底C2に電磁的衝撃が与えられると、この缶底C2に生じた一次振動が、缶胴C1から缶蓋C3に伝搬しようとする。しかしながら、缶体Cの缶蓋C3に押圧部材41が接触しているため、その一次振動の伝搬が抑制される。
これにより、缶体Cの缶蓋C3からは、振動音が発生せず、S13に示す打検音受取ステップにおいては、この振動音がマイクロフォン12で検出されることがなくなる。
このため、マイクロフォン12は、缶体Cの缶底C2にて発生した振動音のみを打検音として検出することができ、演算装置20の周波数解析部21は、その打検音にもとづき測定する周波数を、缶底C2からの打検音の周波数のみとして打検信号の周波数解析をすることができる。そして、演算装置20の良否判定部22では、缶底C2からの打検音の周波数に対応する内圧値が適正缶内圧の範囲内にあるか否かを判定することで、当該缶体Cの良否判定を行うことができる。
従って、演算装置20の良否判定部22では、缶体Cの缶蓋C3から発生する振動音によって、適正缶内圧である当該缶体Cを不良品とする誤った判定が回避される。これにより、缶体Cの良否判定の精度が向上する。
Further, in the electromagnetic shock applying step shown in S12, when an electromagnetic shock is applied to the can bottom C2 of the can body C, the primary vibration generated in the can bottom C2 attempts to propagate from the can body C1 to the can lid C3. To do. However, since the pressing member 41 is in contact with the can lid C3 of the can body C, propagation of the primary vibration is suppressed.
Thereby, no vibration sound is generated from the can lid C3 of the can body C, and the vibration sound is not detected by the microphone 12 in the percussion sound receiving step shown in S13.
For this reason, the microphone 12 can detect only the vibration sound generated at the bottom C2 of the can C as a tapping sound, and the frequency analysis unit 21 of the arithmetic unit 20 performs measurement based on the tapping sound. The frequency analysis of the tapping signal can be performed with only the frequency of the tapping sound from the can bottom C2. And in the quality determination part 22 of the arithmetic unit 20, by determining whether the internal pressure value corresponding to the frequency of the tap sound from the can bottom C2 is within the range of the appropriate can internal pressure, A pass / fail judgment can be made.
Therefore, in the quality determination unit 22 of the arithmetic unit 20, the erroneous determination that the can body C, which is the proper internal pressure, is a defective product is avoided by the vibration sound generated from the can lid C3 of the can body C. Thereby, the precision of the quality determination of the can body C improves.

以上説明したように、本実施形態の打検装置及び打検方法によれば、電磁的衝撃を与えたときに、缶体の缶蓋で生じる一次振動を抑制する一次振動抑止手段を備える構成としたことにより、この缶蓋で生じる一次振動を抑制することができる。
これにより、缶蓋で生じる一次振動に起因する振動音がマイクロフォンで検出されることがなく、演算装置の良否判定において、その振動音にもとづく誤判定を回避できる。よって、缶体の不良品検出の精度を向上させることができる。
As described above, according to the percussion apparatus and percussion method of the present embodiment, the structure includes primary vibration suppression means that suppresses the primary vibration generated in the can lid of the can body when an electromagnetic shock is applied. As a result, the primary vibration generated in the can lid can be suppressed.
Thereby, the vibration sound resulting from the primary vibration generated in the can lid is not detected by the microphone, and erroneous determination based on the vibration sound can be avoided in the quality determination of the arithmetic device. Therefore, the precision of can defective product detection can be improved.

また、本実施形態の打検装置及び打検方法は、特許文献1に記載の技術との比較において、次の効果を奏する。
特許文献1に記載されている内圧検査装置は、缶体の缶底の外周縁部を押圧する押圧体を多数備えているため、同装置は、構成が複雑となっている。
これに対し、本発明の打検装置によれば、一缶に対応して押圧部材が一つであり、このため、構成が簡易となっている。
しかも、このように押圧部材が一つという非常に簡易な構成でありながら、特許文献1に記載されている内圧検査装置の押圧体と同様の効果を奏する。すなわち、本発明の押圧部材は、缶体の缶蓋に接触して押圧することにより、缶体の缶底で発生した一次振動が、缶胴及び缶蓋へ伝搬するのを抑制することができる。このため、演算装置の周波数解析部で測定されるピーク周波数が、缶底で発生した打検音の周波数のみとなり、他の周波数帯域ではピークが測定されなくなり、缶体の良否判定の精度を向上させることができる。
Further, the percussion testing apparatus and percussion testing method of the present embodiment have the following effects in comparison with the technique described in Patent Document 1.
Since the internal pressure inspection apparatus described in Patent Document 1 includes a large number of pressing bodies that press the outer peripheral edge portion of the can bottom of the can body, the structure of the apparatus is complicated.
On the other hand, according to the percussion apparatus of the present invention, there is one pressing member corresponding to one can, and thus the configuration is simplified.
Moreover, while having a very simple configuration with only one pressing member in this way, the same effect as the pressing body of the internal pressure inspection apparatus described in Patent Document 1 is achieved. That is, the pressing member of the present invention can suppress the primary vibration generated at the bottom of the can body from propagating to the can body and the can lid by contacting and pressing the can lid of the can body. . For this reason, the peak frequency measured by the frequency analysis unit of the arithmetic unit is only the frequency of the percussion sound generated at the bottom of the can, and no peak is measured in other frequency bands, improving the accuracy of the can body quality determination. Can be made.

さらに、本実施形態の打検装置及び打検方法は、特許文献2に記載の技術との比較において、次の効果を奏する。
特許文献2に記載の打検装置は、電磁的衝撃を与えたときに、缶体が飛び上がり、着地したときに生じる二次振動を抑制する二次振動抑止手段を備えている。
二次振動抑止手段は、この二次振動を抑制するために備えられるものであり、一次振動の伝搬の抑制を目的としたものではない。
これに対し、本発明の打検装置は、一次振動の伝搬の抑制を目的としており、この点で、本発明の打検装置は、特許文献2に記載の打検装置と相違する。
また、特許文献2に記載の二次振動抑止手段は、缶体が飛び上がらないようにするために、缶体に上方から下方向の力を加えている。
これに対し、本発明の打検装置は、缶体の缶蓋で生じる一次振動を抑制するために、缶蓋に対して下方から上方向の力を加えている。この点でも、本発明の打検装置は、特許文献2に記載の打検装置と相違する。
このように、本発明の打検装置と特許文献2に記載の二次振動抑止手段は、缶体に対する作用が異なるとともに、その目的も異なったものとなっている。
Furthermore, the percussion testing apparatus and percussion testing method of the present embodiment have the following effects in comparison with the technique described in Patent Document 2.
The percussion inspection device described in Patent Document 2 includes secondary vibration suppression means that suppresses secondary vibration that occurs when a can body jumps and lands when an electromagnetic shock is applied.
The secondary vibration suppression means is provided to suppress the secondary vibration and is not intended to suppress the propagation of the primary vibration.
On the other hand, the inspection device of the present invention is intended to suppress the propagation of the primary vibration, and in this respect, the inspection device of the present invention is different from the inspection device described in Patent Document 2.
Moreover, the secondary vibration suppression means described in Patent Document 2 applies a downward force from above to the can body in order to prevent the can body from jumping up.
In contrast, the percussion apparatus of the present invention applies an upward force from below to the can lid in order to suppress the primary vibration generated in the can lid of the can body. Also in this point, the inspection device of the present invention is different from the inspection device described in Patent Document 2.
Thus, the percussion inspection apparatus of the present invention and the secondary vibration suppression means described in Patent Document 2 have different actions on the can body and have different purposes.

[第二実施形態]
次に、本発明の打検装置及び打検方法の第二実施形態について、図10を参照して説明する。
同図は、本実施形態の打検装置の構成を示す平面図である。
本実施形態は、第一実施形態と比較して、打検装置が、缶体が収納された収納手段を搬送する搬送装置を備えた点で相違する。また、第一実施形態では、被載置部材を介して単体で搬送される缶体の缶蓋に、直接接触する位置に打検装置の押圧部材を設置する構成としたのに対し、本実施形態では、缶体が収納された収納手段(ケース)を搬送する搬送装置に押圧部材を設置した構成となっている。他の構成要素は、第一実施形態と同様である。
したがって、図10〜図25において、上述した第一実施形態と同様の構成部分については同一の符号を付して、その詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment of the percussion apparatus and percussion method of the present invention will be described with reference to FIG.
FIG. 3 is a plan view showing the configuration of the percussion inspection apparatus according to the present embodiment.
This embodiment is different from the first embodiment in that the percussion inspection apparatus includes a transport device that transports the storage means in which the can body is stored. Further, in the first embodiment, the pressing member of the percussion device is installed at a position in direct contact with the can lid of the can body that is conveyed alone via the placement member. In the embodiment, the pressing member is installed in the transport device that transports the storage means (case) in which the can body is stored. Other components are the same as those in the first embodiment.
Therefore, in FIGS. 10 to 25, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

(I)打検装置
本実施形態の打検装置1は、複数の缶体Cを収納した収納手段Sを搬送する搬送装置50に設けられる。
ここでは、搬送装置50の構成について先に説明し、その後に、搬送装置50以外の打検装置1の構成について説明する。
(I) Percussion apparatus The percussion apparatus 1 of this embodiment is provided in the conveyance apparatus 50 which conveys the storage means S which accommodated the some can body C. FIG.
Here, the configuration of the transport device 50 will be described first, and then the configuration of the inspection device 1 other than the transport device 50 will be described.

搬送装置50は、図10に示すように、搬入路51と、排斥部52と、搬出路53と、排出路54と、不良品排除手段55とを備えている。
搬入路51は、搬送対象である収納手段Sを排斥部52を介して搬出路53、あるいは排出路54へ搬送するための可動経路であって、図11に示すようにローラ61、あるいは図12に示すようにコンベア62などの回転体60を並べて搬送経路として構成する。
そして、この搬入路51の回転体60は、図示しない駆動モータによる駆動によって回転する。
As shown in FIG. 10, the transport device 50 includes a carry-in path 51, a discharge section 52, a carry-out path 53, a discharge path 54, and defective product exclusion means 55.
The carry-in path 51 is a movable path for transporting the storage means S to be transported to the carry-out path 53 or the discharge path 54 via the evacuation part 52, and as shown in FIG. 11, the roller 61 or FIG. As shown in FIG. 5, the rotating bodies 60 such as the conveyor 62 are arranged to constitute a conveyance path.
And the rotary body 60 of this carrying-in path 51 rotates by the drive by the drive motor which is not shown in figure.

収納手段Sは、例えば、段ボール紙等の厚紙などで形成された箱体であって、ある程度の外圧を加えると変形し、内部には、内容物が充填され密封された缶体Cが、複数収納されている。図10に示す例では、搬送方向に6缶、この方向に直交する方向に4缶、すなわち、4行6列の計24缶の缶体Cが収納手段Sに収納されている。
この収納手段Sは、収納された缶体Cが倒立状態となるように搬入路51に載せられる。すなわち、図11に示すように、収納手段Sに収納された缶体Cの缶蓋C3の天面部C4と、搬入路51が形成する第二仮想平面K2とが、収納手段Sの底板部S1を介して、対向する姿勢で収納手段Sが搬入路51に載せられる。これにより、缶体Cの内部においては、内容物の上方と缶底C2との間に空間が形成される。
The storage means S is, for example, a box formed of thick paper such as corrugated cardboard, and deforms when a certain amount of external pressure is applied. Inside, a plurality of cans C filled with contents and sealed are contained. It is stored. In the example shown in FIG. 10, 6 cans in the conveying direction and 4 cans in a direction orthogonal to this direction, that is, a total of 24 cans in 4 rows and 6 columns, are accommodated in the accommodating means S.
The storage means S is placed on the carry-in path 51 so that the stored can body C is in an inverted state. That is, as shown in FIG. 11, the top surface portion C4 of the can lid C3 of the can body C stored in the storage means S and the second virtual plane K2 formed by the carry-in path 51 are the bottom plate portion S1 of the storage means S. The storage means S is placed on the carry-in path 51 in an opposing posture. Thereby, in the inside of the can body C, a space is formed between the upper part of the contents and the can bottom C2.

排斥部52は、搬入路51から搬送されてきた収納手段Sを、搬出路53又は排出路54へ振り分け、搬出路53は、排斥部52から送られてきた収納手段Sを、良品として、次の工程に向けて搬送し、排出路54は、排斥部52から送られてきた収納手段Sを、不良品として、排出する。
これら搬出路53及び排出路54は、搬入路51と同様、回転体60を並べて搬送経路として構成する。
The evacuation unit 52 distributes the storage means S conveyed from the carry-in path 51 to the carry-out path 53 or the discharge path 54, and the carry-out path 53 uses the storage means S sent from the evacuation part 52 as a non-defective product. The discharge path 54 discharges the storage means S sent from the discharge portion 52 as a defective product.
Similar to the carry-in path 51, the carry-out path 53 and the discharge path 54 are configured by arranging the rotating bodies 60 as transport paths.

不良品排除手段55は、搬入路51から排斥部52に搬送されてきた収納手段Sを、排出路54の経路へ振り分ける。
この不良品排除手段55は、収納手段Sを排斥部52から排出路54の方へ押し込むためのエアーシリンダ(図示せず)と、このエアーシリンダを駆動する駆動制御部(図示せず)とを備えることができる。
そして、不良品排除手段55は、打検装置1の良否判定部22における判定の結果にもとづいて、その振り分けを行う。
例えば、良否判定部22における判定の結果、収納手段Sに収納された複数の缶体Cのすべてが良品であると判定されたとき、エアーシリンダを駆動させずに、当該収納手段Sを、排斥部52を介して搬出路53へ送る。一方、収納手段Sに収納された複数の缶体Cの中に不良品があると判定されたとき、エアーシリンダを駆動して、当該収納手段Sを排斥部52から排出路54へ排出する。
The defective product removing means 55 distributes the storage means S transported from the carry-in path 51 to the discharge section 52 to the path of the discharge path 54.
The defective product removing means 55 includes an air cylinder (not shown) for pushing the storage means S from the discharge portion 52 toward the discharge path 54, and a drive control portion (not shown) for driving the air cylinder. Can be provided.
Then, the defective product exclusion means 55 performs the distribution based on the determination result in the pass / fail determination unit 22 of the inspection device 1.
For example, when it is determined that all of the plurality of cans C stored in the storage unit S are non-defective as a result of the determination in the pass / fail determination unit 22, the storage unit S is removed without driving the air cylinder. It is sent to the carry-out path 53 via the part 52. On the other hand, when it is determined that there are defective products in the plurality of cans C stored in the storage means S, the air cylinder is driven to discharge the storage means S from the discharge portion 52 to the discharge path 54.

打検装置1は、搬送装置50に設けられ、打検ヘッド10と、演算装置20と、一次振動抑止手段40とを備えている。
ここで、打検ヘッド10は、図11、図12に示すように、搬入路51の下流部において、当該搬入路51を基準として、収納手段Sの高さよりも高い位置に配置されている。
そして、収納手段Sが搬入路51の回転体60によって搬送され、打検ヘッド10の直下を通過させることにより、当該収納手段Sに収納された缶体Cの内圧を、順次個別に検査する。
The tapping device 1 is provided in the transport device 50 and includes a tapping head 10, a calculation device 20, and primary vibration suppression means 40.
Here, as shown in FIGS. 11 and 12, the inspection head 10 is disposed at a position higher than the height of the storage means S with respect to the loading path 51 in the downstream portion of the loading path 51.
Then, the storage means S is conveyed by the rotating body 60 of the carry-in path 51 and passes directly below the inspection head 10, whereby the internal pressures of the can bodies C stored in the storage means S are individually and sequentially inspected.

打検ヘッド10は、搬送方向に対して交差する方向に連続して所定数(本実施形態においては、4つ)配置されており、図10に示すように、図の上方から順次、搬送方向位置をずらして配置されている。
すなわち、打検ヘッド10の連設方向と、搬送方向に直交する方向とは、所定の角度を有しており、この角度は、マイクロフォン12が、隣のマイクロフォン12が検出すべき缶体Cの缶底C2からの打検音を検出しない時間間隔となるように、例えば、収納手段Sの搬送速度や、缶体Cの材質や缶サイズ等により決定される。
A predetermined number (in this embodiment, four) of the inspection heads 10 are continuously arranged in a direction intersecting the transport direction, and as shown in FIG. The positions are shifted.
That is, the connecting direction of the inspection head 10 and the direction orthogonal to the conveying direction have a predetermined angle, and this angle is determined by the microphone 12 of the can body C to be detected by the adjacent microphone 12. For example, it is determined by the conveyance speed of the storage means S, the material of the can body C, the can size, and the like so that the time interval at which the tap sound from the can bottom C2 is not detected.

本実施形態において、一次振動抑止手段40は、収納手段Sの底板部S1を下方から上方へ押圧し、この底板部S1の内面S2を缶体Cの缶蓋C3に接触させ、このような間接的な押圧により、当該缶蓋C3に生じる一次振動を抑制する(図18参照)。   In the present embodiment, the primary vibration suppression means 40 presses the bottom plate portion S1 of the storage means S from below to bring the inner surface S2 of the bottom plate portion S1 into contact with the can lid C3 of the can body C. The primary vibration that occurs in the can lid C3 is suppressed by the proper pressing (see FIG. 18).

押圧部材41は、図11に示すように、搬入路51の下流部の打検ヘッド10の直下に配設される。本実施形態において、打検ヘッド10は四つ備えられ、押圧部材41は、それら四つの打検ヘッド10の直下に、それぞれ一つずつ、計四つ配設される。   As shown in FIG. 11, the pressing member 41 is disposed immediately below the inspection head 10 in the downstream portion of the carry-in path 51. In the present embodiment, four punching heads 10 are provided, and four pressing members 41 are disposed immediately below the four punching heads 10, one each.

そして、搬入路51の収納手段Sが、載置される載置面を第二仮想平面K2としたときに、押圧部材41は、その下部が搬入路51の載置面よりも下方に位置し、上部が第二仮想平面K2から上方へ突出した状態となっている。
このため、搬入路51の回転体60により搬送される収納手段Sと、収納された缶体Cが押圧部材41の配設位置に到達し、その下方に押圧部材41が位置すると(図18参照)、収納手段S及び缶体Cが自重によって押圧部材41を押し下げる。そして、収納手段Sに収納されている缶体Cと押圧部材41との間には収納手段Sの底板部S1が介在し、この底板部S1の内面S2と缶体Cとの間には蓋側空間C7が形成されており、押圧部材41が底板部S1を下方から上方へ押圧して(押し上げて)山形状に変形させ、当該底板部S1の内面S2を缶体Cの缶蓋C3の天面部C4に接触させることで、間接的に缶蓋C3を押圧する状態となる。
これにより、打検ヘッド10から缶体Cに電磁的衝撃が与えられて、缶体Cの缶底C2に一次振動が生じても、押圧部材41が、収納手段Sの底板部S1を介して缶体Cの缶蓋C3を押圧し続けるため、缶底C2から缶蓋C3への一次振動の伝搬が抑制される。よって、当該缶蓋C3で生じる一次振動を抑制することができる。
And when the storage means S of the carrying-in path 51 makes the mounting surface to be mounted the second virtual plane K2, the lower part of the pressing member 41 is positioned below the mounting surface of the loading path 51. The upper part protrudes upward from the second virtual plane K2.
For this reason, the storage means S transported by the rotating body 60 of the carry-in path 51 and the stored can body C reach the position where the pressing member 41 is disposed, and the pressing member 41 is positioned below (see FIG. 18). ), The storage means S and the can body C push down the pressing member 41 by its own weight. A bottom plate portion S1 of the storage means S is interposed between the can body C stored in the storage means S and the pressing member 41, and a lid is provided between the inner surface S2 of the bottom plate portion S1 and the can body C. A side space C7 is formed, and the pressing member 41 presses the bottom plate portion S1 from below (up) to deform it into a mountain shape, and the inner surface S2 of the bottom plate portion S1 is formed on the can lid C3 of the can body C3. By contacting the top surface portion C4, the can lid C3 is indirectly pressed.
As a result, even if an electromagnetic shock is applied to the can body C from the inspection head 10 and primary vibration is generated in the can bottom C2 of the can body C, the pressing member 41 is interposed via the bottom plate portion S1 of the storage means S. Since the can lid C3 is continuously pressed, propagation of primary vibration from the can bottom C2 to the can lid C3 is suppressed. Therefore, the primary vibration generated in the can lid C3 can be suppressed.

なお、押圧部材41の形状は、第一実施形態の押圧部材41と同様、上部平面形(図3、図4参照)、上部曲面形(図5参照)、回転形(図6、図7参照)等が挙げられる。
しかしながら、本実施形態においては、搬送装置50の回転体60により、搬送中の収納手段Sが押圧部材41の上方を通過する必要があることから、その形状は、上部曲面形又は回転形(図5〜図7)であることが望ましい。
The shape of the pressing member 41 is the same as that of the pressing member 41 of the first embodiment, ie, an upper flat shape (see FIGS. 3 and 4), an upper curved surface shape (see FIG. 5), and a rotating shape (see FIGS. 6 and 7). ) And the like.
However, in the present embodiment, since the storage means S being transported needs to pass above the pressing member 41 by the rotating body 60 of the transport device 50, the shape thereof is an upper curved surface shape or a rotational shape (see FIG. 5 to 7).

そして、押圧部材41の搬入路51に対する設置は、基本的には、押圧部材41の曲面CS(上部曲面形の場合)や周面DS(回転形の場合)が、搬入路51上を搬送される収納手段Sの搬送方向に対向するように、この押圧部材41を搬入路51に設置する。   Then, the installation of the pressing member 41 to the carry-in path 51 is basically such that the curved surface CS (in the case of the upper curved surface) and the peripheral surface DS (in the case of the rotary type) of the pressing member 41 are conveyed on the carry-in path 51. The pressing member 41 is installed in the carry-in path 51 so as to face the conveying direction of the storage means S.

具体的には、押圧部材41の形状が、例えば、図5(ii)、(iii)、(v)に示す上部曲面形である場合、この押圧部材41に形成された曲面CSは、矩形の平面を湾曲させた形状となっている。具体的に、この曲面CSは、図13に示すように、矩形の平面のうちの対向する二辺が平行であり、この平行を保ちつつ、他の二辺を湾曲させた形状となっている。このような形状の押圧部材41を搬入路51に設置するときの向きは、平行を保った対向二辺に平行な線plを曲面CSの頂部tpに引いたときに、この線plに直交する方向であって水平方向を向く方向を頂部直交方向vdとすると、この頂部直交方向vdが搬入路51による収納手段Sの搬送方向に沿った方向(搬送方向と同じ方向又は搬送方向とは反対の方向)となるように、当該押圧部材41を搬入路51に設置する。   Specifically, when the shape of the pressing member 41 is, for example, the upper curved surface shown in FIGS. 5 (ii), (iii), and (v), the curved surface CS formed on the pressing member 41 is a rectangular shape. The shape is a curved plane. Specifically, as shown in FIG. 13, the curved surface CS has a shape in which two opposite sides of a rectangular plane are parallel and the other two sides are curved while maintaining this parallel. . The direction when the pressing member 41 having such a shape is installed in the carry-in path 51 is orthogonal to the line pl when a line pl parallel to two opposite sides that are kept parallel is drawn on the top tp of the curved surface CS. The direction perpendicular to the horizontal direction vd is the direction orthogonal to the vertical direction vd. The vertical direction vd is a direction along the transfer direction of the storage means S by the carry-in path 51 (the same direction as the transfer direction or opposite to the transfer direction). Direction), the pressing member 41 is installed in the carry-in path 51.

また、同形状においては、曲面CSの矩形の平面のうち湾曲させた二辺の間隔の幅w1(図5参照)は、缶体Cの缶蓋C3の直径よりも狭くする。これは、押圧部材41が収納手段Sの底板部S1を押し上げ、この押し上げた部分が、底板部S1の内面S2と缶体Cとの間に形成される蓋側空間C7に収まって、収納手段Sの底板部S1を缶体Cの缶蓋C3に到達させるためである。
具体的に、幅w1は、0.1mm〜62.0mmの範囲内とするのが望ましい。
In the same shape, the width w1 (see FIG. 5) between the two curved sides of the rectangular plane of the curved surface CS is made smaller than the diameter of the can lid C3 of the can body C. This is because the pressing member 41 pushes up the bottom plate portion S1 of the storage means S, and the pushed up portion is accommodated in the lid side space C7 formed between the inner surface S2 of the bottom plate portion S1 and the can body C, and the storage means. This is because the bottom plate portion S1 of S reaches the can lid C3 of the can body C.
Specifically, the width w1 is desirably in the range of 0.1 mm to 62.0 mm.

さらに、押圧部材41の曲率半径を構成する一方の方向における縦断面形状は、断面における曲面CSの曲率半径(図13(ii)参照)が、その頂部tpが缶体Cの缶蓋C3(天面部C4、あるいはタブC8)に接触し、かつ巻き締め部C5内に収まる範囲内で適宜設定することができる。   Further, the longitudinal cross-sectional shape in one direction constituting the radius of curvature of the pressing member 41 is the radius of curvature of the curved surface CS (see FIG. 13 (ii)) in the cross section, and the top portion tp of the can lid C3 (top) It can be set as appropriate as long as it is in contact with the surface portion C4 or the tab C8) and within the tightening portion C5.

さらに、押圧部材41の形状が例えば図5(i)、(iv)に示す砲弾型の場合、搬入路51への設置は、同図(i)、(iv)に示すように、先端の曲面CSの頂部tpを上方とする。
なお、砲弾型の曲面CSは、完全な半球状であってもよく、半球状でなくてもよい。例えば、図14(ii)に示すように、曲面CSの頂部tpを通って縦方向に当該押圧部材41を切断したときの断面における当該曲面CSの形状は、半円状であってもよく、あるいは、水平方向に長い楕円形状や、垂直方向に長い楕円形状などであってもよい。
Furthermore, when the shape of the pressing member 41 is, for example, the bullet type shown in FIGS. 5 (i) and (iv), the installation on the carry-in path 51 is performed at the curved surface at the tip as shown in FIGS. (I) and (iv). The top tp of CS is the upper side.
The bullet-shaped curved surface CS may be completely hemispherical or not hemispherical. For example, as shown in FIG. 14 (ii), the shape of the curved surface CS in a cross section when the pressing member 41 is cut in the vertical direction through the top tp of the curved surface CS may be semicircular, Alternatively, an elliptical shape that is long in the horizontal direction or an elliptical shape that is long in the vertical direction may be used.

また、この砲弾型の場合、曲面CSの頂部tpを通って縦方向に当該押圧部材41を切断したときの断面における曲面CSの曲率半径(図14(ii)参照)は、頂部tpが天面部C4に接触し、かつ巻き締め部C5間に収まる範囲内で適宜設定することができる。
さらに、押圧部材41の形状が、例えば、図5(ii)、(iii)、(v)に示す上部曲面形である場合、曲面CSの曲率半径(図13(ii)参照)も同様に、頂部tpが天面部C4に接触し、かつ巻き締め部C5間に収まる範囲内で適宜設定することができる。
そして、上述したように、曲面CSの曲率半径を適宜選択することで、押圧部材41の上方を通る収納手段Sの滑り性を良くして、搬送装置50による収納手段Sの搬送をスムーズに行うことができる。
Further, in the case of this bullet type, the radius of curvature (see FIG. 14 (ii)) of the curved surface CS in the cross section when the pressing member 41 is cut in the longitudinal direction through the top portion tp of the curved surface CS is such that the top portion tp is the top surface portion. It can be set appropriately within a range that contacts C4 and fits between the tightening portions C5.
Furthermore, when the shape of the pressing member 41 is, for example, the upper curved surface shown in FIGS. 5 (ii), (iii), and (v), the curvature radius (see FIG. 13 (ii)) of the curved surface CS is also similar. It can be set as appropriate as long as the top portion tp comes into contact with the top surface portion C4 and falls between the tightening portions C5.
Then, as described above, by appropriately selecting the radius of curvature of the curved surface CS, the slipperiness of the storage means S passing above the pressing member 41 is improved, and the transport of the storage means S by the transport device 50 is performed smoothly. be able to.

また、押圧部材41の形状が、例えば、図6、図7に示す回転形である場合、当該押圧部材41の搬入路51に対する設置は、次のようにする。
押圧部材41が回転してこの押圧部材41の上端部が移動する方向を上端部回転方向rdとしたときに、この上端部回転方向rdが、搬入路51における収納手段Sの搬送方向と同じ方向となるように、当該押圧部材41を搬入路51に設置する。
このような向きに押圧部材41を設置することにより、収納手段Sが移動する方向と、押圧部材41が回転してこの上端部が移動する方向とが一致するので、収納手段Sが押圧部材41に乗り上げ容易となる。
Moreover, when the shape of the pressing member 41 is, for example, the rotational shape shown in FIGS. 6 and 7, the pressing member 41 is installed in the carry-in path 51 as follows.
When the direction in which the pressing member 41 rotates and the upper end portion of the pressing member 41 moves is defined as the upper end rotation direction rd, the upper end rotation direction rd is the same direction as the conveying direction of the storage means S in the carry-in path 51. The pressing member 41 is installed in the carry-in path 51 so that
By installing the pressing member 41 in such a direction, the direction in which the storage means S moves coincides with the direction in which the pressing member 41 rotates and the upper end portion moves. Easy to get on.

さらに、押圧部材41の形状が回転形である場合において、当該押圧部材41の周面DSにおける軸方向の幅w2〜w4(図6(i)に示す押圧部材41においては、円板状の厚み。図6(ii)に示す押圧部材41においては、ロール状の周面DSにおける軸方向の幅。図6(iii)に示す押圧部材41においては、傾斜部を除くロール状の周面DSにおける軸方向の幅。図7(i)、(ii)、(iv)に示す押圧部材41においては、周面DSにおける軸方向の幅w3。図7(iii)に示す押圧部材41においては、歯幅w4。図7(v)に示す押圧部材41においては、凸部413における軸方向の幅w3。)は、缶体Cの缶蓋C3の直径よりも短くする。これは、押圧部材41が収納手段Sの底板部S1を押し上げ、この押し上げた部分が、底板部S1の内面S2と缶体Cとの間に形成される蓋側空間C7に収まって、収納手段Sの底板部S1を缶体Cの缶蓋C3に到達させるためである。
具体的に、幅w2〜w4は、0.1mm〜62.0mmの範囲内とするのが望ましい。
Furthermore, when the shape of the pressing member 41 is a rotational shape, the axial widths w2 to w4 on the peripheral surface DS of the pressing member 41 (in the pressing member 41 shown in FIG. 6 (ii), the axial width of the roll-shaped peripheral surface DS in the pressing member 41. In the press member 41 shown in FIG. 7 (i), (ii), and (iv), the width w3 in the axial direction on the circumferential surface DS, and the pressing member 41 shown in FIG. Width w4. In the pressing member 41 shown in FIG.7 (v), the axial width w3 in the convex part 413 is made shorter than the diameter of the can lid C3 of the can body C. FIG. This is because the pressing member 41 pushes up the bottom plate portion S1 of the storage means S, and the pushed up portion is accommodated in the lid side space C7 formed between the inner surface S2 of the bottom plate portion S1 and the can body C, and the storage means. This is because the bottom plate portion S1 of S reaches the can lid C3 of the can body C.
Specifically, the widths w2 to w4 are preferably within a range of 0.1 mm to 62.0 mm.

また、押圧部材41の形状が、図7(i)、(ii)の軸方向に対する直交方向の断面形状が多角形に形成された多角柱形状の回転形の場合、多角形の一辺の長さn1(多角形の一つの角部416から隣の角部416までの長さn1)は、収納手段Sに収納された複数の缶体Cのうち搬送方向に並ぶ二つの缶体Cの各缶蓋C3の中心同士の間隔の整数分の一の長さとする。
また、押圧部材41の形状が図7(iv)のカム形状の場合、あるいは押圧部材41の形状が図7(v)の円柱形状の周面に複数の凸部413が形成された形状の場合、カム形状における一つの突出部412から隣の突出部412までの長さn2と、図7(v)の形状における一つの凸部413から隣の凸部413までの長さn3は、収納手段Sに収納された複数の缶体Cのうち、搬送方向に並ぶ二つの缶体Cの各缶蓋C3の中心同士の間隔の整数分の一の長さとする。
押圧部材41をこのような形状とすることにより、一つの缶体Cの蓋側空間C7の下方に押圧部材41が位置し、この押圧部材41の角部416、突出部412、凸部413が収納手段Sの底板部S1の下方に位置して、この底板部S1を下方から押し上げて当該底板部S1の内面S2を缶体Cの缶蓋C3の天面部C4に接触させる。その後、当該収納手段Sが移動して、隣の缶体Cの蓋側空間C7の下方に押圧部材41が位置したときに、この押圧部材41の他の角部416、突出部412、凸部413がその蓋側空間C7の下方に位置し、当該他の角部416、突出部412、凸部413(隣の角部416、又は、二つ先、あるいは、三つ先の角部416など)が収納手段Sの底板部S1を下方から押し上げて、当該底板部S1の内面S2を缶体Cの缶蓋C3の天面部C4に接触させる。
このように押圧部材41の角部416、突出部412、凸部413が、収納手段Sの底板部S1の外面S3を押し上げる場合、押し上げる力がその押圧部材41の角部416、突出部412、凸部413の端部に集中するので、収納手段Sの底板部S1の内面S2を確実に、缶体Cの缶蓋C3の天面部C4に接触させることができる。
In addition, when the shape of the pressing member 41 is a polygonal columnar rotational shape in which the cross-sectional shape orthogonal to the axial direction of FIGS. 7 (i) and (ii) is a polygon, the length of one side of the polygon n1 (the length n1 from one corner 416 of the polygon to the next corner 416) is the can of each of the two cans C arranged in the transport direction among the plurality of cans C stored in the storage means S. The length is an integral fraction of the distance between the centers of the lid C3.
Further, when the shape of the pressing member 41 is the cam shape of FIG. 7 (iv), or the shape of the pressing member 41 is a shape in which a plurality of convex portions 413 are formed on the cylindrical peripheral surface of FIG. 7 (v). The length n2 from one protrusion 412 to the adjacent protrusion 412 in the cam shape and the length n3 from one protrusion 413 to the adjacent protrusion 413 in the shape of FIG. Of the plurality of cans C stored in S, the length is an integral fraction of the distance between the centers of the can lids C3 of the two cans C arranged in the transport direction.
By making the pressing member 41 into such a shape, the pressing member 41 is positioned below the lid side space C7 of one can body C, and the corner portion 416, the protruding portion 412, and the protruding portion 413 of the pressing member 41 are formed. Positioned below the bottom plate portion S1 of the storage means S, the bottom plate portion S1 is pushed up from below to bring the inner surface S2 of the bottom plate portion S1 into contact with the top surface portion C4 of the can lid C3 of the can body C. Thereafter, when the storage means S moves and the pressing member 41 is positioned below the lid-side space C7 of the adjacent can body C, the other corner portion 416, the protruding portion 412 and the protruding portion of the pressing member 41 413 is located below the lid-side space C7, and the other corner 416, protrusion 412, convex 413 (adjacent corner 416, two-end or three-end corner 416, etc. ) Pushes up the bottom plate portion S1 of the storage means S from below to bring the inner surface S2 of the bottom plate portion S1 into contact with the top surface portion C4 of the can lid C3 of the can body C.
As described above, when the corner portion 416, the protruding portion 412, and the convex portion 413 of the pressing member 41 push up the outer surface S3 of the bottom plate portion S1 of the storage means S, the pushing force is increased by the corner portion 416, the protruding portion 412 of the pressing member 41, Since it concentrates on the edge part of the convex part 413, the inner surface S2 of the baseplate part S1 of the storage means S can be made to contact the top | upper surface part C4 of the can lid C3 of the can body C reliably.

また、押圧部材41は、図7(iii)に示すように、歯車形状とすることができる。このような形状とすることにより、収納手段Sの搬送方向の前面部S4の下部が押圧部材41に接触する際、外周面に多数形成された溝部と前面部S4の下部を対応させることで、収納手段Sの押圧部材41への乗り上げをスムーズにすることができる。   Further, the pressing member 41 can have a gear shape as shown in FIG. 7 (iii). By adopting such a shape, when the lower part of the front surface part S4 in the transport direction of the storage means S is in contact with the pressing member 41, the grooves formed on the outer peripheral surface correspond to the lower parts of the front surface part S4. The storage unit S can be smoothly climbed onto the pressing member 41.

押圧部材41は、収納手段Sの底板部S1に向かって下側から押圧可能に支持されている。
具体的には、例えば、押圧部材41が上部平面形又は上部曲面形である場合、当該押圧部材41を下側から上方に向かって付勢する付勢手段42が当該押圧部材41の下方に設けられており、この付勢手段42により押圧部材41が支持されている(図1参照)。なお、押圧部材41を付勢手段42によって支持する場合、搬入路51においては、押圧部材41が配設される位置の下方に支持部材43を配置し、この支持部材43の上面に付勢手段42及び押圧部材41を配設するようにする。
The pressing member 41 is supported so as to be pressed from below toward the bottom plate portion S1 of the storage means S.
Specifically, for example, when the pressing member 41 is an upper plane shape or an upper curved surface shape, an urging means 42 for urging the pressing member 41 upward from the lower side is provided below the pressing member 41. The pressing member 41 is supported by the biasing means 42 (see FIG. 1). When the pressing member 41 is supported by the biasing means 42, a support member 43 is disposed below the position where the pressing member 41 is disposed in the carry-in path 51, and the biasing means is provided on the upper surface of the support member 43. 42 and the pressing member 41 are arranged.

なお、付勢手段42は、第一実施形態における付勢手段42と同様、コイルバネなどの弾性部材を用いることができる。
また、付勢手段42には、例えば、エアーシリンダや、モータとカムなどの駆動装置などを用いることもできる。
駆動装置は、押圧部材41を上下方向に移動させ、この押圧部材41を上方へ押し上げることにより、収納手段Sの底板部S1を押し上げて缶体Cの缶蓋C3の天面部C4に接触させる。
付勢手段42として駆動装置を用いた場合、押圧部材41が収納手段Sの底板部S1を押圧するときの押圧力は、0.01〜0.25MPa(内容量が500gのアルミニウム製の缶体Cを30缶、収納手段Sに収納した場合を想定)とする。押圧力をこのような範囲とすることにより、収納手段Sが段ボール紙の場合、押圧部材41が収納手段Sの底板部S1を確実に押し上げて、缶蓋C3に生じる一次振動を抑制することができる。
The urging means 42 can be an elastic member such as a coil spring, as with the urging means 42 in the first embodiment.
Further, for example, an air cylinder or a driving device such as a motor and a cam can be used as the biasing means 42.
The drive device moves the pressing member 41 in the vertical direction, and pushes up the pressing member 41 to push up the bottom plate portion S1 of the storage means S to contact the top surface portion C4 of the can lid C3 of the can body C.
When a driving device is used as the urging means 42, the pressing force when the pressing member 41 presses the bottom plate portion S1 of the storage means S is 0.01 to 0.25 MPa (aluminum can having an internal capacity of 500 g). Assume that 30 cans of C are stored in the storage means S). By setting the pressing force in such a range, when the storage means S is corrugated paper, the pressing member 41 reliably pushes up the bottom plate portion S1 of the storage means S and suppresses the primary vibration generated in the can lid C3. it can.

また、押圧部材41が図6、図7に示す回転形である場合には、図8に示すように、当該押圧部材41を回転可能に支持する軸414が当該押圧部材41の中心を軸支するとともに、この軸414を支持する支持体415が設けられる。なお、押圧部材41を軸414及び支持体415によって支持する場合、搬入路51において押圧部材41が配設される位置の下方に支持部材43を配置し、この支持部材43の上面に支持体415、軸414及び押圧部材41を配設することができる。   Further, when the pressing member 41 is the rotary type shown in FIGS. 6 and 7, a shaft 414 that rotatably supports the pressing member 41 is pivotally supported at the center of the pressing member 41 as shown in FIG. 8. In addition, a support body 415 that supports the shaft 414 is provided. When the pressing member 41 is supported by the shaft 414 and the support body 415, the support member 43 is disposed below the position where the pressing member 41 is disposed in the loading path 51, and the support body 415 is disposed on the upper surface of the support member 43. The shaft 414 and the pressing member 41 can be disposed.

このような形状及び機能を備えた押圧部材41は、図11に示すように、搬入路51を構成する複数のローラ61のうち、検査位置における二つのローラ61間に設けられる。
そして、押圧部材41が位置する二つのローラ61間の間隔D12は、押圧部材41を上下方向に移動可能、または回転可能に配置できれば、その範囲内で適宜選択できる。
As shown in FIG. 11, the pressing member 41 having such a shape and function is provided between two rollers 61 at the inspection position among the plurality of rollers 61 constituting the carry-in path 51.
The distance D12 between the two rollers 61 where the pressing member 41 is located can be appropriately selected within the range as long as the pressing member 41 can be arranged to be movable or rotatable in the vertical direction.

また、搬入路51が複数のコンベア62により構成されている場合、押圧部材41は、図12に示すように、複数のコンベア62のうち、検査位置における二つのコンベア62間に設けられる。
それら複数のコンベア62のうち、押圧部材41が位置する二つのコンベア62間の間隔D22は、押圧部材41を上下方向に移動可能、または回転可能に配置できれば、その範囲内で適宜選択できる。
Moreover, when the carrying-in path 51 is comprised by the some conveyor 62, as shown in FIG. 12, the press member 41 is provided between the two conveyors 62 in an test | inspection position among the some conveyors 62. As shown in FIG.
Among the plurality of conveyors 62, the interval D22 between the two conveyors 62 where the pressing member 41 is positioned can be appropriately selected within the range as long as the pressing member 41 can be arranged to be movable in the vertical direction or to be rotatable.

さらに、押圧部材41は、図11、図12に示すように、搬入路51の上面である第二仮想平面K2から上方に突出した状態で配設される。押圧部材41が第二仮想平面K2から上方に突出する高さT2は、0.1mm〜10.0mm、好適には3.0mm〜5.5mmの範囲内とすることができる。また、突出高さT2は、缶胴径、缶蓋径、あるいは缶蓋C3の天面部C4側の構成(タブC8の形状、天面部C4の形状)を考慮し、適切な数値を選択する。
突出高さT2をこのような高さとすることにより、搬送中の収納手段Sの押圧部材41の上部への乗り上げが容易になるとともに、押圧部材41が収納手段Sの底板部S1を押し上げて、この底板部S1の内面S2を缶体Cの缶蓋C3に接触可能となる。
Furthermore, as shown in FIGS. 11 and 12, the pressing member 41 is disposed in a state of protruding upward from the second virtual plane K <b> 2 that is the upper surface of the carry-in path 51. The height T2 at which the pressing member 41 protrudes upward from the second virtual plane K2 can be in the range of 0.1 mm to 10.0 mm, preferably 3.0 mm to 5.5 mm. In addition, the projection height T2 is selected in consideration of the can body diameter, the can lid diameter, or the configuration of the can lid C3 on the top surface portion C4 side (the shape of the tab C8, the shape of the top surface portion C4).
By setting the protruding height T2 to such a height, it is easy to get on the upper portion of the pressing member 41 of the storage means S being conveyed, and the pressing member 41 pushes up the bottom plate portion S1 of the storage means S, The inner surface S2 of the bottom plate portion S1 can be brought into contact with the can lid C3 of the can body C.

次に、搬送装置50の搬入路51により搬送される収納手段Sの動作について、図15〜図20を参照して説明する。
なお、押圧部材41は、回転形であるものとする。
Next, operation | movement of the storage means S conveyed by the carrying-in path 51 of the conveying apparatus 50 is demonstrated with reference to FIGS.
In addition, the press member 41 shall be a rotation type.

複数の缶体Cが収納された収納手段Sが、搬入路51の上面に載置される。そして、この状態で、この搬入路51の回転体60(例えば、ローラ61)が回転動作することにより、収納手段Sが、搬入路51の上流側から下流側へ搬送される(図15)。
搬入路51の上流側から搬送されてきた収納手段Sは、下流側へ向かう途中で、押圧部材41が配置された位置に到達する(図16)。
このとき、収納手段Sの搬送方向の前面部S4の下部が押圧部材41に接触する。
A storage means S in which a plurality of cans C are stored is placed on the upper surface of the carry-in path 51. In this state, the rotating body 60 (for example, the roller 61) of the carry-in path 51 rotates, so that the storage unit S is conveyed from the upstream side to the downstream side of the carry-in path 51 (FIG. 15).
The storage means S transported from the upstream side of the carry-in path 51 reaches the position where the pressing member 41 is arranged on the way to the downstream side (FIG. 16).
At this time, the lower portion of the front surface portion S4 in the transport direction of the storage means S contacts the pressing member 41.

次いで、搬入路51の回転体60が継続動作して収納手段Sを下流側へ搬送し、押圧部材41が、収納手段Sの底板部S1との摩擦によって回転する。そして、収納手段Sは、押圧部材41の上方に乗り上げる(図17)。
なお、図17においては、押圧部材41が、時計回りに回転する。
また、このとき、押圧部材41は、乗り上げた収納手段S及び缶体Cの自重によって下方へ押し下げられるが、押圧部材41の上部は、搬入路51の上面である第二仮想平面K2よりも上方に突出した状態となっている。
Next, the rotating body 60 of the carry-in path 51 continues to operate to convey the storage means S to the downstream side, and the pressing member 41 rotates due to friction with the bottom plate portion S1 of the storage means S. Then, the storage means S rides above the pressing member 41 (FIG. 17).
In FIG. 17, the pressing member 41 rotates clockwise.
At this time, the pressing member 41 is pushed downward by the weight of the storage means S and the can body C that are carried on, but the upper portion of the pressing member 41 is above the second virtual plane K2 that is the upper surface of the loading path 51. It is in a state protruding.

この状態において、押圧部材41は、上面が収納手段Sの底板部S1の外面S3に接触し、押圧部材41は、収納手段Sの前面部S4の直下に位置した後、缶体Cの巻き締め部C5の直下に位置する。
この状態は、押圧部材41と巻き締め部C5との間には収納手段Sの底板部S1が存在し、空間が存在しないため、収納手段Sは、押圧部材41に乗り上げた状態となる。この結果、押圧部材41が第二仮想平面K2から上方に突出する高さT2の分だけ収納手段Sが持ち上がり、収納手段Sの底板部S1の外面S3と搬入路51の上面との間が離間する。
In this state, the upper surface of the pressing member 41 is in contact with the outer surface S3 of the bottom plate portion S1 of the storage means S, and the pressing member 41 is positioned immediately below the front surface portion S4 of the storage means S, and then the can body C is tightened. It is located directly below the part C5.
In this state, since the bottom plate portion S1 of the storage means S exists between the pressing member 41 and the tightening portion C5 and there is no space, the storage means S rides on the pressing member 41. As a result, the storage means S is lifted by a height T2 at which the pressing member 41 protrudes upward from the second virtual plane K2, and the outer surface S3 of the bottom plate portion S1 of the storage means S and the upper surface of the carry-in path 51 are separated from each other. To do.

さらに、搬入路51の回転体60による収納手段Sの搬送が継続すると、押圧部材41は、収納手段Sの底板部S1の内面S2と缶体Cとの間に形成される蓋側空間C7の直下に位置するようになる(図18)。
この場合、缶体Cの缶蓋C3の天面部C4と、収納手段Sの底板部S1の内面S2との間に蓋側空間C7が存在しているので、内容物が充填、密封された缶体Cが収納された収納手段Sが下降しようとし、この下降に相対して、押圧部材41が蓋側空間C7の下方から収納手段Sの底板部S1を上方へ押し上げる。これにより、収納手段Sの底板部S1の内面S2が、缶体Cの缶蓋C3の天面部C4に接触する。
Furthermore, if conveyance of the storage means S by the rotary body 60 of the carrying-in path 51 continues, the pressing member 41 will be in the lid side space C7 formed between the inner surface S2 of the bottom plate part S1 of the storage means S and the can body C. It comes to be located directly below (FIG. 18).
In this case, since the lid side space C7 exists between the top surface portion C4 of the can lid C3 of the can body C and the inner surface S2 of the bottom plate portion S1 of the storage means S, the can filled and sealed with the contents The storage means S in which the body C is stored tends to descend, and the pressing member 41 pushes up the bottom plate portion S1 of the storage means S upward from below the lid side space C7. Thereby, the inner surface S2 of the bottom plate portion S1 of the storage means S comes into contact with the top surface portion C4 of the can lid C3 of the can body C.

この状態で、打検ヘッド10から缶体Cに電磁的衝撃を与えると、この缶体Cの缶底C2に一次振動が生じるが、缶体Cの缶蓋C3の天面部C4には、収納手段Sの底板部S1の内面S2が接触しているので、缶底C2から缶蓋C3への一次振動の伝搬が抑制される。
このため、缶体Cの缶蓋C3からは、振動音が発生しなくなり、この振動音がマイクロフォン12で検出されなくなるので、演算装置20の周波数解析部21において測定される打検音の周波数が、缶底C2からの打検音による周波数のみとなり、缶体Cの良否判定の精度を向上できる。
In this state, when an electromagnetic shock is applied to the can body C from the punching head 10, primary vibration is generated in the can bottom C2 of the can body C. Since the inner surface S2 of the bottom plate portion S1 of the means S is in contact, the propagation of primary vibration from the can bottom C2 to the can lid C3 is suppressed.
For this reason, no vibration sound is generated from the can lid C3 of the can body C, and this vibration sound is not detected by the microphone 12. Therefore, the frequency of the tapping sound measured by the frequency analysis unit 21 of the arithmetic unit 20 is low. Only the frequency due to the percussion sound from the can bottom C2 is obtained, and the accuracy of the quality determination of the can body C can be improved.

そして、続けて、搬入路51の回転体60による収納手段Sの搬送が継続すると、同様に次の列の缶体Cが搬送された後、打検ヘッド10から缶体Cへの電磁的衝撃が与えられ、缶体Cの良否判定が行われていく(図19、図20)。   Then, if the conveyance of the storage means S by the rotating body 60 in the carry-in path 51 continues, the electromagnetic shock from the inspection head 10 to the can body C after the next row of can bodies C is similarly transported. Is given, and the quality of the can body C is judged (FIGS. 19 and 20).

このように、搬入路51の回転体60による収納手段Sの搬送が継続すると、押圧部材41は、収納手段Sに収納された複数の缶体Cの各列ごとに、当該缶体Cの蓋側空間C7の直下に位置し、収納手段Sの底板部S1を押し上げて、缶体Cの缶蓋C3の天面部C4に接触させる。
このため、演算装置20の周波数解析部21においては、マイクロフォン12から送られてきた打検音の周波数が、いずれも缶底C2からの打検音による周波数のみとなるので、収納手段Sに収納された缶体Cのすべてについて、良否判定の精度を向上できる。
Thus, if conveyance of storage means S by rotating body 60 of carrying-in way 51 continues, press member 41 will cover lid of said can body C for every row of a plurality of can bodies C stored in storage means S. It is located directly under the side space C7 and pushes up the bottom plate portion S1 of the storage means S so as to contact the top surface portion C4 of the can lid C3 of the can body C.
For this reason, in the frequency analysis part 21 of the arithmetic unit 20, since the frequency of the tap sound transmitted from the microphone 12 is only the frequency of the tap sound from the can bottom C2, it is stored in the storage means S. The accuracy of the pass / fail judgment can be improved for all of the can bodies C.

(II)打検方法
次に、上述した本実施形態の打検装置の動作である打検方法について、図21を参照して説明する。
同図は、本実施形態の打検方法の各ステップを示すフローチャートである。
なお、押圧部材41は、回転形であるものとする。
また、打検装置1及び搬送装置50の構成は、図10及び図11に示した構成とする。
(II) Percussion Method Next, a percussion method that is an operation of the percussion apparatus of the present embodiment described above will be described with reference to FIG.
This figure is a flowchart showing each step of the percussion inspection method of the present embodiment.
In addition, the press member 41 shall be a rotation type.
The configurations of the percussion inspection device 1 and the conveyance device 50 are the same as those shown in FIGS. 10 and 11.

缶体Cが収納された収納手段Sが、搬入路51の上流部における所定の位置に載置される。
搬入路51を構成する回転体60が回転することにより、収納手段Sが搬送方向に向かって搬送される(収納手段搬送ステップ、S20)。
収納手段Sが押圧部材41の配設された位置に達し、さらに搬入路51の回転体60が回転すると、収納手段Sが押圧部材41の上方に乗り上げる。
そして、搬入路51の回転体60がさらに回転すると、収納手段Sに収納された缶体Cの蓋側空間C7の下方に押圧部材41が位置し、この押圧部材41が収納手段Sの底板部S1を下方から上方へ押し上げる。これにより、収納手段Sの底板部S1の内面S2が、缶体Cの缶蓋C3の天面部C4に接触する(缶蓋接触ステップ、S21)。
The storage means S in which the can body C is stored is placed at a predetermined position in the upstream portion of the carry-in path 51.
As the rotating body 60 configuring the carry-in path 51 rotates, the storage unit S is transported in the transport direction (storage unit transport step, S20).
When the storage means S reaches the position where the pressing member 41 is disposed and the rotating body 60 of the carry-in path 51 further rotates, the storage means S rides above the pressing member 41.
When the rotary body 60 of the carry-in path 51 further rotates, the pressing member 41 is positioned below the lid side space C7 of the can body C stored in the storage means S, and the pressing member 41 is the bottom plate portion of the storage means S. S1 is pushed up from below. Thereby, inner surface S2 of bottom plate part S1 of storage means S contacts top surface part C4 of can lid C3 of can body C (can lid contact step, S21).

そして、打検ヘッド10の電磁コイル11に通電し、缶体Cの缶底C2に電磁的衝撃が与えられる(電磁的衝撃付与ステップ、S22)。
電磁的衝撃が与えられた缶体Cの缶底C2に振動音が発生し、この振動音が打検音として打検ヘッド10のマイクロフォン12で検出される(打検音受取ステップ、S23)。
検出された打検音が、マイクロフォン12で電気的信号の打検信号に変換されて当該マイクロフォン12から出力され、演算装置20へ送信される(打検信号出力ステップ)。
Then, the electromagnetic coil 11 of the punching head 10 is energized, and an electromagnetic shock is applied to the can bottom C2 of the can body C (electromagnetic shock applying step, S22).
Vibration sound is generated at the bottom C2 of the can C to which electromagnetic shock is applied, and this vibration sound is detected as a tapping sound by the microphone 12 of the tapping head 10 (tacking sound receiving step, S23).
The detected tapping sound is converted into a tapping signal of an electrical signal by the microphone 12, output from the microphone 12, and transmitted to the arithmetic unit 20 (tacking signal output step).

演算装置20の周波数解析部21では、打検信号の周波数解析が行われ(打検信号解析ステップ、S24)、この解析結果にもとづいて、缶体Cの缶内圧が判別される(缶内圧検知ステップ、S25)。
そして、演算装置20の良否判定部22では、その判別された缶内圧にもとづき、缶体Cの良否判定が行われる(良否判定ステップ、S26)。ここで、不良と判定された缶体Cは、不良缶排除手段55により排除される(不良缶排除ステップ、S27)。
The frequency analysis unit 21 of the arithmetic unit 20 performs frequency analysis of the tapping signal (tacking signal analysis step, S24), and determines the can internal pressure of the can body C based on the analysis result (can internal pressure detection). Step, S25).
And in the quality determination part 22 of the arithmetic unit 20, the quality determination of the can body C is performed based on the determined can internal pressure (quality determination step, S26). Here, the can body C determined to be defective is removed by the defective can removing means 55 (defective can removing step, S27).

また、S22に示す電磁的衝撃付与ステップにおいて、缶体Cの缶底C2に電磁的衝撃が与えられると、この缶底C2に生じた一次振動が、缶胴C1から缶蓋C3に伝搬しようとするが、缶体Cの缶蓋C3には、収納手段Sの底板部S1の内面S2が接触しているため、その一次振動の伝搬が抑制される。
これにより、缶体Cの缶蓋C3からは振動音が発生せず、S23に示す打検音受取ステップにおいては、この振動音がマイクロフォン12で検出されることはない。
このため、マイクロフォン12は、缶体Cの缶底C2にて発生した振動音のみを打検音として受け取ることができ、演算装置20の周波数解析部21は、その打検音にもとづき測定される周波数を、缶底C2からの打検音の周波数のみとすることができる。そして、演算装置20の良否判定部22では、缶底C2からの打検音の周波数に対応する内圧値が適正缶内圧の範囲内にあるか否かを判定することで、当該缶体Cの良否判定を行うことができる。
従って、演算装置20の良否判定部22では、缶体Cの缶蓋C3から発生する振動音によって、適正缶内圧である当該缶体Cを不良品とする誤った判定が回避される。これにより、缶体Cの良否判定の精度が向上する。
Further, in the electromagnetic shock applying step shown in S22, when an electromagnetic shock is applied to the can bottom C2 of the can body C, the primary vibration generated in the can bottom C2 attempts to propagate from the can body C1 to the can lid C3. However, since the inner surface S2 of the bottom plate portion S1 of the storage means S is in contact with the can lid C3 of the can body C, propagation of the primary vibration is suppressed.
Thereby, no vibration sound is generated from the can lid C3 of the can body C, and this vibration sound is not detected by the microphone 12 in the percussion sound receiving step shown in S23.
For this reason, the microphone 12 can receive only the vibration sound generated at the bottom C2 of the can body C as the tapping sound, and the frequency analysis unit 21 of the arithmetic unit 20 is measured based on the tapping sound. The frequency can be only the frequency of the percussion sound from the can bottom C2. And in the quality determination part 22 of the arithmetic unit 20, by determining whether the internal pressure value corresponding to the frequency of the tap sound from the can bottom C2 is within the range of the appropriate can internal pressure, A pass / fail judgment can be made.
Therefore, in the quality determination unit 22 of the arithmetic unit 20, the erroneous determination that the can body C, which is the proper internal pressure, is a defective product is avoided by the vibration sound generated from the can lid C3 of the can body C. Thereby, the precision of the quality determination of the can body C improves.

(III)実施例
次に、本実施形態の実施例について、図22〜図25を参照して説明する。
(III) Examples Next, examples of the present embodiment will be described with reference to FIGS.

本発明の発明者は、一次振動抑止手段40である押圧部材41を備えた本実施形態の打検装置1と、一次振動抑止手段40を備えていない打検装置とを用いて、缶体Cの缶内圧の良否判定を行った。   The inventor of the present invention uses the percussion device 1 of the present embodiment including the pressing member 41 that is the primary vibration suppression means 40 and the percussion device that does not include the primary vibration suppression means 40, so that the can body C The quality of the can internal pressure was judged.

缶体Cには、内容量が200gのアルミニウム製の缶体Cを用意した。
この缶体Cには、水を185g充填、密封した。
収納手段Sは、段ボール紙を用いて直方体状に形成したものを使用した。
この収納手段Sには、4×6=24缶の缶体Cを収納した。
搬送装置50は、図10に示した構成のものを使用した。
For the can body C, an aluminum can body C having an internal capacity of 200 g was prepared.
This can body C was filled with 185 g of water and sealed.
The storage means S used was formed in a rectangular parallelepiped shape using corrugated paper.
In this storage means S, 4 × 6 = 24 can bodies C were stored.
The conveyance device 50 having the configuration shown in FIG. 10 was used.

(実施例1)
搬送装置50の搬入路51の下流部において、この搬入路51の上方に打検ヘッド10を配置し、この打検ヘッド10の直下に、押圧部材41を配置した。打検ヘッド10、押圧部材41の数は、それぞれ、収納手段Sに収納されている缶体Cの行数と同じ数である四つとした。
そして、搬入路51の上流側の回転体60上に収納手段Sを載置し搬送し、図21のフローチャートに示す工程にしたがって、缶体Cに対し打検を行い、収納手段Sに収納された24個の缶体Cのすべてから打検音を検出し、各打検音ごとに周波数解析を行った。
Example 1
In the downstream portion of the carry-in path 51 of the transport device 50, the inspection head 10 is disposed above the carry-in path 51, and the pressing member 41 is disposed directly below the inspection head 10. The number of punching heads 10 and pressing members 41 is four, which is the same as the number of rows of can bodies C stored in the storage means S.
Then, the storage means S is placed and transported on the rotating body 60 on the upstream side of the carry-in path 51, and the can body C is hit according to the process shown in the flowchart of FIG. 21 and stored in the storage means S. In addition, tapping sound was detected from all 24 can bodies C, and frequency analysis was performed for each tapping sound.

この周波数解析の結果を、図22に示す。
同図は、24缶の缶体Cの中から選択した一缶の缶体Cについて、周波数解析を行った結果を示すグラフである。横軸は、周波数を示しており、縦軸は、打検音の音響レベル(音圧値)を示している。
同図に示すように、この周波数分布において、4.6kHz付近に音響レベルのピーク値が測定された。また、これ以外の周波数帯域においては、ピーク値と呼べるほどの高い値を示した音響レベルは測定されなかった。
The result of this frequency analysis is shown in FIG.
The figure is a graph showing the result of frequency analysis for one can C selected from 24 cans C. FIG. The horizontal axis indicates the frequency, and the vertical axis indicates the acoustic level (sound pressure value) of the tapping sound.
As shown in the figure, in this frequency distribution, the peak value of the sound level was measured in the vicinity of 4.6 kHz. In addition, in other frequency bands, the sound level showing a high value that could be called a peak value was not measured.

また、発明者は、内圧の異なる複数の缶体Cを用意し、これら複数の缶体Cを収納手段Sに収納して、図21のフローチャートに示す工程にしたがって打検を行い、収納手段Sに収納された缶体Cのすべてから打検音を検出し、各打検音ごとに周波数解析を行った。
これら内圧の異なる複数の缶体Cのすべてについて、測定した打検音の周波数にもとづいて、内圧とデジット(打検値、周波数の1/10の値)との関係をグラフ化した。
Further, the inventor prepares a plurality of can bodies C having different internal pressures, stores the plurality of can bodies C in the storage means S, performs a test according to the process shown in the flowchart of FIG. The tapping sound was detected from all of the cans C housed in the container, and frequency analysis was performed for each tapping sound.
The relationship between the internal pressure and the digit (percussion value, 1/10 of the frequency) was graphed based on the measured percussion sound frequency for all of the plurality of cans C having different internal pressures.

このグラフを図23に示す。
同図に示すように、内圧とデジットとは、線形的な関係で示されており、一の内圧に対するデジットのばらつきが非常に小さいものとなった。
この結果から、一次振動抑止手段40として押圧部材41を用いることにより、周波数分布におけるピーク値が一つに特定可能となり、缶体Cの良否判定の精度を高められることがわかった。
また、このように内圧とデジットとの関係において、線形的な関係が得られたため、缶体Cの内圧の判別及び密封漏れ、さらには内圧規格外製品をはじめとする不良品の判別が可能であることが証明できた。
This graph is shown in FIG.
As shown in the figure, the internal pressure and the digit are shown in a linear relationship, and the variation of the digit with respect to one internal pressure is very small.
From this result, it was found that by using the pressing member 41 as the primary vibration suppressing means 40, the peak value in the frequency distribution can be specified as one, and the accuracy of the quality determination of the can body C can be improved.
In addition, since a linear relationship is obtained in the relationship between the internal pressure and the digit in this way, it is possible to determine the internal pressure of the can body C and seal leakage, and also to determine defective products such as non-standard products. I was able to prove it.

(比較例1)
図10に示した構成を備える搬送装置50において、同図に示した構成の打検装置1を配置したが、押圧部材41は、搬送装置50の搬入路51に配置しなかった。
(Comparative Example 1)
In the conveying device 50 having the configuration shown in FIG. 10, the hitting device 1 having the configuration shown in FIG. 10 is arranged, but the pressing member 41 is not arranged in the carry-in path 51 of the conveying device 50.

搬入路51の上流側の回転体60に収納手段Sを載置して搬送した。
図21のフローチャートに示す工程にしたがって、缶体Cに対し打検を行い、 収納手段Sに収納された24缶の缶体Cのすべてから打検音を検出し、各打検音ごとに周波数解析を行った。
The storage means S was placed on the rotating body 60 on the upstream side of the carry-in path 51 and conveyed.
In accordance with the steps shown in the flowchart of FIG. 21, the can body C is subjected to a tapping test, tapping sounds are detected from all of the 24 cans C stored in the storage means S, and the frequency for each tapping sound is detected. Analysis was performed.

この周波数解析の結果を、図24に示す。
同図は、24缶の缶体Cの中から選択した一缶の缶体Cについて、周波数解析を行った結果を示すグラフである。図22と同様、横軸は、周波数を示しており、縦軸は、打検音の音響レベル(音圧値)を示している。
同図に示すように、この周波数分布において、3.0kHz付近にピーク値が測定され、また、4.2kHz付近や4.7kHz付近にもピーク値が測定された。
The result of this frequency analysis is shown in FIG.
The figure is a graph showing the result of frequency analysis for one can C selected from 24 cans C. FIG. Similar to FIG. 22, the horizontal axis indicates the frequency, and the vertical axis indicates the acoustic level (sound pressure value) of the tapping sound.
As shown in the figure, in this frequency distribution, a peak value was measured in the vicinity of 3.0 kHz, and a peak value was also measured in the vicinity of 4.2 kHz and 4.7 kHz.

また、発明者は、内圧の異なる複数の缶体Cを用意し、これら複数の缶体Cを収納手段Sに収納し、図21のフローチャートに示す工程にしたがって、打検を行った。
収納手段Sに収納された缶体Cのすべてから打検音を検出し、各打検音ごとに周波数解析を行い、これら内圧の異なる複数の缶体Cのすべてについて、測定した打検音の周波数にもとづいて、内圧とデジットとの関係をグラフ化した。
Further, the inventor prepared a plurality of can bodies C having different internal pressures, stored the plurality of can bodies C in the storage means S, and performed a test according to the steps shown in the flowchart of FIG.
The percussion sound is detected from all of the can bodies C stored in the storage means S, the frequency analysis is performed for each percussion sound, and the measured percussion sounds of all the plurality of can bodies C having different internal pressures are analyzed. Based on the frequency, the relationship between internal pressure and digit was graphed.

このグラフを図25に示す。
同図に示すように、一つの内圧において、デジットにばらつきがあり、また、内圧の大きさに関係なく、いずれの内圧においても、デジットにばらつきがみられた。
この結果から、押圧部材41を用いずに打検を行った場合には、周波数分布におけるピーク値が複数表れるようになり、缶体Cの良否判定の精度が低下することがわかった。
This graph is shown in FIG.
As shown in the figure, there was a variation in digits at one internal pressure, and there was a variation in digits at any internal pressure regardless of the size of the internal pressure.
From this result, it was found that when the inspection is performed without using the pressing member 41, a plurality of peak values appear in the frequency distribution, and the accuracy of the quality determination of the can body C is lowered.

以上説明したように、本実施形態の打検装置及び打検方法によれば、一次振動抑止手段として押圧部材を搬送装置に備え、缶体が収納された収納手段の底板部を上方へ押圧して、この底板部の内面を缶体の缶蓋に接触させることにより、缶体の缶蓋にて生じる一次振動を抑制することができる。これにより、缶体の不良品検出精度を向上させることができる。   As described above, according to the inspection device and inspection method of the present embodiment, the conveying device is provided with a pressing member as the primary vibration suppressing means, and the bottom plate portion of the storage means in which the can body is stored is pressed upward. By bringing the inner surface of the bottom plate portion into contact with the can lid of the can body, it is possible to suppress the primary vibration generated in the can lid of the can body. Thereby, the defective product detection accuracy of a can can be improved.

また、本実施形態の打検装置及び打検方法は、特許文献1に記載の技術との比較において、次の効果を奏する。
特許文献1に記載されている内圧検査装置は、缶体の缶底の外周縁部を押圧する押圧体を多数備えている。このため、同装置は、構成が複雑となっている。
これに対し、本実施形態の打検装置は、一つの缶体に対して押圧部材が一つのみ備えられており、このため、構成が簡易となっている。
しかも、このように押圧部材が一つという非常に簡易な構成でありながら、特許文献1に記載されている内圧検査装置の押圧体と同様の効果を奏する。すなわち、本発明の押圧部材が収納手段の底板部を押圧し、この底板部の内面を缶体の缶蓋に接触させることにより、缶体の缶底で発生した一次振動が、缶胴及び缶蓋へ伝搬するのを抑制することができる。このため、演算装置の周波数解析部で測定されるピーク周波数が、缶底で発生した打検音の周波数のみとなり、他の周波数帯域ではピークが測定されなくなり、缶体Cの良否判定の精度を向上させることができる。
Further, the percussion testing apparatus and percussion testing method of the present embodiment have the following effects in comparison with the technique described in Patent Document 1.
The internal pressure inspection apparatus described in Patent Document 1 includes a large number of pressing bodies that press the outer peripheral edge of the bottom of the can body. For this reason, the configuration of the apparatus is complicated.
On the other hand, the percussion inspection apparatus of this embodiment is provided with only one pressing member for one can body, and thus the configuration is simplified.
Moreover, while having a very simple configuration with only one pressing member in this way, the same effect as the pressing body of the internal pressure inspection apparatus described in Patent Document 1 is achieved. That is, when the pressing member of the present invention presses the bottom plate portion of the storage means, and the inner surface of the bottom plate portion is brought into contact with the can lid of the can body, the primary vibration generated in the can bottom of the can body causes the can body and the can. Propagation to the lid can be suppressed. For this reason, the peak frequency measured by the frequency analysis unit of the arithmetic unit is only the frequency of the percussion sound generated at the bottom of the can, and the peak is not measured in other frequency bands. Can be improved.

さらに、本実施形態の打検装置及び打検方法は、特許文献1に記載の技術との比較において、次の効果を奏する。
特許文献1に記載されている内圧検査装置は、押圧体が収納手段の上方に位置しており、押圧体が、収納手段の移動に伴ってこの収納手段の前面上部を乗り越えるとともに、収納手段の上面を下方へ押さえ付けることとしているが、実際にこの動作を押圧体とバネとで実現するのは、困難であった。
これに対し、本実施形態の打検装置は、押圧部材が収納手段の下方に位置しており、搬送装置によって搬送される収納手段が、押圧部材の上方を乗り越えながら移動する。
このため、押圧部材は、収納手段に収納された缶体の下方に容易に到達可能となり、この収納手段の底板部を確実に上方へ押圧して、この底板部の内面を缶体の缶蓋に接触させることができる。
Furthermore, the percussion testing apparatus and percussion testing method of the present embodiment have the following effects in comparison with the technique described in Patent Document 1.
In the internal pressure inspection apparatus described in Patent Document 1, the pressing body is positioned above the storage means, and the pressing body gets over the front upper portion of the storage means as the storage means moves. Although the upper surface is pressed down, it is difficult to actually realize this operation with the pressing body and the spring.
On the other hand, in the inspection device of the present embodiment, the pressing member is positioned below the storage means, and the storage means conveyed by the conveying device moves while getting over the pressing member.
For this reason, the pressing member can easily reach the lower part of the can body accommodated in the accommodating means, and the bottom plate portion of the accommodating means is surely pressed upward, so that the inner surface of the bottom plate portion can be Can be contacted.

なお、本実施形態の打検装置及び打検方法と、特許文献2に記載の技術との比較については、上述した第一実施形態の打検装置及び打検方法と特許文献2と同様であるので、ここでの説明は、省略する。   In addition, about the comparison with the percussion apparatus and percussion method of this embodiment, and the technique of patent document 2, it is the same as that of the percussion apparatus and percussion method of 1st embodiment mentioned above, and patent document 2. Therefore, the description here is omitted.

[第三実施形態]
次に、本発明の打検装置及び打検方法の第三実施形態について、図26(i)、(ii)を参照して説明する。
図26(i)は、一次振動抑止手段である押圧部材が設けられた収納手段の断面図、(ii)は、(i)に示した収納手段の要部拡大図(缶体の下部の拡大図)である。
本実施形態は、上述した第二実施形態と比較して、一次振動抑止手段の構成が相違する。すなわち、第二実施形態では、一次振動抑止手段を、収納手段の底板部の下方から上方へ押圧し、この底板部の内面を缶体の缶蓋に接触させていたのに対し、本実施形態では、一次振動抑止手段が、収納手段の内部に形成され、缶体の缶蓋に接触させる点で相違し、他の構成要素は、第二実施形態と同様である。
したがって、上述した第二実施形態と同様の構成部分については、同じ符号を付して、その詳細な説明を省略する。
[Third embodiment]
Next, a third embodiment of the percussion apparatus and percussion method of the present invention will be described with reference to FIGS. 26 (i) and (ii).
FIG. 26 (i) is a cross-sectional view of the storage means provided with the pressing member as the primary vibration suppression means, and (ii) is an enlarged view of the main part of the storage means shown in (i) (enlargement of the lower part of the can body). Figure).
The present embodiment is different from the second embodiment described above in the configuration of the primary vibration suppression means. That is, in the second embodiment, the primary vibration suppression means is pressed upward from below the bottom plate portion of the storage means, and the inner surface of the bottom plate portion is brought into contact with the can lid of the can body. Then, the primary vibration suppression means is formed inside the storage means and is different in that it is brought into contact with the can lid of the can body, and the other components are the same as in the second embodiment.
Therefore, the same components as those in the second embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態において、一次振動抑止手段40は、図26(i)、(ii)に示すように、収納手段Sの底板部S1の内面S2に配置され、当該収納手段Sに収納された缶体Cの缶蓋C3に直接接触する押圧部材44である。押圧部材44は、この接触により、当該缶蓋C3で生じる一次振動を抑制する。   In the present embodiment, the primary vibration suppression means 40 is disposed on the inner surface S2 of the bottom plate portion S1 of the storage means S as shown in FIGS. 26 (i) and (ii), and the can is stored in the storage means S. The pressing member 44 is in direct contact with the C can lid C3. By this contact, the pressing member 44 suppresses primary vibration generated in the can lid C3.

そして、押圧部材44は、収納手段Sの底板部S1の内面S2において、当該収納手段Sに収納された缶体Cの缶蓋C3に対向する位置に配置される。
具体的に、押圧部材44は、缶体Cの缶蓋C3の中央部分に対向する位置に配置する(図26(i)、(ii)参照)。また、押圧部材44は、缶体Cの缶蓋C3の中央部分以外の部分に対向する位置、例えば、当該缶蓋C3の天面部C4においてタブC8が設けられていない部分に対向する位置、あるいは、天面部C4の周縁部分に対向する位置などに配置することができる。
このように、押圧部材44は、倒立状態の缶体Cが収納手段Sの底板部S1の内面S2に載置されたときに、当該缶体Cの缶蓋C3に対向可能な位置に配置する。
The pressing member 44 is disposed on the inner surface S2 of the bottom plate portion S1 of the storage means S at a position facing the can lid C3 of the can body C stored in the storage means S.
Specifically, the pressing member 44 is disposed at a position facing the central portion of the can lid C3 of the can body C (see FIGS. 26 (i) and (ii)). Further, the pressing member 44 is located at a position facing a portion other than the central portion of the can lid C3 of the can body C, for example, a position facing the portion where the tab C8 is not provided in the top surface portion C4 of the can lid C3, or , Can be disposed at a position facing the peripheral portion of the top surface portion C4.
In this way, the pressing member 44 is disposed at a position that can face the can lid C3 of the can body C when the inverted can body C is placed on the inner surface S2 of the bottom plate portion S1 of the storage means S. .

押圧部材44の形状は、缶体Cの缶蓋C3に接触可能な形状であればよく、例えば、円板状、ロール状、円柱形状、円筒形状、角柱形状、角筒形状、立方体状、直方体状、砲弾状、山形形状、アーチ状、斜面付アーチ状などとすることができる。
また、押圧部材44の大きさは、缶体Cの蓋側空間C7に収まる程度の大きさとする。
The shape of the pressing member 44 may be any shape that can contact the can lid C3 of the can body C. For example, a disk shape, a roll shape, a columnar shape, a cylindrical shape, a prismatic shape, a rectangular tube shape, a cubic shape, a rectangular parallelepiped shape. Shape, shell shape, mountain shape, arch shape, sloped arch shape, and the like.
In addition, the size of the pressing member 44 is set to a size that fits in the lid-side space C7 of the can body C.

押圧部材44の突出する高さT3は、例えば、この押圧部材44を、缶体Cの缶蓋C3に設けられたタブC8に接触させる場合、押圧部材44の突出高さT3は、缶体Cの蓋側空間C7の高さC71からタブC8の厚みを引いた高さと同じ高さ、又はこれよりも高くなるようにする。これにより、収納手段Sの底板部S1の内面S2に倒立状態で収納された缶体Cの缶蓋C3に取り付けたタブC8に対して、押圧部材44の上部を接触させ、缶体Cの缶蓋C3で生じる一次振動を抑制できる。
一方、押圧部材44を、缶体Cの缶蓋C3に取り付けたタブC8以外の天面部C4に接触させる場合、押圧部材44の突出高さT3は、缶体Cの蓋側空間C7の高さC71と同じ高さ、又はこれよりも高くなるようにする。これにより、この缶体Cの天面部C4に対して、押圧部材44の上部を接触させ、缶体Cの缶蓋C3で生じる一次振動を抑制できる。
The protruding height T3 of the pressing member 44 is, for example, when the pressing member 44 is brought into contact with the tab C8 provided on the can lid C3 of the can body C, the protruding height T3 of the pressing member 44 is the can body C. The height is equal to or higher than the height C71 of the lid side space C7 minus the thickness of the tab C8. Accordingly, the upper portion of the pressing member 44 is brought into contact with the tab C8 attached to the can lid C3 of the can body C stored in an inverted state on the inner surface S2 of the bottom plate portion S1 of the storage means S, and the can of the can body C The primary vibration generated at the lid C3 can be suppressed.
On the other hand, when the pressing member 44 is brought into contact with the top surface portion C4 other than the tab C8 attached to the can lid C3 of the can body C, the protruding height T3 of the pressing member 44 is the height of the lid side space C7 of the can body C. The height is the same as or higher than C71. Thereby, the upper part of the pressing member 44 is brought into contact with the top surface portion C4 of the can body C, and the primary vibration generated in the can lid C3 of the can body C can be suppressed.

なお、押圧部材44の突出高さT3は、上述したように、缶体Cの缶蓋C3に対して押圧部材44が接触する部分や、缶体Cの蓋側空間C7の高さC71との関係で規定するのが望ましいが、具体的には、例えば、0.1mm〜10.0mm、好適には3.0mm〜5.5mmの範囲内とすることができる。また、この突出高さT3は、缶胴径、缶蓋径、あるいは缶蓋C3の天面部C4側の構成(タブC8の形状、天面部C4の形状)を考慮し、適切な数値を選択する。   Note that the protrusion height T3 of the pressing member 44 is, as described above, the portion where the pressing member 44 contacts the can lid C3 of the can body C or the height C71 of the lid-side space C7 of the can body C. Although it is desirable to define by relationship, specifically, it can be within a range of, for example, 0.1 mm to 10.0 mm, preferably 3.0 mm to 5.5 mm. The protrusion height T3 is selected in consideration of the can body diameter, the can lid diameter, or the configuration on the top surface C4 side of the can lid C3 (the shape of the tab C8, the shape of the top surface C4). .

押圧部材44を構成する材料は、第一実施形態の押圧部材41と同様、例えば、合成樹脂、硬質ゴム、金属などを用いることができる。ただし、押圧部材44を構成する材料としては、当該押圧部材41を所望の形状に加工可能であって、所定の硬さ、耐摩耗性を有し、かつ、缶体Cの缶蓋C3の天面部C4やタブC8を損傷させることがないものが望ましい。   As the material constituting the pressing member 44, for example, synthetic resin, hard rubber, metal, or the like can be used as in the pressing member 41 of the first embodiment. However, as a material constituting the pressing member 44, the pressing member 41 can be processed into a desired shape, has a predetermined hardness and wear resistance, and has a top of the can lid C3 of the can body C. It is desirable that the surface portion C4 and the tab C8 are not damaged.

また、押圧部材44は、収納手段Sの底板部S1の内面S2に缶体Cが載置されたときに、缶体Cの缶蓋C3からの押圧を受けて変形するものであってもよい。
この場合、押圧部材44が、缶蓋C3の天面部C4やタブC8の外形に応じて変形するので、天面部C4やタブC8に密着する面積が広くなり、缶蓋C3で生じる振動を確実に抑制できる。
The pressing member 44 may be deformed by receiving a pressure from the can lid C3 of the can body C when the can body C is placed on the inner surface S2 of the bottom plate portion S1 of the storage means S. .
In this case, since the pressing member 44 is deformed according to the outer shape of the top surface portion C4 and the tab C8 of the can lid C3, the area closely contacting the top surface portion C4 and the tab C8 is widened, and the vibration generated in the can lid C3 is reliably ensured. Can be suppressed.

以上説明したように、本実施形態の打検装置及び打検方法によれば、一次振動抑止手段の押圧部材を、収納手段の底板部の内面に配置し、缶体の缶蓋に直接接触させて押圧することにより、この缶蓋に生じる一次振動を抑制することができる。これにより、缶体の不良品検出精度を向上させることができる。   As described above, according to the percussion apparatus and percussion method of the present embodiment, the pressing member of the primary vibration suppression means is disposed on the inner surface of the bottom plate portion of the storage means and is brought into direct contact with the can lid of the can body. The primary vibration generated in the can lid can be suppressed by pressing the can. Thereby, the defective product detection accuracy of a can can be improved.

なお、本実施形態の打検装置及び打検方法と特許文献1、2に記載の技術との比較については、上述した第二実施形態の打検装置及び打検方法と特許文献1、2と同様であるので、ここでの説明は、省略する。   For comparison between the percussion apparatus and percussion method of the present embodiment and the techniques described in Patent Documents 1 and 2, the percussion apparatus and percussion method of the second embodiment described above and Patent Documents 1 and 2 Since it is the same, description here is abbreviate | omitted.

以上、本発明の打検装置及び打検方法の好ましい実施形態について説明したが、本発明に係る打検装置及び打検方法は、上述した実施形態に限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。   The preferred embodiments of the percussion device and percussion method of the present invention have been described above. However, the percussion device and percussion method according to the present invention are not limited to the above-described embodiments, and the scope of the present invention. Needless to say, various modifications can be made.

例えば、上述した各実施形態では、一次振動抑止手段として押圧部材を挙げたが、一次振動抑止手段は、押圧部材に限るものではなく、電磁気的作用により缶蓋に対して一定の力がかかるように電磁気力を発生させ、缶蓋に生じる一次振動を抑制する電磁気的抑止手段であってもよい。   For example, in each of the above-described embodiments, the pressing member is exemplified as the primary vibration suppressing unit. However, the primary vibration suppressing unit is not limited to the pressing member, and a certain force is applied to the can lid by electromagnetic action. It may be an electromagnetic restraining means that generates an electromagnetic force and suppresses primary vibration generated in the can lid.

また、上述した第一実施形態においては、缶体が被載置部材の開口の上方に位置したときに押圧部材を上方向に移動させて、この押圧部材を缶体の缶蓋の天面部に接触させるようにすることができる。   In the first embodiment described above, when the can body is positioned above the opening of the placement member, the pressing member is moved upward, and this pressing member is placed on the top surface portion of the can lid of the can body. It can be made to contact.

本発明は、飲料等の内容物が充填、密封された缶体の打検を行う装置や機器に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for an apparatus or a device that performs a punch inspection of a can body that is filled and sealed with contents such as beverages.

1 打検装置
10 打検ヘッド
20 演算装置
40 一次振動抑止手段
41 押圧部材
413 凸部
44 押圧部材
50 搬送装置
60 回転体
61 ローラ
62 コンベア
C 缶体
C3 缶蓋
C4 天面部
C7 蓋側空間
S 収納手段
K1 第一仮想平面
K2 第二仮想平面
DESCRIPTION OF SYMBOLS 1 Tapping device 10 Tapping head 20 Arithmetic device 40 Primary vibration suppression means 41 Pressing member 413 Convex part 44 Pressing member 50 Conveying device 60 Rotating body 61 Roller 62 Conveyor C Can body C3 Can lid C4 Top surface portion C7 Cover side space S Storage Means K1 First virtual plane K2 Second virtual plane

Claims (13)

缶体に電磁的衝撃を与え、前記缶体の打検振動部から発せられる打検音を受け、前記打検音を打検信号に変換して出力する打検ヘッドと、前記打検信号を解析して前記缶体の缶内圧を判別する演算装置とを備えた打検装置であって、
前記電磁的衝撃を与えたときに、前記缶体の缶蓋で生じる一次振動を抑制する一次振動抑止手段を備えた
ことを特徴とする打検装置。
A tapping head that gives electromagnetic shock to the can body, receives a tapping sound emitted from a tapping vibration portion of the can body, converts the tapping sound into a tapping signal, and outputs the tapping signal. Analyzing device comprising a computing device for analyzing and determining the can internal pressure of the can body,
A percussion inspection device comprising primary vibration suppression means for suppressing primary vibration generated in the can lid of the can body when the electromagnetic shock is applied.
前記一次振動抑止手段が、前記缶蓋を直接又は間接的に押圧し当該缶蓋で生じる一次振動を抑制する押圧部材である
ことを特徴とする請求項1記載の打検装置。
The percussion inspection apparatus according to claim 1, wherein the primary vibration suppression unit is a pressing member that directly or indirectly presses the can lid and suppresses primary vibration generated in the can lid.
前記押圧部材が、被載置部材の上面に倒立状態で載置された缶体の下方から、当該缶体の缶蓋に直接接触可能な箇所に配置された
ことを特徴とする請求項2記載の打検装置。
The said pressing member is arrange | positioned in the location which can be directly contacted to the can lid of the said can body from the downward direction of the can body mounted in the inverted state on the upper surface of the mounting member. Percussion equipment.
前記押圧部材の上部が、前記被載置部材の上面から上方に突出しており、
前記押圧部材の上部の突出方向の高さが、前記被載置部材の載置面を基準として0.1mm〜10.0mmの範囲内である
ことを特徴とする請求項3記載の打検装置。
The upper part of the pressing member protrudes upward from the upper surface of the mounted member,
The percussion inspection device according to claim 3, wherein a height of the upper portion of the pressing member in a protruding direction is in a range of 0.1 mm to 10.0 mm with respect to a mounting surface of the mounting member. .
前記缶体が収納手段に収められており、
前記押圧部材が前記収納手段を押圧し、前記収納手段を前記缶蓋に接触させることにより当該缶蓋を間接的に押圧して、当該缶蓋で生じる一次振動を抑制する
ことを特徴とする請求項2記載の打検装置。
The can is stored in a storage means;
The pressing member presses the storage means, and the storage means is brought into contact with the can lid to indirectly press the can lid, thereby suppressing primary vibration generated in the can lid. Item 3. The percussion apparatus according to item 2.
前記押圧部材は、当該押圧部材の下部が搬入路の載置面よりも下方に位置し、当該押圧部材の上部が前記載置面から上方に突出する位置に配置された
ことを特徴とする請求項5記載の打検装置。
The said pressing member is arrange | positioned in the position where the lower part of the said pressing member is located below the mounting surface of a carrying-in path, and the upper part of the said pressing member protrudes upwards from the said mounting surface. Item 5. The inspection device according to item 5.
前記押圧部材の上部の突出方向の高さが、前記搬送路の載置面を基準として0.1mm〜10.0mmの範囲内である
ことを特徴とする請求項6記載の打検装置。
The inspection device according to claim 6, wherein a height of the upper portion of the pressing member in a protruding direction is in a range of 0.1 mm to 10.0 mm with respect to a placement surface of the conveyance path.
前記収納手段が、前記載置面上で移動可能であり、
前記押圧部材が、少なくとも上部に曲面を有し、
前記曲面は、矩形の平面を湾曲させた形状となっており、かつ、前記矩形の平面のうちの対向する二辺が平行であり、この平行を保ちつつ、他の二辺を湾曲させた形状となっており、
前記平行を保った対向二辺に平行な線を前記曲面の頂部に引いたときの当該線に直交する方向であって水平方向を向く方向を頂部直交方向としたときに、この頂部直交方向が前記収納手段の移動方向と同じ方向となるように、当該押圧部材が配置された
ことを特徴とする請求項6又は7記載の打検装置。
The storage means is movable on the mounting surface;
The pressing member has a curved surface at least at an upper portion;
The curved surface has a shape obtained by curving a rectangular plane, and two opposite sides of the rectangular plane are parallel to each other, and the other two sides are curved while maintaining this parallel. And
When the line that is parallel to the opposite two sides that are kept parallel is drawn to the top of the curved surface, the direction orthogonal to the line and the direction that faces the horizontal direction is the top orthogonal direction. The percussion inspection device according to claim 6 or 7, wherein the pressing member is arranged so as to be in the same direction as the moving direction of the storage means.
前記収納手段が、前記載置面上で移動可能であり、
前記押圧部材が、水平方向の軸を中心として回転する回転形であり、
この回転形の押圧部材が回転したときに当該押圧部材の上端部が移動する方向を上端部回転方向としたときに、この上端部回転方向が前記収納手段の移動方向と同じ方向となるように、当該押圧部材が配置された
ことを特徴とする請求項6又は7記載の打検装置。
The storage means is movable on the mounting surface;
The pressing member is a rotary type that rotates about a horizontal axis;
When the direction in which the upper end of the pressing member moves when the rotary pressing member rotates is defined as the upper end rotating direction, the upper end rotating direction is the same as the moving direction of the storage means. The pressing device according to claim 6 or 7, wherein the pressing member is arranged.
前記回転形の押圧部材の周面に複数の凸部を有し、
前記複数の凸部の間隔が、前記収納手段に収納された複数の前記缶体のうち当該収納手段が移動する方向と同じ方向に並ぶ二つ缶体の缶蓋の中心同士の間隔の整数分の一と同じ長さである
ことを特徴とする請求項9記載の打検装置。
Having a plurality of convex portions on the circumferential surface of the rotary pressing member;
The interval between the plurality of convex portions is an integral part of the interval between the centers of the can lids of two can bodies arranged in the same direction as the direction in which the storage means moves among the plurality of can bodies stored in the storage means. The percussion inspection device according to claim 9, wherein the percussion inspection device has the same length as that of the one.
前記缶体が収納手段に収められており、
前記押圧部材が、前記収納手段の底板部の内面に配置されており、前記押圧部材を缶体の缶蓋に接触させることにより、当該缶蓋で生じる一次振動を抑制する
ことを特徴とする請求項2記載の打検装置。
The can is stored in a storage means;
The said pressing member is arrange | positioned at the inner surface of the baseplate part of the said storage means, The primary vibration which arises in the said can lid is suppressed by making the said pressing member contact the can lid of a can body. Item 3. The percussion apparatus according to item 2.
前記押圧部材の高さであって、前記収納手段の底板部の内面からの高さが、0.1mm〜10.0mmの範囲内である
ことを特徴とする請求項11記載の打検装置。
The punching device according to claim 11, wherein the pressing member has a height from an inner surface of a bottom plate portion of the storage means within a range of 0.1 mm to 10.0 mm.
缶体に電磁的衝撃を与えるステップと、
前記缶体の打検振動部から発せられる打検音を受け取る打検音受取ステップと、
前記打検音を打検信号に変換して出力するステップと、
前記打検信号を解析して前記缶体の缶内圧を判別するステップとを有する打検方法であって、
前記打検音受取ステップが、前記電磁的衝撃を与えたときに前記缶体の缶蓋で生じる一次振動を、一次振動抑止手段により抑制された状態で、前記缶体の打検振動部から発せられる打検音を受け取るステップである
ことを特徴とする打検方法。
Applying electromagnetic shock to the can body;
A tap sound receiving step for receiving a tap sound emitted from the tap vibration unit of the can body;
Converting the percussion sound into a percussion signal and outputting it;
Analyzing the punching signal and determining a can internal pressure of the can body,
The percussion sound receiving step emits the primary vibration generated in the can lid of the can body from the percussion vibration section of the can body while being suppressed by the primary vibration suppressing means when the electromagnetic shock is applied. A step of receiving a tapping sound that is received.
JP2014224567A 2014-11-04 2014-11-04 Percussion apparatus and percussion method Active JP6439387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224567A JP6439387B2 (en) 2014-11-04 2014-11-04 Percussion apparatus and percussion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224567A JP6439387B2 (en) 2014-11-04 2014-11-04 Percussion apparatus and percussion method

Publications (2)

Publication Number Publication Date
JP2016090365A true JP2016090365A (en) 2016-05-23
JP6439387B2 JP6439387B2 (en) 2018-12-19

Family

ID=56016601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224567A Active JP6439387B2 (en) 2014-11-04 2014-11-04 Percussion apparatus and percussion method

Country Status (1)

Country Link
JP (1) JP6439387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781514A (en) * 2019-04-02 2019-05-21 山西省计量科学研究院 A kind of explosion-proof test tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115998U (en) * 1978-02-03 1979-08-14
JPS59163532A (en) * 1983-03-09 1984-09-14 Hokkai Can Co Ltd Method and device for inspecting internal pressure of tightly sealed-up vessel
US5353631A (en) * 1992-05-29 1994-10-11 Benthos, Inc. Analyzing internal pressure of a sealed container using frequency spectra
JP2005172759A (en) * 2003-12-15 2005-06-30 Mitsubishi Materials Corp Internal pressure inspection method for can
JP2005170442A (en) * 2003-12-10 2005-06-30 Mitsubishi Materials Corp Method and device for inspecting internal pressure of can
JP2006153496A (en) * 2004-11-25 2006-06-15 Toyo Seikan Kaisha Ltd Hammering test device and hammering test method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115998U (en) * 1978-02-03 1979-08-14
JPS59163532A (en) * 1983-03-09 1984-09-14 Hokkai Can Co Ltd Method and device for inspecting internal pressure of tightly sealed-up vessel
US5353631A (en) * 1992-05-29 1994-10-11 Benthos, Inc. Analyzing internal pressure of a sealed container using frequency spectra
JP2005170442A (en) * 2003-12-10 2005-06-30 Mitsubishi Materials Corp Method and device for inspecting internal pressure of can
JP2005172759A (en) * 2003-12-15 2005-06-30 Mitsubishi Materials Corp Internal pressure inspection method for can
JP2006153496A (en) * 2004-11-25 2006-06-15 Toyo Seikan Kaisha Ltd Hammering test device and hammering test method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781514A (en) * 2019-04-02 2019-05-21 山西省计量科学研究院 A kind of explosion-proof test tank
CN109781514B (en) * 2019-04-02 2024-03-22 山西省检验检测中心(山西省标准计量技术研究院) Explosion-proof test tank

Also Published As

Publication number Publication date
JP6439387B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US7984649B2 (en) Panel inspection apparatus and inspection method
US8448517B2 (en) Sheet processing device
JP6439387B2 (en) Percussion apparatus and percussion method
JP3132446U (en) Egg inspection equipment
US20120205363A1 (en) Canned product heating apparatus
JP6701891B2 (en) Percussion device and percussion method
JP4364623B2 (en) Can internal pressure inspection method and internal pressure inspection device
JP6687235B2 (en) Detection device and detection method
JP6169341B2 (en) Apparatus and method for checking internal pressure of sealed container
JP4492311B2 (en) Percussion apparatus and percussion method
US20220150620A1 (en) Acoustic inspection apparatus and acoustic inspection method
JP2005172605A (en) Method and apparatus for testing internal pressure, and carton for containing can
JP2017106729A (en) Device for inspecting internal pressure of hermetically sealed container
JP4854989B2 (en) Internal pressure inspection method and internal pressure inspection device
JPH1194685A (en) Method and device for internal pressure inspection of sealed container
JP2003040235A (en) Sealable can
JP2005172606A (en) Apparatus for measuring internal pressure
WO2017065036A1 (en) Internal pressure inspection system
JP5735319B2 (en) Double lid can lid
JP2005172759A (en) Internal pressure inspection method for can
CN113039420A (en) Leak detection
EP0689671A1 (en) Ultrasonic leak detection
JP2011255922A (en) Packaging cushioning material for can
JP2539918Y2 (en) Can end wall
JP2005055421A (en) Internal pressure testing method and system for sealed vessel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150