JP2016021686A - Cross polarization interference compensation device and cross polarization interference compensation method - Google Patents

Cross polarization interference compensation device and cross polarization interference compensation method Download PDF

Info

Publication number
JP2016021686A
JP2016021686A JP2014144745A JP2014144745A JP2016021686A JP 2016021686 A JP2016021686 A JP 2016021686A JP 2014144745 A JP2014144745 A JP 2014144745A JP 2014144745 A JP2014144745 A JP 2014144745A JP 2016021686 A JP2016021686 A JP 2016021686A
Authority
JP
Japan
Prior art keywords
polarization
cross
polarization interference
interference compensation
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014144745A
Other languages
Japanese (ja)
Inventor
隼悟 新井
Shungo Arai
隼悟 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014144745A priority Critical patent/JP2016021686A/en
Publication of JP2016021686A publication Critical patent/JP2016021686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Noise Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cross polarization interference compensation device capable of preventing divergence of phase noise suppression control.SOLUTION: The cross polarization interference compensation device is configured to compensate for an interference between one polarized wave and another polarized wave, and includes: a transversal filter which multiplies the other polarized wave by a plurality of tap coefficients correspondingly to a plurality of signals delayed at predetermined time intervals and outputs a value obtained by adding multiplication results as a cross polarization interference compensation signal; a tap coefficient control circuit by which the plurality of tap coefficients are generated and supplied to the transversal filter on the basis of an amplitude difference between regular one polarized wave and actual one polarized wave, an error signal indicating a phase difference and the other polarized wave; and a phase noise compensator for calculating phase noises of the one polarized wave and the other polarized wave on the basis of the cross polarization interference compensation signal and the error signal. The tap coefficient control circuit fixes a phase of any one tap coefficient among the plurality of tap coefficients.SELECTED DRAWING: Figure 1

Description

本発明は、両偏波伝送装置の受信装置における、交差偏波間干渉補償装置および交差偏波間干渉補償方法に関する。   The present invention relates to a cross-polarization interference compensation device and a cross-polarization interference compensation method in a receiver of both polarization transmission devices.

マイクロ波通信において、周波数利用効率を上げる方法として、直交する2つの偏波(垂直偏波(V偏波)と水平偏波(H偏波))を同一周波数で伝送する両偏波伝送方式が知られている。
両偏波伝送方式では、V偏波およびH偏波が同一周波数なので、伝搬路における反射や散乱等により互いに干渉信号を生じる。一方の偏波に対する他方の偏波は「交差偏波」と呼ばれ、一方の偏波が他方の偏波に干渉することは「交差偏波間干渉」と呼ばれている。受信側では、この交差偏波間干渉を抑制するための交差偏波間干渉補償が必要となる。受信装置に設けられる交差偏波間干渉補償器(XPIC:cross polarization interference canceller)の一例が特許文献1に開示されている。
交差偏波間干渉を補償するため、V偏波とH偏波の局部発振周波数をXPICにおいて同期させる方法がある。その方法として、ローカル同期方式とリファレンス同期方式が知られている。ローカル同期方式はローカル発振器が故障した場合に、両偏波の信号を出力できなくなるという問題がある。一方、リファレンス同期方式では、位相雑音が交差偏波間干渉補償の特性劣化を起こすという問題がある。
In microwave communication, as a method for improving frequency utilization efficiency, there is a dual polarization transmission method in which two orthogonal polarizations (vertical polarization (V polarization) and horizontal polarization (H polarization)) are transmitted at the same frequency. Are known.
In both polarization transmission systems, since the V polarization and the H polarization are the same frequency, interference signals are generated by reflection or scattering in the propagation path. The other polarization with respect to one polarization is called “cross-polarization”, and the fact that one polarization interferes with the other polarization is called “cross-polarization interference”. On the receiving side, cross polarization interference compensation is required to suppress this cross polarization interference. An example of a cross polarization interference canceller (XPIC: cross polarization interference canceller) provided in a receiving apparatus is disclosed in Patent Document 1.
In order to compensate for cross polarization interference, there is a method of synchronizing the local oscillation frequencies of V polarization and H polarization in XPIC. As the method, a local synchronization method and a reference synchronization method are known. The local synchronization method has a problem that signals of both polarizations cannot be output when the local oscillator fails. On the other hand, in the reference synchronization method, there is a problem that the phase noise causes the characteristic deterioration of the cross polarization interference compensation.

リファレンス同期方式の両偏波伝送における、位相雑音の抑圧方法の一例が、特許文献2に開示されている。図5は関連する交差偏波間干渉補償装置を含む受信装置の一構成例を示すブロック図である。
図5に示すように、受信装置は、RF(Radio Frequency)信号を受信するアンテナ3,3’と、RF信号をIF(Intermediate Frequency)信号に変換するミキサ4,4’と、ミキサ4,4’にRFローカル信号を供給するローカル発振器45,45’と、周波数を同期させるために基準信号をローカル発振器45,45’に供給する基準発振器46と、V偏波側の復調器5と、H偏波側の復調器5’とを有する。
復調器5は、直交復調器41,43と、ローカル発振器42と、DEM(demodulator:復調器)10と、XPIC130と、誤差検出器11と、位相雑音補償器12と、複素乗算器15と、加算器14とを有する。復調器5’は、復調器5と同様な構成である。
図6は図5に示した位相雑音補償器の構成例を示すブロック図である。位相雑音補償器12は、位相雑音検出器21と、乗算器22と、アキュムレータ23と、加算器24と、SIN/COSテーブル25とを有する。なお、図5および図6に示す構成と同様な構成が特許文献2に開示されているため、その詳細な説明を省略する。
特許文献2に開示された装置では、時間変化の遅い位相雑音の補正をXPIC130で行い、時間変化の速い位相雑音の補正を位相雑音補償器12で行っている。
An example of a method of suppressing phase noise in reference-synchronized dual polarization transmission is disclosed in Patent Document 2. FIG. 5 is a block diagram showing a configuration example of a receiving apparatus including a related cross-polarization interference compensating apparatus.
As shown in FIG. 5, the receiving apparatus includes antennas 3 and 3 ′ that receive an RF (Radio Frequency) signal, mixers 4 and 4 ′ that convert the RF signal into an IF (Intermediate Frequency) signal, and mixers 4 and 4. Local oscillators 45 and 45 'for supplying an RF local signal to', a reference oscillator 46 for supplying a reference signal to the local oscillators 45 and 45 'for synchronizing the frequency, a demodulator 5 on the V polarization side, and H And a demodulator 5 'on the polarization side.
The demodulator 5 includes quadrature demodulators 41 and 43, a local oscillator 42, a DEM (demodulator) 10, an XPIC 130, an error detector 11, a phase noise compensator 12, a complex multiplier 15, And an adder 14. The demodulator 5 ′ has the same configuration as the demodulator 5.
FIG. 6 is a block diagram showing a configuration example of the phase noise compensator shown in FIG. The phase noise compensator 12 includes a phase noise detector 21, a multiplier 22, an accumulator 23, an adder 24, and a SIN / COS table 25. In addition, since the structure similar to the structure shown in FIG. 5 and FIG. 6 is disclosed by patent document 2, the detailed description is abbreviate | omitted.
In the apparatus disclosed in Patent Document 2, the XPIC 130 corrects phase noise that changes slowly in time, and the phase noise compensator 12 corrects phase noise that changes quickly in time.

特開2000−165339号公報JP 2000-165339 A 国際公開2007/046427号(段落0069)International Publication No. 2007/046427 (paragraph 0069)

特許文献2に開示された装置では、位相雑音を抑圧する回路として、XPICと位相雑音補償器の2つが設けられており、これら2つの回路は位相に対する追従速度が異なるため、制御が発散(競合)する可能性がある。この問題を、図7を参照して説明する。
図7に示す矢印のうち、交差偏波間干渉補償信号に対する位相雑音の抑圧に関して、上段の矢印で示す制御と下段の矢印で示す制御のうち、どちらの制御も可能となる。このように、位相雑音の抑圧に対する解が複数存在し、制御が発散(競合)してしまうおそれがある。
近年、通信処理にデジタル信号処理を多用するようになり、処理に時間を要するようになってきており、フィードバックデータを基にした複数個所で補正が引き起こす、制御の発散(競合)の危険性が高まってきており、その対策を検討する必要がある。
In the apparatus disclosed in Patent Document 2, two circuits, an XPIC and a phase noise compensator, are provided as circuits for suppressing phase noise. Since these two circuits have different tracking speeds with respect to phase, control is diverged (competition). )there's a possibility that. This problem will be described with reference to FIG.
Of the arrows shown in FIG. 7, regarding the suppression of the phase noise for the cross polarization interference compensation signal, either the control indicated by the upper arrow or the control indicated by the lower arrow can be performed. As described above, there are a plurality of solutions for the suppression of the phase noise, and there is a possibility that the control may diverge (compete).
In recent years, digital signal processing has been heavily used for communication processing, and processing has become time consuming.There is a risk of control divergence (competition) caused by correction at multiple locations based on feedback data. There is a need to consider countermeasures.

本発明は上述したような技術が有する問題点を解決するためになされたものであり、位相雑音の抑圧制御の発散を防止可能にした交差偏波間干渉補償装置および交差偏波間干渉補償方法を提供することを目的とする。   The present invention has been made to solve the above-described problems of the technology, and provides a cross-polarization interference compensation device and a cross-polarization interference compensation method capable of preventing divergence of phase noise suppression control. The purpose is to do.

上記目的を達成するための本発明の交差偏波間干渉補償装置は、自偏波および異偏波の干渉を補償する交差偏波間干渉補償装置であって、
前記異偏波を所定の時間間隔で遅延させた複数の信号に対応して複数のタップ係数を乗算し、乗算結果を加算した値を交差偏波間干渉補償信号として出力するトランスバーサルフィルタと、
正規の前記自偏波および実際の前記自偏波の振幅差および位相差を示す誤差信号と前記異偏波とに基づいて前記複数のタップ係数を生成して前記トランスバーサルフィルタに供給するタップ係数制御回路と、
前記交差偏波間干渉補償信号と前記誤差信号に基づいて前記自偏波と前記異偏波の位相雑音を求める位相雑音補償器と、を有し、
前記タップ係数制御回路は、前記複数のタップ係数のうち、いずれか1つのタップ係数の位相を固定する構成である。
In order to achieve the above object, the cross polarization interference compensation device of the present invention is a cross polarization interference compensation device for compensating for interference between the own polarization and the different polarization,
A transversal filter that multiplies a plurality of tap coefficients corresponding to a plurality of signals obtained by delaying the different polarizations at a predetermined time interval, and outputs a value obtained by adding the multiplication results as a cross polarization interference compensation signal;
Tap coefficients that generate the plurality of tap coefficients based on the error signal indicating the amplitude difference and phase difference between the normal polarization and the actual polarization and the cross polarization and supply the tap coefficients to the transversal filter A control circuit;
A phase noise compensator for obtaining phase noise of the own polarization and the different polarization based on the cross polarization interference compensation signal and the error signal;
The tap coefficient control circuit is configured to fix the phase of any one of the plurality of tap coefficients.

また、本発明の交差偏波間干渉補償方法は、自偏波および異偏波の干渉を補償する交差偏波間干渉補償方法であって、
正規の前記自偏波および実際の前記自偏波の振幅差および位相差を示す誤差信号と前記異偏波とに基づいて複数のタップ係数を生成し、
前記異偏波を所定の時間間隔で遅延させた複数の信号に対応して前記複数のタップ係数を乗算し、乗算結果を加算した値を交差偏波間干渉補償信号として生成し、
生成された交差偏波間干渉補償信号と前記誤差信号に基づいて前記自偏波と前記異偏波の位相雑音を求めて前記交差偏波間干渉補償信号を補正し、
前記複数のタップ係数を生成する際、いずれか1つのタップ係数の位相を固定するものである。
Further, the cross polarization interference compensation method of the present invention is a cross polarization interference compensation method for compensating for interference between the own polarization and the different polarization,
A plurality of tap coefficients are generated based on the error signal indicating the amplitude difference and phase difference between the normal self polarization and the actual self polarization and the cross polarization,
Multiplying the plurality of tap coefficients corresponding to a plurality of signals obtained by delaying the different polarizations at a predetermined time interval, and generating a value obtained by adding the multiplication results as a cross polarization interference compensation signal,
Based on the generated cross-polarization interference compensation signal and the error signal, the cross-polarization interference compensation signal is corrected by obtaining phase noise of the own polarization and the different polarization,
When generating the plurality of tap coefficients, the phase of any one of the tap coefficients is fixed.

本発明によれば、位相雑音の抑圧制御が発散することを防止できる。   According to the present invention, it is possible to prevent the phase noise suppression control from diverging.

本実施形態の交差偏波間干渉補償装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the cross polarization interference compensation apparatus of this embodiment. 本実施形態のタップ係数制御回路による、位相の固定方法の動作を説明するための図である。It is a figure for demonstrating operation | movement of the phase fixing method by the tap coefficient control circuit of this embodiment. 本実施形態のタップ係数制御回路による、位相の固定方法の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the phase fixing method by the tap coefficient control circuit of this embodiment. 本実施形態の交差偏波間干渉補償方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the cross polarization interference compensation method of this embodiment. 関連する交差偏波間干渉補償装置を含む受信装置の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the receiver containing the related cross polarization interference compensation apparatus. 図5に示した位相雑音補償器の構成例を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration example of a phase noise compensator illustrated in FIG. 5. 関連する交差偏波間干渉補償装置の課題を説明するための図である。It is a figure for demonstrating the subject of the related cross polarization interference compensation apparatus.

本実施形態の交差偏波間干渉補償装置の構成を説明する。図1は本実施形態の交差偏波間干渉補償装置の一構成例を示すブロック図である。
本実施形態の交差偏波間干渉補償装置は、XPIC13と、誤差検出器11と、位相雑音補償器12と、加算器14と、複素乗算器15とを有する。本実施形態は、図5に示すXPIC130の代わりに、図1に示すXPIC13が設けられている。
なお、本実施形態では、図5に示した復調器5,5’のそれぞれにおいて、主信号の元になる偏波を自偏波と称し、それと直交する他の偏波を異偏波と称する。例えば、復調器5にとっては、V偏波が自偏波となり、H偏波が異偏波となる。本実施形態では、図5および図6に示した構成と同様な構成についての説明を省略し、復調器5’の説明も省略する。
The configuration of the cross polarization interference compensation device of this embodiment will be described. FIG. 1 is a block diagram showing a configuration example of the cross polarization interference compensation device of the present embodiment.
The cross polarization interference compensation device of the present embodiment includes an XPIC 13, an error detector 11, a phase noise compensator 12, an adder 14, and a complex multiplier 15. In this embodiment, an XPIC 13 shown in FIG. 1 is provided instead of the XPIC 130 shown in FIG.
In this embodiment, in each of the demodulators 5 and 5 ′ shown in FIG. 5, the polarization that is the source of the main signal is referred to as self-polarization, and the other polarization that is orthogonal thereto is referred to as cross-polarization. . For example, for the demodulator 5, the V polarization is a self polarization and the H polarization is a different polarization. In the present embodiment, the description of the same configuration as that shown in FIGS. 5 and 6 is omitted, and the description of the demodulator 5 ′ is also omitted.

本実施形態のXPIC13の構成を、図1を参照して説明する。
図1に示すように、XPIC13は、トランスバーサルフィルタ30と、タップ係数制御回路35とを有する。XPIC13は、FIR(Finite Impulse Response)フィルタを含む適応制御型フィルタである。XPIC13は、異偏波信号が入力されると、誤差検出器11から受信する誤差信号を参照し、自偏波に混入した異偏波干渉波を打ち消す信号である交差偏波間干渉補償信号を生成する。
トランスバーサルフィルタ30は、直列に接続された遅延器31−1〜31−4と、遅延器31−1〜31−4に対応して設けられた乗算器32−1〜32−5と、乗算器32−1〜32−5の出力結果を加算する加算器33−1〜33−4とを有する。遅延器31−1〜31−4は異偏波の復調信号を所定の時間間隔で遅延させる。加算器33−4は乗算器32−1〜32−5の乗算結果を加算した値を交差偏波間干渉補償信号として複素乗算器15に出力する。
タップ係数制御回路35は、入力される自偏波の復調信号から得られる誤差信号と、入力される異偏波の復調信号との相関をとることにより各タップ係数を生成する。本実施形態では、タップ係数は実数部と虚数部からなる複素数である。実数部がI(同相)成分の係数に相当し、虚数部がQ(直交位相)成分の係数に相当する。図1では、乗算器32−1〜32−5に入力されるタップ係数を(a1+jb1)〜(a5+jb5)で表している。
時間をtとし、トランスバーサルフィルタ30に入力される信号をx(t)とし、トランスバーサルフィルタ30の出力をy(t)とし、誤差信号をe(t)すると、y(t)は式1で表される。また、実数部および虚数部のそれぞれのタップ係数wk(kは0〜4の任意の整数)は式2で表されることが知られている。ただし、タップ係数の修正にはLMS(Least Mean Square)アルゴリズムを用いるものとし、μを修正係数とする。
The configuration of the XPIC 13 of this embodiment will be described with reference to FIG.
As shown in FIG. 1, the XPIC 13 includes a transversal filter 30 and a tap coefficient control circuit 35. The XPIC 13 is an adaptive control type filter including a FIR (Finite Impulse Response) filter. When the cross polarization signal is input, the XPIC 13 refers to the error signal received from the error detector 11 and generates a cross polarization interference compensation signal that is a signal for canceling the cross polarization interference wave mixed in the self polarization. To do.
Transversal filter 30 includes delay units 31-1 to 31-4 connected in series, multipliers 32-1 to 32-5 provided corresponding to delay units 31-1 to 31-4, and multiplications. And adders 33-1 to 33-4 for adding the output results of the devices 32-1 to 32-5. The delay units 31-1 to 31-4 delay the demodulated signals of different polarizations at a predetermined time interval. The adder 33-4 outputs a value obtained by adding the multiplication results of the multipliers 32-1 to 32-5 to the complex multiplier 15 as a cross polarization interference compensation signal.
The tap coefficient control circuit 35 generates each tap coefficient by correlating the error signal obtained from the input demodulated signal of the own polarization and the input demodulated signal of the different polarization. In the present embodiment, the tap coefficient is a complex number composed of a real part and an imaginary part. The real part corresponds to the coefficient of the I (in-phase) component, and the imaginary part corresponds to the coefficient of the Q (quadrature phase) component. In FIG. 1, tap coefficients input to the multipliers 32-1 to 32-5 are represented by (a1 + jb1) to (a5 + jb5).
If time is t, the signal input to the transversal filter 30 is x (t), the output of the transversal filter 30 is y (t), and the error signal is e (t), y (t) It is represented by Moreover, it is known that each tap coefficient wk (k is an arbitrary integer of 0 to 4) of the real part and the imaginary part is expressed by Expression 2. However, the LMS (Least Mean Square) algorithm is used to correct the tap coefficient, and μ is the correction coefficient.

Figure 2016021686
Figure 2016021686

Figure 2016021686
Figure 2016021686

式2に示すように、時刻(t+1)におけるタップ係数wkは、時刻tのタップ係数wkに、異偏波の復調信号と誤差信号の相関計算結果を加算したもので表される。このことから、ある時刻におけるタップ係数は1つ前までのタップ係数の和(積分値)に相関計算結果を加算したものになることがわかる。   As shown in Equation 2, the tap coefficient wk at time (t + 1) is expressed by adding the correlation calculation result between the demodulated signal of different polarization and the error signal to the tap coefficient wk at time t. From this, it is understood that the tap coefficient at a certain time is obtained by adding the correlation calculation result to the sum (integral value) of the previous tap coefficients.

本実施形態のタップ係数制御回路35は、タップ係数(a1+jb1)〜(a5+jb5)のうち、位相を固定するタップ係数を1つ決定し、決定したタップ係数の実数部を制御するが、虚数部をゼロに固定する。他のタップ係数については、タップ係数制御回路35は、実数部と虚数部の両方を制御する。図1では、タップ係数(a3+jb3)の虚数部をゼロに固定した場合を示す。   The tap coefficient control circuit 35 of the present embodiment determines one tap coefficient for fixing the phase among the tap coefficients (a1 + jb1) to (a5 + jb5), and controls the real part of the determined tap coefficient. Fix to zero. For other tap coefficients, the tap coefficient control circuit 35 controls both the real part and the imaginary part. FIG. 1 shows a case where the imaginary part of the tap coefficient (a3 + jb3) is fixed to zero.

次に、本実施形態のタップ係数制御回路35がタップ係数の1つの位相を固定する方法を説明する。
図2は本実施形態のタップ係数制御回路による、位相の固定方法の動作を説明するための図である。図3は本実施形態のタップ係数制御回路による、位相の固定方法の動作手順を示すフローチャートである。
タップ係数制御回路35は、タップ係数(a1+jb1)〜(a5+jb5)のうち、位相を固定するタップ係数を決定する。ここでは、振幅の最も大きいタップ係数が図1に示した(a3+jb3)であるものとして、位相を固定するタップ係数に選択されたものとする。続いて、タップ係数制御回路35は、異偏波の復調信号と誤差信号の相関を計算する(ステップ101)。そして、タップ係数制御回路35は、虚数部のみ、1つ前までのタップ係数の和(積分値)と相関計算結果の符号を比較する(ステップ102)。
ステップ102の比較の結果、相関計算結果と積分値の符号が一致する場合、タップ係数制御回路35は、相関計算結果の符号を反転(×−1)させた後(ステップ103)、ステップ104に進む。ステップ102の比較の結果、相関計算結果と積分値の符号が相違する場合、タップ係数制御回路35は、積分値に相関計算結果を加算する(ステップ104)。ステップ104の処理の結果、タップ係数の虚数部がゼロになり、実数部のa3だけが残る。タップ係数制御回路35は、それ以外のタップ係数については、実数部と虚数部を算出する。
Next, a method for fixing one phase of the tap coefficient by the tap coefficient control circuit 35 of the present embodiment will be described.
FIG. 2 is a diagram for explaining the operation of the phase fixing method by the tap coefficient control circuit of this embodiment. FIG. 3 is a flowchart showing the operation procedure of the phase fixing method by the tap coefficient control circuit of this embodiment.
The tap coefficient control circuit 35 determines a tap coefficient for fixing the phase among the tap coefficients (a1 + jb1) to (a5 + jb5). Here, it is assumed that the tap coefficient having the largest amplitude is (a3 + jb3) shown in FIG. 1 and is selected as the tap coefficient for fixing the phase. Subsequently, the tap coefficient control circuit 35 calculates the correlation between the demodulated signal of different polarization and the error signal (step 101). Then, the tap coefficient control circuit 35 compares only the imaginary part with the sum (integral value) of the previous tap coefficients and the sign of the correlation calculation result (step 102).
If the correlation calculation result and the sign of the integral value match as a result of the comparison in step 102, the tap coefficient control circuit 35 inverts the sign of the correlation calculation result (× −1) (step 103), and then proceeds to step 104. move on. As a result of the comparison in step 102, when the correlation calculation result and the sign of the integral value are different, the tap coefficient control circuit 35 adds the correlation calculation result to the integral value (step 104). As a result of the process of step 104, the imaginary part of the tap coefficient becomes zero, and only the real part a3 remains. The tap coefficient control circuit 35 calculates a real part and an imaginary part for other tap coefficients.

通常、複数のタップ係数は互いに他のタップ係数につられて変化する。本実施形態のように、複数のタップ係数のうち、1つのタップ係数の虚数部をゼロにすると、そのタップ係数が実数部のみとなり、位相に関して固定される。虚数部に関して、1箇所が固定されると、他のタップ係数の虚数部は他のタップ係数につられて変化しなくなる。その結果、XPICでは、位相雑音の抑制機能が放棄される。
なお、位相を固定するタップ係数として、振幅が最も大きいタップ係数を選択する場合で説明したが、位相を固定するタップ係数は振幅の最も大きいものに限定されない。振幅が最も大きいタップ係数は他のタップ係数に比べて信頼性が高いという利点がある。
Usually, a plurality of tap coefficients change according to other tap coefficients. As in this embodiment, when the imaginary part of one tap coefficient among the plurality of tap coefficients is set to zero, the tap coefficient becomes only the real part and is fixed with respect to the phase. With respect to the imaginary part, when one place is fixed, the imaginary part of other tap coefficients is not changed by other tap coefficients. As a result, in XPIC, the phase noise suppression function is abandoned.
Although the case where the tap coefficient having the largest amplitude is selected as the tap coefficient for fixing the phase has been described, the tap coefficient for fixing the phase is not limited to the one having the largest amplitude. The tap coefficient with the largest amplitude has the advantage of higher reliability than other tap coefficients.

次に、本実施形態の交差偏波間干渉補償装置による交差偏波間干渉補償方法を説明する。図4は本実施形態の交差偏波間干渉補償方法の手順を示すフローチャートである。
タップ係数制御回路35は、正規の自偏波と実際の自偏波の振幅差および位相差から検出された誤差信号と異偏波とに基づいて複数のタップ係数を生成する。その際、タップ係数制御回路35は、複数のタップ係数のうち、いずれか1つのタップ係数の位相を固定する。そして、トランスバーサルフィルタ30は、異偏波を所定の時間間隔で遅延させて生成した複数の信号に対応して上記の複数のタップ係数を乗算し、乗算結果を加算した値を交差偏波間干渉補償信号として生成して出力する(ステップ201)。
位相雑音補償器12は、交差偏波間干渉補償信号と誤差信号に基づいて自偏波と異偏波の位相雑音差分を求めて位相回転器となる複素乗算器15に出力する。複素乗算器15は、位相雑音差分を抑圧する方向に、トランスバーサルフィルタ30から出力される交差偏波間干渉補償信号の位相を制御する。このようにして、交差偏波間干渉補償信号の位相雑音が補正される(ステップ202)。
Next, a cross polarization interference compensation method by the cross polarization interference compensation device of this embodiment will be described. FIG. 4 is a flowchart showing the procedure of the cross polarization interference compensation method of this embodiment.
The tap coefficient control circuit 35 generates a plurality of tap coefficients based on the error signal detected from the amplitude difference and phase difference between the normal own polarization and the actual own polarization and the different polarization. At that time, the tap coefficient control circuit 35 fixes the phase of any one of the plurality of tap coefficients. Then, the transversal filter 30 multiplies the plurality of tap coefficients corresponding to the plurality of signals generated by delaying the different polarizations at a predetermined time interval, and adds the multiplication result to the cross-polarization interference. A compensation signal is generated and output (step 201).
The phase noise compensator 12 obtains the phase noise difference between the own polarization and the different polarization based on the cross polarization interference compensation signal and the error signal, and outputs the difference to the complex multiplier 15 serving as a phase rotator. The complex multiplier 15 controls the phase of the cross polarization interference compensation signal output from the transversal filter 30 in a direction to suppress the phase noise difference. In this way, the phase noise of the cross polarization interference compensation signal is corrected (step 202).

上述したように、本実施形態の位相雑音抑圧方法は、XPICでは、位相雑音の抑制機能が放棄される。そのため、位相雑音を抑圧できる回路が1つになることで、解が一意に決まり、制御が発散(競合)する可能性がなくなる。   As described above, in the phase noise suppression method of the present embodiment, the phase noise suppression function is abandoned in XPIC. For this reason, since there is only one circuit capable of suppressing the phase noise, the solution is uniquely determined, and there is no possibility that control will diverge (compete).

通常、交差偏波間干渉補償は、振幅方向と位相方向の制御を、複素数のタップ係数を用いることで同時に行っている。本実施形態では、複数のタップ係数のうちの1つを実数のみで制御している。これにより、交差偏波間干渉補償器では、位相雑音を抑圧することができなくなり、位相雑音補償器で求められる位相雑音が位相回転器によって抑圧されることになる。交差偏波間干渉補償器と位相回転器による、位相雑音補正に対する競合がなくなるため、位相雑音の抑圧制御が発散(競合)することを防止することができる。   In general, cross polarization interference compensation is performed simultaneously by controlling the amplitude direction and the phase direction by using complex tap coefficients. In the present embodiment, one of the plurality of tap coefficients is controlled only by a real number. As a result, the cross-polarization interference compensator cannot suppress the phase noise, and the phase noise obtained by the phase noise compensator is suppressed by the phase rotator. Since there is no competition for phase noise correction between the cross polarization interference compensator and the phase rotator, it is possible to prevent the phase noise suppression control from diverging (competing).

13 交差偏波間干渉補償器(XPIC)
30 トランスバーサルフィルタ
35 タップ係数制御回路
13 Cross polarization interference compensator (XPIC)
30 Transversal filter 35 Tap coefficient control circuit

Claims (6)

自偏波および異偏波の干渉を補償する交差偏波間干渉補償装置であって、
前記異偏波を所定の時間間隔で遅延させた複数の信号に対応して複数のタップ係数を乗算し、乗算結果を加算した値を交差偏波間干渉補償信号として出力するトランスバーサルフィルタと、
正規の前記自偏波および実際の前記自偏波の振幅差および位相差を示す誤差信号と前記異偏波とに基づいて前記複数のタップ係数を生成して前記トランスバーサルフィルタに供給するタップ係数制御回路と、
前記交差偏波間干渉補償信号と前記誤差信号に基づいて前記自偏波と前記異偏波の位相雑音を求める位相雑音補償器と、を有し、
前記タップ係数制御回路は、前記複数のタップ係数のうち、いずれか1つのタップ係数の位相を固定する、交差偏波間干渉補償装置。
A cross-polarization interference compensator that compensates for self-polarization and cross-polarization interference,
A transversal filter that multiplies a plurality of tap coefficients corresponding to a plurality of signals obtained by delaying the different polarizations at a predetermined time interval, and outputs a value obtained by adding the multiplication results as a cross polarization interference compensation signal;
Tap coefficients that generate the plurality of tap coefficients based on the error signal indicating the amplitude difference and phase difference between the normal polarization and the actual polarization and the cross polarization and supply the tap coefficients to the transversal filter A control circuit;
A phase noise compensator for obtaining phase noise of the own polarization and the different polarization based on the cross polarization interference compensation signal and the error signal;
The tap coefficient control circuit is a cross polarization interference compensation device that fixes a phase of any one of the plurality of tap coefficients.
請求項1記載の交差偏波間干渉補償装置において、
前記タップ係数が複素数であり、
前記タップ係数制御回路は、位相を固定するために、前記いずれか1つのタップ係数の虚数部をゼロに設定する、交差偏波間干渉補償装置。
In the cross polarization interference compensation device according to claim 1,
The tap coefficient is a complex number;
The cross polarization interference compensation device, wherein the tap coefficient control circuit sets an imaginary part of any one of the tap coefficients to zero in order to fix the phase.
請求項2に記載の交差偏波間干渉補償装置において、
前記タップ係数制御部は、前記虚数部をゼロに設定するタップ係数として、前記複数のタップ係数のうち、振幅が最も大きいタップ係数を選択する、交差偏波間干渉補償装置。
In the cross polarization interference compensation device according to claim 2,
The cross-polarization interference compensating apparatus, wherein the tap coefficient control unit selects a tap coefficient having the largest amplitude among the plurality of tap coefficients as a tap coefficient for setting the imaginary part to zero.
自偏波および異偏波の干渉を補償する交差偏波間干渉補償方法であって、
正規の前記自偏波および実際の前記自偏波の振幅差および位相差を示す誤差信号と前記異偏波とに基づいて複数のタップ係数を生成し、
前記異偏波を所定の時間間隔で遅延させた複数の信号に対応して前記複数のタップ係数を乗算し、乗算結果を加算した値を交差偏波間干渉補償信号として生成し、
生成された交差偏波間干渉補償信号と前記誤差信号に基づいて前記自偏波と前記異偏波の位相雑音を求めて前記交差偏波間干渉補償信号を補正し、
前記複数のタップ係数を生成する際、いずれか1つのタップ係数の位相を固定する、交差偏波間干渉補償方法。
A cross-polarization interference compensation method that compensates for self-polarization and cross-polarization interference,
A plurality of tap coefficients are generated based on the error signal indicating the amplitude difference and phase difference between the normal self polarization and the actual self polarization and the cross polarization,
Multiplying the plurality of tap coefficients corresponding to a plurality of signals obtained by delaying the different polarizations at a predetermined time interval, and generating a value obtained by adding the multiplication results as a cross polarization interference compensation signal,
Based on the generated cross-polarization interference compensation signal and the error signal, the cross-polarization interference compensation signal is corrected by obtaining phase noise of the own polarization and the different polarization,
A cross polarization interference compensation method for fixing a phase of any one tap coefficient when generating the plurality of tap coefficients.
請求項4記載の交差偏波間干渉補償方法において、
前記タップ係数が複素数であり、
位相を固定するために、前記いずれか1つのタップ係数の虚数部をゼロに設定する、交差偏波間干渉補償方法。
In the cross polarization interference compensation method according to claim 4,
The tap coefficient is a complex number;
A cross-polarization interference compensation method for setting the imaginary part of any one of the tap coefficients to zero in order to fix the phase.
請求項5に記載の交差偏波間干渉補償方法において、
前記虚数部をゼロに設定するタップ係数として、前記複数のタップ係数のうち、振幅が最も大きいタップ係数を選択する、交差偏波間干渉補償方法。
In the cross polarization interference compensation method according to claim 5,
A cross-polarization interference compensation method for selecting a tap coefficient having the largest amplitude among the plurality of tap coefficients as a tap coefficient for setting the imaginary part to zero.
JP2014144745A 2014-07-15 2014-07-15 Cross polarization interference compensation device and cross polarization interference compensation method Pending JP2016021686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014144745A JP2016021686A (en) 2014-07-15 2014-07-15 Cross polarization interference compensation device and cross polarization interference compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014144745A JP2016021686A (en) 2014-07-15 2014-07-15 Cross polarization interference compensation device and cross polarization interference compensation method

Publications (1)

Publication Number Publication Date
JP2016021686A true JP2016021686A (en) 2016-02-04

Family

ID=55266273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014144745A Pending JP2016021686A (en) 2014-07-15 2014-07-15 Cross polarization interference compensation device and cross polarization interference compensation method

Country Status (1)

Country Link
JP (1) JP2016021686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084592A1 (en) * 2019-10-28 2021-05-06 ソニー株式会社 Information processing device, communication device, information processing method, communication method, information processing program, and communication program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084592A1 (en) * 2019-10-28 2021-05-06 ソニー株式会社 Information processing device, communication device, information processing method, communication method, information processing program, and communication program

Similar Documents

Publication Publication Date Title
RU2369969C1 (en) Method and device for suppressing cross-polarised noise
US8873973B2 (en) Digital coherent receiver and phase control method
US8971472B2 (en) Signal processing circuit and method
US10440720B2 (en) Co-channel interference cancellation method and apparatus
US10560199B2 (en) Signal processing circuit and optical receiving device
US8787860B2 (en) Image cancellation in receivers using dual adaptive filters
EP2765719A1 (en) Signal processing device and signal processing method
JP2016021686A (en) Cross polarization interference compensation device and cross polarization interference compensation method
JP2015015655A (en) Interference suppression circuit and interference suppression method
GB2364868A (en) Sub-carrier demodulation frequency control using weighted partitioned correlation of guard period with information symbol
JP2017163370A (en) Phase error detector, inter-polarized interference elimination system, and phase error detection method
JP4516900B2 (en) Amplitude phase control device and receiving system
JP2017139606A (en) Wireless communication device and delay processing method
US9660733B2 (en) Signal processing apparatus, signal processing method, and signal processing system
JP2012039300A (en) Repeating device
US10511409B2 (en) Received signal processor and method for processing received signal
JP5516318B2 (en) Demodulator
WO2018047560A1 (en) Dual polarized wave transmission delay adjusting device, dual polarized wave transmission delay adjusting method, and dual polarized wave transmission system
JP3678896B2 (en) Automatic frequency control method
JP6360354B2 (en) Receiving apparatus and receiving method
JP6614155B2 (en) Receiving apparatus and method, and program
CN113225094B (en) Radio frequency interference estimation device, signal processing device and signal processing method
JP2012156880A (en) Reception device
JP2018160753A (en) Radio communication device and delay processing method
JP4966121B2 (en) Received signal equalizer