JP2016082554A - Frequency sharing method of wireless lan and narrow band communication system - Google Patents

Frequency sharing method of wireless lan and narrow band communication system Download PDF

Info

Publication number
JP2016082554A
JP2016082554A JP2014223609A JP2014223609A JP2016082554A JP 2016082554 A JP2016082554 A JP 2016082554A JP 2014223609 A JP2014223609 A JP 2014223609A JP 2014223609 A JP2014223609 A JP 2014223609A JP 2016082554 A JP2016082554 A JP 2016082554A
Authority
JP
Japan
Prior art keywords
dsrc
wireless lan
rssi
communication system
presence notification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014223609A
Other languages
Japanese (ja)
Inventor
満澄 大山
Misumi Oyama
満澄 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fair Away kk
Original Assignee
Fair Away kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fair Away kk filed Critical Fair Away kk
Priority to JP2014223609A priority Critical patent/JP2016082554A/en
Publication of JP2016082554A publication Critical patent/JP2016082554A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for sharing the same frequency band between wireless LAN(LAN:Local Area Network) and a narrow band communication system (DSRC:Dedicated Short-Range Communication System).SOLUTION: A communication control unit 16 controls so that DSRC existence notification means 20 emits radio waves always continuously or periodically, notifies the existence of DSRC to the surrounding wireless LAN, a wireless LAN10 receives the radio waves by receiving means 11, RSSI means 13 detects the RSSI value of the radio waves, and when a detection value exceeds a predetermined threshold, waits for radio wave transmission from transmission means 14 via a modulation unit 15, for a certain time.SELECTED DRAWING: Figure 1

Description

本発明は、無線LAN(LAN:Local Area Network)と狭域通信システム(以下、DSRC:Dedicated Short−Range Communication System)とが、同一の周波数帯域を共用するための方法に関するものである。  The present invention relates to a method for a wireless LAN (LAN: Local Area Network) and a narrow area communication system (hereinafter referred to as DSRC: Dedicated Short-Range Communication System) to share the same frequency band.

無線LANの干渉防止技術として、CS/CCA(CS/CCA:Carrier Sense/Clear Channel Assessment)、NAV(NAV:Network Allocation Vector)及びDFS(DFS:Dynamic Frequency Selection)が知られている。  As a wireless LAN interference prevention technique, CS / CCA (CS / CCA: Carrier Sense / Clear Channel Assessment), NAV (NAV: Network Allocation Vector), and DFS (DFS: Dynamic Frequency Selection) are known.

CS/CCAは、入力された他の無線LANからの信号中のプリアンブルを検出し、その時点で無線通信回線をビジーとし、プリアンブルに続く信号をデコードし電文中で指示された長さのデータを受信する期間、回線ビジーを維持する。もし、信号を正常に受信できなかったときは回線をアイドルに戻すという機能で、回線ビジーの期間、自局は送信を待機する。  CS / CCA detects the preamble in the signal from the other wireless LAN inputted, makes the wireless communication line busy at that time, decodes the signal following the preamble, and reads the data of the length indicated in the telegram. Keep line busy for the period of reception. If the signal cannot be received normally, the function of returning the line to the idle state allows the own station to wait for transmission during the line busy period.

NAVは、仮想的なCCA機能であり、自局の回線使用の予定時間を通信電文の中に含めて通信相手局に伝えるものである。通信電文は、RTS(RTS:Request To Send)フレームまたはCTS(CTS:Clear To Send)フレームで運ばれる。  The NAV is a virtual CCA function, and includes the scheduled time for using the line of the own station in a communication message, and transmits it to the communication partner station. The communication message is carried in an RTS (RTS: Request To Send) frame or a CTS (CTS: Clear To Send) frame.

CS/CCAとNAVは、無線LAN相互間の干渉防止技術であり、無線LANとDSRCとの間で周波数共用を行おうとしたとき、変調方式及び通信プロトコルが異なるDSRCには適用できないという問題があった。  CS / CCA and NAV are technologies for preventing interference between wireless LANs, and when frequency sharing is attempted between wireless LANs and DSRCs, there is a problem that they cannot be applied to DSRCs with different modulation schemes and communication protocols. It was.

また、DFSは、無線LANが空港に設置されたドップラー気象レーダーに干渉を与えることを防止する技術で、あるチャネルで無線LANが電波を送信する前に該チャネルでレーダー信号の有無を検出し、検出した時は別のチャネルへ移行するというものである。しかし、検出スレッショルドが−62dBm EIRP(EIRP:Equivalent Isotropic Radiation Power)程度と高く、かつ検出確率が約60%以上でよいとされており100%であることが規定されていない。このため、無線LANとDSRCとの間で周波数共用を行おうとしたとき、微弱なDSRC信号を必ずしも検出できないという問題があった。  DFS is a technology that prevents the wireless LAN from interfering with Doppler weather radar installed at the airport. Before the wireless LAN transmits radio waves on a certain channel, the presence or absence of a radar signal is detected on the channel. When detected, it shifts to another channel. However, the detection threshold is as high as −62 dBm EIRP (EIRP: Equivalent Isotropy Radiation Power), and the detection probability is said to be about 60% or more, and it is not specified to be 100%. For this reason, there is a problem that a weak DSRC signal cannot always be detected when frequency sharing is attempted between the wireless LAN and the DSRC.

特開2009−033628号公報  JP 2009-033628 A 特開2011−004002号公報  JP 2011-004002 A 特開2011−004003号公報  JP 2011-004003 A 特開2013−176015号公報  JP2013-176015A

IEEE Std 802.11、IEEE(IEEE:The Institute of Electrical and Electronics Engineers,Inc.)、2012年  IEEE Std 802.11, IEEE (IEEE: The Institute of Electrical and Electronics Engineers, Inc.), 2012. 狭域通信(DSRC)システム標準規格 ARIB STD−T75、(社)電波産業会 2001年策定  Narrow-area communication (DSRC) system standard ARIB STD-T75, Japan Radio Industry Association 2001 DSRCシステム基地局設置のガイドライン ITS FORUM RC−003、ITS情報通信システム推進会議 2003年策定  DSRC System Base Station Installation Guidelines ITS FORUM RC-003, ITS Information and Communication Systems Promotion Conference 2003

解決しようとする問題点は、無線LANとDSRCを同一周波数帯で使用すると互いの電波が干渉することにより、周波数共用ができない点である。  The problem to be solved is that when the wireless LAN and the DSRC are used in the same frequency band, the radio waves interfere with each other, so that frequency sharing cannot be performed.

課題を解決するに当たり、無線LANとDSRCの基本的条件を考慮に入れる。すなわち、DSRCは、高速道路等のノンストップ料金収受システム(以下、ETC:Electronic Toll Collection System)やETC2.0と呼ばれるサービス等に実用化されている社会インフラストラクチャであり、無線通信の回線品質としてQoS(QoS:Quality of Service)が要求されるシステムである。具体的には、通信ゾーン内のビットエラー率(以下、BER:Bit Error Rate)が1x10E−5以下であることが非特許文献2で規定されており、無線LANとの電波干渉によりBERが劣化することは許容されない。
他方、無線LANは、回線品質がベストエフォト方式であり、かつ、総務省の周波数割当計画脚注J174、J179、J183等で、他の免許を受けた無線局からの干渉保護を求めてはならない、と定められている。
In solving the problem, the basic conditions of wireless LAN and DSRC are taken into consideration. In other words, DSRC is a social infrastructure that has been put into practical use for non-stop toll collection systems (hereinafter referred to as ETC: Electronic Toll Collection System) such as expressways and services called ETC 2.0. This is a system that requires QoS (QoS: Quality of Service). Specifically, it is specified in Non-Patent Document 2 that the bit error rate (hereinafter referred to as BER: Bit Error Rate) in the communication zone is 1 × 10E-5 or less, and BER is degraded due to radio wave interference with the wireless LAN. It is not allowed to do.
On the other hand, the wireless LAN has the best ephoto system for line quality and should not seek interference protection from other licensed radio stations in the frequency allocation plan footnotes J174, J179, J183, etc. of the Ministry of Internal Affairs and Communications. It is stipulated.

本発明は、これら基本条件に基づき、無線LANとDSRCの運用を空間的に分離するようにしたもので、DSRCの路側無線装置を中心とした一定の領域をDSRC運用に限定し、その他の領域ではDSRCと同一の周波数帯を無線LANが使用可能とする。  The present invention spatially separates the operation of the wireless LAN and the DSRC based on these basic conditions, limits a certain area centered on the roadside radio device of the DSRC to the DSRC operation, and other areas. Then, the wireless LAN can use the same frequency band as DSRC.

この目的のために、DSRCは、DSRCの路側無線装置またはその付近に設置され、そこから常時連続的または周期的に電波を送信するDSRC存在通知手段を備え、無線LANには、前記DSRC存在通知手段から送信された電波を受信する受信手段と、受信した信号の信号強度(以下、RSSI:Received Signal Strength Indicator)を検出するRSSI手段とを備え、前記RSSI手段が検出したRSSI値が予め決められたスレッショルドを超えたとき、無線LANは、以後一定時間無線LANからの電波送信を待機させることとし、待機時間中に再びRSSI値が前記スレッショルドを超えたときは待機時間を更新することを最も主要な特徴とする。  For this purpose, the DSRC is installed in or near the DSRC roadside wireless device, and includes DSRC presence notification means for continuously and periodically transmitting radio waves therefrom, and the wireless LAN includes the DSRC presence notification. Receiving means for receiving radio waves transmitted from the means, and RSSI means for detecting the signal strength of the received signal (hereinafter referred to as RSSI: Received Signal Strength Indicator), and the RSSI value detected by the RSSI means is predetermined. When the threshold is exceeded, the wireless LAN waits for radio transmission from the wireless LAN for a certain time thereafter, and when the RSSI value exceeds the threshold again during the waiting time, the most important thing is to update the waiting time. Features.

本発明は、無線LANとDSRCの運用可能領域を空間的に分離するため、無線LANとDSRCを同一周波数帯で運用できる。すなわち、周波数共用を可能とする。  Since the present invention spatially separates the operable area of the wireless LAN and DSRC, the wireless LAN and DSRC can be operated in the same frequency band. That is, frequency sharing is possible.

また、本発明は、DSRCが新しい場所に増設されることがあっても、増設されたDSRCの路側無線装置またはその付近にDSRC存在通知手段も増設することにより、自動的にDSRCの運用領域が設定され、無線LANとDSRCとの周波数共用が可能な状態を維持できる。  Further, according to the present invention, even if the DSRC is added to a new location, the DSRC operation notification area is automatically increased by adding the DSRC presence notification means in the added DSRC roadside wireless device or in the vicinity thereof. It is set, and a state where frequency sharing between the wireless LAN and the DSRC is possible can be maintained.

本発明の周波数共用方法の構成図である。(実施例1)  It is a block diagram of the frequency sharing method of this invention. Example 1 変調波とCWの送信シーケンスを示す説明図である。(実施例1)  It is explanatory drawing which shows the transmission sequence of a modulated wave and CW. Example 1 DSRC存在通知手段の送信EIRPを設定する手順の説明図である。(実施例2)  It is explanatory drawing of the procedure which sets the transmission EIRP of a DSRC presence notification means. (Example 2) DSRC存在通知手段の構成図である。(実施例2)  It is a block diagram of a DSRC presence notification means. (Example 2) DSRC存在通知手段の構成図である。(実施例3)  It is a block diagram of a DSRC presence notification means. (Example 3) 空中線スイッチ制御の説明図である。(実施例3)  It is explanatory drawing of antenna switch control. (Example 3) 無線LANとDSRCとの周波数関係の説明図である。  It is explanatory drawing of the frequency relationship between wireless LAN and DSRC.

以下に、図面を参照しつつ本発明の好ましい実施の形態を示す。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の構成図である。10は無線LAN、11は無線LANの受信手段、12は復調手段、13はRSSI手段、14は送信手段、15は変調部、16は無線LANの通信制御部であり、20はDSRC存在通知手段、21はDSRC存在通知手段の送信手段、22は変調部、23は受信手段、24は復調部、25はDSRC存在通知手段の通信制御部である。  FIG. 1 is a block diagram of the present invention. 10 is a wireless LAN, 11 is a wireless LAN receiving means, 12 is a demodulation means, 13 is an RSSI means, 14 is a transmission means, 15 is a modulation section, 16 is a wireless LAN communication control section, and 20 is a DSRC presence notification means. , 21 is a transmission unit of the DSRC presence notification unit, 22 is a modulation unit, 23 is a reception unit, 24 is a demodulation unit, and 25 is a communication control unit of the DSRC presence notification unit.

DSRC存在通知手段20は、DSRC路側無線装置を兼ねたもので、DSRC通信時に変調部22で変調信号を生成し、送信手段21から電波を送信する。受信系は、受信手段23と復調部24より成り、通信制御部25によって送受信の通信制御が行われる。  The DSRC presence notification unit 20 also serves as a DSRC roadside wireless device. The DSRC presence notification unit 20 generates a modulation signal by the modulation unit 22 and transmits radio waves from the transmission unit 21 during DSRC communication. The reception system includes a reception unit 23 and a demodulation unit 24, and transmission / reception communication control is performed by the communication control unit 25.

本発明では、DSRC存在通知手段の変調部22が変調信号を生成していない時間窓では、図2に示すようにCW(連続波)を生成するように通信制御部25が変調部22へ指示する。この結果、送信手段21から常時変調波またはCWが送信されることを特徴とする。ここで、CW周波数は、変調信号の中心周波数と同じとする。  In the present invention, the communication control unit 25 instructs the modulation unit 22 to generate a CW (continuous wave) as shown in FIG. 2 in a time window in which the modulation unit 22 of the DSRC presence notification unit does not generate a modulation signal. To do. As a result, a modulated wave or CW is constantly transmitted from the transmission means 21. Here, the CW frequency is the same as the center frequency of the modulation signal.

他方、無線LAN10は、受信手段11で電波を受信し、復調部12で復調し、受信データを無線LANの通信制御部16へ伝送する。送信データは通信制御部16で生成され、変調部15で変調された後、送信手段14から電波で送信される。RSSI手段13は、少なくともDSRCとの周波数共用帯域にあっては、DSRC存在通知手段20からの受信信号のRSSI値を検出し、通信制御部16へ出力する。これらの構成要素は、通常の無線LANと同じである。  On the other hand, the wireless LAN 10 receives the radio wave by the receiving unit 11, demodulates it by the demodulation unit 12, and transmits the received data to the communication control unit 16 of the wireless LAN. The transmission data is generated by the communication control unit 16, modulated by the modulation unit 15, and then transmitted by radio waves from the transmission unit 14. The RSSI unit 13 detects the RSSI value of the received signal from the DSRC presence notification unit 20 and outputs it to the communication control unit 16 at least in the frequency sharing band with the DSRC. These components are the same as those of a normal wireless LAN.

前記RSSI値の検出は、DSRCのダウンリンクチャネル(5.775〜5.805GHz)の帯域が含まれる無線LANチャネル、すなわち非特許文献1の呼称でチャネル幅20MHz/chのときの157チャネルと161チャネルの両方のチャネルを時分割で行う(図7参照)。  The RSSI value is detected by a wireless LAN channel including a DSRC downlink channel (5.775-5.805 GHz), that is, a 157 channel and a 161 channel when the channel width is 20 MHz / ch in the name of Non-Patent Document 1. Both channels are performed in a time division manner (see FIG. 7).

前記RSSI値を検出するタイミングは、無線LANがビーコンフレームやプローブリクエストフレーム等のスキャンフレームを送信する前のタイミングとし、例として10秒間である。更に、無線LANが個別データを送信する前のDIFS(Distributed Interframe Space)+バックオフ時間内でもRSSI値を検出する。  The timing for detecting the RSSI value is a timing before the wireless LAN transmits a scan frame such as a beacon frame or a probe request frame, and is 10 seconds as an example. Further, the RSSI value is detected even within the DIFS (Distributed Interframe Space) + back-off time before the wireless LAN transmits individual data.

本発明では、無線LANのRSSIスレッショルドを、例として、チャネル幅20MHz/chで−82dBm EIRPとする。  In the present invention, the RSSI threshold of the wireless LAN is set to -82 dBm EIRP with a channel width of 20 MHz / ch as an example.

RSSI手段13のRSSI値が前記両チャネルのうちどちらのチャネルでも前記RSSIスレッショルドを越えなければ、無線LANはDSRC帯域(5.77〜5.85GHz)で送信してよい。  If the RSSI value of the RSSI means 13 does not exceed the RSSI threshold in any of the two channels, the wireless LAN may transmit in the DSRC band (5.77-5.85 GHz).

RSSI手段13のRSSI値が前記両チャネルのうちどちらかのチャネルで前記RSSIスレッショルドを越えたとき、無線LANの通信制御部16は回線ビジーと判断し、前記DSRC帯域と重なる無線LANチャネル(前記非特許文献1の呼称で157、161、165、169チャネル)で送信待機状態に入る(図7参照)。待機時間は、例として3秒間とする。無線LANは待機時間中もRSSI検出を実行し、再びRSSI値がスレッショルドを超えたときは、その時点から再び3秒間送信待機するように変調部15へのデータ送出を制御する。  When the RSSI value of the RSSI means 13 exceeds the RSSI threshold in one of the two channels, the wireless LAN communication control unit 16 determines that the line is busy, and the wireless LAN channel that overlaps the DSRC band (the non-channel) The transmission standby state is entered at 157, 161, 165, and 169 channels under the name of Patent Document 1 (see FIG. 7). The waiting time is 3 seconds as an example. The wireless LAN performs RSSI detection even during the standby time, and when the RSSI value exceeds the threshold again, the wireless LAN controls data transmission to the modulation unit 15 so as to wait for 3 seconds from that point again.

無線LAN側の本機能は、非特許文献1の18.3.10.6節に記載されているCCA/ED(Clear Channel Assessment/Energy Detection)機能を改良したものである。
CCA/ED機能とは、受信チャネルに存在する周囲のエネルギー、干渉信号、デコード不能な無線LANエネルギー等を検出する能力をいう。
This function on the wireless LAN side is an improvement of the CCA / ED (Clear Channel Assessment / Energy Detection) function described in Section 18.3.10.6 of Non-Patent Document 1.
The CCA / ED function refers to the ability to detect ambient energy, interference signals, undecodeable wireless LAN energy, etc. present in the reception channel.

改良点は、第1に、CCA/EDがオプションとされている点をDSRCとの周波数共用に当たって必須としたこと、第2に、スレッショルドが−72dBmであったものを更に感度を上げて、例として−82dBmとしたこと、第3に、RSSI検出値がスレッショルドを超えたときに送信待機時間の規定を設けたこと、の3点である。  The improvement point is that CCA / ED is an option that is essential for frequency sharing with DSRC. Second, the threshold is -72 dBm. And -82 dBm, and third, the provision of the transmission standby time when the RSSI detection value exceeds the threshold.

なお、DSRCは、路側無線装置と車載器との間で双方向通信を行うが、車載器は自ら独自に電波を送信することはなく、路側無線装置が生成するDSRC通信ゾーン内で、路側無線装置から所定の変調形式の信号を、所定の通信プロトコルで受信したときに限り、電波を送信することが非特許文献2で規定されている。従って、車載器が図2に示されたDSRC存在通知手段からのCWを受信しても誤動作することはなく、また、車両に搭載された車載器がDSRC通信ゾーンの外部でDSRCと同一周波数帯の無線LANの電波を受信しても、そこで車載器に誤動作が生じないことに留意する。  DSRC performs two-way communication between the roadside wireless device and the vehicle-mounted device. However, the vehicle-mounted device does not transmit radio waves by itself, and the roadside wireless device does not transmit a radio wave by itself in the DSRC communication zone generated by the roadside wireless device. Non-Patent Document 2 stipulates that radio waves be transmitted only when a signal in a predetermined modulation format is received from a device using a predetermined communication protocol. Therefore, even if the in-vehicle device receives the CW from the DSRC presence notification means shown in FIG. 2, it does not malfunction, and the on-vehicle device mounted on the vehicle has the same frequency band as the DSRC outside the DSRC communication zone. Note that even if a wireless LAN radio wave is received, no malfunction occurs in the vehicle-mounted device.

また、無線LANの運用形態として、インフラストラクチャモード、アドホックモードあるいはWi−Fiテザリングといった運用形態があるが、本発明は、これらすべての運用形態の無線LAN機器に適用する。  In addition, there are operation modes such as an infrastructure mode, an ad hoc mode, and Wi-Fi tethering as the operation mode of the wireless LAN, but the present invention is applied to wireless LAN devices of all these operation modes.

次に、送信手段21の送信EIRPを設定する手順を図3により説明する。
図3は、無線LANとDSRC存在通知手段の両者を含む垂直断面図である。今の場合、無線LANが与干渉局であり、DSRCが被干渉局である。
Next, the procedure for setting the transmission EIRP of the transmission means 21 will be described with reference to FIG.
FIG. 3 is a vertical sectional view including both the wireless LAN and the DSRC presence notification means. In this case, the wireless LAN is an interfering station and the DSRC is an interfered station.

DSRCの回線設計においては、DSRC通信ゾーンエッヂ(図3のC地点)において希望波の最小受信電力は、車載器と路側無線装置の別及び路側無線装置のクラスによって異なり、車載器にあっては−65dBm、路側無線装置のクラス1にあっては−65dBm、クラス2にあっては−75dBmと非特許文献2及び非特許文献3で規定されている。この電力を図3ではP3で示した。  In the DSRC circuit design, the minimum received power of the desired wave at the DSRC communication zone edge (point C in FIG. 3) differs depending on whether the vehicle-mounted device is a roadside device or the class of the roadside wireless device. Non-patent document 2 and non-patent document 3 specify −65 dBm, −65 dBm for class 1 of roadside wireless devices, and −75 dBm for class 2. This electric power is indicated by P3 in FIG.

更に、干渉波が存在する場合でもDSRC通信ゾーン内で所要BER(1x10E−5)を確保するために、希望波対干渉波比C/I(C/I:Carrier−to−Interference ratio)として21dBを確保することが、同じ非特許文献3で規定されている。このことから、DSRC通信ゾーンエッヂで許容できる干渉波電力はP3−21(dB)である。  Furthermore, in order to ensure the required BER (1 × 10E-5) in the DSRC communication zone even in the presence of an interference wave, the desired wave-to-interference wave ratio C / I (C / I) is 21 dB as a carrier-to-interference ratio. Is ensured by the same Non-Patent Document 3. Therefore, the interference wave power allowable at the DSRC communication zone edge is P3-21 (dB).

DSRC通信ゾーンエッヂ(図3のC地点)において、DSRC受信機入力電力としてP3−21(dB)を与える受信空中線前面における受信EIRPをP4と書くと、これは次の数式1で与えられる。単位はdBm EIRPである。  At the DSRC communication zone edge (point C in FIG. 3), when the received EIRP in front of the reception antenna that gives P3-21 (dB) as the DSRC receiver input power is written as P4, this is given by the following equation (1). The unit is dBm EIRP.

Figure 2016082554
Figure 2016082554

ここで、Gは、DSRC受信空中線の水平方向指向性利得を表し、単位はdBである。Gは、受信空中線の絶対利得及び指向性特性並びに受信空中線が空間に設置されたときのボアサイト方向の向きによって決定される。無線LANからDSRCへの干渉波は、ほぼ水平方向からDSRCへ入射されるので、DSRCの水平方向指向性利得が関与する。この受信EIRPを図3のP4で示した。  Here, G represents the horizontal directivity gain of the DSRC reception antenna, and its unit is dB. G is determined by the absolute gain and directivity characteristics of the receiving antenna and the orientation of the boresight direction when the receiving antenna is installed in space. Since the interference wave from the wireless LAN to the DSRC is incident on the DSRC from almost the horizontal direction, the horizontal directionality gain of the DSRC is involved. This received EIRP is indicated by P4 in FIG.

他方、無線LANの最大送信EIRPは、法令(総務省令無線設備規則)により5GHz帯OFDM(OFDM:Orthogonal Frequency Division Multiplexing)方式にあっては電力スペクトル密度が17dBm/MHz EIRPと定められている。無線LANをDSRCに対する干渉源と位置付けたとき、DSRCの受信機帯域幅が4MHzであることから、干渉源の最大送信EIRPは23dBm EIRP相当となる。これを図3のP2で示した。  On the other hand, the maximum transmission EIRP of the wireless LAN is determined to be 17 dBm / MHz EIRP in the 5 GHz band OFDM (Orthogonal Frequency Division Multiplexing) system by law (Ministry of Internal Affairs and Communications ordinance of radio equipment). When the wireless LAN is positioned as an interference source for DSRC, since the DSRC receiver bandwidth is 4 MHz, the maximum transmission EIRP of the interference source is equivalent to 23 dBm EIRP. This is indicated by P2 in FIG.

無線LANから前記最大送信EIRPのP2で送信したとき、DSRC通信ゾーンエッヂで受信EIRPが前記P4になるための伝搬損失L1は、次の数式2で与えられる。単位はdBである。  When transmitting from the wireless LAN at P2 of the maximum transmission EIRP, the propagation loss L1 for the reception EIRP to become P4 at the DSRC communication zone edge is given by the following Equation 2. The unit is dB.

Figure 2016082554
Figure 2016082554

次に、この伝搬損失L1から、伝搬損失に対応する伝搬距離(図3のD1)を求める。
次に、伝搬距離D1+D2に対応する伝搬損失を求め、これをL2とする。ここで、図3のD2は、DSRC通信ゾーン半径を表し、非特許文献3で30mと規定されている。
Next, a propagation distance (D1 in FIG. 3) corresponding to the propagation loss is obtained from this propagation loss L1.
Next, a propagation loss corresponding to the propagation distance D1 + D2 is obtained, and this is set as L2. Here, D2 in FIG. 3 represents a DSRC communication zone radius and is defined as 30 m in Non-Patent Document 3.

伝搬距離がD1+D2の条件で、DSRC存在通知手段から送信された電波を無線LANが受信したとき、無線LANの受信空中線前面における受信EIRPを、前記RSSIスレッショルド電力(これを図3ではP5で示した。P5は前記−82dBm EIRPである。)にするために必要なDSRC存在通知手段の送信EIRPをP1と書くと、これは次の数式3で与えられる。単位はdBm EIRPである。  When the wireless LAN receives the radio wave transmitted from the DSRC presence notification means under the condition that the propagation distance is D1 + D2, the received EIRP at the front surface of the reception antenna of the wireless LAN is represented by the RSSI threshold power (this is indicated by P5 in FIG. 3). When the transmission EIRP of the DSRC presence notification means necessary for making P5 is −82 dBm EIRP is written as P1, this is given by the following Equation 3. The unit is dBm EIRP.

Figure 2016082554
Figure 2016082554

この送信EIRPを図3のP1で示した。
以上がDSRC存在通知手段20内の送信手段21の送信EIRPを設定する手順である。
This transmission EIRP is indicated by P1 in FIG.
The above is the procedure for setting the transmission EIRP of the transmission means 21 in the DSRC presence notification means 20.

図4は、DSRC存在通知手段20の他の1実施例の構成図である。31は空中線、32はCW送信機、33はCW発生器である。  FIG. 4 is a configuration diagram of another embodiment of the DSRC presence notification means 20. 31 is an antenna, 32 is a CW transmitter, and 33 is a CW generator.

本実施例では、DSRCの路側無線装置とは別に、路側無線装置付近にDSRC存在通知手段20を設置し、そこから常時連続的にCW信号を送信する。CW発生器33はCW信号を生成し、生成されたCW信号は送信機32で増幅され、空中線31から送信される。空中線の指向性は、水平面内無指向性とする。  In the present embodiment, a DSRC presence notification means 20 is installed in the vicinity of the roadside wireless device separately from the roadside wireless device of DSRC, and a CW signal is constantly transmitted from there. The CW generator 33 generates a CW signal, and the generated CW signal is amplified by the transmitter 32 and transmitted from the antenna 31. The directivity of the antenna is omnidirectional in the horizontal plane.

CW発生器33が生成するCW周波数は、前記DSRC帯域(5.77〜5.85GHz)の外に設定され、例として5.745GHzである。これは、非特許文献1の呼称で、チャネル幅20MHz/chのときの149チャネルの中心周波数に相当する(図7参照)。また、無線LAN側は、これに対応して該CW周波数のチャネルでRSSI検出を行う。
なお、あるDSRC存在通知手段が生成するCWゾーンが、別のDSRC存在通知手段が生成するCWゾーンと重なるときは、互いにCW周波数をずらして設定する。
この他は、実施例1に同じである。
The CW frequency generated by the CW generator 33 is set outside the DSRC band (5.77 to 5.85 GHz), and is 5.745 GHz as an example. This is the name of Non-Patent Document 1 and corresponds to the center frequency of 149 channels when the channel width is 20 MHz / ch (see FIG. 7). Correspondingly, the wireless LAN side performs RSSI detection on the channel of the CW frequency.
When a CW zone generated by one DSRC presence notification unit overlaps with a CW zone generated by another DSRC presence notification unit, the CW frequencies are set to be shifted from each other.
The rest is the same as in the first embodiment.

本実施例では、前記実施例1において、DSRC存在通知手段20からの送信EIRPがDSRC変調波の送信電力によって制約を受けるのに比し、自由に設定できる特徴がある。前記実施例1は、路側無線装置の希望波最小受信電力が−65dBm(クラス1)で空中線の指向性が狭いとき、すなわち数式1の受信EIRP(P4)が大きいときは有効だが、希望波最小受信電力が−75dBm(クラス2)で空中線の指向性が広いとき、すなわち数式1の受信EIRP(P4)が小さいときはDSRC存在通知手段20の送信EIRPが不足することがある。そのようなとき、本実施例は効果がある。  The present embodiment is characterized in that the transmission EIRP from the DSRC presence notification means 20 in the first embodiment can be freely set as compared with the case where the transmission EIRP is restricted by the transmission power of the DSRC modulated wave. The first embodiment is effective when the minimum desired wave reception power of the roadside apparatus is −65 dBm (class 1) and the antenna directivity is narrow, that is, when the reception EIRP (P4) of Equation 1 is large, the desired wave minimum When the reception power is -75 dBm (class 2) and the antenna directivity is wide, that is, when the reception EIRP (P4) of Equation 1 is small, the transmission EIRP of the DSRC presence notification means 20 may be insufficient. In such a case, this embodiment is effective.

また、ETC料金所ではレーン毎に路側無線装置が設置されるが、本実施例を適用すると、ETC料金所付近に1基のDSRC存在通知手段20を設ければ十分であるという効果がある。  In addition, a roadside radio apparatus is installed for each lane at the ETC toll booth. However, when this embodiment is applied, it is sufficient to provide one DSRC presence notification means 20 near the ETC toll booth.

図5は、DSRC存在通知手段20の他の1実施例の構成図である。45aはCW1発生器、44aはCW1送信機、42aはスイッチ1、45bはCW2発生器、44bはCW2送信機、42bはスイッチ2、43はスイッチ制御部、41は空中線群である。  FIG. 5 is a configuration diagram of another embodiment of the DSRC presence notification means 20. 45a is a CW1 generator, 44a is a CW1 transmitter, 42a is a switch 1, 45b is a CW2 generator, 44b is a CW2 transmitter, 42b is a switch 2, 43 is a switch control unit, and 41 is an antenna group.

本実施例は、2つのCW発生器45a、45bを備え、生成されたCWはそれぞれ送信機44a、44bで増幅された後、スイッチ42a、42bにより空中線群41の中のそれぞれ1個の空中線へ接続され、該空中線から送信される。ここで、スイッチ1(42a)、スイッチ2(42b)は、スイッチ制御部43で制御される。  This embodiment includes two CW generators 45a and 45b, and the generated CWs are amplified by the transmitters 44a and 44b, respectively, and then sent to one antenna in the antenna group 41 by the switches 42a and 42b. Connected and transmitted from the antenna. Here, the switch 1 (42 a) and the switch 2 (42 b) are controlled by the switch control unit 43.

図6は、空中線群41とスイッチ1(42a)、スイッチ2(42b)の制御関係を図示したものである。空中線群の各空中線とスイッチ1(42a)、スイッチ2(42b)の端子を1対1対応で接続する。図6では空中線aを例として一部だけを図示している。  FIG. 6 illustrates the control relationship between the antenna group 41 and the switch 1 (42a) and the switch 2 (42b). Each antenna in the antenna group is connected to the terminals of the switch 1 (42a) and the switch 2 (42b) in a one-to-one correspondence. FIG. 6 shows only a part of the antenna a.

空中線群の各空中線(図6のa等)は、水平面内の円周上に等間隔に配置される。各空中線のボアサイト方向は、円中心から放射状に外部へ向かう方向で、かつ水平方向へ向ける。各空中線には指向性を持たせるが、空中線群として擬似的に水平面内無指向性に近い指向性を持たせる。  Each aerial line (such as a in FIG. 6) of the aerial line group is arranged at equal intervals on the circumference in the horizontal plane. The bore sight direction of each antenna line is a direction radially outward from the center of the circle, and is directed in the horizontal direction. Each aerial line is given directivity, but as a group of aerial lines, it has a directivity close to omnidirectionality in a horizontal plane.

スイッチ制御部43は、CW1送信機44aの出力をスイッチ1(42a)で空中線群41の各空中線へ順次接続する。ここで、各空中線への接続時間は同一とし、周期は例として0.3秒である。
CW2送信機44bの出力も同様にスイッチ2(42b)で切り替えるが、CW1送信機が接続されている空中線のほぼ反対側に位置する空中線へ接続するように、スイッチ制御部43が制御する。従って、ある方向へCW1の電波が送信されているとき、その反対側の空中線からはCW2の電波が送信されるように制御される。
The switch control unit 43 sequentially connects the output of the CW1 transmitter 44a to each antenna of the antenna group 41 with the switch 1 (42a). Here, the connection time to each antenna is the same, and the period is 0.3 seconds as an example.
Similarly, the output of the CW2 transmitter 44b is switched by the switch 2 (42b), but the switch control unit 43 controls to connect to the antenna located on the substantially opposite side of the antenna to which the CW1 transmitter is connected. Therefore, when the CW1 radio wave is transmitted in a certain direction, control is performed so that the CW2 radio wave is transmitted from the antenna on the opposite side.

CW1とCW2の周波数は、互いに異なるように設定する。
空中線群からは常時連続的に電波が送信されるが、水平面内のある特定方向へは周期的に電波が送信される。
The frequencies of CW1 and CW2 are set to be different from each other.
Radio waves are constantly transmitted from the antenna group, but the radio waves are periodically transmitted in a specific direction in the horizontal plane.

実環境の電波伝搬にあっては、路面反射や建造物反射等により、無線LANとDSRC存在通知手段がある離隔距離になったとき、その地点で局所的に、直接波と反射波が同振幅で逆相になることがある。そのとき、DSRC存在通知手段からの電波は無線LANに届かなくなる。これは、電波伝搬において2波モデルとして知られている事象である。本実施例は、前記実施例2に比し、そのような状況においても空間ダイバーシティ及び周波数ダイバーシティとして作用し、DSRC存在通知手段からの電波を確実に無線LANへ届けられることを特徴とする。
この他は、前記実施例2に同じである。
In radio wave propagation in the actual environment, when the distance between the wireless LAN and DSRC presence notification means becomes a distance due to road surface reflection or building reflection, the direct wave and the reflected wave have the same amplitude locally at that point. May be out of phase. At that time, the radio wave from the DSRC presence notification means does not reach the wireless LAN. This is an event known as a two-wave model in radio wave propagation. Compared with the second embodiment, the present embodiment is characterized in that even in such a situation, it acts as a spatial diversity and a frequency diversity, and the radio waves from the DSRC presence notification means can be reliably delivered to the wireless LAN.
Other than this, the second embodiment is the same as the second embodiment.

このように、DSRC存在通知手段を設け、そこから常時連続的または周期的に信号を送信し、他方、無線LAN側は、RSSI手段が該信号のレベルを検出し、RSSI値が予め決められたスレッショルドを超えた場合に一定時間送信を待機し、待機時間中に再びRSSI値が前記スレッショルドを超えたときは待機時間を更新するので、DSRCの所要BERを維持することができ、よって無線LANとDSRCを同一の周波数帯域で共用できるという効果がある。    In this way, the DSRC presence notification means is provided, and a signal is transmitted continuously or periodically from there. On the other hand, on the wireless LAN side, the RSSI means detects the level of the signal, and the RSSI value is predetermined. When the threshold is exceeded, transmission is waited for a certain period of time, and when the RSSI value exceeds the threshold again during the waiting time, the waiting time is updated, so that the required BER of DSRC can be maintained. There is an effect that DSRC can be shared in the same frequency band.

無線LAN以外の他の無線通信システムに対しても、無線LANと該無線通信システムのそれぞれの送信待機時間に長短の差を設けることによって、無線LANのみならず他の無線通信システムに対する周波数共用にも適用できる。  For other wireless communication systems other than the wireless LAN, by providing a long and short difference in the transmission standby time between the wireless LAN and the wireless communication system, frequency sharing is possible not only for the wireless LAN but also for other wireless communication systems. Is also applicable.

10 無線LAN
11 無線LAN受信手段
12 無線LAN復調部
13 RSSI手段
14 無線LAN送信手段
15 無線LAN変調部
16 無線LAN通信制御部
20 DSRC存在通知手段
21 DSRC送信手段
22 DSRC変調部
23 DSRC受信手段
24 DSRC復調部
25 DSRC通信制御部
31 空中線
32 CW送信機
33 CW発生器
41 空中線群
42a スイッチ1
42b スイッチ2
43 スイッチ制御部
44a CW1送信機
44b CW2送信機
45a CW1発生器
45b CW2発生器
10 Wireless LAN
DESCRIPTION OF SYMBOLS 11 Wireless LAN receiving means 12 Wireless LAN demodulation part 13 RSSI means 14 Wireless LAN transmission means 15 Wireless LAN modulation part 16 Wireless LAN communication control part 20 DSRC presence notification means 21 DSRC transmission means 22 DSRC modulation part 23 DSRC reception part 24 DSRC demodulation part 25 DSRC communication control unit 31 antenna 32 CW transmitter 33 CW generator 41 antenna group 42a switch 1
42b Switch 2
43 Switch control unit 44a CW1 transmitter 44b CW2 transmitter 45a CW1 generator 45b CW2 generator

Claims (1)

狭域通信システム(以下、DSRC)側では、路側無線装置またはその付近に設置され常時連続的または周期的に電波を送信するDSRC存在通知手段を備え、無線LAN側では、前記DSRC存在通知手段から送信された電波を受信する受信手段と、受信した信号の信号強度(以下、RSSI)を検出するRSSI手段とを備え、前記RSSI手段が検出したRSSI値が予め決められたスレッショルドを超えたとき、前記無線LANは、以後一定時間自局からの電波送信を待機させることとし、待機時間中に再びRSSI値が前記スレッショルドを超えたときは待機時間を更新することを特徴とする無線LANと狭域通信システムとの周波数共用方法。  The narrow-area communication system (hereinafter referred to as DSRC) side includes a DSRC presence notification unit that is installed in or near the roadside wireless device and transmits a radio wave continuously or periodically. On the wireless LAN side, the DSRC presence notification unit A receiving means for receiving the transmitted radio wave and an RSSI means for detecting the signal strength (hereinafter RSSI) of the received signal, and the RSSI value detected by the RSSI means exceeds a predetermined threshold; The wireless LAN waits for radio transmission from its own station for a certain period of time thereafter, and updates the standby time when the RSSI value exceeds the threshold again during the standby time. Frequency sharing method with communication system.
JP2014223609A 2014-10-16 2014-10-16 Frequency sharing method of wireless lan and narrow band communication system Pending JP2016082554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223609A JP2016082554A (en) 2014-10-16 2014-10-16 Frequency sharing method of wireless lan and narrow band communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223609A JP2016082554A (en) 2014-10-16 2014-10-16 Frequency sharing method of wireless lan and narrow band communication system

Publications (1)

Publication Number Publication Date
JP2016082554A true JP2016082554A (en) 2016-05-16

Family

ID=55959217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223609A Pending JP2016082554A (en) 2014-10-16 2014-10-16 Frequency sharing method of wireless lan and narrow band communication system

Country Status (1)

Country Link
JP (1) JP2016082554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520979A (en) * 2014-05-22 2017-07-27 フィリップス ライティング ホールディング ビー ヴィ Interference mitigation in WLAN / WPAN coexistence network
JP2017227445A (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Automatic vehicle driving apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520979A (en) * 2014-05-22 2017-07-27 フィリップス ライティング ホールディング ビー ヴィ Interference mitigation in WLAN / WPAN coexistence network
US10243689B2 (en) 2014-05-22 2019-03-26 Signify Holding B.V. Interference mitigation in WLAN/WPAN co-existence networks
JP2017227445A (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Automatic vehicle driving apparatus

Similar Documents

Publication Publication Date Title
US10491405B2 (en) Cryptographic security verification of incoming messages
RU2020109571A (en) REDUCING INTERFERENCE FROM DEVICES OPERATING AT UNUSUAL HEIGHT
KR20190006566A (en) Coexistence of wireless communication and radar probing
US20070087758A1 (en) Method of forming directional wireless networks using in-band channels
EP3248406B1 (en) Method and wireless network node for matching uplink coverage area and downlink coverage area
US11808843B2 (en) Radar repeaters for non-line-of-sight target detection
JP2020526077A (en) Electronic device, wireless communication device, and wireless communication method
CN102271352B (en) Method for transmitting downlink data between relay node and UE
JPWO2008136106A1 (en) Mobile radio communication system having radio resource sharing function
US9730058B2 (en) Method and system for producing a jammer signal
JP2010081524A (en) Communications system, mobile station device, and base station device
JP4351255B2 (en) Mobile station position determination method
KR20070054969A (en) Method and apparatus for transmitting data in communication system applied beamforming
US20060040675A1 (en) Method for operating a radio system, emitting station and radio system
CN106792564A (en) The transmission method and device of a kind of system broadcast message
US20070264952A1 (en) Method and apparatus for allowing or denying network access
JP2016082554A (en) Frequency sharing method of wireless lan and narrow band communication system
US10129763B1 (en) Method and system for controlling radio frequency interference to public safety communication
KR101802794B1 (en) Anti-jamming positioning terminal and anti-jamming method using the same
CN117836651A (en) Reconfigurable intelligent surface assisted side link ranging
CN105591673B (en) Communication device for a rail vehicle and rail vehicle equipped with such a device
US11457417B2 (en) Method for reducing interference
JP4240881B2 (en) Wireless communication apparatus and wireless communication system
US8666362B2 (en) Emergency service warning system
Miucic et al. Performance of aftermarket (DSRC) antennas inside a passenger vehicle