JP2015225030A - Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body - Google Patents

Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body Download PDF

Info

Publication number
JP2015225030A
JP2015225030A JP2014111409A JP2014111409A JP2015225030A JP 2015225030 A JP2015225030 A JP 2015225030A JP 2014111409 A JP2014111409 A JP 2014111409A JP 2014111409 A JP2014111409 A JP 2014111409A JP 2015225030 A JP2015225030 A JP 2015225030A
Authority
JP
Japan
Prior art keywords
sample
optical
light
optical rotation
rotation characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014111409A
Other languages
Japanese (ja)
Inventor
博 梶岡
Hiroshi Kajioka
博 梶岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014111409A priority Critical patent/JP2015225030A/en
Publication of JP2015225030A publication Critical patent/JP2015225030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-invasive glucose measuring device of a living body that has not been put into a practical use so far.SOLUTION: A problem has been solved in such a manner that, in the system arranging a specimen material (sample) such as a living body in an optical fiber ring interferometer and measuring a phase difference between right and left circularly polarized light beams, a polarization control device is used in a ring optical path, and a polarized light state of signal light beams incident from both sides of the sample is switched to at least a pair of orthogonal polarized light beams in a constant period. A method of controlling the polarized light beams is adopted so that the polarized light beams incident from both sides of the sample are always orthogonal to each other. A positional relationship of the lenses for controlling a plane of polarization preserving optical fiber used for an opposing optical system that nips the sample is optimized, and a beam waist in the sample is set between 30 μm and 50 μm.

Description

本発明は生体の旋光特性測定装置及び生体の旋光特性測定方法に関し、より具体的には、生体の糖質の濃度を測定することができ、生体の指や耳や皮膚にレーザ光を照射し、その透過光及び/又は反射光を測定して、生体から採血することなしに、検体のグルコース濃度を高い測定精度で測定できる低価格の生体の旋光特性測定装置及び生体の旋光特性測定方法に関する。   The present invention relates to a living body optical rotation characteristic measuring device and a living body optical rotation characteristic measuring method, and more specifically, it can measure the concentration of carbohydrates in a living body, and irradiates a finger, ear or skin of a living body with laser light. In addition, the present invention relates to a low-cost biological optical rotation characteristic measuring device and a biological optical rotation characteristic measurement method that can measure the glucose concentration of a specimen with high measurement accuracy without measuring the transmitted light and / or reflected light and collecting blood from the biological body. .

血液中のグルコース濃度の測定方法として知られている第1の方法は、特許文献1に記載があるような、指などの生体の一部に赤外レーザ光を照射し、血管からの散乱光を分光し、血液に含まれるグルコースを測定するものである。これはグルコース濃度に比例して散乱光が低減することを利用している。しかし、この方法は散乱光の光強度が温度や皮膚の水分や油成分などに依存するという問題があり、広く普及していないのが実情である。第2の方法は、非特許文献1および特許文献2などに記載されているように、グルコースに直交する偏光成分を伝搬させてその複屈折率をオープンループで計測するものである。しかし、この方法では健常者の血糖値レベルである0.1g/dL程度の血糖値レベルの検体を、長さが10mm程度の検体(グルコース)で測定すると誤差が大きい。まして、厚さが1mm程度の生体の旋光度を測定することは到底できない。特に光の散乱損失が非常に大きな生体ではグルコースの濃度を測定できない。第3の方法は、特許文献3に記載されている複屈折率測定装置で測定する方法である。この方法は干渉計のリング光路に非相反光学系を設け、検体をその内部において検体の旋光特性を計測するものである。この方法ではセル長1mm程度のグルコースで健常者の血糖値レベルである0.1g/dLの血糖値レベルを十分な精度で測定できるが、生体を両方向に伝搬するビームの光路差が発生するので、リング干渉計の出力に一定のバイアスが発生するため、測定したい生体の旋光度が正しく測定できなかった。   The first method known as a method for measuring the glucose concentration in blood is to irradiate a part of a living body such as a finger with infrared laser light as described in Patent Document 1, and to scatter light from a blood vessel. And glucose in blood is measured. This utilizes the fact that scattered light is reduced in proportion to the glucose concentration. However, this method has a problem that the light intensity of scattered light depends on temperature, moisture of the skin, an oil component, etc., and is not widely used. As described in Non-Patent Document 1, Patent Document 2, and the like, the second method is to propagate a polarized component orthogonal to glucose and measure the birefringence in an open loop. However, this method has a large error when a sample having a blood glucose level of about 0.1 g / dL, which is a blood glucose level of a healthy person, is measured with a sample (glucose) having a length of about 10 mm. Moreover, it is impossible to measure the optical rotation of a living body having a thickness of about 1 mm. In particular, in a living body having a very large light scattering loss, the glucose concentration cannot be measured. The third method is a method of measuring with a birefringence measuring apparatus described in Patent Document 3. In this method, a nonreciprocal optical system is provided in the ring optical path of the interferometer, and the optical rotation characteristic of the specimen is measured inside the specimen. In this method, a glucose level of 0.1 g / dL, which is a healthy subject's blood glucose level, can be measured with sufficient accuracy with glucose having a cell length of about 1 mm, but an optical path difference of a beam propagating in both directions in a living body occurs. Because the output of the ring interferometer has a constant bias, the optical rotation of the living body to be measured could not be measured correctly.

すなわち、現在までに生体から採血をしないで生体のグルコース濃度を測定するいわゆる無侵襲の測定装置は実用化されていない。   That is, a so-called non-invasive measuring apparatus that measures the glucose concentration of a living body without collecting blood from the living body has not been put into practical use.

特開2004−313554号公報JP 2004-31554 A 特開2007−093289号公報JP 2007-093289 A 特開2005−274380号公報JP 2005-274380 A

横田 正幸 他、「鉛ガラスファイバ偏光変調器を用いたグルコースセンサー」、第31回光波センシング技術研究会LST31−8,PP.51−56,2003年8月Masayuki Yokota et al., “Glucose Sensor Using Lead Glass Fiber Polarization Modulator”, 31st Lightwave Sensing Technology Research Group LST31-8, PP. 51-56, August 2003 梶岡、於保、「光ファイバジャイロの開発」、第3回光波センシング技術研究会、LST3−9,PP.55−62,1989年6月Tsujioka, Oho, "Development of optical fiber gyroscope", 3rd Lightwave Sensing Technology Study Group, LST3-9, PP. 55-62, June 1989

本発明が解決しようとする課題は、従来実用化されていなかった、生体のグルコース濃度を無侵襲で高い測定精度で測定できる生体の旋光特性測定装置及び生体の旋光特性測定方法を提供することにある。   The problem to be solved by the present invention is to provide a biological optical rotation characteristic measuring device and a biological optical rotation characteristic measurement method that can measure the glucose concentration of a living body in a non-invasive manner with high measurement accuracy. is there.

課題を解決するためになされた本発明に係わる生体の旋光特性測定方法および生体の旋光特性測定装置の特徴は、光ファイバリング干渉計の中に生体のごとき検体(以下、試料という)を配置し、試料を透過する左右円偏光の位相差をリング干渉計で測定するシステムにおいて、リング光路の一部に偏光制御装置を使用し、試料に両側から入射される信号光の偏光状態を一定周期で少なくとも1組の互いに直交する偏光になるように偏光状態を制御する方法を採用し、試料を挟む対向光学系に用いる偏波面保存光ファイバ(以下、PMFという)とビーム径を制御するレンズの位置関係を最適化し、試料内のビームウエストを30μmと50μmの間になるようにすることなどで課題を解決した。
以下、本発明の形態例及び発明例を具体的に説明する。
A feature of the biological optical rotation characteristic measuring method and the biological optical rotation characteristic measuring device according to the present invention made to solve the problem is that a specimen such as a living body (hereinafter referred to as a sample) is placed in an optical fiber ring interferometer. In a system that measures the phase difference of left and right circularly polarized light transmitted through a sample with a ring interferometer, a polarization controller is used in a part of the ring optical path, and the polarization state of the signal light incident on the sample from both sides is constant. Employs a method of controlling the polarization state so that at least one pair of orthogonally polarized lights is obtained, and a polarization plane preserving optical fiber (hereinafter referred to as PMF) used for the opposed optical system sandwiching the sample and the position of the lens for controlling the beam diameter The problem was solved by optimizing the relationship and setting the beam waist in the sample to be between 30 μm and 50 μm.
Hereinafter, embodiments and invention examples of the present invention will be described in detail.

課題を解決するためになされた本発明の実施の形態例としての第1の発明(以下、発明1という)は、PMFを用いた光ファイバリング干渉計のリング光路の中に旋光特性を測定したい生体や血液や糖質溶液などの検体(以下、試料という)を配置し、光源から発せられた光をリング光路に導き,試料を挟んで対向する前記PMFの端面から前記試料に向けて出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムを用い、前記試料の両方向から少なくとも1組の互いに直交する偏光を試料に入射させ、リング光路を伝搬する両回り光の複数の位相差を測定して前記試料の旋光特性を測定することを特徴とする旋光特性測定装置の発明である。   The first invention (hereinafter referred to as invention 1) as an embodiment of the present invention made to solve the problem is to measure the optical rotation characteristic in the ring optical path of the optical fiber ring interferometer using the PMF. A specimen (hereinafter referred to as a sample) such as a living body, blood, or a saccharide solution is arranged, the light emitted from the light source is guided to the ring optical path, and is emitted toward the sample from the end face of the PMF facing the sample. An optical system that converts light into collimated light or condensed light directly or with a lens and makes it incident on the sample perpendicularly or at an angle is used, and at least one pair of orthogonally polarized light is incident on the sample from both directions of the sample. An optical rotation characteristic measuring device according to the present invention is characterized in that the optical rotation characteristic of the sample is measured by measuring a plurality of phase differences of bi-directional light propagating in the ring optical path.

発明1を展開してなされた本発明の実施の形態例としての第2の発明(以下、発明2という)は、発明1に記載の旋光特性測定装置において、前記PMFからの出射光をレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、前記PMFの端面をレンズの焦点位置から離す方向に設定し、レンズ間距離を前記試料を把持するツールが挿入できる距離とし、前記試料を伝搬する信号光のビームウエスト直径(以下、BWともいう)が30μmと50μmの間になるように設計したことを特徴とする旋光特性測定装置の発明である。   A second invention (hereinafter referred to as invention 2) as an embodiment of the invention developed by developing invention 1 is an optical rotation characteristic measuring apparatus according to invention 1, in which the emitted light from the PMF is a lens. In an optical system that converts the light into condensed light and makes it incident on the sample perpendicularly or at an angle, the end face of the PMF is set in a direction away from the focal position of the lens, and the distance between the lenses is inserted by a tool for gripping the sample It is an invention of an optical rotation characteristic measuring apparatus characterized in that the beam waist diameter (hereinafter also referred to as BW) of the signal light propagating through the sample is designed to be between 30 μm and 50 μm.

発明1または2を展開してなされた本発明の実施の形態例としての第3の発明(以下、発明3という)は、発明1または2に記載の旋光特性測定装置において、前記PMFの端部がコア拡大(以下、TECともいう)加工されており、前記TEC加工した端部が前記PMFの光路形成部分の主要部分と同一仕様のPMFをTEC加工したものから成ることを特徴とする旋光特性測定装置の発明である。   A third invention (hereinafter referred to as invention 3) as an embodiment of the present invention developed by developing invention 1 or 2 is an optical rotation characteristic measuring apparatus according to invention 1 or 2, wherein the end portion of the PMF The optical rotation characteristic is characterized in that the core is expanded (hereinafter also referred to as TEC), and the TEC-processed end portion is formed by TEC processing of PMF having the same specifications as the main part of the optical path forming portion of the PMF. It is an invention of a measuring device.

課題を解決するためになされた本発明の実施の形態例としての第4の発明(以下、発明4という)は、PMFを用いたリング光路の中に試料を配置し、光源から発せられた光をリング光路に導き,前記試料の両方向から前記試料に向けて前記PMFから出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムを用いて、前記試料の両方向から入射する光を前記試料の両側に配置した偏光をコントロールする装置または光デバイス(以下、偏光制御装置と総称する)を制御して所定の周期で少なくとも1組の互いに直交する偏光となるようにして前記リング光路を両方向に伝搬する光の位相差を測定することを特徴とする旋光特性測定装置の発明である。   In a fourth invention (hereinafter referred to as invention 4) as an embodiment of the present invention made to solve the problem, a sample is placed in a ring optical path using PMF, and light emitted from a light source is emitted. System that guides light to the ring optical path, and converts the light emitted from the PMF from both directions of the sample toward the sample into collimated light or condensed light directly or with a lens, and enters the sample vertically or at an angle Is used to control a polarization control device or an optical device (hereinafter collectively referred to as a polarization control device) in which light incident from both directions of the sample is arranged on both sides of the sample, and at least one set in a predetermined cycle It is an invention of an optical rotation characteristic measuring apparatus characterized by measuring a phase difference of light propagating in both directions on the ring optical path so as to be polarized perpendicular to each other.

発明4を展開してなされた本発明の実施の形態例としての第5の発明(以下、発明5という)は、発明4に記載の旋光特性測定装置において、前記試料の両方向から前記試料に光を入射させる前記PMFの先端部がTEC加工された端面から成ることを特徴とする旋光特性測定装置の発明である。   A fifth invention (hereinafter referred to as invention 5) as an embodiment of the present invention developed by developing invention 4 is an optical rotation characteristic measuring apparatus according to invention 4, in which light is applied to the sample from both directions of the sample. An optical rotation characteristic measuring device according to the present invention is characterized in that the tip portion of the PMF to which the light enters is composed of a TEC-processed end surface.

発明5を展開してなされた本発明の実施の形態例としての第6の発明(以下、発明6という)は、発明5に記載の旋光特性測定装置において、前記PMFのTEC加工した端面近傍が前記PMFの主要光路形成部分と同一仕様のPMFをTEC加工したものから成ることを特徴とする旋光特性測定装置の発明である。   The sixth invention (hereinafter referred to as invention 6) as an embodiment of the present invention developed by developing invention 5 is the optical rotation characteristic measuring device according to invention 5, in which the vicinity of the end surface of the PMF subjected to TEC processing is It is an invention of an optical rotation characteristic measuring device comprising a TEC processed PMF having the same specifications as the main optical path forming portion of the PMF.

発明4〜6を展開してなされた本発明の実施の形態例としての第7の発明(以下、発明7という)は、発明4〜6のいずれか1項に記載の偏光制御装置を含む旋光特性測定装置において、前記旋光特性測定装置の主要部分は、前記試料と前記試料を挟んで対向する偏光制御装置を含む光学系とでリング光干渉系のリング光路の一部を構成しており、前記リング光路を両方向に伝搬する光の位相差を測定することによって前記試料の旋光特性を測定することができることを特徴とする旋光特性測定装置の発明である。   A seventh invention (hereinafter referred to as invention 7) as an embodiment of the present invention developed by developing inventions 4 to 6 is an optical rotation including the polarization control device according to any one of inventions 4 to 6. In the characteristic measurement apparatus, the main part of the optical rotation characteristic measurement apparatus constitutes a part of the ring optical path of the ring light interference system with the sample and an optical system including a polarization controller facing the sample with the sample interposed therebetween, It is an invention of an optical rotation characteristic measuring apparatus characterized in that the optical rotation characteristic of the sample can be measured by measuring the phase difference of light propagating in both directions along the ring optical path.

発明7を展開してなされた本発明の実施の形態例としての第8の発明(以下、発明8という)は、発明7に記載の旋光特性測定装置において、リング光干渉計のリング光路の光ファイバ部分は右回り信号光としての直線偏光と左回り信号光としての直線偏光が同一の固有偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬し、前記試料部分には右回り信号光と左回り信号光を互いに直交する偏光状態で入射させそれぞれ右回り信号光と左回り信号光として伝搬させるように前記試料の両側にファラデー回転素子を含む非相反偏光変換光学系を有していることを特徴とする旋光特性測定装置の発明である。   The eighth invention (hereinafter referred to as invention 8) as an embodiment of the present invention developed by developing invention 7 is the optical rotation characteristic measuring apparatus according to invention 7, wherein the light in the ring optical path of the ring optical interferometer is used. The fiber part propagates as the right-handed signal light and the left-handed signal light through the same optical fiber in the same polarization mode with the linearly polarized light as the clockwise signal light and the linearly polarized light as the left-handed signal light, respectively. A nonreciprocal polarization conversion optical system including Faraday rotation elements on both sides of the sample so that the clockwise signal light and the counterclockwise signal light are incident in polarization states orthogonal to each other and propagated as the clockwise signal light and the counterclockwise signal light, respectively. It is an invention of an optical rotation characteristic measuring device characterized by having.

発明4〜8を展開してなされた本発明の実施の形態例としての第9の発明(以下、発明9という)は、発明4〜8のいずれか1項に記載の旋光特性測定装置において、前記偏光制御装置が液晶に電圧を印加して偏光を制御する光デバイスであることを特徴とする偏光制御装置を含むことを特徴とする旋光特性測定装置の発明である。   The ninth invention (hereinafter referred to as invention 9) as an embodiment of the present invention developed by developing inventions 4-8 is the optical rotation characteristic measuring device according to any one of inventions 4-8, The present invention is an optical rotation characteristic measuring device invention including a polarization control device characterized in that the polarization control device is an optical device that controls polarization by applying a voltage to a liquid crystal.

発明4〜9を展開してなされた本発明の実施の形態例としての第10の発明(以下、発明10という)は、発明4〜9のいずれか1項に記載の旋光特性測定装置において、前記偏光制御装置が試料の両側に配置された偏光子と回転または着脱機能を有する2分の1波長板からなる偏光制御装置を含むことを特徴とする旋光度測定装置の発明である。   The tenth invention (hereinafter referred to as invention 10) as an embodiment of the present invention developed by developing inventions 4 to 9 is the optical rotation characteristic measuring device according to any one of inventions 4 to 9, The polarization control device includes a polarization control device including a polarizer disposed on both sides of a sample and a half-wave plate having a rotation or attachment / detachment function.

発明4〜10を展開してなされた本発明の実施の形態例としての第11の発明(以下、発明11という)は、発明4〜10のいずれか1項に記載の旋光特性測定装置において、前記旋光特性測定装置は、光源から発せられた信号光としてのレーザ光を第1の光カプラまたは光サーキュレータと偏光子を介して第2の光カプラに導き、前記第2の光カプラにより、主としてPMFから成るリング光路の途中に前記偏光制御装置を含む対向光学系を接続して構成したリング光路を両方向に伝搬する信号光として分岐し、前記リング光路の第2の光カプラの近傍に光位相変調器を設け、前記リング光路を両方向に伝搬する信号光を前記第2の光カプラ、前記偏光子、前記第1の光カプラまたは光サーキュレータを介して受光器および/または信号処理回路に導き、前記リング光路を両方向に伝搬する信号光の位相差を前記位相変調信号に同期した信号として抽出し、信号光を前記偏光制御装置を介して前記試料の両側から入射する少なくとも1組の直交する偏光に切り替えた場合の位相差を測定し、前記試料がない場合の少なくとも1組の直交する偏光に切り替えた場合の位相差を基準として前記試料の糖濃度を推定することを特徴とする旋光特性測定装置の発明である。   The eleventh invention (hereinafter referred to as invention 11) as an embodiment of the present invention developed by developing inventions 4 to 10 is the optical rotation characteristic measuring device according to any one of inventions 4 to 10, The optical rotation characteristic measuring apparatus guides laser light as signal light emitted from a light source to a second optical coupler via a first optical coupler or an optical circulator and a polarizer, and mainly by the second optical coupler. A ring optical path configured by connecting an opposing optical system including the polarization control device in the middle of the ring optical path made of PMF is branched as signal light propagating in both directions, and an optical phase is proximate to the second optical coupler in the ring optical path. A modulator is provided, and the signal light propagating in both directions on the ring optical path is received through the second optical coupler, the polarizer, the first optical coupler, or the optical circulator, and the light receiver and / or the signal processing. At least one set that is guided to a circuit, extracts a phase difference of signal light propagating in the ring optical path in both directions as a signal synchronized with the phase modulation signal, and enters the signal light from both sides of the sample via the polarization controller Measuring the phase difference when switched to orthogonal polarization, and estimating the sugar concentration of the sample with reference to the phase difference when switching to at least one set of orthogonal polarization when there is no sample. This is an invention of an optical rotation characteristic measuring device.

発明11を展開してなされた本発明の実施の形態例としての第12の発明(以下、発明12という)は、発明11に記載の旋光特性測定装置において、前記試料が生体の一部であり、血糖値が既知の場合に前記試料に両側から複数組の直交する偏光を入射したときの光干渉計の位相差を予め測定しておき、その位相差を基準として光干渉計の測定位相差から前記試料の旋光度の変化を推定することを特徴とする旋光特性測定装置の発明である。   A twelfth invention (hereinafter referred to as invention 12) as an embodiment of the present invention developed from invention 11 is the optical rotation characteristic measuring device according to invention 11, wherein the sample is a part of a living body. When the blood glucose level is known, the phase difference of the optical interferometer when a plurality of sets of orthogonal polarized light is incident on the sample from both sides is measured in advance, and the phase difference of the optical interferometer is measured based on the phase difference. From the above, it is an invention of an optical rotation characteristic measuring apparatus characterized in that a change in optical rotation of the sample is estimated.

発明4〜12を展開してなされた本発明の実施の形態例としての第13の発明(以下、発明13という)は、発明4〜12のいずれか1項に記載の旋光特性測定装置において、前記対向する各PMFからの出射光をそれぞれ1枚目のレンズで拡大コリメートし2枚目のレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、2枚目のレンズ間距離を前記試料を把持する鉗子状のツールが挿入され得る距離とし、前記試料を伝搬する信号光のBWが30μmと50μmの間になるように設計したことを特徴とする旋光特性測定装置の発明である。   The thirteenth invention (hereinafter referred to as invention 13) as an embodiment of the present invention developed by developing inventions 4 to 12 is the optical rotation characteristic measuring apparatus according to any one of inventions 4 to 12, In the optical system in which the emitted light from each of the opposing PMFs is magnified and collimated by the first lens, converted into the condensed light by the second lens, and incident on the sample perpendicularly or at an angle. The optical rotation characteristic is characterized in that the distance between the lenses of the eye is a distance at which a forceps-like tool for holding the sample can be inserted, and the BW of the signal light propagating through the sample is between 30 μm and 50 μm It is an invention of a measuring device.

発明4〜13を展開してなされた本発明の実施の形態例としての第14の発明(以下、発明14という)は、発明4〜13のいずれか1項に記載の旋光特性測定装置において、前記試料が生体の一部である場合に、生体を誘電体の平板でビームの伝搬方向に対して直角方向から把持することを特徴とする旋光特性測定装置の発明である。   14th invention (henceforth the invention 14) as embodiment of this invention made | formed by developing invention 4-13 WHEREIN: The optical rotation characteristic measuring apparatus of any one of invention 4-13 WHEREIN: When the sample is a part of a living body, the living body is grasped from a direction perpendicular to the beam propagation direction by a dielectric flat plate.

発明14を展開してなされた本発明の実施の形態例としての第15の発明(以下、発明15という)は、発明14に記載の旋光特性測定装置において、前記平板による試料把持部と前記対向するPMFからの出射光学系が機械的に分離されていることを特徴とする旋光特性測定装置である。   A fifteenth invention (hereinafter referred to as invention 15) as an embodiment of the present invention developed by developing the invention 14 is the optical rotation characteristic measuring apparatus according to the invention 14, in which the sample gripping portion by the flat plate and the facing The optical rotation characteristic measuring apparatus is characterized in that an output optical system from the PMF is mechanically separated.

課題を解決するためになされた本発明の実施の形態例としての第16の発明(以下、発明16という)は、PMFからなる光ファイバリング干渉計のリング光路の中に試料を配置し、試料の旋光特性を測定する方法において、前記旋光特性測定方法は、試料を挟んで対向するPMFの端面から前記試料に向けて出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させ、前記試料の両方向から少なくとも1組の互いに直交する偏光を試料に入射させ、リング光路を伝搬する両回り光の複数の位相差を測定して前記試料の旋光特性を測定する工程を有していることを特徴とする旋光特性測定方法の発明である。   A sixteenth invention (hereinafter referred to as invention 16) as an embodiment of the present invention made to solve the problem is a sample arranged in a ring optical path of an optical fiber ring interferometer made of PMF. In the method for measuring the optical rotatory characteristics, the optical rotatory characteristics measuring method converts the light emitted from the end faces of the PMF facing each other with the sample into the sample directly or with a lens into collimated light or condensed light. The sample is made incident perpendicularly or at an angle, and at least one set of orthogonally polarized lights from both directions of the sample is made incident on the sample, and a plurality of phase differences of both-direction light propagating in the ring optical path are measured to measure the phase difference of the sample. It is an invention of a method for measuring optical rotation characteristics, comprising a step of measuring optical rotation characteristics.

発明16を展開してなされた本発明の実施の形態例としての第17の発明(以下、発明17という)は、発明16に記載の旋光特性測定方法において、前記PMFからの出射光をレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、前記PMFの端面をレンズの焦点位置から離す方向に設定し、レンズ間距離を前記試料を把持するツールが挿入できる距離とし、前記試料を伝搬する信号光のBWが30μmと50μmの間になるようにする工程を有していることを特徴とする旋光特性測定方法の発明である。   The seventeenth invention (hereinafter referred to as invention 17) as an embodiment of the present invention developed by developing the invention 16 is the optical rotation characteristic measuring method according to the invention 16, wherein the light emitted from the PMF is converted into a lens. In an optical system that converts the light into condensed light and makes it incident on the sample perpendicularly or at an angle, the end face of the PMF is set in a direction away from the focal position of the lens, and the distance between the lenses is inserted by a tool for gripping the sample It is an invention of a method for measuring optical rotatory characteristics, characterized by comprising a step of setting the distance of the signal light so that the BW of the signal light propagating through the sample is between 30 μm and 50 μm.

課題を解決するためになされた本発明の実施の形態例としての第18の発明(以下、発明18という)は、PMFを用いたリング光路の中に試料を配置し、光源から発せられた光をリング光路に導き,前記試料の両方向から前記試料に向けて前記PMFから出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させる旋光特性測定方法において、前記光の光路上で、前記試料の両方向から入射する光を前記試料の両側に配置した偏光制御装置を制御して、前記偏光を所定の周期で少なくとも1組の互いに直交する偏光となるようにして、前記リング光路を両方向に伝搬する光の位相差を測定することを特徴とする偏光制御装置を含む工程を有することを特徴とする旋光特性測定方法の発明である。   An eighteenth invention (hereinafter referred to as invention 18) as an embodiment of the present invention made to solve the problem is a light emitted from a light source by arranging a sample in a ring optical path using PMF. Optical rotation characteristics in which the light emitted from the PMF from both directions of the sample toward the sample is converted into collimated light or condensed light directly or with a lens, and is incident on the sample perpendicularly or at an angle In the measurement method, on the optical path of the light, the polarization control device in which light incident from both directions of the sample is arranged on both sides of the sample is controlled, and the polarized light is at least one set of orthogonally polarized light with a predetermined period. An optical rotation characteristic measuring method comprising a step of including a polarization controller characterized by measuring a phase difference of light propagating in both directions on the ring optical path. It is bright.

発明18を展開してなされた本発明の実施の形態例としての第19の発明(以下、発明19という)は、発明18に記載の旋光特性測定方法において、前記PMFからの出射光をレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、前記PMFの端面をレンズの焦点位置から離す方向に設定し、レンズ間距離を前記試料を把持するツールが挿入できる距離とし、前記試料を伝搬する信号光のBWが30μmと50μmの間になるようにする工程を有していることを特徴とする旋光特性測定方法の発明である。   A nineteenth invention (hereinafter referred to as invention 19) as an embodiment of the present invention developed by developing the invention 18 is the optical rotation characteristic measuring method according to the invention 18, in which the emitted light from the PMF is transmitted through a lens. In an optical system that converts the light into condensed light and makes it incident on the sample perpendicularly or at an angle, the end face of the PMF is set in a direction away from the focal position of the lens, and the distance between the lenses is inserted by a tool for gripping the sample It is an invention of a method for measuring optical rotatory characteristics, characterized by comprising a step of setting the distance of the signal light so that the BW of the signal light propagating through the sample is between 30 μm and 50 μm.

発明18または19を展開してなされた本発明の実施の形態例としての第20の発明(以下、発明20という)は、発明18または19に記載の旋光特性測定方法において、前記PMFの端部がTEC加工された光ファイバを用いる工程を有することを特徴とする旋光特性測定方法の発明である。   A twentieth invention (hereinafter referred to as invention 20) as an embodiment of the present invention developed by developing the invention 18 or 19 is the optical rotation characteristic measuring method according to the invention 18 or 19, wherein the end portion of the PMF Is an invention of an optical rotation characteristic measuring method characterized by comprising a step of using a TEC-processed optical fiber.

発明18〜20を展開してなされた本発明の実施の形態例としての第21の発明(以下、発明21という)は、発明18〜20のいずれか1項に記載の旋光特性測定方法において、リング光干渉計のリング光路の光ファイバ部分は右回り信号光としての直線偏光と左回り信号光としての直線偏光が同一の固有偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬し、前記試料部分には互いに直交する偏光状態で入射させそれぞれ右回り信号光と左回り信号光として伝搬させるように前記試料の両側にファラデー回転素子を含む非相反偏光変換光学系を用いる工程を有していることを特徴とする偏光制御装置を含む旋光特性測定方法の発明である。   The twenty-first invention (hereinafter referred to as invention 21) as an embodiment of the present invention developed by developing the inventions 18 to 20 is the optical rotation characteristic measuring method according to any one of the inventions 18 to 20, The optical fiber part of the ring optical path of the ring optical interferometer is a right-handed signal light and a left-handed signal light through the same optical fiber in the same polarization mode where the linearly polarized light as the clockwise signal light and the linearly polarized light as the counterclockwise signal light are the same. A non-reciprocal polarization conversion optical system including Faraday rotation elements on both sides of the sample so that the sample part is incident on the sample part in a polarization state orthogonal to each other and propagates as a clockwise signal light and a counterclockwise signal light, respectively. It is invention of the optical rotation characteristic measuring method containing the polarization control apparatus characterized by having a process.

発明18〜21を展開してなされた本発明の実施の形態例としての第22の発明(以下、発明22という)は、発明18〜21のいずれか1項に記載の旋光特性測定方法において、液晶に電圧を印加して偏光を制御する光デバイスを含む偏光制御装置を用いる工程を有することを特徴とする旋光特性測定方法の発明である。   The twenty-second invention (hereinafter referred to as invention 22) as an embodiment of the present invention developed by developing inventions 18 to 21 is the optical rotation characteristic measuring method according to any one of inventions 18 to 21, It is an invention of a method for measuring optical rotation characteristics, comprising a step of using a polarization control device including an optical device that controls the polarization by applying a voltage to a liquid crystal.

発明22を展開してなされた本発明の実施の形態例としての第23の発明(以下、発明23という)は、発明22に記載の旋光特性測定方法において、試料の両側に配置された偏光子と回転または着脱機能を有する2分の1波長板からなる偏光制御装置を用いる工程を有することを特徴とする旋光度測定方法の発明である。   A twenty-third invention (hereinafter referred to as invention 23) as an embodiment of the present invention developed by developing invention 22 is a polarizer disposed on both sides of a sample in the optical rotation characteristic measuring method according to invention 22. And a step of using a polarization control device comprising a half-wave plate having a rotation or detachment function.

発明18〜23を展開してなされた本発明の実施の形態例としての第24の発明(以下、発明24という)は、発明18〜23のいずれか1項に記載の旋光特性測定方法において、前記旋光特性測定方法は、光源から発せられた信号光としてのレーザ光を第1の光カプラまたは光サーキュレータと偏光子を介して第2の光カプラに導き、前記第2の光カプラにより、主としてPMFから成るリング光路の途中に前記偏光制御装置を含む対向光学系を接続して構成したリング光路を両方向に伝搬する信号光として分岐し、前記リング光路の第2の光カプラの近傍に光位相変調器を設け、前記リング光路を両方向に伝搬する前記信号光を前記第2光のカプラ、前記偏光子、前記第1の光カプラまたは光サーキュレータを介して受光器および/または信号処理回路に導き、前記リング光路を両方向に伝搬する信号光の位相差を前記位相変調信号に同期した信号として抽出し、信号光を前記偏光制御装置を介して前記試料の両側から入射する少なくとも1組の直交する偏光に切り替えた場合の位相差を測定し、前記試料がない場合の少なくとも1組の直交する偏光に切り替えた場合の位相差を基準として前記試料の糖濃度を推定する工程を有することを特徴とする旋光特性測定方法の発明である。   The twenty-fourth invention (hereinafter referred to as invention 24) as an embodiment of the present invention developed by developing inventions 18-23 is the optical rotation characteristic measuring method according to any one of inventions 18-23, In the optical rotation characteristic measuring method, laser light as signal light emitted from a light source is guided to a second optical coupler via a first optical coupler or an optical circulator and a polarizer, and mainly by the second optical coupler. A ring optical path configured by connecting an opposing optical system including the polarization control device in the middle of the ring optical path made of PMF is branched as signal light propagating in both directions, and an optical phase is proximate to the second optical coupler in the ring optical path. A modulator is provided, and the signal light propagating in both directions on the ring optical path is received through the second light coupler, the polarizer, the first optical coupler or the optical circulator, and / or a light receiver. A signal processing circuit, extracting the phase difference of the signal light propagating in the ring optical path in both directions as a signal synchronized with the phase modulation signal, and entering the signal light from both sides of the sample via the polarization controller; Measuring a phase difference when switching to a pair of orthogonal polarizations, and estimating a sugar concentration of the sample with reference to a phase difference when switching to at least one set of orthogonal polarizations when there is no sample It is invention of the optical rotation characteristic measuring method characterized by having.

発明24を展開してなされた本発明の実施の形態例としての第25の発明(以下、発明25という)は、発明24に記載の旋光特性測定方法において、前記試料が生体の一部であり、血糖値が既知の場合に前記試料に両側から複数組の直交する偏光を入射したときの光干渉計の位相差を予め測定しておき、その位相差を基準として光干渉計の測定位相差から前記試料の旋光度の変化を推定する工程を有することを特徴とする旋光特性測定方法の発明である。   A twenty-fifth invention (hereinafter referred to as invention 25) as an embodiment of the present invention developed by developing the invention 24 is the optical rotation characteristic measuring method according to the invention 24, wherein the sample is a part of a living body. When the blood glucose level is known, the phase difference of the optical interferometer when a plurality of sets of orthogonal polarized light is incident on the sample from both sides is measured in advance, and the phase difference of the optical interferometer is measured based on the phase difference. The method of measuring the optical rotation characteristic, comprising the step of estimating the change in optical rotation of the sample from the above.

発明18〜25を展開してなされた本発明の実施の形態例としての第26の発明(以下、発明26という)は、発明18〜25のいずれか1項に記載の旋光特性測定方法において、前記対向する各PMFからの出射光をそれぞれ1枚目のレンズで拡大コリメートし2枚目のレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、2枚目のレンズ間距離を前記試料を把持する鉗子状のツールが挿入され得る距離とし、前記試料を伝搬する信号光のBWが30μmと50μmの間になるように設計する工程を有することを特徴とする旋光特性測定方法の発明である。   The twenty-sixth invention (hereinafter referred to as invention 26) as an embodiment of the present invention developed by developing the inventions 18 to 25 is the optical rotation characteristic measuring method according to any one of the inventions 18 to 25, In the optical system in which the emitted light from each of the opposing PMFs is magnified and collimated by the first lens, converted into the condensed light by the second lens, and incident on the sample perpendicularly or at an angle. And a step of designing the distance between the lenses of the eye so that a forceps-like tool for gripping the sample can be inserted and the BW of the signal light propagating through the sample is between 30 μm and 50 μm. It is invention of the optical rotation characteristic measuring method to do.

発明18〜26を展開してなされた本発明の実施の形態例としての第27の発明(発明27という)は、発明18〜26のいずれか1項に記載の旋光特性測定方法において、前記試料が生体の一部である場合に、生体を誘電体の平板でビームの伝搬方向に対して直角方向から把持する工程を有することを特徴とする旋光特性測定方法の発明である。   A twenty-seventh invention (referred to as invention 27) as an embodiment of the present invention developed by developing inventions 18 through 26 is the optical rotation characteristic measuring method according to any one of inventions 18 through 26, wherein the sample Is a part of a living body, the invention comprises a method of measuring an optical rotation characteristic, comprising the step of grasping a living body from a direction perpendicular to the beam propagation direction with a dielectric flat plate.

本発明の生体の旋光特性測定方法及び生体の旋光特性測定装置は、採血しないで血糖値に関係した生体のグルコース濃度を測定できるので、第1に、針による採血に伴う煩わしさや苦痛がないこと、第2に、採血針の廃棄処理が不要で衛生的であること、第3に、採血の時に使用していたグルコースと反応する試薬が不要なので、年間10万円以上のランニングコストが不要になり、経済的であること、第4に、簡単に測定でき,かつ、血糖値モニターが1日何回でも可能で、糖尿病患者、その予備軍、健常者の健康管理などに使えるなど、大きな効果を発揮するものである。そして、本発明の生体の旋光特性測定装置及び生体の旋光特性測定方法が一般家庭で使用されれば、現在世界的に増加している糖尿病患者数を減らすことができ、その治療に必要な費用を大幅に低減できる。   Since the living body optical rotation characteristic measuring method and the living body optical rotation characteristic measuring apparatus of the present invention can measure the biological glucose concentration related to the blood glucose level without blood collection, first, there is no trouble and pain associated with blood collection with a needle. Secondly, the disposal of the blood collection needle is unnecessary and hygienic, and thirdly, the reagent that reacts with glucose used at the time of blood collection is unnecessary, so that the running cost of 100,000 yen or more per year is unnecessary. Fourth, it can be easily measured, and blood glucose level can be monitored any number of times a day. It can be used for the health management of diabetics, their reserves, and healthy people. To demonstrate. If the biological optical rotation characteristic measuring apparatus and biological optical rotation characteristic measurement method of the present invention are used in general households, the number of diabetic patients that are increasing worldwide can be reduced, and the cost required for the treatment is reduced. Can be greatly reduced.

本発明の実施の形態例としての生体の旋光特性測定装置の基本構成図である。1 is a basic configuration diagram of an optical rotation characteristic measuring device for a living body as an embodiment of the present invention. FIG. 本発明の実施例としての非相反偏光変換光学系の詳細構成図である。It is a detailed block diagram of the nonreciprocal polarization conversion optical system as an Example of this invention. 本発明の実施例としての非相反偏光変換光学系の他の詳細構成図である。It is another detailed block diagram of the nonreciprocal polarization conversion optical system as an Example of this invention. 生体の偏光伝搬状況の概念図である。It is a conceptual diagram of the polarization | polarized-light propagation condition of a biological body. 偏光制御装置と空間光学系を用いた生体の旋光特性測定装置の基本構成図である。1 is a basic configuration diagram of a biological optical rotation characteristic measuring device using a polarization control device and a spatial optical system. FIG. 光ファイバ型偏光制御装置を用いた生体の旋光特性測定装置の基本構成図である。It is a basic block diagram of the biological optical rotation characteristic measuring apparatus using an optical fiber type polarization control apparatus. 光ファイバ型旋光特性測定装置を用いた生体の反射型旋光特性測定装置の構成図である。It is a block diagram of a living body reflection type optical rotation characteristic measuring apparatus using an optical fiber type optical rotation characteristic measurement apparatus.

以下、図面を参照して本発明の実施の形態の例について説明する。なお、説明に用いる各図は本発明の実施の形態例を理解できる程度に各構成成分の寸法、形状、配置関係などを概略的に示してある。そして本発明の説明の都合上、部分的に拡大率を変えて図示する場合もあり、本発明の実施の形態例の説明に用いる図は、必ずしも実施例などの実物や記述と相似形でない場合もある。また、各図において、同様な構成成分については同一の番号を付けて示し、重複する説明を省略することもある。また、本発明の説明では、旋光物質の旋光特性測定装置の説明で旋光特性測定方法の説明を兼ねる場合があり、その逆のこともある。   Examples of embodiments of the present invention will be described below with reference to the drawings. The drawings used for the description schematically show the dimensions, shapes, arrangement relationships, and the like of the constituent components to such an extent that the embodiments of the present invention can be understood. For convenience of explanation of the present invention, there may be cases where the enlargement ratio is partially changed, and the drawings used to describe the embodiments of the present invention are not necessarily similar to the actual objects and descriptions of the embodiments. There is also. Moreover, in each figure, about the same component, it attaches and shows the same number, The overlapping description may be abbreviate | omitted. Further, in the description of the present invention, the description of the optical rotation characteristic measuring device for the optical rotatory substance may also serve as the description of the optical rotation characteristic measuring method, and vice versa.

図1は本発明の実施の形態例としての生体等の旋光特性測定装置の基本構成図である。SLDなどのブロードバンド光源1から出射されたレーザ光は、第1の光ファイバ方向性結合器、すなわち2x2光カプラ2−1を介し、光ファイバ型偏光子3を伝搬し、第2の2x2光カプラ2−2によってリング光路を光ファイバ4−1の方向から光ファイバ4−2の方向への時計方向に伝搬する光(右回り光ともいう)と光ファイバ4−2の方向から光ファイバ4−1の方向への反時計方向に伝搬する光(左回り光ともいう)に分岐される。ここで、光源の波長は1300nm帯である。光ファイバは1300nm帯用PMFで、光カプラは全て1300nm帯用PMFから構成される。なお第1の方向性結合器2−1は光サーキュレータに置き換えてもよい。ただし、光サーキュレータを用いる場合、アイソレーションの優れた2ステージ型を用いることが好ましい。   FIG. 1 is a basic configuration diagram of an optical rotation characteristic measuring apparatus such as a living body as an embodiment of the present invention. Laser light emitted from a broadband light source 1 such as an SLD propagates through an optical fiber type polarizer 3 via a first optical fiber directional coupler, that is, a 2 × 2 optical coupler 2-1, and a second 2 × 2 optical coupler. Light that propagates in the clockwise direction from the direction of the optical fiber 4-1 to the direction of the optical fiber 4-2 (also referred to as clockwise light) and the direction of the optical fiber 4-2 from the direction of the optical fiber 4-2 by the optical fiber 4-2. It is branched into light propagating counterclockwise in the direction of 1 (also referred to as counterclockwise light). Here, the wavelength of the light source is in the 1300 nm band. The optical fiber is a 1300 nm band PMF, and the optical couplers are all composed of a 1300 nm band PMF. The first directional coupler 2-1 may be replaced with an optical circulator. However, when using an optical circulator, it is preferable to use a two-stage type with excellent isolation.

前記時計方向に伝搬する光は、長さ400mのPMF4−1を伝搬しレンズ光学系7−1、偏光子6−1、偏光変換光学系8−1、サファイヤの円板からなる押さえ板9−1を介して、試料10に入射される。同様に、前記反時計方向に伝搬する光は、PMF4−2の光カプラ近傍に置かれた光位相変調器11の変調を受け、PMF4−2、レンズ光学系7−2、偏光子6−2、偏光変換光学系8−2、試料を押さえるサファイヤの円板からなる押さえ板9−2を介し、試料10に入射される。ここで試料抑え板9−1,9−2は表面がARコートされている厚さ0.2〜0.3mmのサファイヤ板あるいはサファイヤの代わりのガラス板から構成されている。   The light propagating in the clockwise direction propagates through a PMF 4-1 having a length of 400 m, and a holding plate 9-made up of a lens optical system 7-1, a polarizer 6-1, a polarization conversion optical system 8-1, and a sapphire disk. 1 is incident on the sample 10. Similarly, the light propagating in the counterclockwise direction is modulated by the optical phase modulator 11 placed in the vicinity of the optical coupler of the PMF 4-2, and the PMF 4-2, the lens optical system 7-2, and the polarizer 6-2. Then, the light is incident on the sample 10 through the polarization conversion optical system 8-2 and a pressing plate 9-2 made of a sapphire disk for pressing the sample. Here, the sample holding plates 9-1 and 9-2 are formed of a sapphire plate having a thickness of 0.2 to 0.3 mm whose surface is AR-coated or a glass plate instead of sapphire.

偏光変換光学系8−1,8−2は直線偏光からそれぞれ左右円偏光を生成する光学系で、それぞれ図2、図3にその構成が示される。すなわち、偏光変換光学系8−1,8−2は、45度ファラデー回転素子17−1,17−2と4分の1波長板18−1,18−2から構成され、直線偏光が入射された場合に、左右の円偏光を生成する機能を有する。図中、符号16−1,16−2は信号光としての伝搬光を示す。   The polarization conversion optical systems 8-1 and 8-2 are optical systems that generate left and right circularly polarized light from linearly polarized light, respectively, and their configurations are shown in FIGS. 2 and 3, respectively. That is, the polarization conversion optical systems 8-1 and 8-2 are composed of 45-degree Faraday rotators 17-1 and 17-2 and quarter-wave plates 18-1 and 18-2, and linearly polarized light is incident thereon. In this case, it has a function of generating left and right circularly polarized light. In the figure, reference numerals 16-1 and 16-2 denote propagation light as signal light.

このようにリング光路を前記時計方向と反時計方向の両方向に伝搬した信号光は、両方向に伝搬した後、第2の光カプラ2−2、偏光子3、第1の光カプラ2−1を伝搬して、第1の光カプラ2−1から受光器12へ伝搬し、受光器12によって電気信号に変換され、信号処理回路13に入力される。位相変調器11には20KHzの位相変調信号として正弦波信号14が信号処理回路13から送られている。信号処理回路13では、リング光路を左右両方向に伝搬する光の位相差をθとすると、20KHz成分がsinθに、40KHz成分がcosθに比例した成分として検出される。これらの比をとってアークtanθを信号処理装置13に含まれるマイクロコンピュータで演算して求める。詳細は非特許文献2に記載されている。   Thus, the signal light propagated in both the clockwise and counterclockwise directions on the ring optical path propagates in both directions, and then passes through the second optical coupler 2-2, the polarizer 3, and the first optical coupler 2-1. Propagated, propagated from the first optical coupler 2-1 to the light receiver 12, converted into an electrical signal by the light receiver 12, and input to the signal processing circuit 13. A sine wave signal 14 is sent from the signal processing circuit 13 to the phase modulator 11 as a phase modulation signal of 20 KHz. In the signal processing circuit 13, when the phase difference of light propagating in the left and right directions on the ring optical path is θ, the 20 KHz component is detected as sin θ and the 40 KHz component is detected as a component proportional to cos θ. Taking these ratios, the arc tan θ is calculated by a microcomputer included in the signal processing device 13. Details are described in Non-Patent Document 2.

ここでは実施の形態例として実際に実施した図1の構成で試料の旋光特性を測定する原理および実験結果を説明する。実験に使用した生体の部位は親指と人指し指の付け根であり生体厚さはおよそ1.0mmである。   Here, the principle and experimental results for measuring the optical rotation characteristics of a sample with the configuration of FIG. 1 actually implemented as an embodiment will be described. The part of the living body used in the experiment is the base of the thumb and the index finger, and the thickness of the living body is about 1.0 mm.

上記の実験で、生体が指の付け根で生体厚が1mmの場合に受光器12に戻ってくる光パワーを求めたところー27dBm(2μW)であった。SLD1の出力は+13dBmで、リング干渉計の損失が5dB、生体の光透過損失が35dBであるので、これは妥当な値である。   In the above experiment, when the living body was the base of the finger and the thickness of the living body was 1 mm, the optical power returned to the light receiver 12 was found to be −27 dBm (2 μW). Since the output of SLD1 is +13 dBm, the loss of the ring interferometer is 5 dB, and the light transmission loss of the living body is 35 dB, this is a reasonable value.

次に、使用している1300nm帯のリング光干渉計の位相測定感度が0.0001度以下であることを確認した。これは、リングに使用しているファイバコイルを裏表に反転させ地球の自転角速度の2倍を計測することで確認した。   Next, it was confirmed that the phase measurement sensitivity of the 1300 nm ring optical interferometer used is 0.0001 degrees or less. This was confirmed by reversing the fiber coil used in the ring upside down and measuring twice the rotational angular velocity of the earth.

図1ではレンズ系のワーキング距離を20mmとした。生体の厚さはマイクロメータ付きの押さえ板で測定した。このような状態でリング干渉計の出力をモニターしつつグルコースを摂取するいわゆるグルコース負荷試験を行った。グルコース50gを純水100gに溶かした糖液を摂取し従来の血糖値計で測定した血糖値が40分後に100mg/dl増加した。発明者は40分間旋光計の出力をモニターした。   In FIG. 1, the working distance of the lens system is 20 mm. The thickness of the living body was measured with a holding plate with a micrometer. In this state, a so-called glucose tolerance test was performed in which glucose was ingested while monitoring the output of the ring interferometer. A sugar solution in which 50 g of glucose was dissolved in 100 g of pure water was ingested, and the blood glucose level measured with a conventional blood glucose meter increased by 100 mg / dl after 40 minutes. The inventor monitored the output of the polarimeter for 40 minutes.

本来ならおよそ0.0002度の位相変化があるはずであるが、実際の測定値は0.001度以上の変動があり正しく測定できなかった。通常は濃度が100mg/dLのグルコースでセル長が1mmの場合の位相変化は0.0005度である。ここでは偏光保存距離を0.4mmと仮定すると位相変化は0.0002度となると考えた。   Originally, there should have been a phase change of approximately 0.0002 degrees, but the actual measured values varied by 0.001 degrees or more and could not be measured correctly. Usually, the phase change is 0.0005 degrees when the glucose is 100 mg / dL and the cell length is 1 mm. Here, assuming that the polarization preserving distance is 0.4 mm, the phase change is considered to be 0.0002 degrees.

なお、一般に、旋光物質に直線偏光を入射するときに偏光面の単位長あたりの旋光角がΦである場合、その試料に左右の円偏光を入射した場合の伝搬光の左右円偏光の位相差が2Φとなることは偏光光学で公知である。しかし、リング干渉計のループの中に試料を置いて両方向に左右円偏光を伝搬させると、リング干渉計で測定される位相差は2ΦではなくΦとなることが簡単な計算で導かれる。ここでは生体の厚さ(試料長)が1mmの場合に、グルコースの比旋光度として+52度を適用すると、グルコース濃度が100mg/dl変化すると対応する旋光角の変化は約0.0005度となる。   In general, when linearly polarized light is incident on an optical rotatory material and the optical rotation angle per unit length of the polarization plane is Φ, the phase difference between the left and right circularly polarized light of the propagating light when the left and right circularly polarized light is incident on the sample Is known to be polarization optics. However, when a sample is placed in a loop of a ring interferometer and left and right circularly polarized light is propagated in both directions, the phase difference measured by the ring interferometer becomes Φ instead of 2Φ. Here, when the thickness of the living body (sample length) is 1 mm and +52 degrees is applied as the specific rotation of glucose, when the glucose concentration changes by 100 mg / dl, the corresponding change in the rotation angle becomes about 0.0005 degrees. .

このように図1の測定系では原理的には生体の相対的な旋光度を測定できるが実際は本来得られるべき位相差を大幅に超える位相の変動が測定された。発明者はこの原因を以下のように考察した。第1の原因は生体を押さえ板で把持する場合、長時間の測定の間に把持状態が変化し左右両回り光に微妙な位相差が発生することである。第2に長時間の測定の間に生体を含むリング干渉計固有の位相バイアスが発生することである。   As described above, in the measurement system of FIG. 1, the relative optical rotation of the living body can be measured in principle, but in practice, the phase fluctuation significantly exceeding the phase difference to be originally obtained was measured. The inventor considered this cause as follows. The first cause is that when a living body is gripped by a pressing plate, the gripping state changes during a long-time measurement, and a subtle phase difference is generated in both left and right light. Second, a phase bias inherent to a ring interferometer including a living body is generated during a long-time measurement.

本発明の目的は生体を両方向に伝搬するレーザ光の位相差を測定して生体に含まれる糖成分による旋光度を定量的に測定することである。しかし生体を両方向に伝搬するレーザ光の位相差は生体試料内の両方向に伝搬する偏光状態の他にも押さえ板で生体を把持する状態によっても影響を受ける。ここで本発明旋光測定装置で発生する位相差を定量的に考察する。図4に生体の偏光伝搬状況の概念図を示す。試料が生体の一部である場合には、生体を構成する細胞や組織によって入射光は散乱を受け、多重反射によって偏光成分が生体を伝搬しながらデポラライズする。すなわち、入射円偏光は一定の距離を伝搬後に一部が無偏光に変換される。図中、符号16−3,16−4は伝搬光を示す。   An object of the present invention is to measure the phase difference of laser light propagating through a living body in both directions and quantitatively measure the optical rotation due to a sugar component contained in the living body. However, the phase difference of the laser light propagating in both directions through the living body is affected not only by the polarization state propagating in both directions in the biological sample but also by the state of holding the living body with the holding plate. Here, the phase difference generated in the optical rotation measuring apparatus of the present invention will be considered quantitatively. FIG. 4 shows a conceptual diagram of the polarization propagation state of the living body. When the sample is a part of the living body, the incident light is scattered by the cells and tissues constituting the living body, and the polarized component is depolarized while propagating through the living body by multiple reflection. That is, the incident circularly polarized light is partially converted to non-polarized light after propagating a certain distance. In the figure, reference numerals 16-3 and 16-4 indicate propagating light.

ここで距離LR, LL, LL’, LR’を以下のように定義する。
LR:試料の左方向から右円偏光が入射する場合偏光が保存される距離(符号24−1)
LL:試料の右方向から左円偏光が入射する場合偏光が保存される距離(符号24−2)
LL’:試料の左方向から左円偏光が入射する場合偏光が保存される距離(符号24−1)
LR’:試料の右方向から右円偏光が入射する場合偏光が保存される距離(符号24−2)
ここで符号23−1,23−2は光がランダム偏光で伝搬する距離を表す。
Here, the distances LR, LL, LL ′, LR ′ are defined as follows.
LR: Distance where polarized light is preserved when right circularly polarized light is incident from the left direction of the sample (reference numeral 24-1)
LL: Distance at which polarized light is preserved when left circularly polarized light is incident from the right direction of the sample (reference numeral 24-2)
LL ′: Distance where polarized light is preserved when left circularly polarized light is incident from the left direction of the sample (reference numeral 24-1)
LR ': Distance where polarized light is preserved when right circularly polarized light is incident from the right direction of the sample (reference numeral 24-2)
Here, reference numerals 23-1 and 23-2 represent distances at which light propagates with random polarization.

次に試料の左右円偏光に対する等価屈折率をそれぞれNL、NRとする。また試料のランダム偏光に対する等価屈折率をN0とする。
このように定義すると、試料の左から右円偏光が、右から左円偏光が入射した場合の試料を右方向と左方向に伝搬する光の位相差θ1は(1)式のようになる。

Figure 2015225030
但し試料の長さをLとする。またここでは、ある距離LR,LLを偏光度が1で伝搬し、その後は偏光度がゼロで伝搬するステップ状の円偏光度モデルを仮定する。
αは試料の固定方法によって生じる位相差で試料内の両方向伝搬光の光路差によって発生する位相差である。 Next, let NL and NR be the equivalent refractive indices of the sample for left and right circularly polarized light, respectively. The equivalent refractive index of the sample with respect to random polarization is N0.
When defined in this way, the phase difference θ1 of the light propagating through the sample in the right direction and the left direction when the right circularly polarized light from the left and the left circularly polarized light is incident from the right is expressed by Equation (1).
Figure 2015225030
However, the length of the sample is L. Here, a step-like circular polarization degree model is assumed in which a certain degree of polarization LR, LL propagates with a degree of polarization of 1 and thereafter propagates with a degree of polarization of zero.
α is a phase difference caused by the method of fixing the sample, and is a phase difference generated by the optical path difference of the bi-directionally propagated light in the sample.

同様に、試料の左から左円偏光が、右から右円偏光が入射した場合の試料を右方向と左方向に伝搬する光の位相差θ2は(2)式のようになる。

Figure 2015225030
Similarly, the phase difference θ2 of the light propagating through the sample in the right direction and the left direction when the left circularly polarized light is incident from the left and the right circularly polarized light is incident from the right is expressed by Equation (2).
Figure 2015225030

従ってθ1−θ2は(3)式のΘとして表される。

Figure 2015225030
Therefore, θ1-θ2 is expressed as Θ in the equation (3).
Figure 2015225030

ここで、簡単のため試料の左端の左右円偏光に対する偏光保存距離であるLRとLL’が等しく、また試料の右端の左右円偏光に対する偏光保存距離であるLLとLR’が計測する時間内で等しいと仮定すると(3)式は(4)式となる。

Figure 2015225030
(4)式は試料の旋光性に基づく試料を両方向に伝搬する光の位相差である。 Here, for the sake of simplicity, LR and LL ′, which are polarization preservation distances for the left and right circularly polarized light at the left end of the sample, are equal, and LL and LR ′, which are polarization preservation distances for the left and right circularly polarized light, at the right end of the sample are measured. Assuming that they are equal, equation (3) becomes equation (4).
Figure 2015225030
Equation (4) is a phase difference of light propagating through the sample in both directions based on the optical rotation of the sample.

ここでリング干渉計のループ全体を両方向に伝搬する光の位相差であるΘTを考えると(5)式となる。

Figure 2015225030
(5)式の第1項は生体の旋光度による位相差である。LRとLLはほぼ等しいと考えられるので生体に入射する偏光を切り替えないときの大凡2倍である。またβは試料の両端部にある非相反光学系(ファラデー回転素子および4分の1波長板)を左から右円偏光、右から左円偏光が伝搬するときのリング干渉計の位相差と左から左円偏光、右から右円偏光が伝搬するときのリング干渉計の位相差を差し引いた場合の位相差である。すなわちβはリング干渉計に生体などの試料がない場合の両方向に直交する円偏光を伝搬させた場合の非相反光学系の位相差である。したがって試料を挟む前にβを求めておき、試料を挿入したときの(5)式からβを差し引くことで生体の旋光度を求めることができる。 Considering ΘT, which is the phase difference of light propagating in both directions through the entire loop of the ring interferometer, equation (5) is obtained.
Figure 2015225030
The first term of the equation (5) is a phase difference due to the optical rotation of the living body. Since LR and LL are considered to be substantially equal, they are approximately twice that when the polarized light incident on the living body is not switched. Β is the phase difference of the ring interferometer and the left when the circularly polarized light propagates from the left to the right circularly polarized light and from the right to the left circularly polarized light in the nonreciprocal optical system (Faraday rotator and quarter wave plate) at both ends of the sample. The phase difference is obtained by subtracting the phase difference of the ring interferometer when the left circularly polarized light propagates from the right and the right circularly polarized light propagates from the right. That is, β is a phase difference of the nonreciprocal optical system when circularly polarized light orthogonal to both directions is propagated when there is no sample such as a living body in the ring interferometer. Therefore, β can be obtained before the sample is sandwiched, and the optical rotation of the living body can be obtained by subtracting β from the equation (5) when the sample is inserted.

実際の測定では試料に入射する偏光状態を周期tで変化させた場合リング干渉計の出力も周期tで変化する。その変化の振幅が(5)式である。   In actual measurement, when the polarization state incident on the sample is changed with the period t, the output of the ring interferometer also changes with the period t. The amplitude of the change is equation (5).

上記の測定においてαは測定中は試料に入射する偏光を切り替えても変化しないと考えられる。   In the above measurement, it is considered that α does not change during the measurement even if the polarized light incident on the sample is switched.

上記のように試料の固定方法によって生じる試料内の両方向伝搬光の光路差によって発生する位相差αをキャンセルする具体的な方法を図5に示す。
図5は偏光制御装置と空間光学系を用いた生体の旋光特性測定装置の基本構成図である。
図5の特徴はセンサー光学部5と光干渉計コア部25の間に偏光子6−5と2分の1波長板20から構成されるバルク型偏光制御部26を設けた点にある。バルク型偏光制御部26とセンサー光学部5は全反射ミラー19−1,19−2によって空間光学系で結合されている。
FIG. 5 shows a specific method for canceling the phase difference α generated by the optical path difference between the two-way propagating light in the sample generated by the sample fixing method as described above.
FIG. 5 is a basic configuration diagram of a biological optical rotation characteristic measuring device using a polarization control device and a spatial optical system.
The feature of FIG. 5 is that a bulk-type polarization control unit 26 including a polarizer 6-5 and a half-wave plate 20 is provided between the sensor optical unit 5 and the optical interferometer core unit 25. The bulk-type polarization control unit 26 and the sensor optical unit 5 are coupled by a spatial optical system by total reflection mirrors 19-1 and 19-2.

次に図5の機能を説明する。干渉計コア部25のPMFの出射偏光方位と偏光板6−3の方位を一致させ、2分の1波長板20を回転させ伝搬光16−5,16−6の偏光状態を複数種類変化させる。ここで非相反偏光変換光学系8−1,8−2のファラデー素子は両方向から伝搬する光に(16−5は時計方向に、16−6は反時計方向に)45度回転させるように磁界を設定しているので、試料10に両側から入射する偏光は常に直交する。   Next, the function of FIG. 5 will be described. The output polarization direction of the PMF of the interferometer core unit 25 and the direction of the polarizing plate 6-3 are made to coincide with each other, and the half-wave plate 20 is rotated to change the polarization state of the propagating light 16-5 and 16-6. . Here, the Faraday elements of the nonreciprocal polarization conversion optical systems 8-1 and 8-2 rotate the magnetic field so that the light propagating from both directions is rotated by 45 degrees (16-5 is clockwise and 16-6 is counterclockwise). Therefore, polarized light incident on the sample 10 from both sides is always orthogonal.

ここで2分の1波長板20の方位を2分の1波長板制御信号21によって0(偏光を回転させない)度と45度方位の2種類に変化させる場合を考える。2分の1波長板20の方位が0度の場合に試料10に入射される伝搬光16−5,16−6がそれぞれ右円偏光、左円偏光とすると、2分の1波長板20の方位が45度の場合には16−5,16−6がそれぞれ左円偏光、右円偏光に切り替えられる。   Here, a case is considered in which the azimuth of the half-wave plate 20 is changed to two types of azimuth of 0 (which does not rotate the polarization) and 45-degree azimuth by the half-wave plate control signal 21. If the propagating light 16-5 and 16-6 incident on the sample 10 when the azimuth of the half-wave plate 20 is 0 degrees are right circularly polarized light and left circularly polarized light, respectively, When the azimuth is 45 degrees, 16-5 and 16-6 are switched to left circular polarization and right circular polarization, respectively.

このように2分の1波長板20の方位を2段階に切り替えることによって試料に入射させる偏光状態を左右円偏光に切り替えることが出来る。それぞれの場合のリング干渉計の出力の差分をとると上記の(5)式に対応する出力が測定できる。   Thus, by switching the direction of the half-wave plate 20 in two stages, the polarization state incident on the sample can be switched to left and right circularly polarized light. Taking the difference of the output of the ring interferometer in each case, the output corresponding to the above equation (5) can be measured.

試料がない場合に予め同様の偏光状態を2段階に切り替えてリング干渉計の出力の変化((5)式のβ)を求めておくことによって試料のみの旋光度が測定できる。   When there is no sample, the optical polarization of only the sample can be measured by switching the same polarization state in two stages and calculating the change in the output of the ring interferometer (β in equation (5)).

ここで重要なことは、第1に、2つの偏光状態を切り替える時間は短いので、光干渉計固有の位相バイアスの時間特性は無視できることである。第2に、把持状態による位相バイアスの影響((2)式のα)もキャンセルできることである。第3に、試料の正の旋光度と負の旋光度の差分を測定できるので、測定感度が2倍になることである。   What is important here is that, firstly, since the time for switching between the two polarization states is short, the time characteristic of the phase bias inherent to the optical interferometer is negligible. Second, the influence of the phase bias due to the gripping state (α in equation (2)) can be canceled. Third, since the difference between the positive optical rotation and the negative optical rotation of the sample can be measured, the measurement sensitivity is doubled.

一般に、オールファイバの光リング干渉計では両回り光が光ファイバ内に閉じ込められているので、同一のパスを伝搬するため、左右両回り光には位相差は発生しない。しかし、図5の系ではリング光路のループの中に試料を含む空間光学系が存在する。試料の把持状態によって左右両回り光に行路差が発生し0.001度以上の位相差が発生する恐れがある。しかし上記のように試料に入射する偏光を2種類変化させ、測定される位相差の差分を取ることによってこのような試料の把持状態の変化に基づく位相誤差をキャンセルすることができる。実際の測定において試料に両方向から入射する偏光を左右円偏光に切り替えた時の実質的な位相変化は約0.0002度であった。このことより偏光保存距離はおよそ0.2mm程度であることがわかった。   In general, in an all-fiber optical ring interferometer, both-way light is confined in the optical fiber, and therefore propagates through the same path, so that there is no phase difference between the left-and-right both-way light. However, in the system of FIG. 5, there is a spatial optical system including a sample in the loop of the ring optical path. Depending on the gripping state of the sample, there is a possibility that a path difference may occur in both the left and right light and a phase difference of 0.001 degree or more may occur. However, the phase error based on the change in the gripping state of the sample can be canceled by changing the two types of polarized light incident on the sample and taking the difference in the measured phase difference as described above. In actual measurement, the substantial phase change was about 0.0002 degrees when the polarized light incident on the sample from both directions was switched to the left and right circularly polarized light. This indicates that the polarization preservation distance is about 0.2 mm.

この測定をグルコース負荷試験で行って、予め従来の採血方式血糖計の値と(4)式として測定される値の関係の参照テーブルを作成することによって、図5の測定系で試料に入射する左右円偏光を切り替えてリング干渉計の出力位相情報から血糖値を推定することができる。   This measurement is performed by a glucose tolerance test, and a reference table of the relationship between the value of the conventional blood collection type blood glucose meter and the value measured as equation (4) is created in advance, and the sample is incident on the sample in the measurement system of FIG. The blood glucose level can be estimated from the output phase information of the ring interferometer by switching the left and right circularly polarized light.

図6は光ファイバ型偏光制御装置を用いた生体の旋光特性測定装置の基本構成図である。図5と異なる点は2分の1波長板20の代わりに光ファイバ型偏光制御器27−1,27−2を用いている点である。また偏光板6−3の代わりに光ファイバ型偏光子6−4a,6−4bを用いている。このようにするとセンサー光学部5以外の光学系はオールファイバ型となる。光ファイバ型偏光制御器27−1,27−2はたとえば英国のPhoenix Photonics社が販売しているAll−Fiber Polarization Swichが使える。本デバイスは対向PMFの間に電圧で入射偏光を直交偏光に切り替える液晶からなる。なお、符号4−3と4−4はそれぞれの光路を形成するPMFを示す。また、符号22,22−1,22−2は光ファイバ型偏光制御器の制御信号を示す。   FIG. 6 is a basic configuration diagram of a biological optical rotation characteristic measuring apparatus using an optical fiber type polarization controller. The difference from FIG. 5 is that optical fiber polarization controllers 27-1 and 27-2 are used instead of the half-wave plate 20. Further, optical fiber polarizers 6-4a and 6-4b are used in place of the polarizing plate 6-3. In this way, the optical system other than the sensor optical unit 5 becomes an all-fiber type. As the optical fiber type polarization controllers 27-1, 27-2, for example, All-Fiber Polarization Switch sold by Phoenix Photonics, UK can be used. The device consists of a liquid crystal that switches incident polarization to orthogonal polarization with a voltage between opposing PMFs. Reference numerals 4-3 and 4-4 denote PMFs forming the respective optical paths. Reference numerals 22, 22-1, 22-2 indicate control signals of the optical fiber type polarization controller.

図7は光ファイバ型偏光制御装置を用いた生体の反射型旋光特性測定装置の構成図である。図7では、図1で用いた押さえ板9−1,9−2を用いていない。図7において、リング光路のPMF4−1を時計回りに伝搬した信号光は、プリズム15によって試料10に向けて屈折し、試料押さえ板9−3を介して試料10に所定の角度で斜めに入射される。一方、リング光路のPMF4−2を反時計回りに伝搬した信号光は、プリズム15によって試料10に向けて屈折し、試料押さえ板9−3を介して試料10に所定の角度で斜めに入射される。これらの2つの光は生体の表皮部分で反射され、時計周りに伝搬した信号光はPMF4−2に、反時計周りに伝搬した信号光はPMF4−1に結合される。   FIG. 7 is a block diagram of a living body reflection type optical rotation characteristic measuring apparatus using an optical fiber type polarization controller. In FIG. 7, the pressing plates 9-1 and 9-2 used in FIG. 1 are not used. In FIG. 7, the signal light propagated clockwise through the PMF 4-1 in the ring optical path is refracted toward the sample 10 by the prism 15, and obliquely enters the sample 10 at a predetermined angle via the sample holding plate 9-3. Is done. On the other hand, the signal light propagated counterclockwise through the PMF 4-2 in the ring optical path is refracted toward the sample 10 by the prism 15 and is obliquely incident on the sample 10 at a predetermined angle via the sample holding plate 9-3. The These two lights are reflected by the skin part of the living body, the signal light propagating clockwise is coupled to PMF4-2, and the signal light propagating counterclockwise is coupled to PMF4-1.

図7のプリズム15は上下又は左右にスライド可能で、プリズム15がない場合に光線16−7、16−8が直接結合できるように調整してある。なお、符号7−3,7−4はレンズ光学系、8−3,8−4は非相反偏光変換光学系である。   The prism 15 in FIG. 7 is slidable up and down or left and right, and adjusted so that the light beams 16-7 and 16-8 can be directly coupled when the prism 15 is not provided. Reference numerals 7-3 and 7-4 denote lens optical systems, and 8-3 and 8-4 denote nonreciprocal polarization conversion optical systems.

この方式のメリットは2つある。第1のメリットは装置の試料配置部分が試料を挟む構造ではなく試料を載せる構造なため、センサー光学系が簡単になることである。第2のメリットは、信号光ビームが生体を伝搬する距離を設定できることである。   There are two merits of this method. The first merit is that the sensor optical system is simplified because the sample arrangement portion of the apparatus is not a structure for sandwiching the sample but a structure for placing the sample. The second merit is that the distance that the signal light beam propagates through the living body can be set.

上記の実施の形態例では偏光状態を2種類変えて生体の旋光による位相差をもとめたが、実施の形態例の変形例として、生体をミューラー行列式で表現し、生体の旋光度を求める方法も可能性としては有望である。この場合には図5の2分の1波長板20の方位をたとえば22.5度ステップで変化させ、ビーム16−5、16−6の偏光状態を3段階以上に切り替え試料に多種の偏光状態を入射させる。   In the above embodiment, the phase difference due to the rotation of the living body is obtained by changing two kinds of polarization states. However, as a modification of the embodiment, a method of calculating the rotation of the living body by expressing the living body by Mueller determinant Is also promising. In this case, the direction of the half-wave plate 20 in FIG. 5 is changed in 22.5 degree steps, for example, and the polarization states of the beams 16-5 and 16-6 are switched to three or more stages, and various polarization states are applied to the sample Is incident.

このように、生体の両側から互いに直交する様々な偏光を入射させ、その場合の光干渉計の出力の位相差を測定することによってミューラー行列の16個の要素を決定することができる。   In this way, the 16 elements of the Mueller matrix can be determined by making various polarized light beams orthogonal to each other from both sides of the living body and measuring the phase difference of the output of the optical interferometer in that case.

図5、図6の測定系で生体の旋光度を測定するためには以下の条件が必要である。第1は生体の光透過損失の低減である。第2はセンサー光学部5のレンズ間に試料が把持できる十分な間隔が必要であることである。これらを同時に実現する方法として、レンズのワーキング距離をある程度長くし、ビームウエストが試料の中間にくるようにし、そのビームウエスト(BW)を最適化した。   In order to measure the optical rotation of a living body using the measurement system shown in FIGS. 5 and 6, the following conditions are required. The first is a reduction in light transmission loss of the living body. Secondly, a sufficient interval is required between the lenses of the sensor optical unit 5 so that the sample can be gripped. As a method for realizing these simultaneously, the working distance of the lens was increased to some extent so that the beam waist was in the middle of the sample, and the beam waist (BW) was optimized.

BWを10,20,33μmと変えて実験を繰り返した結果、BWが10μmと20μmでは対向するPMFの結合をとるのが極めて微妙で不安定であった。30μmでは安定に生体厚が1mmで30〜35dBを達成できた。さらにBWを50μm、100μmと変えて実験を繰り返した結果、50μmを超えると生体透過損失が増加する結果となった。BWが大きすぎると生体の散乱の影響を受けることが実験的に明らかになった。   As a result of repeating the experiment by changing BW to 10, 20, and 33 μm, it was very subtle and unstable to bond the opposing PMF when BW was 10 μm and 20 μm. At 30 μm, the living body thickness was 1 mm, and 30 to 35 dB could be achieved. Furthermore, as a result of repeating the experiment while changing BW to 50 μm and 100 μm, when the thickness exceeded 50 μm, the biopermeation loss increased. It has been experimentally found that if BW is too large, it is affected by the scattering of the living body.

以上の実験結果より、生体の旋光度測定におけるセンサー光学部のビームのBWは30μmと50μmの間が好ましい。   From the above experimental results, it is preferable that the BW of the beam of the sensor optical unit in measuring the optical rotation of the living body is between 30 μm and 50 μm.

本発明者は生体のような光散乱媒質に効率よく、すなわち低損失で光を伝搬させる実験を繰り返した結果、試料を挟んで対向するPMFの先端部分のコアを拡大させるいわゆるTEC(Thermally Expanded Core)加工が有力であることを実験的に把握した。しかしこの方法ではワーキング距離とBWを最適化できない。TEC方式を採用する場合には2枚レンズ系にして2枚目のレンズでワーキング距離を大きくしBWを最適化できることを見出した。   As a result of repeating the experiment of efficiently transmitting light to a light scattering medium such as a living body, that is, the present inventor, as a result of expanding the core of the tip portion of the PMF facing the sample with the sample interposed therebetween, the present inventor is a so-called TEC ) I experimentally grasped that the processing is powerful. However, this method cannot optimize the working distance and BW. In the case of adopting the TEC system, it was found that the BW can be optimized by increasing the working distance with the second lens system and the second lens system.

上に述べた旋光測定装置によって間質液の旋光度をリング干渉計によって測定することができた。   The optical rotation of the interstitial fluid could be measured with a ring interferometer using the optical rotation measurement device described above.

以上、いくつかの例を挙げて本発明を説明したが、本発明はこれに狭く限定されるものではなく、本発明の前記の如き技術思想に則って多くのバリエーションを可能とするものである。   The present invention has been described above with some examples, but the present invention is not limited to this, and many variations can be made in accordance with the above technical idea of the present invention. .

以上説明したように、本発明によって、これまで実現されていなかった非侵襲の血糖値の測定が可能になる。その結果、糖尿病患者は1日に数回の採血の苦痛と煩わしさから解放される。また、本発明から導かれる血糖値測定器を予防保全的に活用することにより現在世界的に増加している糖尿病患者数を減らすことができ、その治療に必要な費用を大幅に低減することができる。   As described above, according to the present invention, it is possible to measure a noninvasive blood sugar level that has not been realized so far. As a result, diabetics are freed from the pain and annoyance of blood sampling several times a day. In addition, by utilizing the blood glucose level measuring instrument derived from the present invention in a preventive and conservative manner, it is possible to reduce the number of diabetic patients that are currently increasing worldwide, and to significantly reduce the cost required for the treatment. it can.

本発明により非侵襲の血糖値測定装置を提供でき、医療機器や健康機器などとして広く用いることができ、本発明は介護を含め健康機器分野、医療機器分野などの発展に大きく寄与することができるものである。   The present invention can provide a non-invasive blood sugar level measuring device and can be widely used as a medical device or a health device. The present invention can greatly contribute to the development of the health device field, the medical device field including nursing care. Is.

1:光源(SLD,ASE)
2−1、2−2:2×2方向性結合器またはサーキュレータ
3:ファイバ型偏光子
4−1、4−2:PMF
5:センサー光学部
6−1、6−2,6−3,6−4a,6−4b,6−5a,6−5b:偏光板
7−1,7−2,7−3,7−4:レンズ光学系
8−1、8−2,8−3,8−4:非相反偏光変換光学系
9−1,9−2,9−3:試料押さえ板
10:試料
11:光位相変調器
12:受光素子
13:信号処理回路
14:位相変調信号
15:プリズム
16−1,16−2,16−3,16−4、16−5、16−6、16−7,16−8:光 17−1,17−2,17−3,17−4:ファラデー素子
18−1,18−2:4分の1波長板
19−1,19−2:全反射ミラー
20:2分の1波長板
21:2分の1波長板の回転または着脱制御信号
22、22−1,22−2,22−3,22−4:光ファイバ型偏光スイッチ制御信号
23−1,23−2:ランダム偏光で伝搬する距離
24−1,24−2:偏光が保存される距離
25:光干渉計コア部
26:バルク型偏光制御光学系
27−1,27−2,26−3,26−4:光ファイバ型偏光制御器
1: Light source (SLD, ASE)
2-1, 2-2: 2 × 2 directional coupler or circulator 3: Fiber-type polarizer 4-1, 4-2: PMF
5: Sensor optical part 6-1, 6-2, 6-3, 6-4a, 6-4b, 6-5a, 6-5b: Polarizing plates 7-1, 7-2, 7-3, 7-4 : Lens optical system 8-1, 8-2, 8-3, 8-4: Nonreciprocal polarization conversion optical system 9-1, 9-2, 9-3: Sample holding plate 10: Sample 11: Optical phase modulator 12: light receiving element 13: signal processing circuit 14: phase modulation signal 15: prism 16-1, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-8: light 17-1, 17-2, 17-3, 17-4: Faraday element 18-1, 18-2: 1/4 wavelength plate 19-1, 19-2: Total reflection mirror 20: 1/2 wavelength Plate 21: Half-wave plate rotation or attachment / detachment control signal 22, 22-1, 22-2, 22-3, 22-4: Optical fiber type polarization switch control signal 23-1 23-2: Propagation distance with random polarization 24-1, 24-2: Distance where polarization is preserved 25: Optical interferometer core unit 26: Bulk polarization control optical system 27-1, 27-2, 26-3 , 26-4: Optical fiber type polarization controller

Claims (27)

偏波面保存光ファイバ(以下、PMFという)を用いた光ファイバリング干渉計のリング光路の中に旋光特性を測定したい生体(以下、試料という)を配置し、光源から発せられた光をリング光路に導き,試料を挟んで対向する前記PMFの端面から前記試料に向けて出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムを用い、前記試料の両方向から少なくとも1組の互いに直交する偏光を試料に入射させ、リング光路を伝搬する両回り信号光の複数の位相差を測定して前記試料の旋光特性を測定することを特徴とする旋光特性測定装置。   A living body (hereinafter referred to as a sample) whose optical rotation characteristics are to be measured is placed in the ring optical path of an optical fiber ring interferometer using a polarization plane preserving optical fiber (hereinafter referred to as PMF), and the light emitted from the light source is transmitted into the ring optical path. Optical system that directs light emitted from the end face of the PMF facing the sample across the sample toward the sample to be collimated or condensed light directly or with a lens, and makes the sample enter the sample perpendicularly or at an angle To measure at least one set of orthogonally polarized light from both directions of the sample and to measure the optical rotation characteristics of the sample by measuring a plurality of phase differences of the two-way signal light propagating in the ring optical path. Characteristic optical rotation characteristic measuring device. 請求項1に記載の旋光特性測定装置において、前記PMFからの出射光をレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、前記PMFの端面をレンズの焦点位置から離す方向に設定し、レンズ間距離を前記試料を把持するツールが挿入できる距離とし、前記試料を伝搬する信号光のビームウエスト(直径、以下、BWという)が30μmと50μmの間になるように設計したことを特徴とする旋光特性測定装置。   2. The optical rotation characteristic measuring apparatus according to claim 1, wherein the light emitted from the PMF is converted into condensed light by a lens and incident on the sample at an angle or at an angle. It is set in a direction away from the focal position, and the distance between the lenses is a distance that can be inserted by the tool for gripping the sample, and the beam waist (diameter, hereinafter referred to as BW) of the signal light propagating through the sample is between 30 μm and 50 μm. An optical rotation characteristic measuring device characterized by being designed as follows. 請求項1または2に記載の旋光特性測定装置において、前記PMFの端部がコア拡大(以下、TECという)加工されており、前記TEC加工した端部が前記PMFの光路形成部分の主要部分と同一仕様のPMFをTEC加工したものから成ることを特徴とする旋光特性測定装置。   3. The optical rotation characteristic measuring apparatus according to claim 1, wherein an end portion of the PMF is subjected to core enlargement (hereinafter referred to as TEC) processing, and the end portion subjected to the TEC processing is a main portion of an optical path forming portion of the PMF. An optical rotatory characteristic measuring device comprising TEC processed PMF of the same specification. 偏波面保存光ファイバ(以下、PMFという)を用いたリング光路の中に旋光特性を測定したい生体(以下、試料という)を配置し、光源から発せられた光をリング光路に導き,前記試料の両方向から前記試料に向けて前記PMFから出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムを用いて、前記試料の両方向から入射する光を前記試料の両側に配置した偏光をコントロールする装置または光デバイス(以下、偏光制御装置と総称する)を制御して所定の周期で少なくとも1組の互いに直交する偏光となるようにして前記リング光路を両方向に伝搬する信号光の位相差を測定することを特徴とする旋光特性測定装置。   A living body (hereinafter referred to as a sample) whose optical rotation characteristics are to be measured is placed in a ring optical path using a polarization-maintaining optical fiber (hereinafter referred to as PMF), and light emitted from a light source is guided to the ring optical path. From both directions of the sample by using an optical system in which the light emitted from the PMF toward the sample from both directions is converted into collimated light or condensed light directly or with a lens and is incident on the sample vertically or at an angle. By controlling a polarization control device or an optical device (hereinafter collectively referred to as a polarization control device) in which incident light is disposed on both sides of the sample, at least one set of orthogonal polarizations is obtained at a predetermined period. An optical rotation characteristic measuring apparatus for measuring a phase difference of signal light propagating in both directions on the ring optical path. 請求項4に記載の旋光特性測定装置において、前記試料の両方向から前記試料に光を入射させる前記PMFの先端部がコア拡大(以下、TECという)加工された端面から成ることを特徴とする旋光特性測定装置。   5. The optical rotation characteristic measuring apparatus according to claim 4, wherein a tip end portion of the PMF for allowing light to enter the sample from both directions of the sample is composed of an end surface processed with a core enlarged (hereinafter referred to as TEC). Characteristic measuring device. 請求項5に記載の旋光特性測定装置において、前記PMFのTEC加工した端面近傍が前記PMFの主要光路形成部分と同一仕様のPMFをTEC加工したものから成ることを特徴とする旋光特性測定装置。   6. The optical rotation characteristic measuring apparatus according to claim 5, wherein the TEC-processed end face vicinity of the PMF is made of TEC-processed PMF having the same specifications as the main optical path forming portion of the PMF. 請求項4〜6のいずれか1項に記載の偏光制御装置を含む旋光特性測定装置において、前記旋光特性測定装置の主要部分は、前記試料と前記試料を挟んで対向する偏光制御装置を含む光学系とでリング光干渉系のリング光路の一部を構成しており、前記リング光路を両方向に伝搬する信号光の位相差を測定することによって前記試料の旋光特性を測定することができることを特徴とする旋光特性測定装置。   The optical rotation characteristic measuring device including the polarization control device according to any one of claims 4 to 6, wherein a main part of the optical rotation characteristic measurement device includes an optical device including a polarization control device facing the sample with the sample interposed therebetween. A part of the ring optical path of the ring optical interference system, and the optical rotation characteristic of the sample can be measured by measuring the phase difference of the signal light propagating in both directions on the ring optical path. Optical rotation characteristic measuring device. 請求項7に記載の旋光特性測定装置において、リング光干渉計のリング光路の光ファイバ部分は右回り信号光としての直線偏光と左回り信号光としての直線偏光が同一の固有偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬し、前記試料部分には右回り信号光と左回り信号光を互いに直交する偏光状態で入射させそれぞれ右回り信号光と左回り信号光として伝搬させるように前記試料の両側にファラデー回転素子を含む非相反偏光変換光学系を有していることを特徴とする旋光特性測定装置。   8. The optical rotation characteristic measuring apparatus according to claim 7, wherein the optical fiber portion of the ring optical path of the ring optical interferometer has the same light in the same polarization mode in which linearly polarized light as clockwise signal light and linearly polarized light as counterclockwise signal light are the same. Propagating through the fiber as clockwise signal light and counterclockwise signal light, respectively, and entering the sample portion with clockwise signal light and counterclockwise signal light in polarization states orthogonal to each other, respectively, as clockwise signal light and counterclockwise signal light, respectively. An optical rotation characteristic measuring apparatus having a nonreciprocal polarization conversion optical system including Faraday rotation elements on both sides of the sample so as to propagate. 請求項4〜8のいずれか1項に記載の旋光特性測定装置において、前記偏光制御装置が液晶に電圧を印加して偏光を制御する光デバイスであることを特徴とする偏光制御装置を含むことを特徴とする旋光特性測定装置。   The optical rotation characteristic measuring apparatus according to any one of claims 4 to 8, including the polarization control apparatus, wherein the polarization control apparatus is an optical device that controls the polarization by applying a voltage to the liquid crystal. Optical rotation characteristic measuring device characterized by. 請求項4〜9のいずれか1項に記載の旋光特性測定装置において、前記偏光制御装置が試料の両側に配置された偏光子と回転または着脱機能を有する2分の1波長板からなる偏光制御装置を含むことを特徴とする旋光度測定装置。   10. The polarization control device according to claim 4, wherein the polarization control device includes a polarizer disposed on both sides of the sample and a half-wave plate having a rotation or attachment / detachment function. An optical rotation measuring device comprising the device. 請求項4〜10のいずれか1項に記載の旋光特性測定装置において、前記旋光特性測定装置は、光源から発せられた信号光としてのレーザ光を第1の光カプラまたは光サーキュレータと偏光子を介して第2の光カプラに導き、前記第2の光カプラにより、主としてPMFから成るリング光路の途中に前記偏光制御装置を含む対向光学系を接続して構成したリング光路を両方向に伝搬する信号光として分岐し、前記リング光路の第2の光カプラの近傍に光位相変調器を設け、前記リング光路を両方向に伝搬する信号光を前記第2の光カプラ、前記偏光子、前記第1の光カプラまたは光サーキュレータを介して受光器および/または信号処理回路に導き、前記リング光路を両方向に伝搬する信号光の位相差を前記位相変調信号に同期した信号として抽出し、信号光を前記偏光制御装置を介して前記試料の両側から入射する少なくとも1組の直交する偏光に切り替えた場合の位相差を測定し、前記試料がない場合の少なくとも1組の直交する偏光に切り替えた場合の位相差を基準として前記試料の糖濃度を推定することを特徴とする旋光特性測定装置。   The optical rotation characteristic measuring device according to any one of claims 4 to 10, wherein the optical rotation characteristic measuring device converts a laser beam as signal light emitted from a light source into a first optical coupler or an optical circulator and a polarizer. To the second optical coupler, and a signal propagating in both directions through the ring optical path formed by connecting the opposing optical system including the polarization control device in the middle of the ring optical path mainly made of PMF by the second optical coupler. An optical phase modulator is provided in the vicinity of the second optical coupler in the ring optical path. The signal light propagating in both directions through the ring optical path is transmitted to the second optical coupler, the polarizer, and the first optical coupler. The signal is guided to a light receiver and / or a signal processing circuit via an optical coupler or an optical circulator, and a phase difference of the signal light propagating in both directions on the ring optical path is synchronized with the phase modulation signal. Extracting and measuring the phase difference when the signal light is switched to at least one set of orthogonal polarized light incident from both sides of the sample via the polarization controller, and at least one set of orthogonal when there is no sample An optical rotation characteristic measuring apparatus characterized in that the sugar concentration of the sample is estimated on the basis of a phase difference when switched to polarized light. 請求項11に記載の旋光特性測定装置において、前記試料が生体の一部であり、血糖値が既知の場合に前記試料に両側から複数組の直交する偏光を入射したときの光干渉計の位相差を予め測定しておき、その位相差を基準として光干渉計の測定位相差から前記試料の旋光度の変化を推定することを特徴とする旋光特性測定装置。   12. The optical rotation characteristic measuring apparatus according to claim 11, wherein when the sample is a part of a living body and a blood glucose level is known, a plurality of sets of orthogonal polarized light are incident on the sample from both sides. An optical rotation characteristic measurement apparatus characterized in that a phase difference is measured in advance, and a change in optical rotation of the sample is estimated from a measurement phase difference of an optical interferometer with the phase difference as a reference. 請求項4〜12のいずれか1項に記載の旋光特性測定装置において、前記対向する各PMFからの出射光をそれぞれ1枚目のレンズで拡大コリメートし2枚目のレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、2枚目のレンズ間距離を前記試料を把持する鉗子状のツールが挿入され得る距離とし、前記試料を伝搬する信号光のビームウエスト(直径、以下BWという)が30μmと50μmの間になるように設計したことを特徴とする旋光特性測定装置。   The optical rotation characteristic measuring apparatus according to any one of claims 4 to 12, wherein the emitted light from each of the opposing PMFs is enlarged and collimated by a first lens, and converted into condensed light by a second lens. Then, in the optical system that makes the sample enter the sample vertically or at an angle, the distance between the second lens is the distance at which a forceps-like tool that holds the sample can be inserted, and the beam of signal light that propagates through the sample An optical rotation characteristic measuring apparatus designed to have a waist (diameter, hereinafter referred to as BW) between 30 μm and 50 μm. 請求項4〜13のいずれか1項に記載の旋光特性測定装置において、前記試料が生体の一部である場合に、生体を誘電体の平板でビームの伝搬方向に対して直角方向から把持することを特徴とする旋光特性測定装置。   The optical rotation characteristic measuring apparatus according to any one of claims 4 to 13, wherein when the sample is a part of a living body, the living body is held by a dielectric flat plate from a direction perpendicular to the beam propagation direction. An optical rotation characteristic measuring device characterized by that. 請求項14に記載の旋光特性測定装置において、前記平板による試料把持部と前記対向するPMFからの出射光学系が機械的に分離されていることを特徴とする旋光特性測定装置。   15. The optical rotation characteristic measuring apparatus according to claim 14, wherein a sample gripping part by the flat plate and an emission optical system from the opposing PMF are mechanically separated. 偏波面保存光ファイバ(以下、PMFという)からなる光ファイバリング干渉計のリング光路の中に旋光特性を測定したい生体や血液や糖質溶液などの検体(以下、試料という)を配置し、試料の旋光特性を測定する方法において、前記旋光特性測定方法は、試料を挟んで対向するPMFの端面から前記試料に向けて出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させ、前記試料の両方向から少なくとも1組の互いに直交する偏光を試料に入射させ、リング光路を伝搬する両回り信号光の複数の位相差を測定して前記試料の旋光特性を測定する工程を有していることを特徴とする旋光特性測定方法。   Place a specimen (hereinafter referred to as a sample) such as a living body or blood or a sugar solution whose optical rotation characteristics are to be measured in the ring optical path of an optical fiber ring interferometer made of a polarization-maintaining optical fiber (hereinafter referred to as PMF). In the method for measuring the optical rotatory characteristics, the optical rotatory characteristics measuring method converts the light emitted from the end faces of the PMF facing each other with the sample into the sample directly or with a lens into collimated light or condensed light. The sample is incident perpendicularly or at an angle, and at least one set of orthogonally polarized light is incident on the sample from both directions of the sample, and a plurality of phase differences of both-direction signal light propagating through the ring optical path are measured. And a method for measuring the optical rotation characteristic of the optical rotation characteristic. 請求項16に記載の旋光特性測定方法において、前記PMFからの出射光をレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、前記PMFの端面をレンズの焦点位置から離す方向に設定し、レンズ間距離を前記試料を把持するツールが挿入できる距離とし、前記試料を伝搬する信号光のビームウエスト(直径、以下BWという)が30μmと50μmの間になるようにする工程を有していることを特徴とする旋光特性測定方法。   17. The optical rotation characteristic measuring method according to claim 16, wherein the light emitted from the PMF is converted into condensed light by a lens and incident on the sample at a vertical angle or at an angle. It is set in a direction away from the focal position, the distance between the lenses is a distance that allows the tool for gripping the sample to be inserted, and the beam waist (diameter, hereinafter referred to as BW) of the signal light propagating through the sample is between 30 μm and 50 μm. An optical rotation characteristic measuring method comprising the step of: 偏波面保存光ファイバ(以下、PMFという)を用いたリング光路の中に旋光特性を測定したい生体や血液や糖質溶液などの検体(以下、試料という)を配置し、光源から発せられた光をリング光路に導き,前記試料の両方向から前記試料に向けて前記PMFから出射する光を直接またはレンズでコリメート光または集光光に変換して前記試料に垂直または角度を付けて入射させる旋光特性測定方法において、前記光の光路上で、前記試料の両方向から入射する光を前記試料の両側に配置した偏光をコントロールする装置または光デバイス(以下、偏光制御装置と総称する)を制御して、前記偏光を所定の周期で少なくとも1組の互いに直交する偏光となるようにして、前記リング光路を両方向に伝搬する信号光の位相差を測定することを特徴とする偏光制御装置を含む工程を有することを特徴とする旋光特性測定方法。   Light emitted from a light source by placing a living body or a specimen such as blood or a sugar solution (hereinafter referred to as a sample) whose optical rotation characteristics are to be measured in a ring optical path using a polarization-maintaining optical fiber (hereinafter referred to as PMF) Optical rotation characteristics in which the light emitted from the PMF from both directions of the sample toward the sample is converted into collimated light or condensed light directly or with a lens, and is incident on the sample perpendicularly or at an angle In the measurement method, on the optical path of the light, controlling a polarization control device or an optical device (hereinafter collectively referred to as a polarization control device) in which light incident from both directions of the sample is arranged on both sides of the sample, The phase difference of the signal light propagating in both directions on the ring optical path is measured by making the polarized light into at least one set of orthogonally polarized lights with a predetermined period. Optical rotation characteristic measuring method characterized by comprising the step of including a polarization controller to. 請求項18に記載の旋光特性測定方法において、前記PMFからの出射光をレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、前記PMFの端面をレンズの焦点位置から離す方向に設定し、レンズ間距離を前記試料を把持するツールが挿入できる距離とし、前記試料を伝搬する信号光のビームウエスト(直径、以下BWという)が30μmと50μmの間になるようにする工程を有していることを特徴とする旋光特性測定方法。   19. The optical rotation characteristic measuring method according to claim 18, wherein the light emitted from the PMF is converted into condensed light by a lens and incident on the sample at an angle or at an angle. It is set in a direction away from the focal position, the distance between the lenses is a distance that allows the tool for gripping the sample to be inserted, and the beam waist (diameter, hereinafter referred to as BW) of the signal light propagating through the sample is between 30 μm and 50 μm. An optical rotation characteristic measuring method comprising the step of: 請求項18または19に記載の旋光特性測定方法において、前記PMFの端部がコア拡大(以下、TECという)加工された光ファイバを用いる工程を有することを特徴とする旋光特性測定方法。   20. The optical rotation characteristic measurement method according to claim 18, further comprising a step of using an optical fiber in which an end portion of the PMF is processed to expand a core (hereinafter referred to as TEC). 請求項18〜20のいずれか1項に記載の旋光特性測定方法において、リング光干渉計のリング光路の光ファイバ部分は右回り信号光としての直線偏光と左回り信号光としての直線偏光が同一の固有偏光モードで同じ光ファイバをそれぞれ右回り信号光と左回り信号光として伝搬し、前記試料部分には互いに直交する偏光状態で入射させそれぞれ右回り信号光と左回り信号光として伝搬させるように前記試料の両側にファラデー回転素子を含む非相反偏光変換光学系を用いる工程を有していることを特徴とする偏光制御装置を含む旋光特性測定方法。   21. The optical rotation characteristic measuring method according to claim 18, wherein the optical fiber portion of the ring optical path of the ring optical interferometer has the same linear polarization as the clockwise signal light and the linear polarization as the counterclockwise signal light. Are propagated through the same optical fiber as a clockwise signal light and a counterclockwise signal light, respectively, and are incident on the sample portion in polarization states orthogonal to each other to propagate as a clockwise signal light and a counterclockwise signal light, respectively. And a step of using a nonreciprocal polarization conversion optical system including a Faraday rotator on both sides of the sample. 請求項18〜21のいずれか1項に記載の旋光特性測定方法において、液晶に電圧を印加して偏光を制御する光デバイスを含む偏光制御装置を用いる工程を有することを特徴とする旋光特性測定方法。   The optical rotation characteristic measurement method according to any one of claims 18 to 21, further comprising a step of using a polarization control device including an optical device that controls polarization by applying a voltage to a liquid crystal. Method. 請求項22に記載の旋光特性測定方法において、試料の両側に配置された偏光子と回転または着脱機能を有する2分の1波長板からなる偏光制御装置を用いる工程を有することを特徴とする旋光度測定方法。   23. The optical rotation characteristic measuring method according to claim 22, comprising a step of using a polarization control device comprising a polarizer disposed on both sides of a sample and a half-wave plate having a rotation or attachment / detachment function. Degree measurement method. 請求項18〜23のいずれか1項に記載の旋光特性測定方法において、前記旋光特性測定方法は、光源から発せられた信号光としてのレーザ光を第1の光カプラまたは光サーキュレータと偏光子を介して第2の光カプラに導き、前記第2の光カプラにより、主としてPMFから成るリング光路の途中に前記偏光制御装置を含む対向光学系を接続して構成したリング光路を両方向に伝搬する信号光として分岐し、前記リング光路の第2の光カプラの近傍に光位相変調器を設け、前記リング光路を両方向に伝搬する前記信号光を前記第2光のカプラ、前記偏光子、前記第1の光カプラまたは光サーキュレータを介して受光器および/または信号処理回路に導き、前記リング光路を両方向に伝搬する信号光の位相差を前記位相変調信号に同期した信号として抽出し、信号光を前記偏光制御装置を介して前記試料の両側から入射する少なくとも1組の直交する偏光に切り替えた場合の位相差を測定し、前記試料がない場合の少なくとも1組の直交する偏光に切り替えた場合の位相差を基準として前記試料の糖濃度を推定する工程を有することを特徴とする旋光特性測定方法。   The optical rotation characteristic measurement method according to any one of claims 18 to 23, wherein the optical rotation characteristic measurement method uses a first optical coupler or an optical circulator and a polarizer as laser light as signal light emitted from a light source. To the second optical coupler, and a signal propagating in both directions through the ring optical path formed by connecting the opposing optical system including the polarization control device in the middle of the ring optical path mainly made of PMF by the second optical coupler. An optical phase modulator is provided in the vicinity of the second optical coupler in the ring optical path. The signal light propagating in both directions through the ring optical path is coupled to the second optical coupler, the polarizer, and the first optical coupler. A signal that is guided to a light receiver and / or a signal processing circuit via an optical coupler or an optical circulator, and the phase difference of the signal light propagating in both directions on the ring optical path is synchronized with the phase modulation signal. The phase difference when the signal light is switched to at least one set of orthogonal polarized light incident from both sides of the sample via the polarization control device is measured, and at least one set of orthogonal when there is no sample An optical rotation characteristic measuring method comprising a step of estimating a sugar concentration of the sample on the basis of a phase difference when switched to polarized light. 請求項24に記載の旋光特性測定方法において、前記試料が生体の一部であり、血糖値が既知の場合に前記試料に両側から複数組の直交する偏光を入射したときの光干渉計の位相差を予め測定しておき、その位相差を基準として光干渉計の測定位相差から前記試料の旋光度の変化を推定する工程を有することを特徴とする旋光特性測定方法。   25. The optical rotation characteristic measuring method according to claim 24, wherein when the sample is a part of a living body and a blood glucose level is known, a plurality of sets of orthogonal polarized light are incident on the sample from both sides. An optical rotation characteristic measuring method comprising a step of measuring a phase difference in advance and estimating a change in optical rotation of the sample from a measurement phase difference of an optical interferometer with the phase difference as a reference. 請求項18〜25のいずれか1項に記載の旋光特性測定方法において、前記対向する各PMFからの出射光をそれぞれ1枚目のレンズで拡大コリメートし2枚目のレンズで集光光に変換して前記試料に垂直または角度を付けて入射させる光学システムにおいて、2枚目のレンズ間距離を前記試料を把持する鉗子状のツールが挿入され得る距離とし、前記試料を伝搬する信号光のビームウエスト(直径、以下BWという)が30μmと50μmの間になるように設計する工程を有することを特徴とする旋光特性測定方法。   The optical rotation characteristic measuring method according to any one of claims 18 to 25, wherein the emitted light from each of the opposing PMFs is enlarged and collimated by a first lens, and converted into condensed light by a second lens. Then, in the optical system that makes the sample enter the sample vertically or at an angle, the distance between the second lens is the distance at which a forceps-like tool that holds the sample can be inserted, and the beam of signal light that propagates through the sample An optical rotation characteristic measuring method comprising a step of designing a waist (diameter, hereinafter referred to as BW) to be between 30 μm and 50 μm. 請求項18〜26のいずれか1項に記載の旋光特性測定方法において、前記試料が生体の一部である場合に、生体を誘電体の平板でビームの伝搬方向に対して直角方向から把持する工程を有することを特徴とする旋光特性測定方法。   The optical rotation characteristic measuring method according to any one of claims 18 to 26, wherein when the sample is a part of a living body, the living body is held by a dielectric plate from a direction perpendicular to the beam propagation direction. An optical rotation characteristic measuring method comprising: a step.
JP2014111409A 2014-05-29 2014-05-29 Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body Pending JP2015225030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111409A JP2015225030A (en) 2014-05-29 2014-05-29 Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111409A JP2015225030A (en) 2014-05-29 2014-05-29 Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body

Publications (1)

Publication Number Publication Date
JP2015225030A true JP2015225030A (en) 2015-12-14

Family

ID=54841866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111409A Pending JP2015225030A (en) 2014-05-29 2014-05-29 Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body

Country Status (1)

Country Link
JP (1) JP2015225030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219523A (en) * 2016-06-03 2017-12-14 株式会社グローバルファイバオプティックス Optical fiber gyro system light interference type phase measuring apparatus and phase measuring method
JP2018004271A (en) * 2016-06-27 2018-01-11 国立研究開発法人産業技術総合研究所 Optical measuring apparatus and optical measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219523A (en) * 2016-06-03 2017-12-14 株式会社グローバルファイバオプティックス Optical fiber gyro system light interference type phase measuring apparatus and phase measuring method
JP2018004271A (en) * 2016-06-27 2018-01-11 国立研究開発法人産業技術総合研究所 Optical measuring apparatus and optical measuring method

Similar Documents

Publication Publication Date Title
JP4842930B2 (en) Optical interrogation device for reducing parasitic reflection and method for removing parasitic reflection
EP0891151B1 (en) Non-invasive measurement of optically active compounds
WO2010100766A1 (en) Optical rotation measuring device and optical rotation measuring method
JP2006526790A (en) Measurement of optical heterogeneity and other properties in materials using light propagation modes
EP3120134B1 (en) Device and method for remote polarimetric characterization
US8982346B2 (en) System and method for measuring the rotation angle of optical active substance
US8718734B2 (en) Non-invasive polarimetric apparatus and method for analyte sensing in birefringent media
JP2015194359A (en) Scatterer spectroscopic analyzer
US9801536B2 (en) Polarimetric accessory for colposcope
WO2011145652A1 (en) Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
JP2015225030A (en) Optical rotation characteristic measuring method of living body using polarization modulating interferometer system and optical rotation characteristic measuring device of living body
US9713441B2 (en) Optical rotation measurement method and optical rotation measurement apparatus
US8730481B2 (en) Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
JP2012112909A (en) Polarimetry device, optical-rotation measuring method, and multi-pass counter polarization converting optical system
FR2661003A2 (en) ELECTRIC FIELD SENSOR WITH POCKELS EFFECT.
CN101587011A (en) Measure the method for beat length of polarization maintaining optical fiber
WO2012070646A1 (en) Optical rotation measurement device, optical rotation measurement method that can be used in optical rotation measurement system, optical rotation measurement optical system, and sample cell for optical rotation measurement
WO2012070465A1 (en) Optical rotation measurement device, polarization conversion optical system that can be used for optical rotation measurement, and method for measuring optical rotation in optical rotation measurement system using said polarization conversion optical system
JP2015225021A (en) Optical rotation characteristic measuring device for specimen in very small quantity
JP2013253945A (en) Optical interferometer type refractometer, method for measuring refractive index, and cell usable therefor
WO2013179140A2 (en) Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
JP5374762B2 (en) Reflective birefringence measuring device
JP2012112908A (en) Multipass optical rotation measuring device and multipass counter collimator optical system
US20180028101A1 (en) Dual Amplitude Modulation and Polarization Frequency Modulation as well as Compensation for Noninvasive Glucose Monitoring
JP2017219523A (en) Optical fiber gyro system light interference type phase measuring apparatus and phase measuring method