JP2016029356A - Device for measuring recording material characteristics and method for measuring recording material characteristics - Google Patents

Device for measuring recording material characteristics and method for measuring recording material characteristics Download PDF

Info

Publication number
JP2016029356A
JP2016029356A JP2014263073A JP2014263073A JP2016029356A JP 2016029356 A JP2016029356 A JP 2016029356A JP 2014263073 A JP2014263073 A JP 2014263073A JP 2014263073 A JP2014263073 A JP 2014263073A JP 2016029356 A JP2016029356 A JP 2016029356A
Authority
JP
Japan
Prior art keywords
recording material
tension
measuring
light
measuring apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014263073A
Other languages
Japanese (ja)
Other versions
JP6515530B2 (en
Inventor
松本 章吾
Shogo Matsumoto
章吾 松本
大原 俊一
Shunichi Ohara
俊一 大原
祥宏 原田
Yoshihiro Harada
祥宏 原田
平栗 和美
Kazumi Hirakuri
和美 平栗
関 宏之
Hiroyuki Seki
宏之 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014263073A priority Critical patent/JP6515530B2/en
Publication of JP2016029356A publication Critical patent/JP2016029356A/en
Application granted granted Critical
Publication of JP6515530B2 publication Critical patent/JP6515530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for measuring recording material characteristics capable of appreciating microscopic environment dependence characteristics of a recording material.SOLUTION: A device for measuring recording material characteristics includes: tension application members 1, 2 for applying tension to a recording material 4; a tension measurement member 8 for measuring the tension applied to the recording material 4; an outer size measurement apparatus 10 for measuring an outer size of the recording material 4 to which the tension is applied; and a structure measurement device 3 for measuring a structure of the recording material 4 to which the tension is applied. In the meantime, the device for measuring the recording material characteristics may be equipped with a humidity measuring device 200 for measuring humidity of the recording material 4.SELECTED DRAWING: Figure 1

Description

本発明は、記録材特性測定装置及び記録材特性測定方法に関するものである。   The present invention relates to a recording material property measuring apparatus and a recording material property measuring method.

複写機、ファクシミリ、プリンタ、或いはこれらの複合機等の画像形成装置には、この画像形成装置に用いられる記録紙等の記録材の搬送経路に、複数のローラ対、搬送ガイド部材が設けられ、記録材はこれらの部材によって搬送される。この記録材の搬送に際し、記録材が搬送経路に詰まったり、記録材にジャムが発生する。   An image forming apparatus such as a copying machine, a facsimile machine, a printer, or a complex machine of these is provided with a plurality of roller pairs and a conveying guide member in a conveying path of a recording material such as recording paper used in the image forming apparatus. The recording material is conveyed by these members. When the recording material is conveyed, the recording material is clogged in the conveyance path, or a jam occurs in the recording material.

これを防止するために、各種の記録材について各種の環境条件のもとで搬送確認を行っているが、このことが、新製品開発の負担となっている。
一方、従来から、画像形成装置に用いられる記録紙等の記録材では、温度、湿度の環境条件の変化による記録材の含水率の変化、記録材に加わる張力等によって、記録材の寸法、カール等の形状、剛性等の環境依存特性が変化することが知られている。
In order to prevent this, conveyance of various recording materials is confirmed under various environmental conditions, which is a burden for new product development.
On the other hand, recording materials such as recording paper used in image forming apparatuses have conventionally been affected by changes in the moisture content of the recording material due to changes in environmental conditions such as temperature and humidity, tension applied to the recording material, etc. It is known that environment-dependent characteristics such as shape and rigidity change.

そこで、記録材の含水分量と記録材の厚さとの関係である厚さ特性値を評価する技術(例えば、特許文献1参照)、記録材を変形させてその変形前と変形後の剛性の変化から記録材の残留変形量を予測する技術(例えば、特許文献2参照)が提案されている。   Therefore, a technique for evaluating a thickness characteristic value that is a relationship between the moisture content of the recording material and the thickness of the recording material (see, for example, Patent Document 1), changes in rigidity before and after the deformation of the recording material. A technique for predicting a residual deformation amount of a recording material from the above (for example, see Patent Document 2) has been proposed.

しかし、特許文献1に開示の技術は、記録材の厚さ等の一部の特性に特化した技術であり、特許文献2に開示の技術は、特定の変形形状から記録材の特性を類推する技術であり、いずれも記録材のマクロ的な環境依存特性を評価する技術である。   However, the technique disclosed in Patent Document 1 is a technique specialized in some characteristics such as the thickness of the recording material, and the technique disclosed in Patent Document 2 analogizes the characteristics of the recording material from a specific deformed shape. All of these are techniques for evaluating macro-environment-dependent characteristics of recording materials.

このため、従来技術のようなマクロ的な環境依存特性の評価では、現象を的確に評価できず、装置製品の機種ごとに異なる搬送経路の形状に対応し得る特性、カール、皺等の現象に共通して用いることのできる環境依存特性を得ることが困難であるという不都合がある。   For this reason, in macro-environment-dependent characteristics evaluation as in the prior art, the phenomenon cannot be accurately evaluated, and characteristics such as curling, wrinkles, etc. that can correspond to the shape of the transport path that differs depending on the type of equipment product. There is an inconvenience that it is difficult to obtain environment-dependent characteristics that can be used in common.

なぜなら、記録材として用いられる代表的な記録紙等は、微細なバルブ繊維が複雑に絡まり合った構造体であり、その記録材のマクロ的な環境依存特性は、バルブ繊維の配向等のミクロ的な構造と、水分の分布等の影響とが複雑に影響して発現されるものであるからである。   This is because typical recording paper used as a recording material has a structure in which fine valve fibers are intertwined in a complicated manner, and the macro-environment-dependent characteristics of the recording material are microscopic such as the orientation of valve fibers. This is because the complex structure and the influence of moisture distribution and the like are expressed in a complicated manner.

本発明は、紙などの記録材のミクロ的な環境依存特性を効率的に評価できる記録材特性測定装置を提供することを目的とする。   An object of the present invention is to provide a recording material characteristic measuring apparatus capable of efficiently evaluating micro-environment-dependent characteristics of a recording material such as paper.

本発明の記録材特性測定装置は、記録材に張力を付与する張力付与部材と、前記記録材に付与する張力を計測する張力計測部材と、前記張力が付与された記録材の外形寸法を計測する外形寸法計測装置と、前記張力が付与された記録材の構造を計測する構造計測装置と、を備えていることを特徴とする。   The recording material characteristic measuring apparatus of the present invention measures a tension applying member for applying tension to the recording material, a tension measuring member for measuring the tension applied to the recording material, and an outer dimension of the recording material to which the tension is applied. And a structure measuring device for measuring the structure of the recording material to which the tension is applied.

本発明によれば、記録材を構成する構造を測定できるので、記録材のミクロ的な環境依存特性を評価でき、ひいては、各種の記録材に対するマクロ的な環境依存特性とミクロ的な環境依存特性との関係を取得することができる。   According to the present invention, since the structure constituting the recording material can be measured, the micro-environment-dependent characteristics of the recording material can be evaluated. As a result, the macro-environment-dependent characteristics and micro-environment-dependent characteristics of various recording materials can be evaluated. And can get a relationship.

本発明の実施例1に係る記録材特性測定装置の概略構成を示す模式図であって、記録材に評価用試薬を滴下する前の状態を示す説明図である。It is a schematic diagram which shows schematic structure of the recording material characteristic measuring apparatus which concerns on Example 1 of this invention, Comprising: It is explanatory drawing which shows the state before dripping the reagent for evaluation on a recording material. 本発明の実施例1に係る記録材特性測定装置の概略構成を示す模式図であって、記録材に評価用試薬を滴下した状態を示す説明図である。It is a schematic diagram which shows schematic structure of the recording material characteristic measuring apparatus which concerns on Example 1 of this invention, Comprising: It is explanatory drawing which shows the state which dripped the reagent for evaluation to the recording material. 図1、図2に示す構造計測装置の詳細構成の一例を示す図である。It is a figure which shows an example of the detailed structure of the structure measuring apparatus shown in FIG. 1, FIG. 図3に示す測定光学系の一部を拡大して示した部分拡大図である。It is the elements on larger scale which expanded and showed a part of measurement optical system shown in FIG. 記録材に評価用試薬を滴下する前でかつ記録材への張力付与前に取得された記録材の断層画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the tomographic image of the recording material acquired before dripping the reagent for evaluation on a recording material, and before providing the tension | tensile_strength to a recording material. 記録材に評価用試薬を滴下する前でかつ記録材への張力付与後に取得された記録材の断層画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the tomographic image of the recording material acquired before dripping the reagent for evaluation on a recording material and after the tension | tensile_strength provision to a recording material. 記録材に評価用試薬を滴下する前でかつ記録材への張力付与後、この張力を一定時間保持した状態で取得された断層画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the tomographic image acquired in the state which hold | maintained this tension | tensile_strength for a fixed time, after applying the tension | tensile_strength to a recording material before dropping the reagent for evaluation to a recording material. 記録材への評価用試薬滴下後でかつ記録材への張力付与前に取得された記録材の断層画像の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the tomographic image of the recording material acquired after the reagent for evaluation to the recording material is dropped and before the tension is applied to the recording material. 記録材に加える張力の大きさ(荷重)と記録材の変形量との関係を示す特性図であって、記録材への評価用試薬滴下前の特性を示す説明図である。It is a characteristic view showing the relationship between the magnitude (load) of tension applied to the recording material and the deformation amount of the recording material, and is an explanatory diagram showing the characteristics before dropping the evaluation reagent on the recording material. 記録材に加える張力の大きさ(荷重)と記録材の変形量との関係を示す特性図であって、記録材への評価用試薬滴下後の特性を示す説明図である。It is a characteristic view showing the relationship between the magnitude (load) of tension applied to the recording material and the deformation amount of the recording material, and is an explanatory diagram showing the characteristic after dropping the evaluation reagent on the recording material. 記録材のミクロ構造モデルの等価回路図である。It is an equivalent circuit diagram of a microstructure model of a recording material. 本発明の実施例2に係る記録材特性測定装置の概略構成を示す模式図であって、記録材に評価用試薬を滴下する前の状態を示す説明図である。It is a schematic diagram which shows schematic structure of the recording material characteristic measuring apparatus which concerns on Example 2 of this invention, Comprising: It is explanatory drawing which shows the state before dripping the reagent for evaluation on a recording material. 本発明の実施例2に係る記録材特性測定装置の概略構成を示す模式図であって、記録材に評価用試薬を滴下した状態を示す説明図である。It is a schematic diagram which shows schematic structure of the recording material characteristic measuring apparatus which concerns on Example 2 of this invention, Comprising: It is explanatory drawing which shows the state which dripped the reagent for evaluation on the recording material.

(実施例1)
以下に、本発明に係る記録材特性測定装置及び記録材特性測定方法の実施例を図面を参照しつつ説明する。
(記録材特性測定装置の概略構成)
図1、図2は、本発明の実施例1に係る記録材特性測定装置の概略構成を示す模式図である。
Example 1
Embodiments of a recording material property measuring apparatus and a recording material property measuring method according to the present invention will be described below with reference to the drawings.
(Schematic configuration of recording material characteristic measuring device)
1 and 2 are schematic views showing a schematic configuration of a recording material property measuring apparatus according to Embodiment 1 of the present invention.

その図1、図2において、1、2は張力付与部材、3は構造計測装置、4は記録材、5は吐出ノズル(塗布手段)、6はモニタである。
張力付与部材1、2は、記録材4を挟持して互いに反対方向に可動される。
In FIGS. 1 and 2, reference numerals 1 and 2 denote tension applying members, 3 a structure measuring device, 4 a recording material, 5 a discharge nozzle (application means), and 6 a monitor.
The tension applying members 1 and 2 are moved in opposite directions while sandwiching the recording material 4.

記録材4には、画像形成装置に用いられる紙、フィルム等のシート状物体が含まれ、この実施例では、記録紙が用いられている。構造計測装置3には、この実施例では、光干渉計が用いられているが、その詳細については、後述する。   The recording material 4 includes a sheet-like object such as paper or film used in the image forming apparatus. In this embodiment, recording paper is used. In this embodiment, an optical interferometer is used as the structure measuring device 3, and details thereof will be described later.

吐出ノズル5は、記録材4の内部構造の寸法変化を計測するために評価用試薬7を記録材4に向けて吐出するものであり、記録材4に対向して設けられる。その評価用試薬7は、浸透性を有する物質、例えば、液体であり、具体的には、純水や、インク等の記録材4に利用される塗料が用いられる。つまり、評価用試薬7とは、記録材4に用いられた際に記録材4の状態の変化を確認するために用いられる液体である。
また、純水を利用するのは、記録材4と湿度との関係を評価するためである。
The discharge nozzle 5 discharges the evaluation reagent 7 toward the recording material 4 in order to measure the dimensional change of the internal structure of the recording material 4, and is provided facing the recording material 4. The evaluation reagent 7 is a permeable substance, for example, a liquid, and specifically, a coating material used for the recording material 4 such as pure water or ink is used. That is, the evaluation reagent 7 is a liquid used for confirming a change in the state of the recording material 4 when used for the recording material 4.
The reason why pure water is used is to evaluate the relationship between the recording material 4 and humidity.

その張力付与部材1、2には、例えば、公知のロードセル8(張力計測部材)が固定されている。このロードセル8により記録材4に付与される張力が測定される。その記録材4の張力付与による外形寸法の測定には、外形寸法計測装置として例えば変位センサ10が用いられる。この変位センサ10には、ここでは、公知の光学センサが用いられ、変位センサ10は張力付与部材1、2の基準位置からの移動量をパルス計測することにより、間接的に記録材4の外形寸法の変化量を測定する。   For example, a known load cell 8 (tension measuring member) is fixed to the tension applying members 1 and 2. The tension applied to the recording material 4 by the load cell 8 is measured. For example, a displacement sensor 10 is used as an outer dimension measuring device for measuring the outer dimension by applying tension to the recording material 4. Here, a known optical sensor is used as the displacement sensor 10, and the displacement sensor 10 indirectly measures the outer shape of the recording material 4 by pulse-measuring the amount of movement of the tension applying members 1 and 2 from the reference position. Measure the amount of change in dimensions.

その張力付与部材1、2は、制御部9によって制御される。その制御部9には、取得すべき特性に応じて、適宜プログラムがロードされ、記録材4に加える張力の大きさ、張力付与部材1、2の移動速度が制御される。   The tension applying members 1 and 2 are controlled by the control unit 9. The control unit 9 is appropriately loaded with a program according to the characteristics to be acquired, and controls the magnitude of the tension applied to the recording material 4 and the moving speed of the tension applying members 1 and 2.

その制御部9には、ロードセル8からのデータと変位センサ10からのデータとが入力され、付与する張力の大きさ(荷重)に対応する記録材4の外形寸法の変化量が測定される。また、評価用試薬7を塗布前の記録材4の内部構造を可視化して測定する。   Data from the load cell 8 and data from the displacement sensor 10 are input to the control unit 9, and the amount of change in the outer dimension of the recording material 4 corresponding to the magnitude (load) of the applied tension is measured. Further, the internal structure of the recording material 4 before application of the evaluation reagent 7 is visualized and measured.

(構造計測装置3の構成)
構造計測装置3には、光干渉断層法を用いて画像を取得する光干渉計装置が用いられる。
その光干渉計装置は、図3に示すように、光源部21と、光合成・分割部22と、測定光学系23と、参照光学系24と、干渉信号検出部25と、信号処理制御部26とから概略構成されている。
(Structure of the structure measuring device 3)
As the structure measuring apparatus 3, an optical interferometer apparatus that acquires an image using an optical coherence tomography is used.
As shown in FIG. 3, the optical interferometer device includes a light source unit 21, a light combining / dividing unit 22, a measurement optical system 23, a reference optical system 24, an interference signal detection unit 25, and a signal processing control unit 26. It is roughly composed of

光源部21は、光源21a、集光レンズ21bとから概略構成される。光源21aは、例えば、中心波長が0.7マイクロメートル〜2.0マイクロメートルの近赤外の波長領域にあり、かつ、可干渉距離が20マイクロメートル以下の広帯域光P1を発生する。この光は、部分干渉性を持つ低コヒーレンス光である。   The light source unit 21 includes a light source 21a and a condenser lens 21b. The light source 21a generates, for example, broadband light P1 having a center wavelength in the near-infrared wavelength region of 0.7 micrometers to 2.0 micrometers and a coherence distance of 20 micrometers or less. This light is low coherence light having partial coherence.

その広帯域光P1は、集光レンズ21bにより集光され、かつ、導光ファイバ21cの入射端面21dに集束され、この導光ファイバ21c内を伝播して光合成・分割部22に導かれる。   The broadband light P1 is condensed by the condensing lens 21b, converged on the incident end surface 21d of the light guide fiber 21c, propagates through the light guide fiber 21c, and is guided to the light combining / dividing unit 22.

光合成・分割部22は例えばファイバカップラにより構成されている。導光ファイバ21cに導かれた広帯域光P1は、この光合成・分割部22により測定光P2と参照光P3とに分割される。   The light combining / dividing unit 22 is constituted by, for example, a fiber coupler. The broadband light P1 guided to the light guide fiber 21c is split into measurement light P2 and reference light P3 by the light combining / splitting unit 22.

例えば、広帯域光P1はそのファイバカップラにより、その光量が1:1に分割される。測定光P2は測定光路としての導光ファイバ21eに導かれる。参照光P3は、参照光路としての導光ファイバ21fに導かれる。   For example, the amount of light of the broadband light P1 is divided by 1: 1 by the fiber coupler. The measurement light P2 is guided to a light guide fiber 21e as a measurement optical path. The reference light P3 is guided to the light guide fiber 21f as a reference light path.

その光合成・分割部22は、光源部21からの光の光路を測定光P2の光路と、参照光P3の光路とに分割する光分割部としての機能を有する。また、計測対象媒体としての記録材4からの反射・散乱光である測定光P2と参照光P3とを合成して合成光を生成する光合成部としての機能とを有する。   The light combining / dividing unit 22 functions as a light dividing unit that divides the optical path of the light from the light source unit 21 into the optical path of the measurement light P2 and the optical path of the reference light P3. Further, it has a function as a light combining unit that combines the measurement light P2 that is reflected / scattered light from the recording material 4 as the measurement target medium and the reference light P3 to generate combined light.

測定光学系23は、コリメートレンズ23aと、ガルバノミラー(ガルバノスキャナ)23b、23cと、コリメートレンズ23dと、試料台23eとを備えている。その試料台23eには観察窓23fが形成され、記録材4はその観察窓23fに臨むように設けられている。   The measurement optical system 23 includes a collimator lens 23a, galvanometer mirrors (galvano scanners) 23b and 23c, a collimator lens 23d, and a sample stage 23e. An observation window 23f is formed on the sample table 23e, and the recording material 4 is provided so as to face the observation window 23f.

コリメートレンズ23aは導光ファイバ21eの入射出射端面21e'に臨むように設けられている。このコリメートレンズ23aは導光ファイバ21eから射出された測定光P2を集光して平行光束P4に変換する。その平行光束P4はガルバノミラー23b、23cに導かれる。
なお、この図3においては、張力付与部材1,2、ロードセル8、変位センサ10、制御部9は説明の便宜のため、捨象している。
The collimating lens 23a is provided so as to face the entrance / exit end face 21e 'of the light guide fiber 21e. The collimating lens 23a condenses the measurement light P2 emitted from the light guide fiber 21e and converts it into a parallel light beam P4. The parallel light beam P4 is guided to the galvanometer mirrors 23b and 23c.
In FIG. 3, the tension applying members 1, 2, the load cell 8, the displacement sensor 10, and the control unit 9 are omitted for convenience of explanation.

ガルバノミラー23b、23cは、ここでは、両方共に往復駆動され、これによって、後述する3次元の断層画像データが取得される。なお、いずれか一方のガルバノミラー23b、23cを駆動することにすれば、一次元の断層画像が得られる。   Here, both galvanometer mirrors 23b and 23c are driven to reciprocate, whereby three-dimensional tomographic image data to be described later is acquired. If one of the galvanometer mirrors 23b and 23c is driven, a one-dimensional tomographic image is obtained.

その平行光束P4は、走査光としてコリメートレンズ23dに導かれる。このコリメートレンズ23dは、図4に拡大して示すように、走査光をスポット光P5に変換する役割を果たす。   The parallel light beam P4 is guided to the collimator lens 23d as scanning light. The collimating lens 23d plays a role of converting scanning light into spot light P5, as shown in an enlarged view in FIG.

この実施例では、平行光束P4の主光線がコリメートレンズ23dの光軸に対して平行、すなわち、記録材4の表面4aに対して垂直に入射する構成であるので、断層画像の正確な取得の容易化が図られる。   In this embodiment, since the principal ray of the parallel light beam P4 is parallel to the optical axis of the collimating lens 23d, that is, perpendicular to the surface 4a of the recording material 4, it is possible to accurately acquire a tomographic image. Simplification is achieved.

記録材4の表面4aは、図4に拡大して示すように、観測窓23fを通じてスポット光P5により二次元的に走査される。その図4において、矢印Zはコリメートレンズ23dの光軸方向を示し、矢印X、Yはその光軸方向Zと直交する走査方向を示している。   The surface 4a of the recording material 4 is two-dimensionally scanned with the spot light P5 through the observation window 23f as shown in an enlarged view in FIG. In FIG. 4, the arrow Z indicates the optical axis direction of the collimating lens 23d, and the arrows X and Y indicate the scanning direction orthogonal to the optical axis direction Z.

吐出ノズル5は、記録材4に評価用試薬7を吐出する。評価用試薬7には、記録材4に対して浸透性を有する物質が用いられる。ここでは、この評価用試薬7は既述したように純水である。その吐出ノズル5は、記録材4に向けて評価用試薬7を液滴7aとして定量的に吐出する役割を果たす。   The discharge nozzle 5 discharges the evaluation reagent 7 onto the recording material 4. For the evaluation reagent 7, a substance having permeability to the recording material 4 is used. Here, the evaluation reagent 7 is pure water as described above. The discharge nozzle 5 serves to quantitatively discharge the evaluation reagent 7 as droplets 7 a toward the recording material 4.

記録材4に液滴7aが付着すると、時間の経過に伴ってその液滴7aが記録材4の内部に浸透する。その図4において、界面4dは記録材4の裏面4bに液滴7aが付着した時刻をt1として時間がΔtだけ経過した時刻t2における浸透領域4cの界面を示している。   When the droplet 7 a adheres to the recording material 4, the droplet 7 a penetrates into the recording material 4 as time elapses. In FIG. 4, the interface 4 d indicates the interface of the permeation region 4 c at time t <b> 2 when time Δt has elapsed, where t <b> 1 is the time when the droplet 7 a is attached to the back surface 4 b of the recording material 4.

また、その図4において、界面4fは時刻t1から時間Δt'(Δt'>Δt)だけ経過した時刻t3における浸透領域4eの界面を示している。浸透領域4c、4eは液滴7aが記録材4の裏面4bに付着してからの時間の経過に伴って広がると共に、その記録材4の厚さ方向に浸透し、浸透領域4c、4eの深さが深くなる。その記録材4への液滴7aの浸透状態の計測について後に詳述する。   In FIG. 4, the interface 4 f indicates the interface of the infiltration region 4 e at time t <b> 3 when time Δt ′ (Δt ′> Δt) has elapsed from time t <b> 1. The permeation regions 4c and 4e spread with the passage of time after the droplet 7a adheres to the back surface 4b of the recording material 4, and permeate in the thickness direction of the recording material 4, and the depth of the permeation regions 4c and 4e. Deepens. The measurement of the penetration state of the droplet 7a into the recording material 4 will be described in detail later.

なお、ここで、浸透領域4c、4eとは記録材4の内部における空隙が評価用試薬7によって満たされた状態の領域をいう。また、界面4d、4fとは記録材4の内部における空隙が評価用試薬7によって満たされた状態の領域(浸透領域4c、4e)と、記録材4の内部における空隙が評価用試薬7によって満たされていない状態の領域との境界面をいう。   Here, the permeation regions 4 c and 4 e are regions in a state where the voids inside the recording material 4 are filled with the evaluation reagent 7. The interfaces 4d and 4f are a region (penetration regions 4c and 4e) in which the void in the recording material 4 is filled with the evaluation reagent 7, and the void in the recording material 4 is filled with the evaluation reagent 7. This refers to the boundary surface with the unfinished area.

スポット光P5は、その一部が記録材4の表面において散乱反射され、残りの一部は記録材4の内部に到達する。また、スポット光P5の一部は記録材4に吸収される。   A part of the spot light P <b> 5 is scattered and reflected on the surface of the recording material 4, and the remaining part reaches the inside of the recording material 4. Further, a part of the spot light P5 is absorbed by the recording material 4.

その記録材4の内部に到達したスポット光P5は、その一部が浸透領域4c(4e)の界面4d(4f)において反射され、残りの一部はその界面4d(4f)において屈折され、その浸透領域4c(4e)の内部に到達する。   Part of the spot light P5 that has reached the inside of the recording material 4 is reflected at the interface 4d (4f) of the permeation region 4c (4e), and the remaining part is refracted at the interface 4d (4f). It reaches the inside of the infiltration region 4c (4e).

その浸透領域4c(4e)の界面4d(4f)で反射された反射光、その記録材4の表面4aで反射された反射・散乱光は、コリメートレンズ23dにより集光され、平行光束(戻り光ともいう)P4又は測定光P2としてガルバノミラー23b、23cに導かれる。   The reflected light reflected by the interface 4d (4f) of the permeation region 4c (4e) and the reflected / scattered light reflected by the surface 4a of the recording material 4 are collected by the collimator lens 23d and are converted into a parallel light beam (return light). Also referred to as P4 or measurement light P2 is guided to the galvanometer mirrors 23b and 23c.

そのガルバノミラー23b、23cに導かれた測定光P2は、コリメートレンズ23aにより集束されて導光ファイバ21eの入射出射端面21e'に導かれ、この導光ファイバ21eを伝播して光合成・分割部22に導かれる。   The measurement light P2 guided to the galvanometer mirrors 23b and 23c is converged by the collimator lens 23a and guided to the incident / exit end face 21e ′ of the light guide fiber 21e, propagates through the light guide fiber 21e, and the light combining / dividing unit 22 Led to.

参照光学系24は、コリメートレンズ24a、24bと参照ミラー24cとを備えている。コリメートレンズ24aは導光ファイバ21fの入射出射端面21f'に臨んでいる。   The reference optical system 24 includes collimating lenses 24a and 24b and a reference mirror 24c. The collimating lens 24a faces the incident / exit end face 21f ′ of the light guide fiber 21f.

コリメートレンズ24aは入射出射端面21f'から射出された参照光P3を平行光束に変換する役割を果たす。この参照光P3はコリメートレンズ24bにより集光されて、参照光P3を全反射する参照ミラー24cに導かれる。   The collimator lens 24a plays a role of converting the reference light P3 emitted from the incident / exit end face 21f ′ into a parallel light beam. The reference light P3 is collected by the collimator lens 24b and guided to the reference mirror 24c that totally reflects the reference light P3.

この参照ミラー24cにより反射された参照光P3は、コリメートレンズ24bにより集光され、元の光路を通ってコリメートレンズ24aに導かれる。そして、参照光P3はこのコリメートレンズ24aにより導光ファイバ21fの入射出射端面21f'に集束され、この導光ファイバ21fを伝播して光合成・分割部22に導かれる。   The reference light P3 reflected by the reference mirror 24c is collected by the collimating lens 24b and guided to the collimating lens 24a through the original optical path. The reference light P3 is focused by the collimating lens 24a on the incident / exit end face 21f ′ of the light guide fiber 21f, propagates through the light guide fiber 21f, and is guided to the light combining / dividing unit 22.

導光ファイバ21eにより光合成・分割部22に導かれた測定光P2と導光ファイバ21fにより光合成・分割部22に導かれた参照光P3とは合成されて干渉光P6として導光ファイバ21gを経由して干渉信号検出部25に導かれる。   The measurement light P2 guided to the light combining / dividing unit 22 by the light guiding fiber 21e and the reference light P3 guided to the light combining / dividing unit 22 by the light guiding fiber 21f are combined and passed through the light guiding fiber 21g as interference light P6. Then, it is guided to the interference signal detection unit 25.

なお、ここでは、光合成・分割部22から記録材4の表面4aまでの光路長と光合成・分割部22から参照ミラー24cまでの光路長とは互いに等しいものとするが、記録材4の断層画像を取得できる範囲内でその光路長に差異を持たせても良い。   Here, the optical path length from the photosynthesis / division unit 22 to the surface 4a of the recording material 4 and the optical path length from the photosynthesis / division unit 22 to the reference mirror 24c are equal to each other, but the tomographic image of the recording material 4 is used. The optical path length may be varied within a range in which the value can be acquired.

干渉信号検出部25は、集光レンズ25a、25b、光電変換部材25cを備えている。その干渉光P6は導光ファイバ21gの射出端面21g'から射出され、集光レンズ25aにより集光されて平行光束とされた後、集光レンズ25bにより集束されて光電変換部材25cに照射される。   The interference signal detection unit 25 includes condenser lenses 25a and 25b and a photoelectric conversion member 25c. The interference light P6 is emitted from the exit end face 21g ′ of the light guide fiber 21g, is condensed by the condensing lens 25a to be a parallel light beam, is converged by the condensing lens 25b, and is applied to the photoelectric conversion member 25c. .

その光電変換部材25cは、その干渉光P6を光電変換する。その光電変換部材25cにより光電変換された光電変換信号S1は信号処理制御部26に入力される。   The photoelectric conversion member 25c photoelectrically converts the interference light P6. The photoelectric conversion signal S1 photoelectrically converted by the photoelectric conversion member 25c is input to the signal processing control unit 26.

その信号処理制御部26は、制御部26aと、信号処理部26bと、記憶部26cと、表示部26dとを備えている。
制御部26aは、光源21aの発光制御と、ガルバノミラー23b、23cの振動制御と、吐出ノズル5による液滴7aの吐出制御と、光電変換信号の取得タイミング制御と、信号処理部26b、記憶部26c、表示部26dの表示制御とを行う。
The signal processing control unit 26 includes a control unit 26a, a signal processing unit 26b, a storage unit 26c, and a display unit 26d.
The control unit 26a includes the light emission control of the light source 21a, the vibration control of the galvanometer mirrors 23b and 23c, the discharge control of the droplet 7a by the discharge nozzle 5, the acquisition timing control of the photoelectric conversion signal, the signal processing unit 26b, and the storage unit. 26c and display control of the display unit 26d.

その制御部26aは、CPU、ROM、RAM等のハードウエアと、所定の制御プログラムとを備えている。信号処理部26bは、光干渉断層法に従ったソフトウエアプログラムにより光電変換信号S1を処理し、光電変換信号S1に基づく画像強度データ(輝度データ)を用いて、記録材4の断層画像を構築する機能を有する。   The control unit 26a includes hardware such as a CPU, a ROM, and a RAM, and a predetermined control program. The signal processing unit 26b processes the photoelectric conversion signal S1 with a software program according to the optical coherence tomography, and constructs a tomographic image of the recording material 4 using image intensity data (luminance data) based on the photoelectric conversion signal S1. It has the function to do.

(断層画像取得の基本原理)
光干渉断層法においては、光電変換部材25cとして、分光素子とラインセンサからなる光検出素子が用いられる。
この光検出素子は、光源21aから射出された光の波長帯域の全域にわたるスペクトルを検出できる。
(Basic principle of tomographic image acquisition)
In the optical coherence tomography, a photodetecting element including a spectroscopic element and a line sensor is used as the photoelectric conversion member 25c.
This photodetection element can detect the spectrum over the entire wavelength band of the light emitted from the light source 21a.

干渉光P6には記録材4の表面4a及び記録材4の内部からの戻り光である測定光P2と参照光P3とが含まれている。ここで、測定光学系23の記録材4において、光合成・分割部22から参照ミラー24cまでの光路長と等しい光路長の位置からのみの戻り光が発生した場合を仮定すると、光検出素子においてスペクトル干渉光が観測される。   The interference light P6 includes measurement light P2 and reference light P3, which are return light from the surface 4a of the recording material 4 and the inside of the recording material 4. Here, in the recording material 4 of the measurement optical system 23, assuming that the return light is generated only from the position of the optical path length equal to the optical path length from the light combining / dividing unit 22 to the reference mirror 24c, the spectrum in the light detection element is assumed. Interfering light is observed.

この状態において、光合成・分割部22から参照ミラー24cまでの光路長を固定したまま、測定光学系23において、戻り光の発生する位置を光軸方向に変化させると光路差が生じる。すなわち、光合成・分割部22から参照ミラー24cまでの光路長と光合成・分割部22から戻り光の発生する位置までの光路長とに差が生じる。そして、この光路差が増大するほど、干渉縞の間隔が狭くなる。
言い換えると、観測される干渉縞の間隔は、戻り光の発生位置によって決まる。
In this state, if the optical path length from the light combining / dividing unit 22 to the reference mirror 24c is fixed and the position where the return light is generated is changed in the optical axis direction in the measurement optical system 23, an optical path difference is generated. That is, there is a difference between the optical path length from the light combining / dividing unit 22 to the reference mirror 24c and the optical path length from the light combining / dividing unit 22 to the position where the return light is generated. As the optical path difference increases, the interval between the interference fringes becomes narrower.
In other words, the interval between the observed interference fringes is determined by the position where the return light is generated.

干渉光P6には、記録材4の表面4a及び記録材4の内部の各部位からの戻り光が合成されているので、観測されるスペクトル干渉光に基づく干渉縞の縞間隔もこれに応じたものとなる。   Since the interference light P6 is synthesized with the return light from the surface 4a of the recording material 4 and the respective parts inside the recording material 4, the fringe spacing of the interference fringes based on the observed spectral interference light also corresponds to this. It will be a thing.

そのスペクトル干渉光による光電変換信号S1を信号処理部26bにおいてフーリエ変換すると、干渉縞の間隔に応じてスペクトル分解され、これにより、戻り光の発生位置が特定される。   When the photoelectric conversion signal S1 based on the spectral interference light is Fourier-transformed in the signal processing unit 26b, the spectral decomposition is performed according to the interval between the interference fringes, and thereby the generation position of the return light is specified.

そのスペクトル干渉光の振幅は、戻り光の強度に対応して決定され、フーリエ変換後の信号(フーリエ変換信号)のスペクトル強度は、その発生位置からの戻り光の強度が大きいと大きくなる。   The amplitude of the spectrum interference light is determined corresponding to the intensity of the return light, and the spectrum intensity of the signal after the Fourier transform (Fourier transform signal) increases as the intensity of the return light from the generation position becomes large.

すなわち、ある戻り光の発生位置に対応するフーリエ変換信号のスペクトル強度が相対的に大きいということは、その戻り光の発生位置における反射又は散乱光の強度が相対的に大きいことを意味する。   That is, the fact that the spectral intensity of the Fourier transform signal corresponding to a certain return light generation position is relatively large means that the intensity of reflected or scattered light at the return light generation position is relatively large.

したがって、フーリエ変換信号のスペクトル強度に応じて、戻り光の発生位置に対応する輝度分布を決定すれば、記録材4の厚さ方向の一次元断層画像を取得できる。
これらの処理を、ガルバノミラー23b、23cを二次元的に走査しながら行えば、記録材4の二次元的な断層画像を得ることができる。
Therefore, a one-dimensional tomographic image in the thickness direction of the recording material 4 can be acquired by determining the luminance distribution corresponding to the return light generation position according to the spectral intensity of the Fourier transform signal.
If these processes are performed while the galvanometer mirrors 23b and 23c are scanned two-dimensionally, a two-dimensional tomographic image of the recording material 4 can be obtained.

記憶部26cは、その断層画像を時系列順に記憶する機能と、信号処理部26bが信号処理を行うのに必要なソフトウエアプログラムを格納する機能を有する。また、記憶部26cは、界面の推定に必要なデータ、浸透速度を計算するのに必要なデータ、例えば、断層画像のスケールや断層画像取得時刻等を記憶する機能をも有する。表示部26dは少なくとも断層画像を表示する機能を有する。   The storage unit 26c has a function of storing the tomographic images in chronological order, and a function of storing a software program necessary for the signal processing unit 26b to perform signal processing. The storage unit 26c also has a function of storing data necessary for estimating the interface and data necessary for calculating the permeation speed, such as a tomographic image scale and a tomographic image acquisition time. The display unit 26d has a function of displaying at least a tomographic image.

この実施例では、記録材4の表面4aに散乱抑制透明物体27が設けられている。この散乱抑制透明物体27には、記録材4に浸透しにくい物質、例えば、広帯域光P1に対して透明性の高い粘着性シートを用いる。   In this embodiment, a scattering suppression transparent object 27 is provided on the surface 4 a of the recording material 4. For the scattering-suppressing transparent object 27, a substance that does not easily penetrate the recording material 4, for example, an adhesive sheet having high transparency with respect to the broadband light P1 is used.

その理由は、記録材4の表面4aからの反射や散乱を避けるためである。このような反射・散乱を避けることにより、透過光量の割合が増加し、断層画像のS/N比を向上させることができる。なお、粘着性シートには柔軟性を有する材料を用いるのが望ましい。   The reason is to avoid reflection and scattering from the surface 4 a of the recording material 4. By avoiding such reflection / scattering, the ratio of the transmitted light amount can be increased and the S / N ratio of the tomographic image can be improved. It is desirable to use a flexible material for the adhesive sheet.

すなわち、記録材4の表面4aからの散乱光、反射光等の戻り光が過度に大きい場合には、記録材4の内部に侵入するスポット光P5の光量が相対的に少なくなり、断層画像の構築の際に支障が生じるおそれがある。   That is, when the return light such as scattered light and reflected light from the surface 4a of the recording material 4 is excessively large, the amount of the spot light P5 entering the recording material 4 is relatively small, and the tomographic image There is a risk of hindrance during construction.

これに対して、散乱抑制透明物体27を記録材4の表面4aに設けると、記録材4の表面4aからの散乱自体が抑制されるため、記録材4の内部に導かれるスポット光P5の光量が増加する。   On the other hand, when the scattering suppression transparent object 27 is provided on the surface 4a of the recording material 4, the scattering itself from the surface 4a of the recording material 4 is suppressed, so that the amount of the spot light P5 guided to the inside of the recording material 4 Will increase.

また、散乱抑制透明物体27の表面27aからの反射・散乱光と記録材4の表面4aからの反射・散乱光とは、表面4aと表面27aとが離間しているので、分離が容易であり、したがって、記録材4の表面4aからの戻り光に基づく画像強度のデータ取得が容易となる。   Further, the reflection / scattering light from the surface 27a of the scattering suppression transparent object 27 and the reflection / scattering light from the surface 4a of the recording material 4 are easily separated because the surface 4a and the surface 27a are separated from each other. Therefore, data acquisition of image intensity based on the return light from the surface 4a of the recording material 4 is facilitated.

なお、散乱抑制透明物体27を記録材4の表面4aに張り付けるのが困難な場合、散乱抑制透明物体27を用いる代わりに、記録材4の表面4aを滑らかに仕上げ処理して、記録材4の表面4aからの散乱光を減少させるようにしても良い。   When it is difficult to attach the scattering-suppressing transparent object 27 to the surface 4a of the recording material 4, instead of using the scattering-suppressing transparent object 27, the surface 4a of the recording material 4 is smoothly finished and processed. The scattered light from the surface 4a may be reduced.

このように、この実施例では、記録材4の表面4aからの戻り光の強度を減少させることにより、記録材4の内部からの反射・散乱光がその記録材4の表面4aからの戻り光に埋もれるのを防止でき、したがって、計測精度が向上し、断層画像を鮮明に構築できる。   As described above, in this embodiment, the intensity of the return light from the surface 4 a of the recording material 4 is decreased, so that the reflected / scattered light from the inside of the recording material 4 is returned from the surface 4 a of the recording material 4. Therefore, the measurement accuracy can be improved and a tomographic image can be clearly constructed.

(構造寸法変化の測定)
以下、この構造計測装置3を用いて得られた内部構造の変化を図5〜図8を参照しつつ説明する。
(Measurement of structural dimension change)
Hereinafter, changes in the internal structure obtained by using the structure measuring apparatus 3 will be described with reference to FIGS.

記録材4は、主として、パルプ等の繊維状構造体4pとこの繊維状構造体4pの隙間を充填する充填物質4qとから構成されている。図5〜図8にはその繊維状構造体4pと充填物質4qとが模式的に示されている。   The recording material 4 is mainly composed of a fibrous structure 4p such as pulp and a filling material 4q that fills a gap between the fibrous structure 4p. 5 to 8 schematically show the fibrous structure 4p and the filling material 4q.

繊維状構造体4pは、複雑に絡まり合って構成されているが、ここでは、模式的に記録材4の厚さ方向に対して直交する方向に延びる繊維体4p'とこの繊維体4p'に直交する方向に延びる繊維体4p"とからなるものとして説明する。また、この図5〜図8には、繊維体4p'、4p"の配向方向も簡略化して示されている。   The fibrous structure 4p is configured to be intertwined in a complicated manner, but here, the fibrous body 4p ′ extending in a direction orthogonal to the thickness direction of the recording material 4 and the fibrous body 4p ′ are schematically illustrated here. The description will be made assuming that the fiber body 4p ″ extends in the orthogonal direction. In FIGS. 5 to 8, the orientation directions of the fiber bodies 4p ′ and 4p ″ are also shown in a simplified manner.

構造計測装置3は、図5に示すように、記録材4に張力を付与する前の断層画像G1を取得する。この図5に示す断層画像G1から記録材4の幅W0、厚さd0の評価領域内における繊維状構造体4pの直径φD0、繊維状構造体4pの長さL0、繊維状構造体4pが水平と為す角度(記録材4の表面4aに対して繊維状構造体4pの配向角度)θ0を測定する。 As shown in FIG. 5, the structure measuring apparatus 3 acquires a tomographic image G1 before applying a tension to the recording material 4. From the tomographic image G1 shown in FIG. 5, the diameter φD 0 of the fibrous structure 4p in the evaluation region of the width W 0 and the thickness d 0 of the recording material 4, the length L 0 of the fibrous structure 4p, and the fibrous structure An angle θ 0 formed by the body 4p to be horizontal (orientation angle of the fibrous structure 4p with respect to the surface 4a of the recording material 4) is measured.

なお、記録材4の繊維状構造体4pには、主としてパルプ等の天然素材が用いられているため、繊維状構造体4pの直径φD0、長さ(寸法)L0、角度θ0等を複数の任意の評価領域にわたって求め、これら値の分布状態を求める。 Since the fibrous structure 4p of the recording material 4 is mainly made of natural materials such as pulp, the diameter φD 0 , length (dimension) L 0 , angle θ 0, etc. of the fibrous structure 4p are set. It calculates | requires over several arbitrary evaluation area | regions, and calculates | requires the distribution state of these values.

また、これらから、繊維状構造体4pの密度や、繊維状構造体4pの平均的配向方向を求め、これらを総合的に考慮して、記録材4のミクロな特性を評価する。これらのミクロな特性の結果として、記録材4のマクロ的な特性が発現される。   Further, from these, the density of the fibrous structure 4p and the average orientation direction of the fibrous structure 4p are obtained, and the micro characteristics of the recording material 4 are evaluated by comprehensively considering these. As a result of these micro characteristics, the macro characteristics of the recording material 4 are manifested.

記録材4に張力を付加すると、図6に示すように、記録材4が張力を付加された方向に延びて変形する。
この張力の作用により、断層画像G1の評価領域が幅W0、厚さd0から幅WT、厚さdTに変化する。
また、繊維状構造体4pの長さはL0からLTに変化し、その直径はφD0からφDTに変化する。
When a tension is applied to the recording material 4, the recording material 4 extends and deforms in the direction in which the tension is applied, as shown in FIG.
By the action of this tension, the evaluation area of the tomographic image G1 changes from the width W 0 and thickness d 0 to the width W T and thickness d T.
The length of the fibrous structure 4p changes from L 0 to L T, the diameter is changed from [phi] D 0 to [phi] D T.

その図6では、その記録材4の張力の付加により張力付加方向と直交する繊維体4p'と充填物質4qとの間に剥離が生じ、空隙4rが生じている状態が模式的に示されている。   FIG. 6 schematically shows a state where separation is caused between the fibrous body 4p ′ orthogonal to the tension applying direction and the filling material 4q due to the addition of the tension of the recording material 4, and a void 4r is generated. Yes.

このような場合、繊維体4p'と直交する方向に延びる繊維体4p"と充填物質4qとで、張力付与方向の荷重を負担することとなる。
記録材4に所定の張力を付加した状態で、張力付与部材1、2を固定し、所定時間(一定時間)Δtだけ保持した状態が経過すると、図7に示すように、繊維体4p"と充填物質4qとの間に空隙4sが生じる。また、記録材4の評価領域は幅WTから幅WTΔtに変化し、厚さはdTからdTΔtに変化する。
In such a case, the load in the tension applying direction is borne by the fibrous body 4p ″ extending in the direction orthogonal to the fibrous body 4p ′ and the filling material 4q.
When a predetermined tension is applied to the recording material 4 and the tension applying members 1 and 2 are fixed and held for a predetermined time (fixed time) Δt, a fibrous body 4p ″ is obtained as shown in FIG. gap 4s between the fill material 4q occurs. the evaluation region of the recording medium 4 is changed from the width W T in the width W T delta t, the thickness changes from d T to d T delta t.

さらに、繊維状構造体4pの直径はφDTからφDTΔtに変化し、繊維状構造体4pの長さはLTからLTΔtに変化する。この記録材4の繊維体4p"の長さの変化、繊維体4p"と充填物質4qとの間の空隙4sの発生により、記録材4の伸びを保持するのに要求される荷重が減少する。これは、記録材4のマクロ的な特性としては応力緩和として現れるものである。 Further, the diameter of the fibrous structure 4p changes from [phi] D T to [phi] D T delta t, the length of the fibrous structure 4p changes from L T to L T delta t. Due to the change in the length of the fiber body 4p ″ of the recording material 4 and the generation of the gap 4s between the fiber body 4p ″ and the filling material 4q, the load required to maintain the elongation of the recording material 4 is reduced. . This appears as stress relaxation as a macro characteristic of the recording material 4.

(記録材4に評価用試薬7を塗布した場合)
記録材4に張力を付与しない状態で、評価用試薬7としての純水を滴下すると、記録材4が膨潤し、記録材4の評価領域が図5に示す幅W0から図8に示すように幅WWに変化し、図5に示す厚さd0から図8に示す厚さdWに変化する。
(When the evaluation reagent 7 is applied to the recording material 4)
In a state in which the recording material 4 without tension, the dropwise addition of pure water as an evaluation reagent 7, the recording material 4 to swell, the evaluation area of the recording material 4 as shown in FIG. 8 from the width W 0 shown in FIG. 5 The width changes to WW and changes from the thickness d 0 shown in FIG. 5 to the thickness d W shown in FIG.

また、繊維状構造体4pの直径は、図5に示す直径φD0から図8に示すφDWに変化し、その長さはL0からLWに変化する。この記録材4を膨潤させた状態で、記録材4に張力を付与することにより、図6、図7に対応する特性値を得ることができる。すなわち、内部構造の変化を可視化して測定できる。 Further, the diameter of the fibrous structure 4p changes from the diameter φD 0 shown in FIG. 5 to φD W shown in FIG. 8, and the length changes from L 0 to L W. By applying tension to the recording material 4 in a state where the recording material 4 is swollen, the characteristic values corresponding to FIGS. 6 and 7 can be obtained. That is, changes in internal structure can be visualized and measured.

(記録材4の特性の解析の一例)
図9は記録材4に付加する張力(荷重)と記録材4の伸び量(変位量)との関係を模式的に示す特性図である。
(Example of analysis of characteristics of recording material 4)
FIG. 9 is a characteristic diagram schematically showing the relationship between the tension (load) applied to the recording material 4 and the amount of elongation (displacement) of the recording material 4.

記録材4に荷重を加えて徐々に荷重を増加させると、図9の0−Aで示すように記録材4の変位量が荷重に比例して増加する。この0−Aを記録材4の弾性変形領域という。   When a load is applied to the recording material 4 and the load is gradually increased, the displacement amount of the recording material 4 increases in proportion to the load, as indicated by 0-A in FIG. This 0-A is called an elastic deformation region of the recording material 4.

記録材4に加える荷重が所定値Fx近傍のA点に達すると、記録材4の内部構造をミクロ的にみると剥離による空隙4rが生じ、加える荷重の変化に対して変位量が増大し、荷重を示すA点からB点(所定値Fx)の間で塑性変形領域(A−B)となる。   When the load applied to the recording material 4 reaches point A in the vicinity of the predetermined value Fx, when the internal structure of the recording material 4 is viewed microscopically, a gap 4r is generated due to peeling, and the amount of displacement increases with respect to the change in the applied load. A plastic deformation region (AB) is formed between point A and B (predetermined value Fx) indicating the load.

ついで、記録材4に加える荷重を所定値Fxに固定して、所定時間Δtが経過すると、記録材4の内部構造をミクロ的にみると、剥離による空隙4sが生じ、記録材4の変位量が一定のまま徐々に記録材4に加わる荷重が減少し、応力緩和領域B−Cとなる。   Next, when the load applied to the recording material 4 is fixed at a predetermined value Fx and a predetermined time Δt has elapsed, when the internal structure of the recording material 4 is viewed microscopically, a gap 4s due to peeling occurs, and the displacement amount of the recording material 4 As a result, the load applied to the recording material 4 gradually decreases while the pressure becomes constant, and a stress relaxation region BC is obtained.

ここで、記録材4に加える荷重を徐々に減少させると、記録材4の変位量が減少し、荷重を取り除いた状態で、記録材4は荷重を加える前の長さに対して一定量伸びた状態となる。その記録材4の荷重を取り除いたときに記録材4が縮む領域C−Dをスプリングバック領域という。
このスプリングバック領域の測定は、張力付与部材1、2に加える荷重を徐々に減少させ、その荷重の減少に伴う評価領域の幅WTΔtの変化(縮み量)を測定することにより行う。
Here, when the load applied to the recording material 4 is gradually reduced, the amount of displacement of the recording material 4 decreases, and the recording material 4 extends by a certain amount with respect to the length before the load is applied in a state where the load is removed. It becomes a state. A region CD where the recording material 4 contracts when the load of the recording material 4 is removed is referred to as a springback region.
The measurement of the springback region is performed by gradually reducing the load applied to the tension applying members 1 and 2 and measuring the change (shrinkage amount) of the width W T Δt of the evaluation region accompanying the decrease in the load.

その弾性変形領域0−Aの傾きにより記録材4のマクロ的なヤング率を求めることができ、応力緩和領域B−Cの時間変化により記録材4のマクロ的な応力緩和率を求めることができる。   The macro Young's modulus of the recording material 4 can be obtained from the inclination of the elastic deformation region 0-A, and the macro stress relaxation rate of the recording material 4 can be obtained from the time change of the stress relaxation region BC. .

記録材4に評価用試薬7を滴下して、記録材4に加える荷重を徐々に増加させて、図9に示すと同様の特性を求めると、図10に示す特性図が得られる。   When the evaluation reagent 7 is dropped on the recording material 4 and the load applied to the recording material 4 is gradually increased to obtain the same characteristics as shown in FIG. 9, the characteristic diagram shown in FIG. 10 is obtained.

その図10において、0−AWはその弾性変形領域を示し、AW−BWは塑性変形領域を示し、BW−CWは応力緩和領域を示し、CW−DWはスプリングバック領域を示す。 In FIG. 10, 0-A W represents the elastic deformation region, A W -B W represents the plastic deformation region, B W -C W represents the stress relaxation region, and C W -D W represents the spring back region. Indicates.

記録材4に評価用試薬7を滴下すると、記録材4が膨潤して柔らかくなり、かつ、伸び易くなるため、加える荷重に対して記録材4の変形量は大きくなるから、ヤング率は小さくなる。また、記録材4の膨潤のため記録材4に加える荷重を除去したときの縮み量も小さくなるから、スプリングバック量も小さくなる。   When the evaluation reagent 7 is dropped on the recording material 4, the recording material 4 swells and becomes soft and easily stretched. Therefore, the deformation amount of the recording material 4 increases with respect to the applied load, so the Young's modulus decreases. . Further, since the amount of shrinkage when the load applied to the recording material 4 is removed due to the swelling of the recording material 4, the amount of spring back is also reduced.

(環境条件としての湿度の影響による記録材4の特性の取得)
評価用試薬7の滴下量を変化させて、記録材4の湿度データを取得することで、環境の湿度による記録材4の含水率の影響を評価することができる。また、各種の湿潤条件における引っ張り荷重と記録材4の変形量との関係データを取得し、図5〜図8に示す内部構造と引っ張り荷重と記録材4の変位量とを関連づけることにより、記録材4のマクロ的な特性とミクロ的な特性とを関連づけることができる。
(Acquisition of characteristics of recording material 4 due to influence of humidity as environmental condition)
By obtaining the humidity data of the recording material 4 by changing the dropping amount of the evaluation reagent 7, the influence of the moisture content of the recording material 4 due to the humidity of the environment can be evaluated. Further, the relationship data between the tensile load and the deformation amount of the recording material 4 under various wet conditions is acquired, and the internal structure shown in FIGS. 5 to 8 is correlated with the tensile load and the displacement amount of the recording material 4 to record. The macroscopic characteristics and the microscopic characteristics of the material 4 can be correlated.

図11は、その記録材4のミクロ構造モデルを等価回路図で示したものである。この図11において、k1は張力付与方向に配向されている繊維状構造体4pの繊維が伸びる方向の弾性項、d1はその繊維状構造体4pの粘性項である。また、k2は張力付与方向と直交する方向に配向されている繊維状構造体4pの弾性項、d2はその張力付与方向と直交する方向に配向されている繊維状構造体4pの粘性項である。また、k3は充填物質4qの弾性項、d3は充填物質4qの粘性項である。   FIG. 11 shows an equivalent circuit diagram of the microstructure model of the recording material 4. In FIG. 11, k1 is an elastic term in the direction in which the fibers of the fibrous structure 4p oriented in the tension applying direction extend, and d1 is a viscosity term of the fibrous structure 4p. K2 is the elastic term of the fibrous structure 4p oriented in the direction orthogonal to the tension applying direction, and d2 is the viscosity term of the fibrous structure 4p oriented in the direction orthogonal to the tension applying direction. . K3 is the elastic term of the filling material 4q, and d3 is the viscosity term of the filling material 4q.

これらの弾性項k1、k2、k3、粘性項d1、d2、d3は記録材4に引っ張り荷重を付与したときの記録材4の変位量と荷重との関係と、このときの記録材4の内部構造の変化とから求めることができる。   These elastic terms k1, k2, k3 and viscosity terms d1, d2, d3 are the relationship between the displacement amount and the load of the recording material 4 when a tensile load is applied to the recording material 4, and the inside of the recording material 4 at this time. It can be determined from the structural change.

なお、記録材4の繊維状構造体4pは、記録材4の厚さ方向と直交する二軸方向(記録材4の縦方向及び横方向)に配向されているので、この両方向に引っ張り荷重を加えてミクロ的な特性を求めるのが望ましい。   Since the fibrous structure 4p of the recording material 4 is oriented in two axial directions (vertical direction and horizontal direction of the recording material 4) perpendicular to the thickness direction of the recording material 4, a tensile load is applied in both directions. In addition, it is desirable to obtain microscopic characteristics.

また、記録材4を構成する繊維状構造体4p、充填物質4qの組成、量、密度等に応じて、弾性項kと粘性項dとの組の個数を増減させることにより、モデルの複雑さと特性値の精度とのバランスをとることが望ましい。   Further, the complexity of the model can be increased by increasing or decreasing the number of pairs of the elastic term k and the viscosity term d according to the composition, amount, density, etc. of the fibrous structure 4p and the filling material 4q constituting the recording material 4. It is desirable to balance the accuracy of the characteristic value.

(従来技術に対して有利な点)
記録材4は、その搬送方向に応じて変形方向が異なるため、従来の技術では、それぞれの変形方向に対して全ての環境条件で記録材4の変形に対する特性を評価する必要があった。
(Advantages over the prior art)
Since the deformation direction of the recording material 4 varies depending on the conveyance direction, the conventional technique has to evaluate the characteristics against deformation of the recording material 4 under all environmental conditions for each deformation direction.

このような従来の評価では、記録材4の微細な構造のバラツキや不均一性、環境条件のバラツキ等の外乱因子が相互に影響し、開発に有用な特性値を取得することが困難であった。   In such a conventional evaluation, disturbance factors such as the fine structure variation and non-uniformity of the recording material 4 and the variation of environmental conditions interact with each other, and it is difficult to obtain characteristic values useful for development. It was.

その結果、全ての紙種、印刷モード及び環境条件における確認試験を省くには至っていない。
これに対して、本発明の実施例によれば、評価用試薬7を用いて環境依存性を模擬的に実現でき、記録材4のミクロ構造に対応づけてマクロ的な特性値を計測し、これに基づいて記録材4のマクロな特性値を評価できるので、効率的な製品開発を実現できる。
As a result, confirmation tests for all paper types, printing modes, and environmental conditions have not been omitted.
On the other hand, according to the embodiment of the present invention, the environment dependence can be simulated by using the evaluation reagent 7, and the macro characteristic value is measured in association with the microstructure of the recording material 4. Based on this, since the macro characteristic value of the recording material 4 can be evaluated, efficient product development can be realized.

すなわち、本発明の実施例は、記録材4に張力を付与する前の構造を測定する構造測定ステップと、記録材4の外形寸法の測定後に記録材4に張力を付与する張力付与ステップとを含むものである。そして、張力付与ステップにより付与された張力を測定し、その張力に対応する記録材4の外形寸法及び構造を測定するものである。   That is, the embodiment of the present invention includes a structure measuring step for measuring a structure before applying tension to the recording material 4 and a tension applying step for applying tension to the recording material 4 after measuring the outer dimensions of the recording material 4. Is included. And the tension | tensile_strength provided by the tension | tensile_strength provision step is measured, and the external dimension and structure of the recording material 4 corresponding to the tension | tensile_strength are measured.

記録材4に評価用試薬7を塗布して、各ステップを実行して張力を測定し、その張力に対応する記録材4の外形寸法及び構造を測定することにより記録材4の特性を評価すれば、記録材4のミクロ的な環境依存特性を測定できる。
記録材4に加える張力を増加させながら記録材4に張力を付与することにより、記録材4の外形寸法の変化量と構造の変化量とを測定することにすれば、記録材4のミクロ的なヤング率、マクロ的なヤング率を測定できる。
The evaluation reagent 7 is applied to the recording material 4, each step is executed to measure the tension, and the external dimensions and structure of the recording material 4 corresponding to the tension are measured to evaluate the characteristics of the recording material 4. For example, the microscopic environment-dependent characteristics of the recording material 4 can be measured.
By applying tension to the recording material 4 while increasing the tension applied to the recording material 4 and measuring the amount of change in the external dimensions and the amount of change in the structure of the recording material 4, Young's modulus and macroscopic Young's modulus can be measured.

記録材4に加える張力を一定時間Δtだけ保持した状態で記録材4に加えた荷重の変化を計測することにすれば、記録材4のマクロ的な応力緩和率を測定できる。
また、記録材4に加える荷重を除去した状態で記録材4の縮み量を測定することにすれば、記録材4の塑性変形率を測定できる。
If the change in load applied to the recording material 4 is measured in a state where the tension applied to the recording material 4 is held for a certain time Δt, the macroscopic stress relaxation rate of the recording material 4 can be measured.
If the amount of shrinkage of the recording material 4 is measured in a state where the load applied to the recording material 4 is removed, the plastic deformation rate of the recording material 4 can be measured.

更に、評価用試薬として純水とインク液等の二種類の液体を用いて環境依存特性の評価を行うことにすれば、片面にインク液等で印字されかつ他面が白紙の記録材4に印字を行う、いわば記録材4を裏紙で使用する場合の環境依存特性の評価も行うことができる。   Furthermore, if the environment-dependent characteristics are evaluated using two types of liquids such as pure water and ink liquid as evaluation reagents, the recording material 4 is printed with ink liquid on one side and blank on the other side. It is possible to evaluate the environment-dependent characteristics when printing is performed, that is, when the recording material 4 is used as a backing paper.

また、この実施例では、評価用試薬7を用いて記録材4の含水率を変化させているが、本発明はこれに限られるものではない。
例えば、記録材特性測定装置全体を、温度と湿度とを管理可能な環境槽に設置し、記録材4を環境槽に一定時間放置して記録材4が環境槽に十分になじんだ状態のもとで、環境依存特性の測定を行うことにしてもよい。
この場合には、記録材4の含水率の測定が可能な含水率計測装置を用いて、含水率の測定を行うのが望ましい。
In this embodiment, the moisture content of the recording material 4 is changed using the evaluation reagent 7, but the present invention is not limited to this.
For example, the entire recording material property measuring apparatus is installed in an environmental tank where temperature and humidity can be controlled, and the recording material 4 is left in the environmental tank for a certain period of time so that the recording material 4 is sufficiently familiar with the environmental tank. Then, environment-dependent characteristics may be measured.
In this case, it is desirable to measure the moisture content using a moisture content measuring device capable of measuring the moisture content of the recording material 4.

(実施例2)
(記録材特性測定装置の概略構成)
図12、図13は、本発明の実施例2に係る記録材特性測定装置の概略構成を示す模式図である。
(Example 2)
(Schematic configuration of recording material characteristic measuring device)
12 and 13 are schematic diagrams showing a schematic configuration of a recording material property measuring apparatus according to Embodiment 2 of the present invention.

実施例2は、本発明の実施例1に係る記録材特性測定装置に、湿度計測装置200を備えるものである。その他の構成については、実施例1と同様であるので、説明を省略する。
湿度計測装置200は、記録材4を介して吐出ノズル5と反対側に設けられている。
In the second embodiment, the recording material property measuring apparatus according to the first embodiment of the present invention includes a humidity measuring apparatus 200. Other configurations are the same as those in the first embodiment, and thus the description thereof is omitted.
The humidity measuring device 200 is provided on the opposite side of the ejection nozzle 5 with the recording material 4 interposed therebetween.

本実施例では、吐出ノズル5からの滴下量によって記録材4の含水分を変化させ、その際の記録材4の湿度を記録材4の近傍に設けられた湿度計測装置200により計測する。この湿度計測装置200を設けると、記録材4の環境変化の影響を定量的に評価することができる。
このように湿度計測装置200を設けると、記録材4が搬送の際に詰まらないような最適な湿度を測定することができ、その適切な湿度を管理することも可能となる。
In this embodiment, the moisture content of the recording material 4 is changed according to the amount dropped from the ejection nozzle 5, and the humidity of the recording material 4 at that time is measured by the humidity measuring device 200 provided in the vicinity of the recording material 4. When this humidity measuring device 200 is provided, the influence of the environmental change of the recording material 4 can be quantitatively evaluated.
When the humidity measuring apparatus 200 is provided in this way, it is possible to measure the optimum humidity so that the recording material 4 is not clogged during conveyance, and to manage the appropriate humidity.

なお、本実施例において湿度計測装置200は、記録材4を介して吐出ノズル5と反対側に設けられているが、評価用試薬7の浸透速度の影響が大きい場合などは、吐出ノズル5側や、記録材4を介して吐出ノズル5側とその反対側の双方に設けてもよい。
また、湿度計測装置200の位置を固定する必要はなく、例えば、記録材4の面に並行に移動可能な位置に設けることで、評価用試薬7の塗布時や記録材4の内部構造観察時に退避可能な構成とすることも考えられる。
In this embodiment, the humidity measuring device 200 is provided on the side opposite to the discharge nozzle 5 with the recording material 4 interposed therebetween. However, when the influence of the permeation speed of the evaluation reagent 7 is large, the humidity measuring device 200 side Alternatively, the recording material 4 may be provided on both the discharge nozzle 5 side and the opposite side.
Further, it is not necessary to fix the position of the humidity measuring apparatus 200. For example, by providing the humidity measuring apparatus 200 at a position that can be moved in parallel to the surface of the recording material 4, the evaluation reagent 7 is applied or the internal structure of the recording material 4 is observed. It is also possible to adopt a configuration that can be retracted.

1、2…張力付与部材
3…構造計測装置
4…記録材
8…ロードセル(張力計測部材)
10…変位センサ(外形寸法計測装置)
200…湿度計測装置
1, 2 ... tension applying member 3 ... structure measuring device 4 ... recording material 8 ... load cell (tension measuring member)
10. Displacement sensor (external dimension measuring device)
200 ... Humidity measuring device

特許第5212167号公報Japanese Patent No. 522167 特許第4803018号公報Japanese Patent No. 4803018

Claims (11)

記録材に張力を付与する張力付与部材と、
前記記録材に付与する張力を計測する張力計測部材と、
前記張力が付与された記録材の外形寸法を計測する外形寸法計測装置と、
前記張力が付与された記録材の構造を計測する構造計測装置とを備えていることを特徴とする記録材特性測定装置。
A tension applying member that applies tension to the recording material;
A tension measuring member that measures the tension applied to the recording material;
An external dimension measuring device for measuring the external dimensions of the recording material to which the tension is applied;
A recording material property measuring apparatus, comprising: a structure measuring device that measures the structure of the recording material to which the tension is applied.
請求項1に記載の記録材特性測定装置において、
前記記録材の湿度を計測する湿度計測装置と、
前記記録材に浸透性を有する物質を塗布する塗布手段とを備えていることを特徴とする記録材特性測定装置。
The recording material property measuring apparatus according to claim 1,
A humidity measuring device for measuring the humidity of the recording material;
An apparatus for measuring a recording material characteristic, comprising: an application unit that applies a permeable substance to the recording material.
請求項1又は請求項2に記載の記録材特性測定装置において、
前記構造計測装置が光干渉断層法を用いて画像を取得する光干渉計装置から構成されていることを特徴とする記録材特性測定装置。
In the recording material property measuring apparatus according to claim 1 or 2,
The recording material characteristic measuring apparatus, wherein the structure measuring apparatus is composed of an optical interferometer that acquires an image using an optical coherence tomography.
請求項2又は請求項3に記載の記録材特性測定装置において、
前記構造計測装置は、前記張力の付与の前後における前記記録材の湿度に応じた記録材の構造を計測することを特徴とする記録材特性測定装置。
In the recording material property measuring apparatus according to claim 2 or 3,
The structure measuring apparatus measures the structure of the recording material according to the humidity of the recording material before and after the application of the tension.
請求項1ないし請求項4のいずれか1項に記載の記録材特性測定装置において、
前記張力付与部材によって付与する張力を変化させ、その変化に対応する前記記録材の外形寸法及び構造を計測し、
前記記録材の外形寸法を固定し前記記録材に作用する張力及び前記記録材の構造を計測することを特徴とする記録材特性測定装置。
The recording material property measuring apparatus according to any one of claims 1 to 4,
Change the tension applied by the tension applying member, measure the outer dimensions and structure of the recording material corresponding to the change,
A recording material characteristic measuring apparatus characterized by fixing an outer dimension of the recording material and measuring a tension acting on the recording material and a structure of the recording material.
請求項2ないし請求項5のいずれか1項に記載の記録材特性測定装置において、
前記塗布手段によって前記記録材に浸透性を有する物質を塗布した後に、少なくとも、前記張力付与部材によって付与する張力を変化させ、その変化に対応する前記記録材の外形寸法及び構造を計測するか、又は、前記記録材の外形寸法を固定し前記記録材に作用する張力及び前記記録材の構造を計測することを特徴とする記録材特性測定装置。
In the recording material property measuring apparatus according to any one of claims 2 to 5,
After applying a material having permeability to the recording material by the application means, at least change the tension applied by the tension applying member, and measure the external dimensions and structure of the recording material corresponding to the change, Alternatively, the recording material characteristic measuring apparatus is characterized in that the outer dimensions of the recording material are fixed and the tension acting on the recording material and the structure of the recording material are measured.
請求項2ないし請求項6のいずれか1項に記載の記録材特性測定装置において、
前記塗布手段によって前記記録材に塗布する浸透性を有する物質が少なくとも二種類であることを特徴とする記録材特性測定装置。
The recording material property measuring apparatus according to any one of claims 2 to 6,
The recording material characteristic measuring apparatus according to claim 1, wherein there are at least two kinds of penetrating substances applied to the recording material by the applying means.
請求項2ないし請求項7のいずれか1項に記載の記録材特性測定装置において、
前記湿度計測装置は前記記録材の面と並行に移動可能であることを特徴とする記録材特性測定装置。
In the recording material property measuring apparatus according to any one of claims 2 to 7,
The recording material characteristic measuring device, wherein the humidity measuring device is movable in parallel with the surface of the recording material.
記録材に張力を付与する前の構造を測定する構造測定ステップと、
前記記録材の外形寸法の測定後に前記記録材に張力を付与する張力付与ステップとを含み、
前記張力付与ステップにより付与された張力を測定し、該張力に対応する前記記録材の外形寸法及び構造を測定することを特徴とする記録材特性測定方法。
A structure measuring step for measuring the structure before applying tension to the recording material;
A tension applying step for applying tension to the recording material after measuring the outer dimensions of the recording material,
A recording material characteristic measuring method, comprising: measuring a tension applied in the tension applying step; and measuring an outer dimension and a structure of the recording material corresponding to the tension.
請求項9に記載の記録材特性測定方法において、
前記記録材に加える張力を保持した状態で前記記録材に加えた荷重の変化を計測することを特徴とする記録材特性測定方法。
In the recording material characteristic measuring method according to claim 9,
A method for measuring characteristics of a recording material, comprising measuring a change in load applied to the recording material while maintaining a tension applied to the recording material.
請求項9又は請求項10に記載の記録材特性測定方法において、
前記記録材に加えた荷重を除去した状態で前記記録材の縮み量を測定することを特徴とする記録材特性測定方法。
In the recording material characteristic measuring method according to claim 9 or 10,
A recording material characteristic measuring method, comprising: measuring a shrinkage amount of the recording material in a state where a load applied to the recording material is removed.
JP2014263073A 2014-07-22 2014-12-25 Recording material characteristic measuring apparatus and recording material characteristic measuring method Active JP6515530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014263073A JP6515530B2 (en) 2014-07-22 2014-12-25 Recording material characteristic measuring apparatus and recording material characteristic measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014148874 2014-07-22
JP2014148874 2014-07-22
JP2014263073A JP6515530B2 (en) 2014-07-22 2014-12-25 Recording material characteristic measuring apparatus and recording material characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2016029356A true JP2016029356A (en) 2016-03-03
JP6515530B2 JP6515530B2 (en) 2019-05-22

Family

ID=55435300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263073A Active JP6515530B2 (en) 2014-07-22 2014-12-25 Recording material characteristic measuring apparatus and recording material characteristic measuring method

Country Status (1)

Country Link
JP (1) JP6515530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991065A (en) * 2019-05-05 2019-07-09 中国人民解放军陆军装甲兵学院 The coating spraying method of matrix of samples for the observation of coating material original position stretching

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396316B1 (en) * 2020-08-13 2022-05-11 주식회사 이엔씨 테크놀로지 Inspection equipment for inspecting foldable display device and stage apparatus used therein

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589747A (en) * 1978-12-28 1980-07-07 Honshu Paper Co Ltd Measuring unit of degree of shrinkage and elongation for paper and paperboard
JPH01162890A (en) * 1987-10-05 1989-06-27 Measurex Corp Apparatus and method for continuous measurement of paper strength
JPH11133019A (en) * 1997-10-24 1999-05-21 Nippon Paper Industries Co Ltd Method and device for measuring dynamic drainage resistance
US5972714A (en) * 1996-03-29 1999-10-26 The United States Of America As Represented By The Secretary Of The Navy Atmospheric ozone concentration detector
JP2008232824A (en) * 2007-03-20 2008-10-02 Toshiba Corp Deterioration inspecting device and method of paper sheet
JP2009139407A (en) * 2007-12-03 2009-06-25 Fuji Xerox Co Ltd Electrophotographic transfer paper and image forming method using the same
JP2011158395A (en) * 2010-02-02 2011-08-18 Glory Ltd Detection method and detector of information on cross-sectional structure of paper sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589747A (en) * 1978-12-28 1980-07-07 Honshu Paper Co Ltd Measuring unit of degree of shrinkage and elongation for paper and paperboard
JPH01162890A (en) * 1987-10-05 1989-06-27 Measurex Corp Apparatus and method for continuous measurement of paper strength
US5972714A (en) * 1996-03-29 1999-10-26 The United States Of America As Represented By The Secretary Of The Navy Atmospheric ozone concentration detector
JPH11133019A (en) * 1997-10-24 1999-05-21 Nippon Paper Industries Co Ltd Method and device for measuring dynamic drainage resistance
JP2008232824A (en) * 2007-03-20 2008-10-02 Toshiba Corp Deterioration inspecting device and method of paper sheet
JP2009139407A (en) * 2007-12-03 2009-06-25 Fuji Xerox Co Ltd Electrophotographic transfer paper and image forming method using the same
JP2011158395A (en) * 2010-02-02 2011-08-18 Glory Ltd Detection method and detector of information on cross-sectional structure of paper sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
門屋卓: ""紙の力学的性質"", 紙パ技協誌, vol. 1979年33巻4号, JPN6018048691, 1 April 1979 (1979-04-01), pages 250 - 259, ISSN: 0003936143 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991065A (en) * 2019-05-05 2019-07-09 中国人民解放军陆军装甲兵学院 The coating spraying method of matrix of samples for the observation of coating material original position stretching

Also Published As

Publication number Publication date
JP6515530B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6236909B2 (en) Permeation process measuring device and permeation process measuring method
CN107205636B (en) The optical instrument of biomechanics Diagnosis for eye disease
KR102420823B1 (en) Method and device for optical surface measurement by color confocal sensor
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
EP2163189A1 (en) Measurement apparatus and measurement method
US9243889B2 (en) Device for optical coherence tomography
US20120176623A1 (en) Apparatus and method for measuring characteristics of multi-layered thin films
JP6376780B2 (en) Optical inspection apparatus and optical inspection system
JP6515530B2 (en) Recording material characteristic measuring apparatus and recording material characteristic measuring method
JP2006017648A (en) Measuring instrument
JP2017156245A (en) Spectroscopic apparatus
CN104101420B (en) Vibration sample internal reflection point small amplitude measurement method
Malek et al. Microtomography imaging of an isolated plant fiber: a digital holographic approach
JP7246947B2 (en) Spatially offset optical coherence tomography
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JP3762420B2 (en) Method and apparatus for measuring refractive index distribution
JP2004117298A (en) Measuring method and apparatus using total reflection attenuation
JP2016024089A (en) Liquid state change measurement device, and method for measuring change in liquid state
JP2016029354A (en) Device for measuring recording material characteristics and method for measuring recording material characteristics
JP2017020907A (en) Measurement device and measurement method
CN113334932A (en) Information processing apparatus and recording medium
FR2986330A1 (en) METHOD FOR ANALYZING THE SOFTNESS OF A TISSUE PAPER SHEET
JP2016121965A (en) Infiltration process measurement device and measurement method thereof
US11293746B2 (en) Method and device for evaluating a mechanical property of a material
Dai et al. Chromatic confocal imaging based mechanical test platform for micro porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6515530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151