JP2016064094A - Analyzer of knee joint rotation - Google Patents

Analyzer of knee joint rotation Download PDF

Info

Publication number
JP2016064094A
JP2016064094A JP2014196173A JP2014196173A JP2016064094A JP 2016064094 A JP2016064094 A JP 2016064094A JP 2014196173 A JP2014196173 A JP 2014196173A JP 2014196173 A JP2014196173 A JP 2014196173A JP 2016064094 A JP2016064094 A JP 2016064094A
Authority
JP
Japan
Prior art keywords
external rotation
evaluation value
bending
subject
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014196173A
Other languages
Japanese (ja)
Other versions
JP6108627B2 (en
Inventor
智宏 牛久保
Tomohiro Ushikubo
智宏 牛久保
中村 英一
Hidekazu Nakamura
英一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anima Corp
Original Assignee
Anima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anima Corp filed Critical Anima Corp
Priority to JP2014196173A priority Critical patent/JP6108627B2/en
Publication of JP2016064094A publication Critical patent/JP2016064094A/en
Application granted granted Critical
Publication of JP6108627B2 publication Critical patent/JP6108627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a knee joint rotation analyzer capable of quantitatively evaluating instability of the knee joint rotation.SOLUTION: The knee joint rotation analyzer includes means of: acquiring variations in bending angles and external rotation angles of the knees of a subject in bending and extension in a pivot shift test; acquiring differences between variations in the external rotation in the bending and variations in the external rotation angle in the extension in the same bending angle, and acquiring a first evaluation value from a total of the differences acquired of the respective bending angles; and acquiring a second evaluation value from a difference between the first evaluation value acquired on the left knee of the subject and the first evaluation value acquired on the right knee of the subject.SELECTED DRAWING: Figure 1

Description

本発明は、膝関節回旋の解析装置に関するものである。 The present invention relates to an apparatus for analyzing knee joint rotation.

膝の前十字靱帯損傷(ACL損傷)は膝の安定性に関わる重要な靭帯であり、スポーツ時に損傷することがある。ACLは膝の前後方向の安定性と、回旋方向の安定性に寄与している。現在、ACL損傷や損傷後の定量評価に使用されている機器はKT-1000による前後方向不安定性のみで、回旋不安定性を計測する方法は確立されていない。 Knee anterior cruciate ligament injury (ACL injury) is an important ligament involved in knee stability and can be damaged during sports. ACL contributes to the stability in the anterior-posterior direction of the knee and the stability in the rotational direction. Currently, the only instrument used for ACL damage and quantitative evaluation after damage is the KT-1000 instability in the front-rear direction, and no method for measuring the rotation instability has been established.

回旋不安定性を測定する手法としてピボットシフト検査(pivot shift test)という徒手検査が当業者に良く知られている。非特許文献1には、「pivot shift testとは、外反・内旋といった回旋ストレス下に生じる脛骨外側コンパートメントの脱臼・整復動作の大きさを徒手的に判断するテストである」と記載されている。 As a method for measuring the rotation instability, a manual inspection called a pivot shift test is well known to those skilled in the art. Non-Patent Document 1 describes that the “pivot shift test is a test for manually determining the magnitude of the dislocation / reduction movement of the lateral tibial compartment that occurs under rotation stress such as hallux valgus and internal rotation”. Yes.

ピボットシフト検査の定量評価を試みる提案も幾つか存在する。例えば、ピボットシフト検査時に、磁気センサーを使用して、脛骨の前後移動量を指標としてピボットシフト検査の評価に用いる研究(特許文献1、非特許文献1〜3)がなされているが、回旋を直接計測しているわけではない。 There are also some proposals that attempt quantitative evaluation of pivot shift inspection. For example, research (Patent Document 1, Non-Patent Documents 1 to 3) that uses a magnetic sensor and evaluates the pivot shift inspection as an index during the pivot shift inspection is used. It is not measured directly.

その他にも、膝関節の動作を取得して膝関節の不安定性の定量評価を試みる手法が提案(特許文献2〜4)されているが、外旋角度や外旋角速度ではピボットシフト検査の良好な評価ができていないのが現状である。 In addition, methods that attempt to quantitatively evaluate knee joint instability by acquiring knee joint motion have been proposed (Patent Documents 2 to 4). Pivot shift inspection is good at external rotation angles and external rotation angular velocities. The current situation is that no good evaluation has been made.

また、膝関節の安定性を評価する徒手検査を機械的に実施しようとする提案もある(特許文献5、特許文献6)。 In addition, there is a proposal to mechanically perform manual inspection for evaluating knee joint stability (Patent Documents 5 and 6).

また、非特許文献4には、膝関節の動作解析が記載されており、非特許文献4に記載された各種角度の計算方法が、特許文献1、非特許文献1〜3においても援用されている。 Non-Patent Document 4 describes knee joint motion analysis, and various angle calculation methods described in Non-Patent Document 4 are also incorporated in Patent Document 1 and Non-Patent Documents 1 to 3. Yes.

国際公開WO2006−085387International Publication WO2006-085387 国際公開WO2013−086009International publication WO2013-086009 国際公開WO2013−123263International publication WO2013-123263 US2011/0213275US2011 / 0213275 US2012/0046540US2012 / 0046540 US2013/0041289US2013 / 0041289

三次元電磁気センサーを用いた膝関節の運動解析、星野祐一、長宗高樹、 西本浩司、黒田良祐、黒坂昌弘、関節外科 27(9):1239−1246 2008Knee joint motion analysis using a three-dimensional electromagnetic sensor, Yuichi Hoshino, Takaki Nagamune, Koji Nishimoto, Ryosuke Kuroda, Masahiro Kurosaka, Joint Surgery 27 (9): 1239-1246 2008 In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Hoshino Y1, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M. Am J Sports Med. 2007 Jul;35(7):1098-104. Epub 2007 Mar 9In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device.Hoshino Y1, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M. Am J Sports Med. 2007 Jul; 35 (7): 1098-104. Epub 2007 Mar 9 Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Hoshino Y1, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M. Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1323-30. doi: 10.1007/s00167-011-1643-5. Epub 2011 Aug 18.Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency.Hoshino Y1, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M. Knee Surg Sports Traumatol Arthrosc. 2012 Jul; 20 (7): 1323- 30.doi: 10.1007 / s00167-011-1643-5. Epub 2011 Aug 18. J Biomech Eng. 1983 May;105(2):136-44. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Grood ES, Suntay WJ.J Biomech Eng. 1983 May; 105 (2): 136-44.A joint coordinate system for the clinical description of three-dimensional motions: application to the knee.Grood ES, Suntay WJ.

本発明は、膝関節回旋の不安定性の定量評価を可能とする膝関節回旋の解析装置を提供することを目的とするものである。 An object of the present invention is to provide an analysis apparatus for knee joint rotation that enables quantitative evaluation of instability of knee joint rotation.

本発明が採用した技術手段は、
ピボットシフト検査における屈曲時及び伸展時の被験者の膝の屈曲角度及び外旋角の変化量を取得する手段と、
同じ屈曲角度における、屈曲時の外旋角の変化量と伸展時の外旋角の変化量との差を取得し、各屈曲角度について取得した差の合計から第1評価値を取得する手段と、
被験者の左膝について取得した第1評価値と被験者の右膝について取得した第1評価値との差から第2評価値を取得する手段と、
を備えた膝関節回旋の解析装置、である。
The technical means adopted by the present invention are:
Means for acquiring the amount of change in the bending angle and external rotation angle of the subject's knee during flexion and extension in the pivot shift test;
Means for acquiring a difference between a change amount of an external rotation angle at the time of bending and a change amount of an external rotation angle at the time of extension at the same bending angle, and acquiring a first evaluation value from the sum of the differences acquired for each bending angle; ,
Means for acquiring a second evaluation value from the difference between the first evaluation value acquired for the subject's left knee and the first evaluation value acquired for the subject's right knee;
An apparatus for analyzing knee joint rotation, comprising:

1つの態様では、前記外旋角の変化量は、外旋角速度である。
後述する実施形態では、外旋角速度を用いて第1評価量、第2評価量を取得している。
なお、前記外旋角の変化量は、外旋角加速度でもよい。外旋角加速度を用いて第1評価値、第2評価値を計算した場合であっても、疾患者と健常者との間に差が得られることが確認された(図11、表4参照)。
In one aspect, the amount of change in the external rotation angle is an external rotation angular velocity.
In the embodiment to be described later, the first evaluation amount and the second evaluation amount are acquired using the external rotation angular velocity.
The amount of change in the external rotation angle may be external rotation angular acceleration. Even when the first evaluation value and the second evaluation value were calculated using the external rotation angular acceleration, it was confirmed that a difference was obtained between the diseased person and the healthy person (see FIG. 11 and Table 4). ).

1つの態様では、前記第1評価値は、屈曲時の外旋角の変化量、伸展時の外旋角の変化量のいずれか一方と、他方の絶対値との差の合計である。
1つの態様では、前記第1評価値の算出に用いる外旋角の変化量(外旋角速度データ)は、所定の角度範囲(実施形態では、0度〜90度)に亘って取得された屈曲角度を複数の小角度範囲(実施形態では、5度刻み)に分割し、当該小角度範囲に属する複数(実施形態では5つ)の外旋角の変化量(外旋角速度データ)の平均値である。
1つの態様では、前記平均値は、α個(実施形態では5個)の外旋角速度データの平均値であり、
前記第1評価値は、同じ小角度範囲における、屈曲時の前記外旋角速度データ平均値、伸展時の前記外旋角速度データ平均値のいずれか一方と、他方の絶対値と、の差の合計(実施形態では、15度〜45度の範囲のみを採用)をα倍することで得られる。
In one aspect, the first evaluation value is the sum of the differences between one of the amount of change in the external rotation angle during bending and the amount of change in the external rotation angle during extension and the other absolute value.
In one aspect, the amount of change in the external rotation angle (external rotation angular velocity data) used for calculating the first evaluation value is a bending obtained over a predetermined angle range (0 to 90 degrees in the embodiment). An angle is divided into a plurality of small angle ranges (in the embodiment, in increments of 5 degrees), and an average value of a plurality of (in the embodiment, five) external rotation angle change amounts (external rotation angular velocity data) belonging to the small angle range. It is.
In one aspect, the average value is an average value of α (5 in the embodiment) external rotation angular velocity data,
The first evaluation value is the sum of the differences between the average value of the external rotation angular velocity data during bending and the average external rotation angular velocity data during extension and the other absolute value in the same small angle range. (In the embodiment, only the range of 15 to 45 degrees is adopted) is obtained by multiplying by α.

1つの態様では、健常群と疾患群を判別する判別値が得られており、
被験者固有の第2評価値を前記判別値と比較して、当該被験者の外旋不安定性の有無を判定する手段を備えている。
判別値は、健常群の第2評価値と疾患群の第2評価値とから取得することができる。1つの態様では、判別値は、ROC曲線から得られたカットオフ値である。
In one aspect, a discriminant value for discriminating between a healthy group and a disease group is obtained,
Means is provided for comparing the second evaluation value unique to the subject with the discriminant value to determine the presence or absence of the subject's external rotation instability.
The discriminant value can be acquired from the second evaluation value of the healthy group and the second evaluation value of the disease group. In one aspect, the discriminant value is a cut-off value obtained from the ROC curve.

1つの態様では、前記被験者の膝の屈曲角度及び外旋角速度は、ピボットシフト検査時に動作計測システム(モーションキャプチャ)によって取得される大腿部と下腿部の動作データを用いて算出される。
動作計測システムとしては、光学式モーションキャプチャが例示される。後述する実施形態では、仮想マーカーを用いた光学式モーションキャプチャを採用しているが、仮想マーカーに代えて実マーカーを用いたものでもよい。
動作計測システムは、特許文献1、非特許文献1〜3に記載された3次元電磁気センサーを用いたものでもよく、また、内界式モーションキャプチャ、具体的には、6軸センサー(3軸加速度センサー、3軸ジャイロスコープを備えたセンサーモジュール)や9軸センサー(3軸加速度センサー、3軸ジャイロスコープ、3軸地磁気センサーを備えたセンサーモジュール)を用いたものでもよい。
In one aspect, the knee flexion angle and external rotation angular velocity of the subject are calculated using motion data of the thigh and crus acquired by a motion measurement system (motion capture) at the time of pivot shift inspection.
An example of the motion measurement system is an optical motion capture. In an embodiment to be described later, optical motion capture using a virtual marker is employed, but an actual marker may be used instead of the virtual marker.
The motion measurement system may be one using the three-dimensional electromagnetic sensor described in Patent Document 1 and Non-Patent Documents 1 to 3, and also an internal motion capture, specifically, a 6-axis sensor (3-axis acceleration). A sensor using a sensor or a 3-axis gyroscope) or a 9-axis sensor (a 3-axis acceleration sensor, a 3-axis gyroscope, or a sensor module including a 3-axis geomagnetic sensor) may be used.

大腿部、下腿部の3次元動作データから膝の屈曲角度、外旋角度を取得すること自体は、非特許文献4に記載されているように公知である。外旋角度の時系列データが得られていれば、外旋角速度、外旋角加速度を算出することができる。   As described in Non-Patent Document 4, it is well known to acquire the knee flexion angle and the external rotation angle from the three-dimensional motion data of the thigh and crus. If time series data of the external rotation angle is obtained, the external rotation angular velocity and the external rotation angular acceleration can be calculated.

本発明は、膝関節の回旋に関する情報を用いて、回旋の不安定性を評価する新たな手法である。本発明では、屈曲時と伸展時における外旋角度の変化量(外旋角速度や外旋角加速度)の差から第1評価値を求め、さらに被験者の左右の脚(一方が健脚、他方が患脚)について取得した第1評価値の差から第2評価値を求めるという方法を用いている。   The present invention is a new technique for evaluating instability of rotation using information related to rotation of the knee joint. In the present invention, the first evaluation value is obtained from the difference between the amount of change in the external rotation angle (external rotation angular velocity and external rotation angular acceleration) during flexion and extension, and the subject's left and right legs (one is a healthy leg and the other is affected). The second evaluation value is obtained from the difference between the first evaluation values acquired for the leg).

本発明は、健常者であれば左右の脚でピボットシフト検査を行った際に、左右の脚で同じような動きをすることが予想されるのに対して、ACL損傷者の場合には健脚と患脚の間に差が生じることが予想されることに着目して為されたものである。骨や靭帯は個人差が大きく、健常者でも、人体に緩みがあり、外力に対して骨や靭帯が動く人もいれば、ACLを損傷しても動きが起きにくい人もいる。従来の手法では、基本的に患側(片足)のみのデータを用いて評価を行っていたのに対して、本発明は、屈曲時の外旋角度の変化量と伸展時の外旋角度の変化量との差から第1評価値を求め、さらに一方の脚(健脚)の第1評価値と他方の脚(患脚)の第2評価値の差をとるという方法を用いることで、健常者のばらつきを小さくすることができるようになり、差異を出やすくしている点に特徴がある。   The present invention predicts that the right and left legs will move in the same way when the pivot shift inspection is performed on the left and right legs if the subject is a healthy person, while the healthy leg is the subject that has an ACL injury. It was made by paying attention to the fact that a difference is expected to occur between the affected leg and the affected leg. Bones and ligaments vary greatly from person to person, and even healthy individuals have loose human bodies, and some people move bones and ligaments in response to external forces, while others do not easily move when ACLs are damaged. In the conventional method, the evaluation was basically performed using only the data on the affected side (one leg), whereas the present invention is the amount of change in the external rotation angle during bending and the change in the external rotation angle during extension. By using the method of obtaining the first evaluation value from the difference from the amount and taking the difference between the first evaluation value of one leg (healthy leg) and the second evaluation value of the other leg (affected leg), a healthy person This is characterized in that the variation in the size can be reduced and the difference is easily generated.

膝関節回旋の解析装置の全体図である。1 is an overall view of an analysis device for knee joint rotation. 仮想マーカーの設定を示す図である。It is a figure which shows the setting of a virtual marker. 下腿部の仮想マーカーの正面図である。It is a front view of the virtual marker of a lower leg part. 非特許文献4におけるFig.3を援用するものであり、膝関節の各関節角度(屈曲角、外旋角等)を規定している。Fig. 3 in Non-Patent Document 4 is used, and each joint angle (flexion angle, external rotation angle, etc.) of the knee joint is defined. 屈曲角度を横軸、外旋角速度を縦軸にとって、第1評価値を例示する図である。It is a figure which illustrates a 1st evaluation value by making a bending angle into a horizontal axis and an external rotation angular velocity to a vertical axis | shaft. 図5と類似の図であり、健常者の屈曲角と外旋角速度のグラフ(左足)である。It is a figure similar to FIG. 5, and is a graph (left foot) of a bending angle and external rotation angular velocity of a healthy person. 図5と類似の図であり、健常者の屈曲角と外旋角速度のグラフ(右足)である。It is a figure similar to FIG. 5, and is a graph (right foot) of a healthy person's bending angle and external rotation angular velocity. 図5と類似の図であり、ACL損傷者の屈曲角と外旋角速度のグラフ(健足)である。It is a figure similar to FIG. 5, and is a graph (a healthy leg) of the bending angle and external rotation angular velocity of an ACL injury person. 図5と類似の図であり、ACL損傷者の屈曲角と外旋角速度のグラフ(患足)である。It is a figure similar to FIG. 5, and is a graph (affected leg) of a flexion angle and an external rotation angular velocity of an ACL-injured person. 外旋角速度による解析のROC曲線を示す。The ROC curve of analysis by external rotation angular velocity is shown. 外旋角加速度による解析のROC曲線を示す。The ROC curve of analysis by external rotation angular acceleration is shown.

図1に本実施形態に係る膝関節回旋の解析装置の概要を示す。本実施形態に係る膝関節回旋の解析装置は、ピボットシフト検査における屈曲時及び伸展時の被験者の膝関節の動きの動作計測システムと、膝関節の動きに関するデータから屈曲角度及び外旋角速度を取得する手段と、同じ屈曲角度における、屈曲時の外旋角速度と伸展時の外旋角速度との差を取得し、各屈曲角度について取得した差の合計から第1評価値を取得する手段と、被験者の左膝について取得した第1評価値と被験者の右膝について取得した第1評価値との差から第2評価値を取得する手段と、被験者固有の第2評価値を健常群の第2評価値と比較して、当該被験者の膝損傷の有無を判定する手段と、を備えている。 FIG. 1 shows an outline of an analysis apparatus for knee joint rotation according to the present embodiment. The knee joint rotation analysis apparatus according to the present embodiment obtains the bending angle and the external rotation angular velocity from the motion measurement system of the subject's knee joint movement at the time of flexion and extension in the pivot shift examination and the data on the movement of the knee joint. A means for acquiring a difference between an external rotation angular velocity during bending and an external rotation angular velocity during extension at the same bending angle, and acquiring a first evaluation value from the sum of the differences acquired for each bending angle; Means for acquiring a second evaluation value from the difference between the first evaluation value acquired for the left knee of the subject and the first evaluation value acquired for the right knee of the subject, and the second evaluation value specific to the subject as the second evaluation of the healthy group And means for determining the presence or absence of knee injury of the subject in comparison with the value.

膝関節回旋の解析装置のハードウェア構成は、動作計測システムと、コンピュータと、からなる。本実施形態に係る動作計測システムは、光学式モーションキャプチャシステムを採用することでピボットシフト検査における被験者の膝の動き(屈曲時及び伸展時)を取得する。光学式モーションキャプチャシステムは、被験者の大腿部、下腿部の所定部位にそれぞれ装着した複数の光学式マーカー(例えば赤外線反射マーカー)と、光学式マーカーを装着した被験者の膝関節の屈伸運動を複数角度から同時に撮影する複数台のカメラと、各カメラで取得したマーカーの画像情報中の光学式マーカーの二次元位置を再構成して各光学式マーカーの三次元位置の時系列データを取得する処理部(コンピュータから構成される)と、を備えている。大腿部の所定部位と下腿部の所定部位に取り付けたマーカーの動きから、膝関節の動作データが取得される。光学式マーカーは大腿部の前後・左右・上下軸、下腿部の前後・左右・上下軸を決定できるような位置を選択して装着される。後述するように、本実施形態では、仮想マーカーを用いて膝関節の動作データを取得している。 The hardware configuration of the knee joint rotation analysis apparatus includes an operation measurement system and a computer. The motion measurement system according to the present embodiment acquires the motion of the subject's knee (during flexion and extension) in the pivot shift examination by employing an optical motion capture system. The optical motion capture system is designed to perform bending and stretching movements of a plurality of optical markers (for example, infrared reflective markers) attached to predetermined portions of the subject's thigh and lower leg, and a subject's knee joint wearing the optical marker. Reconstructs the two-dimensional position of the optical marker in the image information of the multiple cameras that are simultaneously photographed from multiple angles and the marker acquired by each camera, and acquires time-series data of the three-dimensional position of each optical marker And a processing unit (consisting of a computer). The motion data of the knee joint is acquired from the movement of the marker attached to the predetermined part of the thigh and the predetermined part of the crus. The optical marker is mounted by selecting a position that can determine the front / rear / left / right / up / down axes of the thigh and the front / rear / left / right / up / down axes of the lower leg. As will be described later, in the present embodiment, motion data of the knee joint is acquired using a virtual marker.

計測された各種データを用いてデータ処理を行う処理部(屈曲角度・外旋角度の取得手段、第1評価値取得手段、第2評価値取得手段、判定手段等)や処理結果を表示する表示部は、汎用コンピュータ(データを入力するための入力装置、処理結果を出力するための出力装置、データや処理結果を表示する表示装置、主としてCPUから構成される演算装置、ROM、RAM、ハードディスク等の記憶装置、これらを接続するバス、コンピュータに所定の処理を実行させるために記憶装置に格納された所定のプログラム、等を備えている)から実現することができる。 A processing unit (data acquisition unit for bending angle / external rotation angle, first evaluation value acquisition unit, second evaluation value acquisition unit, determination unit, etc.) that performs data processing using various measured data and a display for displaying the processing result The unit is a general-purpose computer (an input device for inputting data, an output device for outputting processing results, a display device for displaying data and processing results, an arithmetic device mainly composed of a CPU, ROM, RAM, hard disk, etc. Storage device, a bus connecting them, a predetermined program stored in the storage device for causing the computer to execute a predetermined process, and the like.

本実施形態に係る動作計測システムは、仮想点(仮想マーカー)を設定するポインタと称されるデバイスと、光学式モーションキャプチャシステムと、から構成されており、仮想マーカーの動きを取得する。仮想マーカーは、被験者に実際に取り付けられたマーカー(実マーカー)ではなく、複数の実マーカーに対する相対的位置によって位置が特定される仮想的なマーカーである。3次元動作計測システムにおいて仮想マーカーを設定する際は、ポインタと呼ばれるデバイスで仮想点を設定することによって行われる。ポインタを用いた仮想点設定や実マーカーの座標を用いた仮想マーカーの座標の計算については、例えば、特開2013−164413を参照することができる。 The motion measurement system according to the present embodiment includes a device called a pointer that sets a virtual point (virtual marker) and an optical motion capture system, and acquires the movement of the virtual marker. The virtual marker is not a marker (actual marker) actually attached to the subject, but a virtual marker whose position is specified by a relative position with respect to a plurality of actual markers. When setting a virtual marker in a three-dimensional motion measurement system, it is performed by setting a virtual point with a device called a pointer. For the virtual point setting using the pointer and the calculation of the virtual marker coordinates using the coordinates of the real marker, for example, JP 2013-164413 A can be referred to.

図2、図3を参照しつつ、本実施形態に係る光学式マーカーの取り付けについて説明する。マーカー間距離が一定に固定されている3つの光学式マーカーからなるマーカーユニットを用意する。図3に示すように、マーカーユニットは、プロテクター様の装具と、装具に固定された3つの光学式マーカーからなる。マーカーユニットは、左大腿部用、左下腿部用、右大腿部用、右下腿部用の4種類が用意される。左脚のピボットシフト検査時には、被験者の左の大腿部、下腿部に、左大腿部用マーカーユニット、左下腿部用マーカーユニットをそれぞれ取り付ける。右脚のピボットシフト検査時には、被験者の右の大腿部、下腿部に、右大腿部用マーカーユニット、右下腿部用マーカーユニットをそれぞれ取り付ける。 The attachment of the optical marker according to the present embodiment will be described with reference to FIGS. A marker unit composed of three optical markers having a fixed inter-marker distance is prepared. As shown in FIG. 3, the marker unit includes a protector-like appliance and three optical markers fixed to the appliance. There are four types of marker units for left thigh, left lower thigh, right thigh, and right lower thigh. At the time of pivot shift inspection of the left leg, a left thigh marker unit and a left lower leg marker unit are attached to the left thigh and lower thigh of the subject. At the time of the pivot shift inspection of the right leg, the right thigh marker unit and the right lower leg marker unit are respectively attached to the subject's right thigh and lower leg.

大腿部に装着したマーカーユニットを基準として大転子・大腿骨外側上顆・大腿骨外側上顆にポインタを使用して仮想点(仮想マーカー)を取り付ける。また、下腿部に装着したマーカーユニットを基準として腓骨頭・ガーディー結節の1cm後方・外果にポインタを使用して仮想点(仮想マーカー)を取り付ける。すなわち、大腿部(大腿骨)の所定位置に3つの仮想点、下腿部(脛骨)の所定位置に3つの仮想点が、それぞれ設定される。 A virtual point (virtual marker) is attached using a pointer to the greater trochanter, outer femoral condyle, and outer epicondyle of the femur using the marker unit attached to the thigh as a reference. A virtual point (virtual marker) is attached using a pointer on the head of the radius, 1 cm behind the guardy nodule, and the external fruit, using the marker unit attached to the lower leg as a reference. That is, three virtual points are set at predetermined positions on the thigh (femur), and three virtual points are set at predetermined positions on the lower leg (tibia).

本実施形態において、次のように軸を定義する。
大腿上下軸:大腿部の膝(外)のマーカーから大転子への軸
大腿前後軸:大腿の3つの仮想点の作る面に垂直な軸
大腿左右軸:大腿上下軸と大腿前後軸に垂直な軸
下腿上下軸:外果から下腿部の膝(外)へのマーカーの作る軸
下腿前後軸:下腿部の3つの仮想点の作る面に垂直な軸
下腿左右軸:下腿上下と下腿前後軸に垂直な軸
In the present embodiment, axes are defined as follows.
Upper and lower thigh axis: axis from thigh knee (outside) marker to greater trochanter thigh longitudinal axis: axis perpendicular to the plane formed by the three virtual points of the thigh thigh left and right axis: thigh vertical axis and thigh longitudinal axis Vertical axis Lower leg vertical axis: Axis created by marker from outer fruit to lower leg knee (outside) Lower leg longitudinal axis: An axis perpendicular to the plane created by three virtual points of lower leg Lower leg left and right axis: Lower leg upper and lower Axis perpendicular to the anteroposterior axis

なお、仮想点を設定する位置は、「大転子・大腿骨外側上顆・大腿骨外側上顆」の組、「腓骨頭・ガーディー結節の1cm後方・外果」の組に限定されるものではなく、大腿部、下腿部のそれぞれの前後・左右・上下の軸(すなわち、大腿部座標系XYZ、下腿部座標系xyz)が決められれば、上記の組み合わせに限定されるものではない。例えば、特許文献1、非特許文献1〜3で用いたマーカー位置や座標系の設定を採用してもよい。 In addition, the position to set the virtual point is limited to the group of “Greater trochanter, femoral lateral epicondyle, femoral lateral epicondyle”, and “radial head, 1 cm posterior of the Gurdy's nodule, and external fruit”. Rather, if the front / rear / left / right / upper / lower axes of the thigh and the lower leg (that is, the thigh coordinate system XYZ, the lower thigh coordinate system xyz) are determined, the combinations are limited to the above. is not. For example, the marker position and the coordinate system setting used in Patent Document 1 and Non-Patent Documents 1 to 3 may be adopted.

上述のように仮想マーカーを設定した状態で、被験者の左脚のピボットシフト検査時の左脚について、伸ばした状態からの屈曲動作、曲げた状態からの伸展動作を、光学式モーションキャプチャからなる3次元動作分析装置によって記録する。 With the virtual marker set as described above, the bending operation from the extended state and the extending operation from the bent state of the left leg at the time of the pivot shift inspection of the subject's left leg are composed of optical motion capture 3 Recorded by a dimensional motion analyzer.

本発明において、光学式モーションキャプチャを用いて膝の3次元動作を取得する場合に、上記マーカーユニットによって規定される仮想点を用いるものに限定されるものではなく、仮想点を設定した位置に実マーカーを貼り付けて計測してもよい。また、3次元動作計測装置は、光学式モーションキャプチャに限定されるものではなく、特許文献1のように磁気センサーを用いて計測してもよく、あるいは、9軸センサーを利用しての計測も可能である。 In the present invention, when acquiring the three-dimensional motion of the knee using optical motion capture, the present invention is not limited to using the virtual point defined by the marker unit, and is not limited to the position where the virtual point is set. You may stick a marker and measure. The three-dimensional motion measurement device is not limited to optical motion capture, and may be measured using a magnetic sensor as in Patent Document 1, or may be measured using a nine-axis sensor. Is possible.

屈曲角、外旋角度の計算を含む膝関節の動作解析については、非特許文献4に詳しく記載されている。当該文献のFig.3を図4に引用して示す。大腿部の座標系(X,Y,Z)、下腿部の座標系(x,y,z)が規定されており、浮動軸Fは、大腿部の座標系の1つの軸、下腿部の座標系の1つの軸の両方に直交する共通軸として規定されている。関節角は、これらの3つの関節座標軸(大腿部座標軸、下腿部座標軸、浮動軸F)について生じる回転によって規定される。屈曲・伸展は、大腿部座標軸について生じ、外旋・内旋は、下腿部座標軸について生じ、内転は浮動軸Fについて生じる。大腿部座標軸、下腿部座標軸、浮動軸Fの3つの軸を使って屈曲角・外旋角を計算する。本実施形態における屈曲角度や外旋角度の取得において、同様の計算方法を用いることができる。また、特許文献1においても、非特許文献4における伸展・屈曲角度、内旋・外旋角度等の計算方法が援用されている。 Non-patent document 4 describes in detail the motion analysis of the knee joint including the calculation of the bending angle and the external rotation angle. Fig. 3 of this document is quoted in Fig. 4. The thigh coordinate system (X, Y, Z) and the lower thigh coordinate system (x, y, z) are defined, and the floating axis F is one axis of the thigh coordinate system. It is defined as a common axis that is orthogonal to both axes of the thigh coordinate system. The joint angle is defined by the rotation that occurs about these three joint coordinate axes (thigh coordinate axis, crus coordinate axis, floating axis F). Flexion / extension occurs on the thigh coordinate axis, external rotation / internal rotation occurs on the crus coordinate axis, and adduction occurs on the floating axis F. The bending angle and the external rotation angle are calculated using the three axes of the thigh coordinate axis, the crus coordinate axis, and the floating axis F. A similar calculation method can be used in obtaining the bending angle and the external rotation angle in the present embodiment. Also in Patent Document 1, calculation methods such as extension / bending angle, internal rotation / external rotation angle, etc. in Non-Patent Document 4 are incorporated.

被験者の大腿部、下腿部にそれぞれマーカーユニットを取り付け、仮想マーカーを決定して、被験者の左脚、右脚のそれぞれについて、ピボットシフト検査を行い、検者の手で下腿を内旋し、外反を加えつつ、伸展位からの屈曲、屈曲位からの伸展を数回行う。被験者の左右の脚(被験者がACL損傷者であれば、一方の脚が患脚、他方の脚が健脚となる)に対して、15秒の間に5回程度の手技を行う。例えば、5回の手技の場合には、5回の屈曲動作・伸展動作について取得した関節データの平均データを用いる。ピボットシフト検査は、被験者の脚の屈曲動作、伸展動作を伴うものであり、ピボットシフト検査の際の被験者の膝の屈曲運動、伸展運動を光学式モーションキャプチャで取得する。各仮想マーカーの3次元座標の時系列データはコンピュータの記憶部に記憶される。なお、ピボットシフト検査は元来徒手検査であるが、本発明において、ピボットシフト検査は、機械的な手法(特許文献5、6参照)を排除するものではない。 Attach the marker unit to the subject's thigh and lower leg, determine the virtual marker, perform a pivot shift test on each of the subject's left leg and right leg, and rotate the lower leg with the examiner's hand While adding valgus, bend from the extended position and extend from the bent position several times. For the left and right legs of the subject (if the subject is an ACL-injured person, one leg is the affected leg and the other leg is a healthy leg), and the procedure is performed about 5 times in 15 seconds. For example, in the case of five procedures, average data of joint data acquired for five flexing / extending operations is used. The pivot shift inspection involves bending and extension movements of the subject's legs, and the bending and extension movements of the subject's knees during the pivot shift inspection are acquired by optical motion capture. The time series data of the three-dimensional coordinates of each virtual marker is stored in the storage unit of the computer. Although the pivot shift inspection is originally a manual inspection, in the present invention, the pivot shift inspection does not exclude a mechanical method (see Patent Documents 5 and 6).

非特許文献4における関節角度の定義に基づいて関節角度の計算を行う。また、関節角度の時系列データから関節角速度の計算も行う(各データや処理結果はコンピュータの記憶部に記憶される)。マーカー座標値を計算する際のローパスフィルターのカットオフ周波数として20Hzを用いた。なお、20Hzは一例である。左右の膝関節について、屈曲時の屈曲角とその時の外旋角速度と、伸展時の屈曲角とその時の外旋角度を計算する。計算したデータの中の屈曲角の時系列データと外旋角速度の時系列データに着目する。屈曲角の時系列変化から、あるデータが手技中の屈曲時のデータであるか、伸展時のデータであるかをコンピュータによって判別する。 The joint angle is calculated based on the joint angle definition in Non-Patent Document 4. The joint angular velocity is also calculated from the joint angle time series data (each data and processing result is stored in the storage unit of the computer). 20 Hz was used as the cut-off frequency of the low-pass filter when calculating the marker coordinate values. Note that 20 Hz is an example. For the left and right knee joints, the bending angle at the time of bending and the external rotation speed at that time, the bending angle at the time of extension and the external rotation angle at that time are calculated. We focus on the time series data of the bending angle and the time series data of the external rotation angular velocity in the calculated data. From the time series change of the bending angle, it is determined by a computer whether certain data is data at the time of bending during the procedure or data at the time of extension.

被験者の左脚のピボットシフト検査における屈曲時の屈曲角度が0度から90度の範囲(屈曲角は実数値であり、後述するように、特定の範囲(5°刻み)の屈曲角度の平均値を用いている)で得られ、各屈曲角度に対応する外旋角速度が計算される。同様に、被験者の左脚のピボットシフト検査における伸展時の屈曲角度が90度から0度の範囲で得られ、各屈曲角度に対応する外旋角速度が計算される。被験者の右脚についても、各屈曲角度における外旋角速度が計算される。被験者の左右の脚について、屈曲時における屈曲角度と外旋角速度との関係、伸展時における屈曲角度と外旋角速度との関係が、それぞれコンピュータの記憶部に記憶される。 Bending angle at the time of bending in the pivot shift examination of the subject's left leg is in the range of 0 to 90 degrees (the bending angle is a real value, and as will be described later, the average value of the bending angle in a specific range (5 ° increments) The external rotation angular velocity corresponding to each bending angle is calculated. Similarly, the bending angle at the time of extension in the pivot shift inspection of the subject's left leg is obtained in the range of 90 degrees to 0 degrees, and the external rotation angular velocity corresponding to each bending angle is calculated. Also for the subject's right leg, the external rotation angular velocity at each bending angle is calculated. Regarding the left and right legs of the subject, the relationship between the bending angle and the external rotation angular velocity at the time of bending and the relationship between the bending angle and the external rotation angular velocity at the time of extension are respectively stored in the storage unit of the computer.

同じ屈曲角度の範囲における、屈曲時の外旋角速度と伸展時の外旋角速度の差を取得し、各屈曲角度について取得した差の合計から第1評価値を取得する。1つの態様では、前記第1評価値は、屈曲時の外旋角速度、伸展時の外旋角速度のいずれか一方(例えば、屈曲時の外旋角速度)と、他方(伸展時の外旋角速度)の絶対値との差の合計である。 The difference between the external rotation angular velocity during bending and the external rotation angular velocity during extension in the same bending angle range is acquired, and the first evaluation value is acquired from the sum of the differences acquired for each bending angle. In one aspect, the first evaluation value is either one of the external rotation angular velocity during bending and the external rotation angular velocity during extension (for example, the external rotation angular velocity during bending) and the other (external rotation angular velocity during extension). Is the sum of the difference from the absolute value of.

本実施形態では、屈曲時、伸展時のそれぞれについて、屈曲角度を0度から90度までの5度刻み毎に、外旋角速度の平均値を計算する。伸展時については、計算された平均値を−1倍する。なお、5度は一例であり、他の角度刻みでもよい。 In this embodiment, the average value of the external rotation angular velocity is calculated every 5 degrees from 0 degrees to 90 degrees for the bending angle for each of the bending time and the extending time. For stretching, multiply the calculated average by -1. Note that 5 degrees is an example, and other angular increments may be used.

各屈曲角度の刻みの範囲で屈曲時の値から伸展時の値の差の絶対値をとり、15°〜45°の範囲で足し合わせたものを5倍(角度の刻み幅分)することで、屈曲角と外旋角速度の相関図における屈曲時と伸展時の面積を計算し、屈曲時の面積と伸展時の面積の差を第1評価値として用いる。すなわち、ピボットシフト検査の評価パラメーターとして、外旋角速度の積分値を用いている。 By taking the absolute value of the difference between the value at the time of bending and the value at the time of extension in the range of increments of each bending angle, by adding 5 times (for the angle step size) In the correlation diagram between the bending angle and the external rotation angular velocity, the area at the time of bending and the extension is calculated, and the difference between the area at the time of bending and the area at the time of extension is used as the first evaluation value. That is, the integral value of the external rotation angular velocity is used as an evaluation parameter for the pivot shift inspection.

図5の斜線で示された部分が、上の評価値である。図5は健足・患側それぞれについて得られる。患者の左脚、右足、健常者の左脚、右脚の4つの場合の図面を図6〜図9に示す。健常者の場合は、上記の図が健足と患側で差がない(健足と患側で同じ動きをする)という性質を利用している。 The hatched portion in FIG. 5 is the above evaluation value. FIG. 5 is obtained for each of the healthy foot and the affected side. Drawings of four cases of the patient's left leg, right leg, healthy person's left leg, and right leg are shown in FIGS. In the case of a healthy person, the above figure uses the property that there is no difference between the healthy foot and the affected side (the same movement is performed on the healthy foot and the affected side).

本実施形態に係る評価値の計算方法について具体的に説明する。屈曲角度範囲15°〜20°における屈曲時の外旋角速度の平均値として、「屈曲時であり、屈曲角が15°〜20°の範囲に入っている外旋角」の外旋角速度の平均値を計算する。同様の計算を「屈曲時」、「伸展時」それぞれに対して屈曲角が「15°〜20°」、「20°〜25°」、「25°〜30°」、「30°〜35°」、「35°〜40°」、「40°〜45°」に対して実行し、各角度範囲に対応する外旋角速度の平均値を取得する。 The evaluation value calculation method according to the present embodiment will be specifically described. As the average value of the external rotation angular velocity during bending in the bending angle range of 15 ° to 20 °, the average of the external rotation angular velocity of “external rotation angle during bending and the bending angle is in the range of 15 ° to 20 °” Calculate the value. The same calculation is performed for each of “when bent” and “when extended” with bending angles of “15 ° to 20 °”, “20 ° to 25 °”, “25 ° to 30 °”, and “30 ° to 35 °”. ”,“ 35 ° to 40 ° ”, and“ 40 ° to 45 ° ”to obtain the average value of the external rotation angular velocity corresponding to each angle range.

右足の屈曲時の15°〜20°の外旋角速度平均を( Rfrex 15-20 )Rと表記した時に、右脚の第1評価値( Rdef )Rは、以下の式から計算される。
The first evaluation value (R def ) R of the right leg is calculated from the following formula when the average external rotation angular velocity of 15 ° to 20 ° when the right foot is flexed is expressed as (R frex 15-20 ) R .

左足の伸展時の15°〜20°の外旋角速度平均を( Rext 15-20 )Lと表記をした時に、左脚の第1評価値( Rdef )Lは、以下の式から計算される。
When the average external angular velocity of 15 ° to 20 ° when the left foot is extended is expressed as (R ext 15-20 ) L , the first evaluation value (R def ) L of the left leg is calculated from the following formula: The

第2評価値は、以下の式から計算される。
第2評価値は被験者1名に対して左右の脚(健脚と患脚)、それぞれ1回の計測から1つの評価値として得られる。これを健常群について得られている第2評価値との比較によって評価を行う。
The second evaluation value is calculated from the following equation.
The second evaluation value is obtained as one evaluation value from one measurement for each of the left and right legs (healthy leg and affected leg) for one subject. This is evaluated by comparison with the second evaluation value obtained for the healthy group.

疾患者3名のサンプルデータを表1に示す。
健常者3名のサンプルデータを表2に示す。
Table 1 shows sample data of 3 patients.
Table 2 shows sample data of 3 healthy individuals.

健常者10名、疾患者41名について、第2評価値を取得した。健常者10名と疾患者41名について取得した第2評価値を用いて、マンホイットニーのU検定を行ったところ、有意水準1%で有意差が見られた(p = 0.0033)。また、ROC解析を行ったところ、ROC曲線化の面積Azが0.80であった。外旋角速度による解析のROC曲線を図10に示す。ROC曲線から得られた指標を表3に示す。
ROC解析のオッズ比が最大になる値(21.25)をカットオフ値として健常者と疾患者の区別(ACL損傷に伴う外旋不安定性のあり・なし)をすることが可能である。このカットオフ値(基準点)は表1、表2における第2評価値に対応している。このことから、ピボットシフト検査において、上記の解析手法を用いることで、外旋角を変換した指標を使用して、健常者と疾患者を識別することが可能である。
The second evaluation values were obtained for 10 healthy people and 41 sick people. A Mann-Whitney U test was performed using the second evaluation values obtained for 10 healthy subjects and 41 diseased individuals, and a significant difference was found at a significance level of 1% (p = 0.0034). Moreover, when ROC analysis was performed, the area Az of ROC curving was 0.80. FIG. 10 shows the ROC curve of the analysis based on the external rotation angular velocity. Table 3 shows the indices obtained from the ROC curve.
The value (21.25) that maximizes the odds ratio of ROC analysis can be used as a cutoff value to distinguish between healthy and diseased persons (with or without external rotation instability associated with ACL damage). This cut-off value (reference point) corresponds to the second evaluation value in Tables 1 and 2. From this, in the pivot shift test, it is possible to distinguish between a healthy person and a sick person using an index obtained by converting the external rotation angle by using the above analysis method.

また、外旋角加速度を用いて第1評価値、第2評価値を計算した場合であっても、疾患者と健常者との間に差が得られることが確認された外旋角加速度による解析のROC曲線を図11に示すと共に、得られた指標を表4に示す。
Further, even when the first evaluation value and the second evaluation value are calculated using the external rotation angular acceleration, it is confirmed that the difference is obtained between the sick person and the healthy person due to the external rotation angular acceleration. FIG. 11 shows the ROC curve of the analysis, and Table 4 shows the obtained indices.

Claims (4)

ピボットシフト検査における屈曲時及び伸展時の被験者の膝の屈曲角度及び外旋角の変化量を取得する手段と、
同じ屈曲角度における、屈曲時の外旋角の変化量と伸展時の外旋角の変化量との差を取得し、各屈曲角度について取得した差の合計から第1評価値を取得する手段と、
被験者の左膝について取得した第1評価値と被験者の右膝について取得した第1評価値との差から第2評価値を取得する手段と、
を備えた膝関節回旋の解析装置。
Means for acquiring the amount of change in the bending angle and external rotation angle of the subject's knee during flexion and extension in the pivot shift test;
Means for acquiring a difference between a change amount of an external rotation angle at the time of bending and a change amount of an external rotation angle at the time of extension at the same bending angle, and acquiring a first evaluation value from the sum of the differences acquired for each bending angle; ,
Means for acquiring a second evaluation value from the difference between the first evaluation value acquired for the subject's left knee and the first evaluation value acquired for the subject's right knee;
Knee rotation analysis device equipped with.
前記外旋角の変化量は、外旋角速度である、請求項1に記載の膝関節回旋の解析装置。   The knee joint rotation analysis apparatus according to claim 1, wherein the change amount of the external rotation angle is an external rotation angular velocity. 前記第1評価値は、屈曲時の外旋角の変化量、伸展時の外旋角の変化量のいずれか一方と、他方の絶対値との差の合計である、請求項1、2いずれか1項に記載の膝関節回旋の解析装置。   The first evaluation value is a sum of a difference between any one of a change amount of the external rotation angle during bending and a change amount of the external rotation angle during extension and the other absolute value. The knee joint rotation analysis device according to claim 1. 健常群と疾患群を判別する判別値が得られており、
被験者固有の第2評価値を前記判別値と比較して、当該被験者の外旋不安定性の有無を判定する手段を備えている、
請求項1〜3いずれか1項に記載の膝関節回旋の解析装置。
A discriminant value for distinguishing between a healthy group and a disease group has been obtained,
Comparing a second evaluation value unique to the subject with the discriminant value, and comprising means for judging the presence or absence of external rotation instability of the subject,
The knee joint rotation analysis device according to any one of claims 1 to 3.
JP2014196173A 2014-09-26 2014-09-26 Knee joint rotation analysis device Active JP6108627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196173A JP6108627B2 (en) 2014-09-26 2014-09-26 Knee joint rotation analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196173A JP6108627B2 (en) 2014-09-26 2014-09-26 Knee joint rotation analysis device

Publications (2)

Publication Number Publication Date
JP2016064094A true JP2016064094A (en) 2016-04-28
JP6108627B2 JP6108627B2 (en) 2017-04-05

Family

ID=55804420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196173A Active JP6108627B2 (en) 2014-09-26 2014-09-26 Knee joint rotation analysis device

Country Status (1)

Country Link
JP (1) JP6108627B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063920A1 (en) * 2016-09-27 2018-04-05 Arthrex, Inc. System and method for quantifying joint characteristics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085387A1 (en) * 2005-02-08 2006-08-17 Kouki Nagamune Noninvasive moving body analytic system and its using method
JP2009045189A (en) * 2007-08-20 2009-03-05 Hiroshima Univ Knee joint rotation angle measuring instrument
JP2011525394A (en) * 2008-06-27 2011-09-22 ボルト ゲゼルシャフト ミット ベシュレンクテル ハフツング A device for measuring the stability of knee joints
US20120046540A1 (en) * 2010-08-13 2012-02-23 Ermi, Inc. Robotic Knee Testing Device, Subjective Patient Input Device and Methods for Using Same
US20130041289A1 (en) * 2011-08-09 2013-02-14 The Regents Of The University Of California Mechanical pivot shift measurement to evaluate joints
WO2013086009A1 (en) * 2011-12-05 2013-06-13 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Quantified injury diagnostics
WO2013123263A1 (en) * 2012-02-14 2013-08-22 The Regents Of The University Of California Apparatus and method for quantifying stability of the knee

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085387A1 (en) * 2005-02-08 2006-08-17 Kouki Nagamune Noninvasive moving body analytic system and its using method
JP2009045189A (en) * 2007-08-20 2009-03-05 Hiroshima Univ Knee joint rotation angle measuring instrument
JP2011525394A (en) * 2008-06-27 2011-09-22 ボルト ゲゼルシャフト ミット ベシュレンクテル ハフツング A device for measuring the stability of knee joints
US20120046540A1 (en) * 2010-08-13 2012-02-23 Ermi, Inc. Robotic Knee Testing Device, Subjective Patient Input Device and Methods for Using Same
US20130041289A1 (en) * 2011-08-09 2013-02-14 The Regents Of The University Of California Mechanical pivot shift measurement to evaluate joints
WO2013086009A1 (en) * 2011-12-05 2013-06-13 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Quantified injury diagnostics
WO2013123263A1 (en) * 2012-02-14 2013-08-22 The Regents Of The University Of California Apparatus and method for quantifying stability of the knee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
川野 圭朗: ""複合慣性センサを用いた周波数解析による膝不安定性定量化システム"", 電子情報通信学会技術研究報告, vol. 第107巻 第461号, JPN6017006687, 8 January 2008 (2008-01-08), JP, pages 457 - 462, ISSN: 0003508357 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018063920A1 (en) * 2016-09-27 2018-04-05 Arthrex, Inc. System and method for quantifying joint characteristics

Also Published As

Publication number Publication date
JP6108627B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6660110B2 (en) Gait analysis method and gait analysis system
Kim et al. Screw-home movement of the tibiofemoral joint during normal gait: three-dimensional analysis
Fiorentino et al. Accuracy of functional and predictive methods to calculate the hip joint center in young non-pathologic asymptomatic adults with dual fluoroscopy as a reference standard
Lempereur et al. Validity and reliability of 3D marker based scapular motion analysis: a systematic review
Anderst et al. Validation of three-dimensional model-based tibio-femoral tracking during running
ES2910269T3 (en) Method and system for a human joint treatment plan and personalized surgery planning using 3D kinematics, fusion imaging and simulation
JP2015061579A (en) Motion information processing apparatus
Bergamini et al. Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization
Hawi et al. Range of motion assessment of the shoulder and elbow joints using a motion sensing input device: a pilot study
Feng et al. In-vivo analysis of flexion axes of the knee: femoral condylar motion during dynamic knee flexion
Thorhauer et al. Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact
Rainbow et al. Automatic determination of an anatomical coordinate system for a three-dimensional model of the human patella
Nichols et al. Subject-specific axes of rotation based on talar morphology do not improve predictions of tibiotalar and subtalar joint kinematics
WO2021155373A1 (en) Systems and methods for detection of musculoskeletal anomalies
Bagwell et al. The influence of squat kinematics and cam morphology on acetabular stress
Clément et al. Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity?
Hu et al. An inertial sensor system for measurements of tibia angle with applications to knee valgus/varus detection
Kandasamy et al. Posture and back shape measurement tools: A narrative
Ancillao The helical axis of anatomical joints: calculation methods, literature review, and software implementation
Barrance et al. A method for measurement of joint kinematics in vivo by registration of 3-D geometric models with cine phase contrast magnetic resonance imaging data
JP6108627B2 (en) Knee joint rotation analysis device
Lalone et al. Accuracy assessment of an imaging technique to examine ulnohumeral joint congruency during elbow flexion
Gitau et al. Comparison of Wearable and Computer Vision Based Approaches to Knee Flexion Angle Measurement
Rácz et al. Effect of anatomical landmark placement variation on the angular parameters of the lower extremities
Birch et al. Dynamic in vivo subtalar joint kinematics measured using a skin marker–based protocol: a face validity study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6108627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250