JP2016078472A - Vessel speed calculation device and vessel speed calculation method - Google Patents

Vessel speed calculation device and vessel speed calculation method Download PDF

Info

Publication number
JP2016078472A
JP2016078472A JP2014208099A JP2014208099A JP2016078472A JP 2016078472 A JP2016078472 A JP 2016078472A JP 2014208099 A JP2014208099 A JP 2014208099A JP 2014208099 A JP2014208099 A JP 2014208099A JP 2016078472 A JP2016078472 A JP 2016078472A
Authority
JP
Japan
Prior art keywords
section
ship speed
calculation
voyage time
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014208099A
Other languages
Japanese (ja)
Other versions
JP6262116B2 (en
Inventor
丈博 名嘉
Takehiro Naka
丈博 名嘉
祐亮 彌城
Yusuke Yashiro
祐亮 彌城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014208099A priority Critical patent/JP6262116B2/en
Publication of JP2016078472A publication Critical patent/JP2016078472A/en
Application granted granted Critical
Publication of JP6262116B2 publication Critical patent/JP6262116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vessel speed calculation device and a vessel speed calculation method which can reliably calculate an optimum solution which satisfies constraint conditions.SOLUTION: A vessel speed distribution optimizing device divides a sea route from a departure point to an arrival point into a plurality of intervals in a pseudo manner, and calculates a vessel speed for each of the intervals. The vessel speed distribution optimizing device sets a target navigation time from the departure time to the arrival time and a maximum vessel speed and a minimum vessel speed per interval as constraint conditions. The vessel speed distribution optimizing device, by setting a vessel speed per interval as a control variable, and setting a fuel consumption from the departure point to the arrival point as an object function, calculates the a vessel speed per interval at which the object function is set to be minimum as an optimum solution (S102). But, when the optimum solution is not calculated (104), the vessel speed distribution optimizing device gives tolerance to the target navigation time, and makes a backup calculation in which a vessel speed per interval at which the object function is set to be minimum is an optimum solution (S110).SELECTED DRAWING: Figure 6

Description

本発明は、船速算出装置及び船速算出方法に関するものである。   The present invention relates to a ship speed calculation device and a ship speed calculation method.

例えば、長距離を航行する船舶は、船舶のエネルギー需要を考慮し、省エネルギー運転と到着地点に定刻で到着する定刻運転の両立を目的とした最適な船速計画の作成が求められる。
特許文献1には、船舶が通過点を通過予定時刻に通過し、且つ、到着予定時刻に見合うように、気象・海象の情報に基づいて船速及び操舵の制御を行う航海計画支援システムが開示されている。
For example, a ship navigating a long distance is required to create an optimal ship speed plan for the purpose of both energy saving operation and scheduled operation that arrives at the arrival point on time in consideration of the energy demand of the ship.
Patent Document 1 discloses a voyage planning support system that controls ship speed and steering based on weather and sea state information so that a ship passes a passing point at a scheduled passing time and matches the scheduled arrival time. Has been.

特許第3950975号公報Japanese Patent No. 3950975

特許文献1では、図2(b)に開示されているように、設計変数を主機負荷やプロペラ翼角とし、制約条件を運航限界や当舵量等とし、目的関数を最小燃焼消費や最小CO排出量とした最適化計算を用いることが示唆されている。
すなわち、特許文献1に開示されている航海計画支援システムでは、制約条件を満たしながら目的関数である最小燃焼消費や最小CO排出量を最小化させる主機負荷やプロペラ翼角を最適解として求めていると解される。
In Patent Document 1, as disclosed in FIG. 2 (b), the design variables are the main engine load and the propeller blade angle, the constraint conditions are the operational limit, the rudder amount, and the like, and the objective function is the minimum combustion consumption and the minimum CO. It is suggested to use an optimization calculation with 2 emissions.
That is, in the navigation planning support system disclosed in Patent Document 1, the main engine load and propeller blade angle that minimize the minimum combustion consumption and the minimum CO 2 emission, which are objective functions, while satisfying the constraint conditions are obtained as the optimum solutions. It is understood that

しかしながら、制約条件の設定によっては、最適化計算による最適解が算出されない場合がある。   However, depending on the setting of the constraint condition, the optimal solution by the optimization calculation may not be calculated.

本発明は、このような事情に鑑みてなされたものであって、制約条件を満たす最適解をより確実に算出できる、船速算出装置及び船速算出方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a boat speed calculation device and a boat speed calculation method that can more reliably calculate an optimal solution that satisfies the constraint conditions.

上記課題を解決するために、本発明の船速算出装置及び船速算出方法は以下の手段を採用する。   In order to solve the above problems, the ship speed calculation device and the ship speed calculation method of the present invention employ the following means.

本発明の第一態様に係る船速算出装置は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出装置であって、出発地点から到着地点に達するまでの目標航海時間、並びに前記区間毎の最大船速及び最小船速を制約条件として設定する設定手段と、前記区間毎の船速を制御変数とし、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、前記目的関数を最小とする前記区間毎の船速を最適解とする第1最適解計算手段と、前記第1最適化導出手段によって前記最適解が算出されなかった場合、前記目標航海時間に裕度を持たせ、前記目的関数を最小とする前記区間毎の船速を最適解とする第2最適解計算手段と、を備える。   A boat speed calculation device according to a first aspect of the present invention is a boat speed calculation device that divides a route from a departure point to an arrival point into a plurality of sections in a pseudo manner, and calculates a boat speed for each section. Setting means for setting the target voyage time from the point to the arrival point and the maximum ship speed and the minimum ship speed for each section as constraints, and the ship speed for each section as control variables, from the departure point to the arrival point The optimal solution is determined by a first optimal solution calculation means that uses the fuel consumption until reaching the objective function as an objective function, and the boat speed for each section that minimizes the objective function, and the first optimization derivation means. A second optimum solution calculating means for giving a margin to the target voyage time when it is not calculated and setting the boat speed for each section that minimizes the objective function as an optimum solution;

本構成に係る船速算出装置は、船舶の最適な船速を算出するものであり、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の最適な船速を算出する。この船速算出は、例えば、制約条件を満たしながら目的関数を最小化又は最大化させる解(制御変数)を求める手法である。   The ship speed calculation device according to this configuration calculates the optimum ship speed of a ship, divides the route from the departure point to the arrival point into a plurality of sections in a pseudo manner, and calculates the optimum ship speed for each section. calculate. This ship speed calculation is, for example, a method for obtaining a solution (control variable) that minimizes or maximizes the objective function while satisfying the constraint condition.

本構成は、出発地点から到着地点に達するまでの目標航海時間、並びに区間毎の最大船速及び最小船速が、制約条件として設定手段によって設定される。そして、区間毎の船速が制御変数とされ、出発地点から到着地点に達するまでの燃料消費量が目的関数とされる。この目的関数を最小とする区間毎の船速が最適解として第1最適解計算手段によって算出される。   In this configuration, the target voyage time from the departure point to the arrival point and the maximum and minimum boat speeds for each section are set by the setting means as constraints. The ship speed for each section is set as a control variable, and the fuel consumption amount from the departure point to the arrival point is set as an objective function. The boat speed for each section that minimizes this objective function is calculated by the first optimal solution calculation means as the optimal solution.

しかしながら、第1最適解計算手段によって制約条件を満たす最適解が算出されない場合がある。
そこで、最適解が算出されない場合に、第2最適解計算手段によって最適解が算出される。第2最適解計算手段は、制約条件として設定されている目標航海時間に裕度を持たせ、目的関数を最小とする区間毎の船速を最適解とする。換言すると、第2最適解計算手段は、制約条件に目標航海時間が含まれず、第1最適解計算手段に比べて制約条件が減ることとなり、算出される航海時間が目標航海時間に近い解(近似解)を得ることとなる。
However, there are cases where the optimal solution that satisfies the constraint condition is not calculated by the first optimal solution calculation means.
Therefore, when the optimal solution is not calculated, the optimal solution is calculated by the second optimal solution calculation means. The second optimum solution calculation means gives a margin to the target voyage time set as the constraint condition, and sets the ship speed for each section that minimizes the objective function as the optimum solution. In other words, the second optimal solution calculation means does not include the target voyage time in the constraint condition, and the constraint condition is reduced compared to the first optimal solution calculation means, and the calculated voyage time is a solution close to the target voyage time ( Approximate solution) is obtained.

このように、本構成は、第2最適解計算手段において目標航海時間は実質的に制約条件とはならず、制約条件が減ることとなるので、制約条件を満たす最適解をより確実に算出できる。   In this way, in this configuration, the target voyage time is not substantially a constraint condition in the second optimal solution calculation means, and the constraint condition is reduced, so that an optimal solution that satisfies the constraint condition can be calculated more reliably. .

上記第一態様では、前記第2最適解計算手段が、前記区間毎の船速を制御変数として出発地点から到着地点に達するまでの総航海時間及び前記燃料消費量を算出し、前記目標航海時間と前記総航海時間の差分と前記燃料消費量の和を目的関数としてもよい。   In the first aspect, the second optimum solution calculating means calculates the total voyage time and the fuel consumption amount from the departure point to the arrival point, using the ship speed for each section as a control variable, and the target voyage time And the sum of the difference between the total voyage times and the fuel consumption may be used as an objective function.

本構成によれば、区間毎の船速を制御変数として出発地点から到着地点に達するまでの総航海時間及び燃料消費量が第2最適解計算手段によって算出される。そして、目標航海時間と総航海時間の差分と燃料消費量の和が目的関数とされる。
総航海時間は、例えば区間毎の距離に区間毎の船速を乗算することで区間毎の航海時間を算出し、その航海時間の総和を総航海時間とする。
本構成は、目的関数に目標航海時間と総航海時間の差分を含むことで、目標航海時間に裕度を持たせることとなるので、簡易かつより確実に最適解が算出されることとなる。
According to this configuration, the total voyage time and the fuel consumption amount from the departure point to the arrival point are calculated by the second optimum solution calculation means using the ship speed for each section as a control variable. Then, the sum of the difference between the target voyage time and the total voyage time and the fuel consumption is taken as the objective function.
For the total voyage time, for example, the voyage time for each section is calculated by multiplying the distance for each section by the ship speed for each section, and the sum of the voyage times is taken as the total voyage time.
In this configuration, since the difference between the target voyage time and the total voyage time is included in the objective function, the target voyage time has a margin, so that the optimum solution can be calculated easily and more reliably.

上記第一態様では、前記第2最適解計算手段が、前記目標航海時間と前記総航海時間の差分、又は前記燃料消費量に係数を乗算してもよい。   In the first aspect, the second optimum solution calculating means may multiply the difference between the target voyage time and the total voyage time, or the fuel consumption amount by a coefficient.

本構成によれば、係数は、総航海時間の目標航海時間からのずれ、又は燃料消費量の目的関数に対する重みを決めることとなる。例えば、目標航海時間と総航海時間の差分に係数を乗算する場合、係数を大きくすると、目的関数において、目標航海時間からのずれの影響が大きくなり、燃料消費量よりも目標航海時間からのずれを重視することとなる。一方、係数を小さくすると、目的関数において、燃料消費量の影響が大きくなり、目標航海時間からのずれよりも燃料消費量を重視することとなる。
このように、本構成によれば、目標航海時間からのずれ又は燃料消費量の何れかを重視した目的関数を設定できるので、より目的に応じた船速配分を決定できる。
According to this configuration, the coefficient determines the deviation of the total voyage time from the target voyage time or the weight for the objective function of the fuel consumption. For example, when multiplying the difference between the target voyage time and the total voyage time by a coefficient, increasing the coefficient increases the effect of the deviation from the target voyage time in the objective function, resulting in a deviation from the target voyage time rather than the fuel consumption. Will be emphasized. On the other hand, if the coefficient is reduced, the influence of the fuel consumption amount increases in the objective function, and the fuel consumption amount is more important than the deviation from the target voyage time.
As described above, according to this configuration, an objective function that emphasizes either the deviation from the target voyage time or the fuel consumption amount can be set, so that it is possible to determine the ship speed distribution according to the purpose.

本発明の第二態様に係る船速算出装置は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出装置であって、出発地点から到着地点に達するまでの目標航海時間、並びに制約条件として前記区間毎の最大船速及び最小船速を設定する設定手段と、前記区間毎の船速を制御変数とした出発地点から到着地点に達するまでの総航海時間及び前記船舶の燃料消費量を算出し、前記目標航海時間と前記総航海時間の差分と前記燃料消費量の和を目的関数とし、該目的関数を最小とする前記区間毎の船速を最適解とする最適解導出手段と、を備える。   A boat speed calculation device according to a second aspect of the present invention is a boat speed calculation device that divides a route from a departure point to an arrival point into a plurality of sections in a pseudo manner, and calculates a boat speed for each section. The target voyage time to reach the arrival point from the point, the setting means for setting the maximum boat speed and the minimum boat speed for each section as a constraint, and the departure point from the departure point using the boat speed for each section as a control variable Calculating the total voyage time to reach the fuel consumption of the ship, the difference between the target voyage time and the total voyage time and the sum of the fuel consumption as an objective function, and the interval that minimizes the objective function And an optimum solution deriving unit that makes the ship speed optimum for each ship.

本発明の第三態様に係る船速算出方法は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出方法であって、出発地点から到着地点に達するまでの目標航海時間、並びに前記区間毎の最大船速及び最小船速を制約条件として設定する第1工程と、前記区間毎の船速を制御変数とし、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、前記目的関数を最小とする前記区間毎の船速を最適解とする第2工程と、前記第2工程によって前記最適解が算出されなかった場合、前記目標航海時間に裕度を持たせ、前記目的関数を最小とする前記区間毎の船速を最適解とする第3工程と、を含む。   A boat speed calculation method according to a third aspect of the present invention is a boat speed calculation method for dividing a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculating a boat speed for each section. The first step to set the target voyage time from the point to the arrival point, and the maximum and minimum ship speeds for each section as constraints, and the ship speed for each section as control variables, and arrive from the departure point A second step in which the fuel consumption until reaching the point is an objective function and the boat speed for each section that minimizes the objective function is an optimal solution, and the optimal solution is not calculated by the second step And a third step in which a margin is given to the target voyage time and the boat speed for each section that minimizes the objective function is set as an optimal solution.

本発明の第四態様に係る船速算出方法は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出方法であって、出発地点から到着地点に達するまでの目標航海時間、並びに制約条件として前記区間毎の最大船速及び最小船速を設定する第1工程と、前記区間毎の船速を制御変数とした出発地点から到着地点に達するまでの総航海時間及び前記船舶の燃料消費量を算出し、前記目標航海時間と前記総航海時間の差分と前記燃料消費量の和を目的関数とし、該目的関数を最小とする前記区間毎の船速を最適解とする第2工程と、を含む。   A boat speed calculation method according to a fourth aspect of the present invention is a boat speed calculation method for dividing a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculating a ship speed for each section. The first step to set the target voyage time from the point to the arrival point and the maximum and minimum ship speeds for each section as the constraint conditions, and the arrival from the departure point using the ship speed for each section as a control variable Calculate the total voyage time to reach the point and the fuel consumption of the ship, and use the difference between the target voyage time and the total voyage time and the sum of the fuel consumption as an objective function, and minimize the objective function And a second step in which the boat speed for each section is the optimum solution.

本発明によれば、制約条件を満たす最適解をより確実に算出できる、という優れた効果を有する。   According to the present invention, there is an excellent effect that an optimal solution that satisfies a constraint condition can be calculated more reliably.

本発明の実施形態に係る最適化計算を示す模式図である。It is a schematic diagram which shows the optimization calculation which concerns on embodiment of this invention. 本発明の実施形態に係る入力ステップで入力される区間、区間毎の船速制限値、及び船速配分の一例を示す模式図である。It is a schematic diagram which shows an example of the area input at the input step which concerns on embodiment of this invention, the ship speed limit value for every area, and ship speed distribution. 本発明の実施形態に係る船速配分最適化装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the ship speed distribution optimization apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る船速配分最適化装置の機能ブロック図である。It is a functional block diagram of a ship speed distribution optimization device concerning an embodiment of the present invention. 本発明の実施形態に係るバックアップ計算の概念を示した模式図である。It is the schematic diagram which showed the concept of the backup calculation which concerns on embodiment of this invention. 本発明の実施形態に係る最適化計算の流れを示すフローチャートである。It is a flowchart which shows the flow of the optimization calculation which concerns on embodiment of this invention.

以下に、本発明に係る船速算出装置及び船速算出方法の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a boat speed calculation device and a boat speed calculation method according to the present invention will be described with reference to the drawings.

本実施形態に係る船速算出は、船舶の最適な船速を算出するものであり、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の最適な船速を算出する船速配分最適化(以下「最適化計算」ともいう。)するものである。この最適化計算は、例えば、制約条件を満たしながら目的関数を最小化又は最大化させる解(制御変数)を求める手法である。   The ship speed calculation according to this embodiment is to calculate the optimum ship speed of the ship. The route from the departure point to the arrival point is divided into a plurality of sections in a pseudo manner, and the optimum ship speed for each section is calculated. The ship speed distribution to be calculated is optimized (hereinafter also referred to as “optimization calculation”). This optimization calculation is, for example, a technique for obtaining a solution (control variable) that minimizes or maximizes the objective function while satisfying the constraint condition.

図1は、最適化計算の概念の一例を示す模式図である。
図1の例に示される最適化計算は、入力ステップ、計算条件決定ステップ、燃料消費量計算ステップ、及び船速配分最適化ステップを有する。
FIG. 1 is a schematic diagram illustrating an example of the concept of optimization calculation.
The optimization calculation shown in the example of FIG. 1 has an input step, a calculation condition determination step, a fuel consumption calculation step, and a ship speed distribution optimization step.

入力ステップでは、船速を算出するために必要な情報として、例えば、航海計画、気象海象予報情報、初期条件等が入力(設定)される。
航海計画は、例えば、船舶の出発地点からの出航時刻及び到着地点への到着時刻、区間毎の船速の制限値(最大船速及び最小船速であり、以下「船速制限値」という。)等である。船速制限値は、その区間における船舶の喫水やトリム、及び区間の水深等によって決定される。なお、船舶の出航時刻及び到着時刻から目標航海時間が得られる。
これら、目標航海時間及び船速制限値が制約条件とされる。
気象海象予報情報は、風向、風速、潮流の流速や潮流の方向、波高、及び波向である。
初期条件は、区間毎の船速配分である。
In the input step, for example, navigation plan, meteorological sea forecast information, initial conditions, etc. are input (set) as information necessary for calculating the ship speed.
In the voyage plan, for example, the departure time from the departure point of the ship, the arrival time at the arrival point, and the limit values of the ship speed for each section (maximum ship speed and minimum ship speed, hereinafter referred to as “ship speed limit value”). ) Etc. The ship speed limit value is determined by the draft and trim of the ship in the section, the depth of the section, and the like. The target voyage time can be obtained from the departure time and arrival time of the ship.
These target voyage time and ship speed limit value are the constraint conditions.
The weather and sea state forecast information includes wind direction, wind speed, tidal current velocity and tidal current direction, wave height, and wave direction.
The initial condition is the distribution of ship speed for each section.

計算条件決定ステップでは、各区間に対する計算条件が決定される。
計算条件は、例えば、各区間に対する船舶の通過時刻、各区間に対する船舶の通過時の緯度及び経度、各区間に対する船舶の通過時の気象海象予測情報である。
In the calculation condition determination step, calculation conditions for each section are determined.
The calculation conditions are, for example, the passage time of the ship for each section, the latitude and longitude when the ship passes for each section, and weather and sea state prediction information when the ship passes for each section.

燃料消費量計算ステップでは、航路の移動、換言すると全区間における船舶の燃料消費量を算出する。
燃料消費量計算ステップでは、船舶の推進負荷が船速や気象海象条件により変動する推進モデルが用いられ、この推進モデルにおいて、推進負荷から燃費を計算し、燃費と各区間の距離から燃料消費量が算出される。なお、推進モデルは、例えばエンジンである主機がプロペラを回転させて推進する船舶がモデル化されるが、これに限らず、例えば、エンジンの動力を電力に変換し、電力で駆動するモータがプロペラを回転させて推進する船舶がモデル化されてもよい。
In the fuel consumption calculation step, the movement of the route, in other words, the fuel consumption of the ship in all sections is calculated.
In the fuel consumption calculation step, a propulsion model is used in which the propulsion load of the ship fluctuates depending on the ship speed and weather conditions. In this propulsion model, fuel consumption is calculated from the propulsion load, and fuel consumption is calculated from the fuel consumption and the distance of each section. Is calculated. The propulsion model is, for example, a ship that is propelled by a main engine that is an engine rotating a propeller. However, the propulsion model is not limited to this. For example, a motor that converts engine power into electric power and that is driven by electric power is a propeller. A ship propelled by rotating may be modeled.

また、推進モデルでは、一例として、客室や空調で消費される電力を固定値としているが、これに限らず、気象や時間帯に応じて変動するとしてもよい。また、推進モデルでは、一例として、補機電力のオンオフが主機に対する負荷条件に応じて切り替わる。   In the propulsion model, as an example, the power consumed in the guest room or the air conditioner is a fixed value. However, the propulsion model is not limited to this, and may vary according to the weather and the time zone. In the propulsion model, as an example, on / off of auxiliary power is switched according to the load condition for the main engine.

そして、船速配分最適化ステップは、燃料消費量を目的関数とし、燃料消費量が最小化するように、入力ステップにおける初期条件である区間毎の船速配分を変更する。
すなわち、区間毎の船速が制御変数とされる。
The ship speed distribution optimization step changes the ship speed distribution for each section, which is the initial condition in the input step, so that the fuel consumption is an objective function and the fuel consumption is minimized.
That is, the ship speed for each section is set as the control variable.

図2は、入力ステップで入力される区間、区間毎の船速制限値、及び船速配分の一例を示す模式図である。図2に示されるように、船速配分は最大船速及び最小船速を満たすように制御(変更)される。船速配分における固定とは、例えば出港や入港の場合等その区間の船速が予め定められた値とされている。すなわち、区間毎の船速は、目標航海時間で到着地点に達するように、区間毎の最大船速及び最小船速の範囲内で決定される。なお、例えば区間毎の距離に区間毎の船速(制御変数)を乗算することで区間毎の航海時間が算出され、その航海時間の総和を総航海時間とされ、目標航海時間と比較される。   FIG. 2 is a schematic diagram showing an example of sections input in the input step, ship speed limit values for each section, and ship speed distribution. As shown in FIG. 2, the ship speed distribution is controlled (changed) so as to satisfy the maximum ship speed and the minimum ship speed. The fixed ship speed distribution is a predetermined value for the speed of the section, for example, when leaving or entering a port. That is, the ship speed for each section is determined within the range of the maximum ship speed and the minimum ship speed for each section so as to reach the arrival point in the target voyage time. For example, the voyage time for each section is calculated by multiplying the distance for each section by the ship speed (control variable) for each section, and the total voyage time is taken as the total voyage time and compared with the target voyage time. .

そして、燃料消費量計算ステップは、新たに入力された船速配分に応じた燃料消費量を算出する。   In the fuel consumption calculation step, the fuel consumption corresponding to the newly input ship speed distribution is calculated.

このように、最適化計算では、出発地点から到着地点に達するまでの目標航海時間(出発時刻と到着時刻)、並びに区間毎の最大船速及び最小船速が制約条件として設定される。そして、区間毎の船速が制御変数とされ、出発地点から到着地点に達するまでの燃料消費量が目的関数とされる。この目的関数を最小とする区間毎の船速が最適解として算出されることとなる。   As described above, in the optimization calculation, the target voyage time (departure time and arrival time) from the departure point to the arrival point, and the maximum ship speed and the minimum ship speed for each section are set as constraints. The ship speed for each section is set as a control variable, and the fuel consumption amount from the departure point to the arrival point is set as an objective function. The ship speed for each section that minimizes this objective function is calculated as the optimum solution.

なお、最適化計算のアルゴリズムは、公知の内点法や逐次二次計画法等が用いられる。   As the optimization calculation algorithm, a known interior point method, sequential quadratic programming, or the like is used.

図3は、本実施形態に係る最適化計算を実行する情報処理装置である船速配分最適化装置10の電気的構成を示すブロック図である。
本実施形態に係る船速配分最適化装置10は、最適化計算に関するプログラムを実行するCPU(Central Processing Unit)12、各種プログラム及び各種データ等が予め記憶されたROM(Read Only Memory)14、CPU12による各種プログラムの実行時のワークエリア等として用いられるRAM(Random Access Memory)16、各種プログラム及び各種データを記憶する記憶手段としてのHDD(Hard Disk Drive)18を備えている。
FIG. 3 is a block diagram showing an electrical configuration of the ship speed distribution optimizing apparatus 10 which is an information processing apparatus that executes the optimization calculation according to the present embodiment.
A ship speed distribution optimizing device 10 according to the present embodiment includes a CPU (Central Processing Unit) 12 that executes a program related to optimization calculation, a ROM (Read Only Memory) 14 that stores various programs and various data, and the like. RAM (Random Access Memory) 16 used as a work area at the time of execution of various programs according to the above, and an HDD (Hard Disk Drive) 18 as storage means for storing various programs and various data.

さらに、船速配分最適化装置10は、キーボード及びマウス等から構成され、各種操作の入力を受け付ける操作入力部20、各種画像を表示する、例えば液晶ディスプレイ装置等の画像表示部22、外部インタフェース24を介して他の情報処理装置等と接続され、他の情報処理装置や印刷装置等との間で各種データの送受信を行う外部インタフェース24を備えている。   Further, the ship speed distribution optimizing device 10 includes a keyboard, a mouse, and the like. The operation input unit 20 that receives input of various operations, displays various images, for example, an image display unit 22 such as a liquid crystal display device, and an external interface 24. And an external interface 24 that transmits and receives various data to and from other information processing apparatuses and printing apparatuses.

これらCPU12、ROM14、RAM16、HDD18、操作入力部20、画像表示部22、及び外部インタフェース24は、システムバス26を介して相互に電気的に接続されている。従って、CPU12は、ROM14、RAM16、及びHDD18へのアクセス、操作入力部20に対する操作状態の把握、画像表示部22に対する画像の表示、並びに外部インタフェース24を介した他の情報処理装置等との各種データの送受信等を各々行なうことができる。   The CPU 12, ROM 14, RAM 16, HDD 18, operation input unit 20, image display unit 22, and external interface 24 are electrically connected to each other via a system bus 26. Accordingly, the CPU 12 accesses the ROM 14, the RAM 16, and the HDD 18, grasps the operation state of the operation input unit 20, displays an image on the image display unit 22, and various types of information processing apparatuses via the external interface 24. Data can be transmitted and received.

図4は、本実施形態に係る船速配分最適化装置10の機能ブロック図である。
船速配分最適化装置10は、設定部30、最適解計算部32A、判定部34、及び最適解再計算部32Bを備える。
FIG. 4 is a functional block diagram of the boat speed distribution optimization apparatus 10 according to the present embodiment.
The ship speed distribution optimizing device 10 includes a setting unit 30, an optimal solution calculation unit 32A, a determination unit 34, and an optimal solution recalculation unit 32B.

設定部30は、制約条件(目標航海時間や船速制限値)等の最適化計算で用いる各種計算条件等の入力を、操作入力部20を介して受け付け、設定する。設定部30は、上述した入力ステップ及び計算条件決定ステップに相当する。   The setting unit 30 receives and sets input of various calculation conditions and the like used in optimization calculation such as constraint conditions (target voyage time and ship speed limit value) via the operation input unit 20. The setting unit 30 corresponds to the above-described input step and calculation condition determination step.

最適解計算部32Aは、区間毎の船速を制御変数とし、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、目的関数を最小とする区間毎の船速を最適解として算出する。   The optimum solution calculation unit 32A uses the ship speed for each section as a control variable, uses the fuel consumption from the departure point to the arrival point as an objective function, and calculates the ship speed for each section that minimizes the objective function as an optimum solution. To do.

判定部34は、最適解計算部32Aによって最適解が算出されたか否かを判定する。   The determination unit 34 determines whether or not an optimal solution has been calculated by the optimal solution calculation unit 32A.

最適解再計算部32Bは、最適解計算部32Aによって最適解が算出されなかった場合、制約条件である目標航海時間に裕度を持たせ、目的関数を最小とする区間毎の船速を最適解として算出する。   The optimum solution recalculation unit 32B provides a margin for the target voyage time as a constraint condition and optimizes the boat speed for each section that minimizes the objective function when the optimum solution is not calculated by the optimum solution calculation unit 32A. Calculate as a solution.

なお、最適解計算部32A及び最適解再計算部32Bは、燃料消費量計算ステップ及び船速配分最適化ステップに相当する。   The optimum solution calculation unit 32A and the optimum solution recalculation unit 32B correspond to a fuel consumption calculation step and a ship speed distribution optimization step.

次に、本実施形態に係る船速配分最適化装置10による最適化計算について説明する。   Next, optimization calculation by the boat speed distribution optimization apparatus 10 according to the present embodiment will be described.

図1に示す最適化計算において、制約条件を満たす最適解が存在しない場合には、最適化計算は解を出力せずにエラーコードのみを出力する。このような場合、最適化計算の計算条件をユーザーが手動で変更して最適化計算を再度実行させる。しかしながら、計算条件が適切に設定されていない場合には、最適解が求まらず再度エラーとなり、この繰り返しとなる。   In the optimization calculation shown in FIG. 1, if there is no optimal solution that satisfies the constraint condition, the optimization calculation outputs only the error code without outputting the solution. In such a case, the calculation condition of the optimization calculation is manually changed by the user and the optimization calculation is executed again. However, if the calculation conditions are not properly set, the optimum solution cannot be obtained and an error occurs again, and this is repeated.

そこで、本実施形態に係る船速配分最適化装置10は、最適解計算部32Aによって最適解が算出されない場合に、最適解再計算部32Bによって最適解を再度算出する。   Therefore, the boat speed distribution optimizing device 10 according to the present embodiment recalculates the optimum solution by the optimum solution recalculation unit 32B when the optimum solution is not calculated by the optimum solution calculation unit 32A.

最適解再計算部32Bは、最適解計算部32Aによって制約条件として設定されている目標航海時間(目標到着時刻)に裕度を持たせ、目的関数を最小とする区間毎の船速を最適解とする。換言すると、最適解再計算部32Bは、制約条件に目標航海時間が含まれず、最適解計算部32Aに比べて制約条件が減ることとなり、算出される航海時間が目標航海時間に近い解(近似解)を得ることとなる。すなわち、最適解再計算部32Bは、最適解計算部32Aで最適解が算出されなかった場合に、より確実に解を算出するためのバックアップ計算を行う。   The optimum solution recalculation unit 32B gives a margin to the target voyage time (target arrival time) set as a constraint condition by the optimum solution calculation unit 32A, and determines the optimum ship speed for each section that minimizes the objective function. And In other words, the optimal solution recalculation unit 32B does not include the target voyage time in the constraint condition, and the constraint condition is reduced as compared to the optimal solution calculation unit 32A, and the calculated voyage time is a solution (approximate to the target voyage time). Solution). That is, the optimal solution recalculation unit 32B performs backup calculation for more reliably calculating the solution when the optimal solution calculation unit 32A does not calculate the optimal solution.

このように、本実施形態に係る船速配分最適化装置10は、最適解再計算部32Bにおいて目標航海時間は実質的に制約条件とはならず、制約条件が減ることとなるので、より確実に最適解が算出されることとなる。   Thus, the ship speed distribution optimizing device 10 according to the present embodiment is more reliable because the target voyage time is not substantially a constraint condition and the constraint condition is reduced in the optimal solution recalculation unit 32B. The optimal solution will be calculated.

図5は、バックアップ計算の概念を示した模式図である。
図5の線A(破線)は、最適解計算部32Aによって最適解が算出されない場合の例を示している。線Aの例で示される最適化計算は、制約条件である目標航海時間(目標到着時刻T)を満たすものの、一部区間の船速が最大船速を超えている。このため、この最適化計算の結果は、エラーとなる。
FIG. 5 is a schematic diagram showing the concept of backup calculation.
A line A (broken line) in FIG. 5 shows an example where the optimum solution is not calculated by the optimum solution calculation unit 32A. Although the optimization calculation shown in the example of the line A satisfies the target voyage time (target arrival time T A ) which is a constraint condition, the ship speed of a certain section exceeds the maximum ship speed. For this reason, the result of this optimization calculation is an error.

一方、図5の線B(実線)は、最適解再計算部32Bで実行されるバックアップ計算によって最適解が算出された場合の例を示している。線Bの例では、最適化計算で得られる到着地点への到着時刻Tが目標到着時刻からずれるものの、全ての区間で船速が最大船速を超えることはない。そして、バックアップ計算は、算出した到着時刻と目標到着時刻とのずれが最小化する区間毎の船速を算出する。 On the other hand, the line B (solid line) in FIG. 5 shows an example in which the optimal solution is calculated by the backup calculation executed by the optimal solution recalculation unit 32B. In the example of line B, although the arrival time T B to point of arrival obtained in the optimization calculation is deviated from a target arrival time, boat speed does not exceed the maximum vessel speed in all sections. Then, the backup calculation calculates the ship speed for each section where the difference between the calculated arrival time and the target arrival time is minimized.

なお、以下の説明において、最適解再計算部32Bによるバックアップ計算によって算出される出発地点から到着地点に達するまでの時間を総航海時間という。   In the following description, the time from the departure point to the arrival point calculated by the backup calculation by the optimum solution recalculation unit 32B is referred to as the total voyage time.

最適解再計算部32Bは、目標航海時間に裕度を持たせることとして、下記(1)式に示すように、目標航海時間と総航海時間の差分の絶対値と燃料消費量の和を目的関数とする。なお、制約条件は、区間毎の最大船速及び最小船速である船速制限値のみとなる。

Figure 2016078472
The optimal solution recalculation unit 32B is intended to give a margin to the target voyage time, as shown in the following equation (1), to obtain the sum of the absolute value of the difference between the target voyage time and the total voyage time and the fuel consumption. Let it be a function. The constraint condition is only a ship speed limit value that is the maximum ship speed and the minimum ship speed for each section.
Figure 2016078472

(1)式に示されるように、目的関数に目標航海時間と総航海時間の差分を含むことで、目標航海時間に裕度を持たせることとなるので、簡易かつより確実に最適解が算出される。また、制約条件を満たす範囲で目的関数が最小化された結果、最も目標航海時間に近い船速配分結果を得ることができる。   As shown in Equation (1), the difference between the target voyage time and the total voyage time is included in the objective function, so that the target voyage time has a margin, so the optimal solution can be calculated easily and more reliably. Is done. In addition, as a result of the objective function being minimized within a range that satisfies the constraint conditions, a ship speed distribution result that is closest to the target voyage time can be obtained.

また、(1)式では、目標航海時間と総航海時間の差分に所定の重み係数αが乗算される。
重み係数αは調整パラメータであり、総航海時間の目標航海時間からのずれ(以下「航海時間差」という。)又は燃料消費量の目的関数に対する重みを決めることとなる。
すなわち、(1)式において重み係数αを大きくすると、目的関数において、航海時間差の影響が大きくなり、燃料消費量よりも航海時間差を重視することとなる。一方、重み係数αを小さくすると、目的関数において、燃料消費量の影響が大きくなり、航海時間差よりも燃料消費量を重視することとなる。
このように、(1)式によれば、航海時間差又は燃料消費量の何れかを重視した目的関数を設定できるので、より目的に応じた船速配分を決定できる。
In the equation (1), a difference between the target voyage time and the total voyage time is multiplied by a predetermined weight coefficient α.
The weighting coefficient α is an adjustment parameter, and determines a weight for the objective function of the fuel consumption amount or a deviation of the total voyage time from the target voyage time (hereinafter referred to as “voyage time difference”).
That is, if the weighting coefficient α is increased in the equation (1), the influence of the voyage time difference is increased in the objective function, and the voyage time difference is more important than the fuel consumption. On the other hand, when the weighting factor α is reduced, the influence of the fuel consumption amount increases in the objective function, and the fuel consumption amount is more important than the navigation time difference.
As described above, according to the equation (1), an objective function that emphasizes either the voyage time difference or the fuel consumption amount can be set, so that the ship speed distribution according to the purpose can be determined.

なお、(1)式の例では、航海時間差に重み係数αが乗算されているが、これに限らず、燃料消費量に重み係数αが乗算されてもよい。   In the example of equation (1), the weighting factor α is multiplied by the navigation time difference. However, the present invention is not limited to this, and the fuel consumption may be multiplied by the weighting factor α.

図6は、船速配分最適化装置10による最適化計算の流れを示すフローチャートである。   FIG. 6 is a flowchart showing the flow of optimization calculation performed by the ship speed distribution optimization apparatus 10.

まず、ステップ100では、操作入力部20を介してユーザーによって計算条件が入力され、設定部30によって計算条件が設定される。   First, in step 100, calculation conditions are input by the user via the operation input unit 20, and calculation conditions are set by the setting unit 30.

次のステップ102では、最適解計算部32Aによって、目的関数を最小とする区間毎の船速が計算される。なお、最適解計算部32Aによる最適化計算の制約条件は、目標航海時間及び船速制限値であり、目的関数は燃料消費量であり、制御変数は各区間の船速である。   In the next step 102, the optimum solution calculator 32A calculates the boat speed for each section that minimizes the objective function. The constraint conditions for optimization calculation by the optimal solution calculation unit 32A are the target voyage time and the ship speed limit value, the objective function is the fuel consumption, and the control variable is the ship speed of each section.

次のステップ104では、最適解計算部32Aによって、最適解が算出されたか否かを判定し、肯定判定の場合はステップ112へ移行して、画像表示部22が最適解計算部32Aによる計算結果を表示し、本最適化計算を終了する。一方、否定判定の場合はステップ106へ移行する。   In the next step 104, it is determined whether or not an optimal solution has been calculated by the optimal solution calculation unit 32A. If the determination is affirmative, the process proceeds to step 112, where the image display unit 22 calculates the calculation result by the optimal solution calculation unit 32A. Is displayed, and this optimization calculation ends. On the other hand, if a negative determination is made, the routine proceeds to step 106.

ステップ106では、最適解を算出できなかったことを示すエラーコードを画像表示部22が表示する。なお、画像表示部22には、エラーコードと共に、制約条件等の計算条件の修正を選択するボタン画像(以下「条件修正ボタン」という。)及びバックアップ計算を選択するボタン画像(以下「バックアップ計算選択ボタン」という。)が表示される。   In step 106, the image display unit 22 displays an error code indicating that the optimum solution could not be calculated. The image display unit 22 includes an error code, a button image for selecting correction of calculation conditions such as a constraint condition (hereinafter referred to as “condition correction button”), and a button image for selecting backup calculation (hereinafter referred to as “backup calculation selection”). Button ") is displayed.

次のステップ108では、計算条件を修正するか否かを判定する。計算条件が修正される場合とは、例えば、操作入力部20を介してユーザーが条件修正ボタンを押した場合である。この場合、ステップ100へ戻り、修正した計算条件が入力される。   In the next step 108, it is determined whether or not the calculation condition is to be corrected. The case where the calculation condition is corrected is, for example, a case where the user presses the condition correction button via the operation input unit 20. In this case, the process returns to step 100 and the corrected calculation condition is input.

一方、ユーザーが、操作入力部20を介してバックアップ計算選択ボタンを押した場合、ステップ108からステップ110へ移行する。   On the other hand, when the user presses the backup calculation selection button via the operation input unit 20, the process proceeds from step 108 to step 110.

ステップ110では、最適解再計算部32Bによって、バックアップ計算が実行される。なお、最適解再計算部32Bによる最適化計算の制約条件は、船速制限値であり、目的関数は上記(1)式で示されるものであり、制御変数は各区間の船速である。   In step 110, backup calculation is executed by the optimal solution recalculator 32B. The constraint condition for the optimization calculation by the optimal solution recalculation unit 32B is a ship speed limit value, the objective function is expressed by the above equation (1), and the control variable is the ship speed of each section.

そして、ステップ110から移行したステップ112では、画像表示部22が最適解再計算部32Bによって得られた計算結果を表示し、本最適化計算を終了する。   Then, in step 112, which has shifted from step 110, the image display unit 22 displays the calculation result obtained by the optimum solution recalculation unit 32B, and the optimization calculation ends.

以上説明したように、本実施形態に係る船速配分最適化装置10は、出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する。船速配分最適化装置10は、出発地点から到着地点に達するまでの目標航海時間、並びに区間毎の最大船速及び最小船速を制約条件として設定する。そして、船速配分最適化装置10は、区間毎の船速を制御変数とされ、出発地点から到着地点に達するまでの燃料消費量を目的関数とされ、目的関数を最小とする区間毎の船速を最適解として算出する。しかし、最適解が算出されなかった場合、船速配分最適化装置10は、目標航海時間に裕度を持たせ、目的関数を最小とする区間毎の船速を最適解とするバックアップ計算を行う。   As described above, the ship speed distribution optimizing apparatus 10 according to the present embodiment divides the route from the departure point to the arrival point in a plurality of sections in a pseudo manner, and calculates the ship speed for each section. The ship speed distribution optimizing device 10 sets the target voyage time from the departure point to the arrival point, and the maximum ship speed and the minimum ship speed for each section as constraints. The ship speed distribution optimizing device 10 uses the ship speed for each section as a control variable, the fuel consumption amount from the departure point to the arrival point as an objective function, and the ship for each section that minimizes the objective function. Speed is calculated as the optimal solution. However, when the optimal solution is not calculated, the ship speed allocation optimizing device 10 performs a backup calculation with a margin for the target voyage time and the ship speed for each section that minimizes the objective function as the optimal solution. .

これにより、船速配分最適化装置10は、バックアップ計算において、目標航海時間は制約条件とはならず、制約条件が減ることとなるので、制約条件を満たす最適解をより確実に算出できる。   As a result, the ship speed distribution optimizing device 10 can more reliably calculate the optimal solution that satisfies the constraint condition because the target voyage time is not a constraint condition and the constraint condition is reduced in the backup calculation.

以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated using the said embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above-described embodiment without departing from the gist of the invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention. Moreover, you may combine the said embodiment suitably.

例えば、上記実施形態では、バックアップ計算で用いる目的関数に重み係数αを乗算する形態について説明したが、本発明は、これに限定されるものではなく、バックアップ計算で用いる目的関数に重み係数αを乗算しない形態としてもよい。   For example, in the above-described embodiment, the form in which the objective function used in the backup calculation is multiplied by the weighting coefficient α has been described. However, the present invention is not limited to this, and the objective function used in the backup calculation is set to the weighting coefficient α. It is good also as a form which does not multiply.

また、上記実施形態では、最適解計算部32Aによる最適化計算では制約条件を船速制限値及び目標航海時間の2つとする形態について説明したが、本発明は、これに限定されるものではない。例えば、制約条件に中継地点の到着時刻を加える等、制約条件を船速制限値及び目標航海時間を含む3つ以上とする形態としてもよい。この形態の場合、最適解再計算部32Bによるバックアップ計算でも、目標航海時間以外の制約条件を最適解再計算部32Aと同じとする。   Moreover, although the said embodiment demonstrated the form which makes two constraint conditions a ship speed limit value and a target voyage time in the optimization calculation by 32 A of optimal solution calculation parts, this invention is not limited to this. . For example, the restriction condition may be three or more including the ship speed limit value and the target voyage time, such as adding the arrival time of the relay point to the restriction condition. In the case of this form, even in the backup calculation by the optimum solution recalculation unit 32B, the constraint conditions other than the target voyage time are made the same as those of the optimum solution recalculation unit 32A.

また、上記実施形態では、バックアップ計算では船速制限値のみを制約条件とし、目標航海時間と総航海時間の差分と燃料消費量の和を目的関数とする形態について説明したが、本発明は、これに限定されるものではない。例えば、バックアップ計算では船速制限値を制約条件とすると共に、目標航海時間に所定の時間幅を持たせた値を制約条件とし、目的関数を燃料消費量のままとする形態としてもよい。
この形態の場合、制約条件である目標航海時間が所定の時間幅を持つことにより、目標航海時間が裕度を持つこととなる。
In the above embodiment, in the backup calculation, only the ship speed limit value is set as the constraint condition, and the difference between the target voyage time and the total voyage time and the sum of the fuel consumption are described as the objective function. It is not limited to this. For example, in the backup calculation, the ship speed limit value may be set as a constraint condition, and a value obtained by giving a predetermined time width to the target voyage time may be set as a constraint condition, and the objective function may be left as fuel consumption.
In the case of this form, the target voyage time has a tolerance by having the predetermined voyage time as the constraint condition.

また、上記実施形態では、最適解計算部32Aによる最適化計算で最適解が得られない場合に、最適解再計算部32Bによるバックアップ計算を行う形態について説明したが、本発明は、これに限定されるものではなく、最適解計算部32Aによる最適化計算を行うことなく、最適解再計算部32Bによるバックアップ計算と同様の最適化計算を行う形態としてもよい。   Moreover, although the said embodiment demonstrated the form which performs the backup calculation by the optimal solution recalculation part 32B when the optimal solution is not obtained by the optimization calculation by the optimal solution calculation part 32A, this invention is limited to this. The optimization calculation similar to the backup calculation by the optimal solution recalculation unit 32B may be performed without performing the optimization calculation by the optimal solution calculation unit 32A.

例えば、上記実施形態では、制約条件に船速を含む形態について説明したが、本発明は、これに限定されるものではなく、船速の替りに、主機の負荷を制約条件として用いてもよい。主機の負荷とは一例としてプロペラを駆動させるための推進負荷と、船内の電力供給のための電力負荷の合計値である。   For example, in the above-described embodiment, the form in which the ship speed is included in the constraint condition has been described. However, the present invention is not limited to this, and the load of the main engine may be used as the constraint condition instead of the ship speed. . The load on the main engine is, for example, the total value of the propulsion load for driving the propeller and the power load for supplying power in the ship.

また、上記実施形態で説明した最適化計算の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。   Further, the flow of optimization calculation described in the above embodiment is also an example, and unnecessary steps are deleted, new steps are added, and the processing order is changed within a range not departing from the gist of the present invention. May be.

10 船速配分最適化装置
30 設定部
32A 最適解計算部
32B 最適解再計算部
10 Ship Speed Allocation Optimization Device 30 Setting Unit 32A Optimal Solution Calculation Unit 32B Optimal Solution Recalculation Unit

Claims (6)

出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出装置であって、
出発地点から到着地点に達するまでの目標航海時間、並びに前記区間毎の最大船速及び最小船速を制約条件として設定する設定手段と、
前記区間毎の船速を制御変数とし、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、前記目的関数を最小とする前記区間毎の船速を最適解とする第1最適解計算手段と、
前記第1最適化導出手段によって前記最適解が算出されなかった場合、前記目標航海時間に裕度を持たせ、前記目的関数を最小とする前記区間毎の船速を最適解とする第2最適解計算手段と、
を備える船速算出装置。
A ship speed calculation device that divides a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculates a ship speed for each section,
Setting means for setting the target voyage time from the departure point to the arrival point, and the maximum and minimum boat speeds for each section as constraints,
A first optimal solution in which the ship speed for each section is a control variable, the fuel consumption from the departure point to the arrival point is an objective function, and the ship speed for each section that minimizes the objective function is the optimal solution. Calculation means;
If the optimal solution is not calculated by the first optimization deriving means, a second optimal is set such that a margin is given to the target voyage time and the boat speed for each section that minimizes the objective function is the optimal solution. Solution calculation means;
A ship speed calculation device comprising:
前記第2最適解計算手段は、前記区間毎の船速を制御変数として出発地点から到着地点に達するまでの総航海時間及び前記燃料消費量を算出し、前記目標航海時間と前記総航海時間の差分と前記燃料消費量の和を目的関数とする請求項1記載の船速算出装置。   The second optimal solution calculation means calculates the total voyage time and the fuel consumption amount from the departure point to the arrival point using the ship speed for each section as a control variable, and calculates the target voyage time and the total voyage time. The ship speed calculation apparatus according to claim 1, wherein a sum of the difference and the fuel consumption is an objective function. 前記第2最適解計算手段は、前記目標航海時間と前記総航海時間の差分、又は前記燃料消費量に係数を乗算する請求項2記載の船速算出装置。   The boat speed calculation device according to claim 2, wherein the second optimal solution calculation means multiplies a difference between the target voyage time and the total voyage time, or the fuel consumption amount by a coefficient. 出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出装置であって、
出発地点から到着地点に達するまでの目標航海時間、並びに制約条件として前記区間毎の最大船速及び最小船速を設定する設定手段と、
前記区間毎の船速を制御変数とした出発地点から到着地点に達するまでの総航海時間及び前記船舶の燃料消費量を算出し、前記目標航海時間と前記総航海時間の差分と前記燃料消費量の和を目的関数とし、該目的関数を最小とする前記区間毎の船速を最適解とする最適解導出手段と、
を備える船速算出装置。
A ship speed calculation device that divides a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculates a ship speed for each section,
Setting means for setting the target voyage time from the departure point to the arrival point, and the maximum boat speed and the minimum boat speed for each section as a constraint condition;
Calculate the total voyage time from the departure point to the arrival point and the fuel consumption amount of the ship with the ship speed as a control variable for each section, the difference between the target voyage time and the total voyage time and the fuel consumption amount An optimal solution derivation means that sets the objective function as the objective function and the boat speed for each section that minimizes the objective function as an optimal solution;
A ship speed calculation device comprising:
出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出方法であって、
出発地点から到着地点に達するまでの目標航海時間、並びに前記区間毎の最大船速及び最小船速を制約条件として設定する第1工程と、
前記区間毎の船速を制御変数とし、出発地点から到着地点に達するまでの燃料消費量を目的関数とし、前記目的関数を最小とする前記区間毎の船速を最適解とする第2工程と、
前記第2工程によって前記最適解が算出されなかった場合、前記目標航海時間に裕度を持たせ、前記目的関数を最小とする前記区間毎の船速を最適解とする第3工程と、
を含む船速算出方法。
A ship speed calculation method for dividing a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculating a ship speed for each section,
A first step of setting the target voyage time from the departure point to the arrival point, and the maximum and minimum boat speeds for each section as constraints;
A second step in which the ship speed for each section is a control variable, the fuel consumption from the departure point to the arrival point is an objective function, and the ship speed for each section that minimizes the objective function is an optimal solution; ,
If the optimal solution is not calculated in the second step, a third step is to set a margin for the target voyage time, and to set the boat speed for each section that minimizes the objective function as the optimal solution;
Ship speed calculation method including
出発地点から到着地点までの航路を疑似的に複数の区間に分け、該区間毎の船速を算出する船速算出方法であって、
出発地点から到着地点に達するまでの目標航海時間、並びに制約条件として前記区間毎の最大船速及び最小船速を設定する第1工程と、
前記区間毎の船速を制御変数とした出発地点から到着地点に達するまでの総航海時間及び前記船舶の燃料消費量を算出し、前記目標航海時間と前記総航海時間の差分と前記燃料消費量の和を目的関数とし、該目的関数を最小とする前記区間毎の船速を最適解とする第2工程と、
を含む船速算出方法。
A ship speed calculation method for dividing a route from a departure point to an arrival point into a plurality of sections in a pseudo manner and calculating a ship speed for each section,
A first step of setting a target voyage time from the departure point to the arrival point, and a maximum boat speed and a minimum boat speed for each section as a constraint condition;
Calculate the total voyage time from the departure point to the arrival point and the fuel consumption amount of the ship with the ship speed as a control variable for each section, the difference between the target voyage time and the total voyage time and the fuel consumption amount A second step in which the objective function is the sum of and the boat speed for each section that minimizes the objective function is the optimal solution;
Ship speed calculation method including
JP2014208099A 2014-10-09 2014-10-09 Ship speed calculation device and ship speed calculation method Active JP6262116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208099A JP6262116B2 (en) 2014-10-09 2014-10-09 Ship speed calculation device and ship speed calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208099A JP6262116B2 (en) 2014-10-09 2014-10-09 Ship speed calculation device and ship speed calculation method

Publications (2)

Publication Number Publication Date
JP2016078472A true JP2016078472A (en) 2016-05-16
JP6262116B2 JP6262116B2 (en) 2018-01-17

Family

ID=55957318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208099A Active JP6262116B2 (en) 2014-10-09 2014-10-09 Ship speed calculation device and ship speed calculation method

Country Status (1)

Country Link
JP (1) JP6262116B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175780A1 (en) 2016-04-08 2017-10-12 株式会社Nttドコモ Wireless base station and communications control method
CN111709579A (en) * 2020-06-17 2020-09-25 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Ship speed optimization method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025914A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Operation system for ship
US20100280750A1 (en) * 2009-04-30 2010-11-04 The Boeing Company Estimating Probabilities of Arrival Times for Voyages
JP2012515395A (en) * 2009-01-16 2012-07-05 ザ・ボーイング・カンパニー Navigation efficiency analysis
JP2013242662A (en) * 2012-05-18 2013-12-05 Sumitomo Heavy Ind Ltd Optimization problem analysis device and optimization problem analysis method
JP2014127047A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Operation supporting system and operation supporting method
WO2014115352A1 (en) * 2013-01-25 2014-07-31 日本郵船株式会社 Device, program, storage medium, and method for determining vessel travel speed

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025914A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Operation system for ship
JP2012515395A (en) * 2009-01-16 2012-07-05 ザ・ボーイング・カンパニー Navigation efficiency analysis
US20100280750A1 (en) * 2009-04-30 2010-11-04 The Boeing Company Estimating Probabilities of Arrival Times for Voyages
JP2013242662A (en) * 2012-05-18 2013-12-05 Sumitomo Heavy Ind Ltd Optimization problem analysis device and optimization problem analysis method
JP2014127047A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Operation supporting system and operation supporting method
WO2014115352A1 (en) * 2013-01-25 2014-07-31 日本郵船株式会社 Device, program, storage medium, and method for determining vessel travel speed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175780A1 (en) 2016-04-08 2017-10-12 株式会社Nttドコモ Wireless base station and communications control method
CN111709579A (en) * 2020-06-17 2020-09-25 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Ship speed optimization method and device
CN111709579B (en) * 2020-06-17 2023-12-01 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) Ship navigational speed optimization method and device

Also Published As

Publication number Publication date
JP6262116B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6189278B2 (en) Main machine load distribution calculation device and main machine load distribution calculation method
JP6038087B2 (en) Ship operation plan optimization system and ship operation plan optimization method
JP5328874B2 (en) Navigation support equipment and ships
JP7312263B2 (en) A device for determining the optimum route of a sea vessel
US20120259489A1 (en) Ship maneuvering control method and ship maneuvering control system
JP5951140B2 (en) Data processing apparatus, program, recording medium and data processing method for generating data indicating navigation performance of ship
JP6251842B2 (en) Ship operation support system and ship operation support method
WO2014188584A1 (en) Ship managing device, ship managing system, and program
JP2013134089A (en) Optimal sailing route calculating apparatus and optimal sailing route calculating method
JP5649014B1 (en) Device, program, recording medium and method for determining navigation speed of ship
NO345705B1 (en) A method for optimizing an efficiency of a vessel on a voyage
EP4045394A1 (en) Computer-implemented method for optimizing marine vessel thrust allocation for plurality of thruster units
JP6262116B2 (en) Ship speed calculation device and ship speed calculation method
JP6121317B2 (en) Ship speed control device, ship speed control system, ship speed control method, and ship speed control program
WO2014128915A1 (en) Navigational analysis device, navigational analysis method, program, and recording medium
WO2015008381A1 (en) Ship allocation device, ship allocation method, program, and recording medium
JP6165697B2 (en) Ship speed calculation device and ship speed calculation method
US20140018981A1 (en) Steering system for a marine vessel
JP7448414B2 (en) Rudder control device and ship
KR20180045341A (en) Providing System for Optimum Ocean Route and method thereof
JP5890540B2 (en) Ship management apparatus and program
JPWO2014192071A1 (en) Ship allocation support device, ship allocation support method, program, and recording medium
WO2020129226A1 (en) Navigation assistance method, navigation assistance device, and navigation assistance program
Shepherd et al. Serious Sailing: Time-Optimal Control of Sailing Drones in Stochastic, Spatiotemporally Varying Wind Fields
CN115907355A (en) Navigation task planning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6262116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150