JP2015195970A - X線診断装置 - Google Patents

X線診断装置 Download PDF

Info

Publication number
JP2015195970A
JP2015195970A JP2014075434A JP2014075434A JP2015195970A JP 2015195970 A JP2015195970 A JP 2015195970A JP 2014075434 A JP2014075434 A JP 2014075434A JP 2014075434 A JP2014075434 A JP 2014075434A JP 2015195970 A JP2015195970 A JP 2015195970A
Authority
JP
Japan
Prior art keywords
ray
top plate
image data
region
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014075434A
Other languages
English (en)
Inventor
優介 奈良部
yusuke Narabe
優介 奈良部
石川 貴之
Takayuki Ishikawa
貴之 石川
敏哉 和久
Toshiya Waku
敏哉 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2014075434A priority Critical patent/JP2015195970A/ja
Publication of JP2015195970A publication Critical patent/JP2015195970A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】より簡易な操作でROIを撮影中心に位置決めすることが可能なX線診断装置を提供することである。【解決手段】実施形態に係るX線診断装置は、少なくとも回転軸を中心に回転可能な撮影系、撮影位置特定部及び制御系を備える。撮影系は、寝台の天板にセットされた被検体に向けてX線を照射するX線管及び前記被検体を透過したX線を検出するX線検出器を有する。撮影位置特定部は、前記被検体の関心領域を含む画像化領域における2次元のX線画像データに基づいて前記2次元のX線画像データ上における前記関心領域の位置を表す2次元座標を特定する。制御系は、前記関心領域の位置を表す前記2次元座標に基づいて、前記関心領域の空間位置を前記撮影系の回転軸に近づけるための前記撮影系及び前記天板の少なくとも一方の移動量を算出し、前記移動量に基づいて前記撮影系及び前記天板の少なくとも一方を移動させる。【選択図】 図2

Description

本発明の実施形態は、X線診断装置に関する。
X線診断装置を用いたX線撮影では、撮影対象となる関心領域(ROI: region of interest)をX線の照射領域の中止に位置決めすることが重要である。このため、従来、ユーザによる撮影系の手動操作によってROIが撮影中心となるように位置決めが行われている。また、3次元(3D: three dimensional)画像データを参照してROIが撮影中心となるようにするための制御方法が提案されている。
特開2002−136507号公報
本発明は、より簡易な操作でROIを撮影中心に位置決めすることが可能なX線診断装置を提供することを目的とする。
本発明の実施形態に係るX線診断装置は、少なくとも回転軸を中心に回転可能な撮影系、撮影位置特定部及び制御系を備える。撮影系は、寝台の天板にセットされた被検体に向けてX線を照射するX線管及び前記被検体を透過したX線を検出するX線検出器を有する。撮影位置特定部は、前記被検体の関心領域を含む画像化領域における2次元のX線画像データに基づいて前記2次元のX線画像データ上における前記関心領域の位置を表す2次元座標を特定する。制御系は、前記関心領域の位置を表す前記2次元座標に基づいて、前記関心領域の空間位置を前記撮影系の回転軸に近づけるための前記撮影系及び前記天板の少なくとも一方の移動量を算出し、前記移動量に基づいて前記撮影系及び前記天板の少なくとも一方を移動させる。
本発明の実施形態に係るX線診断装置の構成図。 ROIの空間位置を撮影系の回転軸に近づけるための天板の移動量の算出方法を説明する図。 ROIの空間位置を撮影系の回転軸に近づけるための撮影系及び天板の移動量の算出方法を説明する図。 図1に示すX線診断装置の動作の第1の例を示すフローチャート。 図1に示すX線診断装置の動作の第2の例を示すフローチャート。 図1に示すX線診断装置によって回避できる位置決めエラーの例を説明する図。 図1に示すX線診断装置によって回避できる別の位置決めエラーの例を説明する図。
本発明の実施形態に係るX線診断装置について添付図面を参照して説明する。
図1は本発明の実施形態に係るX線診断装置の構成図である。
X線診断装置1は、寝台2、撮影系3、撮影系移動機構4、制御系5、データ処理系6、入力装置7及び表示装置8を備えている。寝台2は、天板9及び天板移動機構10を有する。撮影系3は、C型アーム11の両端にX線管12及びX線検出器13を設けて構成される。撮影系移動機構4は、例えば回転機構14、保持部15及びスライド機構16を用いて構成することができる。制御系5は、高電圧発生装置17及び機械駆動制御部18を有する。データ処理系6は、画像生成部19及び撮影位置特定部20を有する。
尚、制御系5及びデータ処理系6の構成要素のうちデジタル情報を処理する構成要素は、コンピュータにプログラムを読み込ませて構築することができる。但し、デジタル情報を処理する構成要素の一部又は全部を構成するために回路を用いてもよい。アナログの信号をデジタル信号に変換するA/D(analog to digital)変換器は、データ処理系6やX線検出器13の出力側等の任意の位置に設けることができる。
寝台2の天板9には、被検体Oがセットされる。被検体Oには撮影対象としてROIが決定される。天板移動機構10は、天板9を静止系に対して移動させる装置である。典型的には、天板移動機構10によって天板9を水平2軸方向及び高さ方向(鉛直方向)の3軸方向に移動させることができる。このため、天板移動機構10は任意のスライド機構によって構成することができる。更に、図示されるように、天板移動機構10によって天板9を傾斜できるようにしてもよい。その場合には、天板移動機構10を構成するために所望の回転機構10Aが設けられる。
撮影系3のX線管12は、寝台2の天板9にセットされた被検体Oに向けてX線を照射する装置である。X線検出器13は、被検体Oを透過したX線を検出する装置である。X線検出器13によって検出されたX線検出データは、データ処理系6に出力される。C型アーム11は、回転機構14の駆動によって回転するように構成されている。従って、X線管12及びX線検出器13を有する撮影系3は、少なくとも回転機構14の回転軸を中心に回転可能に構成される。このため、撮影系3をプロペラのように回転させることによって、被検体Oに向けて異なる方向からX線を照射してX線撮影を行うことができる。
撮影系移動機構4は、撮影系3を静止系に対して移動させるための装置である。回転機構14は、C型アーム11と連結され、撮影系3を回転軸を中心に回転させる装置である。保持部15は、撮影系3及び回転機構14を保持するための部品である。尚、図示された例では、保持部15が円弧状の形状を有しており、スライド機構16の駆動によって円弧状のスライド軸に沿ってスライドできるように構成されている。このため、天板9の傾斜角度に合わせて撮影系3の回転軸も傾斜できるように構成されている。
スライド機構16は、保持部15と連結され、保持部15を円弧状のスライド軸に沿って移動させる他、保持部15を水平2軸方向にもスライドさせることができるように構成されている。このため、保持部15を介してスライド機構16と連結される撮影系3を傾斜又は平行移動させることができる。スライド機構16は、例えば、建物内に設けられるクレーンと同様に天井に設けたレールに沿って2軸方向に平行移動する構造とすることができる。また、転動する車輪や球体を用いてスライド機構16を構成することにより、保持部15を円弧状のスライド軸に沿ってスライド移動させることができる。
尚、図1に示す例に限らず、撮影系3を移動させるための任意の駆動軸を加えたり、逆に一部の駆動軸を省略したりしてもよい。また、撮影系3を天井に吊り下げる構造とせずに、床に据え置く構造や壁に保持する構造としてもよい。但し、撮影系3は、少なくとも回転軸を中心に回転可能に構成される。
制御系5は、寝台2、撮影系3及び撮影系移動機構4を制御するためのシステムである。高電圧発生装置17は、X線管12に高電圧を印加することによってX線を曝射させる装置である。機械駆動制御部18は、撮影系移動機構4及び天板移動機構10に制御信号を出力して制御する装置である。特に、機械駆動制御部18は、被検体OのROIが撮影系3の回転軸に近づくように撮影系移動機構4及び天板移動機構10を制御する機能を有している。
データ処理系6は、X線検出器13によって検出されたX線検出データに基づいてX線画像データを生成するシステムである。尚、造影剤を被検体Oに投与してX線撮影を行えば、血管が描出されたX線造影画像データが生成される。一方、造影剤を投与せずにX線撮影を行えば、被検体Oの撮影部位に挿入されたカテーテルやワイヤ等のデバイスが描出されるが、血管の視認が困難なX線透視画像データが生成される。
画像生成部19は、X線検出器13によって検出されたX線検出データに必要な画像処理及び表示処理を施して表示用のX線画像データを生成する機能と、生成したX線画像データを表示装置8に出力することによって表示装置8にX線画像を表示させる機能を有する。
撮影位置特定部20は、画像生成部19において位置決め用の参照画像データとして生成された被検体OのROIを含む画像化領域における2次元(2D: two dimensional)のX線画像データに基づいて、2DのX線画像データ上におけるROIの位置を表す2D座標を特定する機能を有する。2DのX線画像データ上におけるROIの2D座標は、自動的又は手動で特定することができる。
例えば、デバイスや着目血管等の撮影対象がX線透視画像データやX線造影画像データ等の位置決め用の参照画像データに描出されている場合であれば、入力装置7の操作によって2DのX線画像データ上における撮影対象に対応する位置を2D座標として指定することができる。或いは、入力装置7の操作によって2DのX線画像データ上における撮影対象に対応する2D領域を指定することもできる。この場合、入力装置7の操作によって指定された2DのX線画像データ上における位置又は2DのX線画像データ上における領域の重心等の代表位置をROIの位置を表す2D座標として特定することができる。
また、位置決め用の参照画像がX線透視画像であり、撮影対象である着目血管が描出されていない場合であっても、着目血管の位置を間接的に表すデバイスがX線透視画像データに描出されていれば、デバイスの位置に基づいて点又は領域を入力装置7の操作によって指定することができる。このため、入力装置7の操作によって指定された2DのX線画像データ上における位置又は2DのX線画像データ上における領域の代表位置をROIの位置を表す2D座標として特定することができる。
一方、公知の画像認識処理や輪郭抽出処理によって自動的に参照画像データからデバイスや着目血管等の撮影対象が占める領域を抽出するようにしてもよい。実用的な例として、位置決め用の参照画像データとして予め撮影された2DのX線画像データに描出されたデバイス又はマーカの位置を自動検出し、検出されたデバイス又はマーカの代表位置をROIの位置を表す2D座標として特定することができる。
撮影位置特定部20において特定された、ROIの位置を表す2D座標は、制御系5の機械駆動制御部18に通知される。そして、機械駆動制御部18は、ROIの位置を表す2D座標に基づいて、ROIの絶対座標系における空間位置を撮影系3の回転軸に近づけるための撮影系3及び天板9の少なくとも一方の移動量を算出し、算出した移動量に基づいて撮影系3及び天板9の少なくとも一方を移動させることができるように構成されている。
図2はROIの空間位置を撮影系3の回転軸に近づけるための天板9の移動量の算出方法を説明する図である。
図2(A),(B)はそれぞれX線管12、X線検出器13、天板9及びROIが設定された被検体Oを、撮影系3の回転軸方向に被検体Oの頭側から見た図と、図示された撮影系3の位置で撮影されたX線画像の一例を示している。従って、撮影系3の回転面は紙面に平行となり、回転中心となるアイソセンタは紙面に垂直となる。
図2(A)に示すように初期位置にある天板9に心臓等のROIが設定された被検体Oをセットし、例えばX線の曝射方向が鉛直方向となる向きで被検体OのX線撮影を行うことにより、2DのX線画像データを位置決め用の参照画像データとして取得することができる。しかしながら、天板9の初期位置は、必ずしもROIの位置に合わせて正確に設定されていない。このため、図2(A)に示すように2DのX線画像の中心でない位置にROI又はデバイス等のROIに対応する撮影対象が描出される。
そうすると、撮影位置特定部20においてROIの位置を表す2D座標P(Px, Pz)を、入力装置7の操作又は画像処理によって手動又は自動的に特定することができる。これにより、機械駆動制御部18は、ROIの位置を表す2D座標P(Px, Pz)に基づいて、天板9をROIの位置に合わせて適切な位置に位置決めするための天板9の移動量D(Dx, Dz)を算出することが可能となる。
ROIの位置を表す2D座標P(Px, Pz)は、ROIをX線の曝射方向に向かってX線検出器13の検出面に投影した位置に対応する座標となる。従って、ROIをX線のコーン角の中心線上に位置決めするために移動させるべき天板9の水平方向における移動量D(Dx, Dz)は、ROIの鉛直方向の位置に依存して変わることになる。しかしながら、1フレームの2D X線画像データ上における単一の2D座標のみでは、ROIの鉛直方向における位置を特定することができない。
そこで、ROIと天板9とが所定の距離Dhだけ離れているとみなして天板9の水平方向における移動量D(Dx, Dz)を算出することができる。具体的には、図2(A)に示すようにROIの位置を表す2D座標P(Px, Pz)に対応する空間位置P(Px, Py, Pz)を通りX線の照射方向に向かう直線Lxと、天板9から所定の距離Dhだけ離れた平面Sとの交点における3D座標から参照画像データを撮影するために曝射されたX線のコーン角の中心線Lcまでの距離を天板9の水平方向における移動量D(Dx, Dz)として算出することができる。
尚、ROIの位置を表す2D座標に対応する空間位置P(Px, Py, Pz)は、2D参照画像データの撮影位置となるX線検出器13の検出面の位置y=Pyと、ROIの位置を表す2D座標P(Px, Pz)とに基づいて求めることができる。
機械駆動制御部18において天板9の水平方向における移動量D(Dx, Dz)が求められると、求めた移動量D(Dx, Dz)に基づく天板9の移動制御が可能となる。例えば、機械駆動制御部18が天板移動機構10を制御し、天板9を移動量D(Dx, Dz)だけ自動的に移動させることができる。或いは、入力装置7の操作によって手動で天板9が移動している場合であれば、機械駆動制御部18が天板移動機構10を制御し、移動量D(Dx, Dz)だけ天板9が移動した位置において天板9の移動をロックすることができる。
このようにして、1フレームの2D参照画像データに基づいて極めて簡易に天板9の位置決めを行うことができる。但し、撮影系3を回転させて撮影を行う場合など、天板9の高さ方向における位置決めを含むより正確な位置決めを行う場合には、天板9の位置の微調整を行うことができる。
図2(B)は天板9の高さ方向における移動を含む位置決めの方法を説明する図である。ROIの位置がアイソセンタに近づくように天板9を移動量D(Dx, Dz)だけ移動させても、ROIの鉛直方向における真の位置と仮定した位置との差に起因して水平方向に誤差が生じる。
そこで、図2(B)に示すように、移動量D(Dx, Dz) に基づいて天板9を移動させた状態でROIが描出された第2の2DのX線画像データを第2の2D参照画像データとして撮影することができる。そして、撮影位置特定部20により、ROIが描出された第2の2D参照画像データに基づいて第2の2D参照画像データ上におけるROIの位置を表す第2の2D座標P2(P2x, P2z)を更に特定することができる。
そうすると、第1の2D座標P(Px, Pz)と第1の移動量D(Dx, Dz)との幾何学的関係を参照することによって、第2の2D座標P2(P2x, P2z)に基づいて、ROIと天板9との間における距離Drを計算することができる。
具体的には、第2の2D参照画像データ上においてROIの位置を表す第2の2D座標P2(P2x, P2z)に対応する空間位置P2(P2x, P2y, P2z)を通り第2の2D参照画像データを撮影するために曝射されたX線の照射方向に向かう直線L2xと、第1の2D参照画像データ上においてROIの位置を表す第1の2D座標P(Px, Pz)に対応する空間位置P(Px, Py, Pz)を通り第1の2D参照画像データを撮影するために曝射されたX線の照射方向に向かう直線Lxを第1の移動量D(Dx, Dz)だけ水平方向に平行移動して得られる直線の双方に最も近い点の位置としてROIの空間位置を算出することができる。つまり、ROIを通る2つの直線の交点とみなせる3D座標としてROIの空間位置を算出することができる。
その結果、ROIの空間位置を撮影系3の回転軸に近づけるための天板9の高さ方向における移動量D2yを算出することができる。すなわち、天板9の高さ方向における移動量D2yは、X線診断装置1の設置面からのアイソセンタの高さDcから、X線診断装置1の設置面からのROIの高さまでの距離となる。X線診断装置1の設置面からのROIの高さは、X線診断装置1の設置面からの天板9の高さと、ROIと天板9との間における距離Drとの和として求めることができる。
加えて、第1の移動量D(Dx, Dz)の算出方法と同様な方法で、ROIと天板9との間における距離Dr及び第2の2D座標P2(P2x, P2z)に基づいて、ROIの空間位置を撮影系3の回転軸に近づけるための天板9の水平方向における第2の移動量D2(D2x, D2z)を算出することができる。
そうすると、ROIの空間位置を撮影系3の回転軸上に移動させるための天板9の3D方向における第2の移動量D2(D2x, D2y, D2z)を得ることができる。このため、機械駆動制御部18が天板移動機構10を制御し、天板9を3D方向における第2の移動量D2(D2x, D2y, D2z)だけ自動的に移動させることができる。或いは、入力装置7の操作によって手動で天板9が移動している場合であれば、機械駆動制御部18が天板移動機構10を制御し、3D方向における第2の移動量D2(D2x, D2y, D2z)だけ天板9が移動した位置において天板9の移動をロックすることができる。この結果、ROIの空間位置を撮影系3の回転軸上(アイソセンタ上)に移動させることができる。
但し、天板9の水平方向における第2の移動量D2(D2x, D2y, D2z)は僅かであるため、天板9の高さ方向についてのみ、天板9の移動を行うようにしてもよい。その場合には、第2の2D座標P2(P2x, P2z)に基づいて、ROIの空間位置を撮影系3の回転軸に近づけるための少なくとも天板9の高さ方向における移動量D2yが機械駆動制御部18において算出される。そして、天板9の高さ方向における移動量D2yに基づいて天板9を天板9の高さ方向に移動させる制御が機械駆動制御部18において実行される。
また、図2には、天板9の移動による位置決め方法の例が示されているが、上述したように撮影系3の移動による位置決めを行うこともできる。その場合には、撮影系移動機構4の駆動によって撮影系3を移動させればよい。
図3はROIの空間位置を撮影系3の回転軸に近づけるための撮影系3及び天板9の移動量の算出方法を説明する図である。
図3(A),(B)はそれぞれX線管12、X線検出器13、天板9及びROIが設定された被検体Oを、撮影系3の回転軸方向に被検体Oの頭側から見た図と、図示された撮影系3の位置で撮影されたX線画像の一例を示している。従って、撮影系3の回転面は紙面に平行となり、回転中心となるアイソセンタは紙面に垂直となる。
図2(A)に示す方法と同様な方法で、図3(A)に示すように、2D参照画像データを参照してROIの位置を表す2D座標P(Px, Pz)を特定することができる。そして、ROIと天板9とが所定の距離Dhだけ離れているとみなすことによって、ROIの位置を表す2D座標P(Px, Pz)からROIの空間位置を撮影系3の回転軸に近づけるための撮影系3の水平方向における移動量D(Dx, Dz)を算出することができる。
これにより、機械駆動制御部18が撮影系移動機構4を制御し、撮影系3を移動量D(Dx, Dz)だけ自動的に移動させることができる。撮影系3を移動させて位置決めを行った場合においても、撮影系3を回転させて撮影を行う場合など、天板9の高さ方向における位置決めを含むより正確な位置決めを行う場合には、天板9の位置の微調整を行うことができる。
図3(B)は天板9の高さ方向における移動を含む位置決めの方法を説明する図である。図2(B)を参照して説明した方法と同様な方法で、図3(B)に示すように、第2の2D参照画像データを参照し、3D方向における第2の移動量D2(D2x, D2y, D2z)を求めることができる。すなわち、ROIを通る2つの直線の交点とみなせる空間位置として、ROIの3D座標を算出することができる。そして、ROIの3D座標に基づいて3D方向における第2の移動量D2(D2x, D2y, D2z)を求めることができる。
これにより、機械駆動制御部18が撮影系移動機構4を制御し、撮影系3を水平方向に第2の移動量D2(D2x, D2z)だけ自動的に移動させることができる。また、機械駆動制御部18が天板移動機構10を制御し、天板9を高さ方向に第2の移動量D2(D2y)だけ自動的に移動させることができる。
尚、撮影系移動機構4が撮影系3を鉛直方向に移動させる制御軸を有する場合であれば、天板9を高さ方向に第2の移動量D2(D2y)だけ移動させる代わりに第2の移動量D2(D2y)だけ撮影系3を鉛直方向に移動させるようにしてもよい。
また、撮影系3及び天板9の双方を移動させることによって位置決めを行うこともできる。従って、第2の2D参照画像データについても、第1の移動量D(Dx, Dz)に基づいて撮影系3及び天板9の少なくとも一方を移動させた状態で撮影することができる。
また、撮影系3及び天板9の少なくとも一方の移動量を求めるための座標系や基準は任意に変更することができる。例えば、図2及び図3に示す例では、ROIの位置を天板9からの距離Dhとして仮定したが、天板9以外の位置を基準として鉛直方向におけるROIの位置を仮定してもよい。
また、鉛直方向ではない座標軸や水平方向ではない座標軸を用いてROIの位置の特定及び移動量の算出を行うこともできる。従って、撮影系3を鉛直方向から傾けた状態や天板9をチルトさせた状態であっても、必要に応じて適切な座標系の設定及び座標変換を伴って2D参照画像データを参照して特定された2D座標に基づく移動量の算出を行うことができる。
このため、1フレームの2D参照画像データを参照してROIの位置を表す2D座標が特定された場合には、2D座標で表されない座標軸方向におけるROIの座標を、予め決定した固定値として撮影系3及び天板9の少なくとも一方の移動量を算出することができる。
また、被検体OへのX線の照射位置及びX線の照射角度の少なくとも一方が互いに異なる複数フレームの2D参照画像データ上におけるROIの位置をそれぞれ表す複数の2D座標を特定すれば、複数の2D座標に基づいて、ROIの空間位置を撮影系3の回転軸上とするための、或いは少なくとも撮影系3の回転軸に近づけるための撮影系3及び天板9の少なくとも一方の3D方向の移動量を幾何学的に算出ことができる。すなわち、ROIを透過したX線の軌跡に相当する平行でない複数の直線の交点とみなせる空間位置としてROIの3D位置を算出し、ROIの3D位置をアイソセンタ上にシフトするための撮影系3及び天板9の少なくとも一方の3D方向の移動量を求めることができる。そして、3D方向の移動量に基づいて撮影系3及び天板9の少なくとも一方を移動させることができる。
従って、2フレーム以上の2D参照画像データを参照することが予め決まっている場合には、2フレーム以降の2D参照画像データの撮影位置及び撮影角度を、必ずしも2軸方向への位置決め後の撮影位置及び撮影角度とせずに、任意に決定した撮影位置及び撮影角度とすることができる。
次にX線診断装置1の動作及び作用について説明する。
初めに天板9のみの移動によってROIの位置をアイソセンタに近づける位置決めを行う場合の例について説明する。
図4は、図1に示すX線診断装置1の動作の第1の例を示すフローチャートである。
まず予め寝台2の天板9に被検体Oがセットされる。そして、機械駆動制御部18による制御下において撮影系移動機構4及び天板移動機構10が駆動し、被検体OのROIが撮影視野(FOV: field of view)内となるように、撮影系3及び天板9のラフな位置決めが行われる。典型的には、図1に例示されるようにX線管12及びX線検出器13が鉛直方向に対向するように撮影系3の位置決めが行われる。
次にステップS1において、第1の参照画像データとしてX線透視画像データ又はX線造影画像データ等の2DX線画像データが撮影される。具体的には、高電圧発生装置17からX線管12に高電圧が印加される。これによりX線管12から被検体Oに向けてX線が曝射される。被検体Oを透過したX線はX線検出器13により検出される。そして、X線検出器13によって検出されたX線検出データは、データ処理系6に出力される。そうすると、画像生成部19は、X線検出データに必要なデータ処理を施して第1の参照画像データを生成する。生成された第1の参照画像データは表示装置8に出力される。これにより、表示装置8には、第1の参照画像が表示される。
次に、ステップS2において、第1の参照画像データを参照してROIの位置を表す第1の2D座標が特定される。ROIの位置を表す第1の2D座標は入力装置7によりポイント又は領域を指定する操作によって手動で指定することができる。すなわち、第1の参照画像データを参照した入力装置7の操作情報に基づいて撮影位置特定部20によりROIの位置を表す第1の2D座標を特定することができる。或いは、第1の参照画像データの画像処理によって撮影位置特定部20によりROIの位置を表す第1の2D座標を自動的に特定することもできる。
次に、ステップS3において、ROIと天板9との間における距離を10cm等の所定の距離であると仮定することによって、機械駆動制御部18により第1の2D座標からROIのラフな空間位置が求められる。そして、機械駆動制御部18によりROIのラフな空間位置をアイソセンタ中心へ移動させるための天板9の第1の2D移動量が算出される。これにより、位置決め量として天板9の長手方向及び短手方向における2D移動量が決定される。
次に、ステップS4において、機械駆動制御部18が第1の2D移動量に従って天板移動機構10を制御する。これにより、天板9が長手方向及び短手方向に第1の2D移動量だけ移動して停止する。その結果、ROIがアイソセンタに近い位置となる。このため、C型アーム11を回転移動させないような場合には、X線撮影を開始することができる。
一方、手技中にC型アーム11を回転移動させる場合のように、天板9の高さ方向における位置決めが重要な場合には、第2の参照画像データを参照した天板9の高さ方向における移動を含む位置決めを行うことができる。その場合には、第2の参照画像データの撮影指示が入力装置7の操作によって機械駆動制御部18に入力される。
このため、ステップS5において、機械駆動制御部18は天板9の高さ方向における位置決めを行うと判定する。そして、ステップS6において、第2の参照画像データの撮影が行われる。次に、ステップS7において、撮影位置特定部20により、ROIの位置を表す第2の2D座標が第2の参照画像データを参照して再度特定される。
次に、ステップS8において、機械駆動制御部18により、撮影中心からのずれ量に相当する第2の2D座標、第1の2D座標及び第1の2D移動量に基づいて幾何学的にROIと天板9との間における距離が算出される。
次に、ステップS9において、機械駆動制御部18により、天板9の高さ方向における移動量を含む天板9の第2の3D移動量が算出される。天板9の高さ方向における移動量は、ROIと天板9との間における距離に基づいて算出することができる。一方、天板9の長手方向及び短手方向における移動量は、ROIと天板9との間における距離と、第2の参照画像データを撮影するために曝射されたX線のコーン角の中心線と第2の2D座標との間における距離とに基づいて算出することができる。
次に、ステップS10において、機械駆動制御部18が第2の3D移動量に従って天板移動機構10を制御する。これにより、天板9が高さ方向、長手方向及び短手方向に第2の3D移動量だけ移動して停止する。その結果、ROIを完全にアイソセンタ上の位置決めすることができる。すなわち、C型アーム11を回転移動させても、ROIが撮影中心となる。
このため、ステップS11において、被検体Oの本撮影を開始することができる。また、天板9の高さ方向における位置決めを省略する場合においても、ステップS11において、被検体Oの本撮影を開始することができる。
次に撮影系3及び天板9の移動によってROIの位置をアイソセンタに近づける位置決めを行う場合の例について説明する。
図5は、図1に示すX線診断装置1の動作の第2の例を示すフローチャートである。尚、図4に示すフローチャートのステップと同様のステップには同符号を付して説明を省略する。
撮影系3の移動によってROIの位置をアイソセンタに近づける位置決めを行う場合には、ステップS20において、ROIと天板9との間における距離を10cm等の所定の距離であると仮定することによって、機械駆動制御部18により第1の2D座標からROIのラフな空間位置が求められる。そして、機械駆動制御部18によりROIのラフな空間位置をアイソセンタ中心へ移動させるための撮影系3の第1の2D移動量が算出される。これにより、位置決め量として撮影系3の水平方向における2D移動量が決定される。
次に、ステップS21において、機械駆動制御部18が第1の2D移動量に従って撮影系移動機構4を制御する。これにより、撮影系3が水平方向に第1の2D移動量だけ移動して停止する。その結果、ROIがアイソセンタに近い位置となる。このため、C型アーム11を回転移動させないような場合には、X線撮影を開始することができる。
また、天板9の高さ方向における位置決めを行う場合には、ステップS22において、機械駆動制御部18により、天板9の高さ方向における移動量と、撮影系3の水平方向における移動量とを含む第2の3D移動量が算出される。
次に、ステップS23において、機械駆動制御部18が第2の3D移動量に従って天板移動機構10及び撮影系移動機構4を制御する。これにより、天板9が高さ方向に第2の3D移動量だけ移動して停止する。一方、撮影系3が水平方向に第2の3D移動量だけ移動して停止する。その結果、ROIを完全にアイソセンタ上の位置決めすることができる。
このため、ステップS11において、被検体Oの本撮影を開始することができる。また、天板9の高さ方向における位置決めを省略する場合においても、ステップS11において、被検体Oの本撮影を開始することができる。
つまり以上のようなX線診断装置1は、2D参照画像データを参照して特定したROIの位置を表す2D座標に基づいてROIをアイソセンタに近づけるための撮影系3及び天板9の少なくとも一方の移動量を算出し、算出した移動量に従って撮影系3及び天板9の少なくとも一方を移動させることができるように構成したものである。
このため、X線診断装置1によれば、極めて簡易にROIの位置に応じた位置決めを行うことができる。特に、1フレームの2D参照画像データを撮影するのみで、ROIをアイソセンタに近づけることができる。更に、少なくとも2フレームの2D参照画像データを撮影すれば、ROIを略アイソセンタ上に位置決めすることができる。
このため、3D画像データの撮影や3D画像データに対する複雑な3D画像処理が不要となる。その結果、位置決め用の撮影による被検体Oの被曝を低減させることができる。また、位置決め用の撮影において、C型アーム11を回転させる必要がないため安全性を向上させることができる。
特に、ROIをアイソセンタ上に位置決めすることができる。このため、撮影系3を被検体OのROI周りに回転させて複数の撮影角度から撮影を行う場合であっても、ROIをFOV内に維持することができる。
図6は図1に示すX線診断装置1によって回避できる位置決めエラーの例を説明する図である。
図6(A)に示すようにX線管12及びX線検出器13が鉛直方向に対向するように撮影系3を配置して位置決め用の2D画像データを撮影した場合、図6(B)に示すように2D画像データに描出されたROIが2D画像データの画像中心となるように天板9を移動させても、撮影系3を回転させると図6(C)に示すようにROIがFOV外となる可能性がある。このため、従来は、撮影角度の変化によってROIがFOV外となった場合には、ROIをFOV内に入れるために天板9の移動が行われていた。
これに対して、X線診断装置1によれば、ROIをアイソセンタ上に位置決めできるため、ROIを常にFOV内に維持した状態でX線回転撮影を行うことができる。このため、従来、撮影角度を変えた場合に必要となった天板9の移動を不要にすることができる。
図7は図1に示すX線診断装置1によって回避できる別の位置決めエラーの例を説明する図である。
図7は、ROIが描出された位置決め用の2Dライブ画像の例を示している。図7に示すようなROIが描出された位置決め用の2Dライブ画像データを参照しても、天板9を手動で移動させる場合には、天板9の移動距離を正確に指定できない。このため、天板9の移動距離が微小であるような場合には、ROIが画像中心となるように天板9を移動させることが困難となる場合がある。尚、図7は、天板9の手動による移動によってROIが画像中心の近傍における2点間で小刻みに往復してしまう例を示している。
これに対してX線診断装置1によれば、天板9を手動モードで移動させても、目標位置に到達すると自動的に天板9の移動が停止する。このため、ROIが参照画像の中心となるように天板9の移動距離を設定することができる。特に、カテーテルの操作を伴う場合には、手動モードで天板9を移動させる場合が多い。従って、移動距離に応じて天板9の移動をロックさせる制御が有効である。一方、電動モードによる天板9の移動制御を行えば、天板9の手動操作自体を不要にすることができる。
以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。
1 X線診断装置
2 寝台
3 撮影系
4 撮影系移動機構
5 制御系
6 データ処理系
7 入力装置
8 表示装置
9 天板
10 天板移動機構
10A 回転機構
11 C型アーム
12 X線管
13 X線検出器
14 回転機構
15 保持部
16 スライド機構
17 高電圧発生装置
18 機械駆動制御部
19 画像生成部
20 撮影位置特定部
O 被検体

Claims (10)

  1. 寝台の天板にセットされた被検体に向けてX線を照射するX線管及び前記被検体を透過したX線を検出するX線検出器を有し、少なくとも回転軸を中心に回転可能な撮影系と、
    前記被検体の関心領域を含む画像化領域における2次元のX線画像データに基づいて前記2次元のX線画像データ上における前記関心領域の位置を表す2次元座標を特定する撮影位置特定部と、
    前記関心領域の位置を表す前記2次元座標に基づいて、前記関心領域の空間位置を前記撮影系の回転軸に近づけるための前記撮影系及び前記天板の少なくとも一方の移動量を算出し、前記移動量に基づいて前記撮影系及び前記天板の少なくとも一方を移動させる制御系と、
    を備えるX線診断装置。
  2. 前記制御系は、前記2次元座標で表されない座標軸方向における前記関心領域の座標を予め決定した固定値として前記移動量を算出するように構成される請求項1記載のX線診断装置。
  3. 前記制御系は、前記関心領域と前記天板が所定の距離だけ離れているとみなして前記移動量を算出するように構成される請求項1又は2記載のX線診断装置。
  4. 前記制御系は、前記2次元のX線画像データの撮影位置に基づいて求められる、前記2次元座標に対応する空間位置を通りX線の照射方向に向かう直線と、前記天板から所定の距離だけ離れた平面との交点における3次元座標から、前記2次元のX線画像データを撮影するために曝射されたX線のコーン角の中心線までの距離を前記移動量として算出するように構成される請求項1乃至3のいずれか1項に記載のX線診断装置。
  5. 前記撮影位置特定部は、前記被検体へのX線の照射位置及びX線の照射角度の少なくとも一方が互いに異なる複数の前記2次元のX線画像データ上における前記関心領域の位置をそれぞれ表す複数の2次元座標を特定するように構成され、
    前記制御系は、前記複数の2次元座標に基づいて、前記関心領域の空間位置を前記撮影系の回転軸に近づけるための前記撮影系及び前記天板の少なくとも一方の3次元方向の移動量を算出し、前記3次元方向の移動量に基づいて前記撮影系及び前記天板の少なくとも一方を移動させるように構成される請求項1乃至4のいずれか1項に記載のX線診断装置。
  6. 前記撮影位置特定部は、前記移動量に基づいて前記撮影系及び前記天板の少なくとも一方を移動させた状態で撮影され、かつ前記関心領域が描出された第2の2次元のX線画像データに基づいて前記第2の2次元のX線画像データ上における前記関心領域の位置を表す第2の2次元座標を更に特定するように構成され、
    前記制御系は、前記第2の2次元座標に基づいて、前記関心領域の空間位置を前記撮影系の回転軸に近づけるための少なくとも前記天板の高さ方向における移動量を算出し、前記天板の高さ方向における移動量に基づいて前記天板を前記天板の高さ方向に移動させるように構成される請求項1乃至5のいずれか1項に記載のX線診断装置。
  7. 前記撮影位置特定部は、前記2次元のX線画像データに描出されたデバイス又はマーカの位置を自動検出し、検出された前記デバイス又は前記マーカの代表位置を前記関心領域の位置を表す2次元座標として特定するように構成される請求項1乃至6のいずれか1項に記載のX線診断装置。
  8. 前記撮影位置特定部は、入力装置の操作によって指定された前記2次元のX線画像データ上における位置又は前記2次元のX線画像データ上における領域の代表位置を前記関心領域の位置を表す2次元座標として特定するように構成される請求項1乃至6のいずれか1項に記載のX線診断装置。
  9. 前記制御系は、入力装置の操作によって手動で前記天板が移動している場合に前記移動量だけ前記天板が移動した位置において前記天板の移動をロックするように構成される請求項1乃至8のいずれか1項に記載のX線診断装置。
  10. 前記制御系は、前記撮影系又は前記天板を前記移動量だけ自動的に移動させるように構成される請求項1乃至8のいずれか1項に記載のX線診断装置。
JP2014075434A 2014-04-01 2014-04-01 X線診断装置 Pending JP2015195970A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075434A JP2015195970A (ja) 2014-04-01 2014-04-01 X線診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075434A JP2015195970A (ja) 2014-04-01 2014-04-01 X線診断装置

Publications (1)

Publication Number Publication Date
JP2015195970A true JP2015195970A (ja) 2015-11-09

Family

ID=54546083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075434A Pending JP2015195970A (ja) 2014-04-01 2014-04-01 X線診断装置

Country Status (1)

Country Link
JP (1) JP2015195970A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051603A1 (ja) * 2014-10-03 2017-04-27 株式会社島津製作所 X線撮影装置
EP3539474A1 (de) * 2018-03-14 2019-09-18 Siemens Healthcare GmbH Verfahren zur automatischen positionierung eines aufnahmesystems und röntgenbildgebungssystem
EP3725228A1 (en) * 2016-06-13 2020-10-21 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for x-ray scanner positioning
JP2020192440A (ja) * 2020-09-03 2020-12-03 富士フイルム株式会社 放射線撮影システムとその作動方法
CN112971814A (zh) * 2019-12-12 2021-06-18 江苏一影医疗设备有限公司 C型臂定位方法及成像方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016051603A1 (ja) * 2014-10-03 2017-04-27 株式会社島津製作所 X線撮影装置
EP3725228A1 (en) * 2016-06-13 2020-10-21 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for x-ray scanner positioning
US11000243B2 (en) 2016-06-13 2021-05-11 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for X-ray scanner positioning
US11006908B2 (en) 2016-06-13 2021-05-18 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for X-ray scanner positioning
US11564644B2 (en) 2016-06-13 2023-01-31 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for X-ray scanner positioning
EP3539474A1 (de) * 2018-03-14 2019-09-18 Siemens Healthcare GmbH Verfahren zur automatischen positionierung eines aufnahmesystems und röntgenbildgebungssystem
US10792007B2 (en) 2018-03-14 2020-10-06 Siemens Healthcare Gmbh Automatic positioning of a recording system
CN112971814A (zh) * 2019-12-12 2021-06-18 江苏一影医疗设备有限公司 C型臂定位方法及成像方法
CN112971814B (zh) * 2019-12-12 2022-10-21 江苏一影医疗设备有限公司 C型臂定位方法及成像方法
JP2020192440A (ja) * 2020-09-03 2020-12-03 富士フイルム株式会社 放射線撮影システムとその作動方法
JP7049416B2 (ja) 2020-09-03 2022-04-06 富士フイルム株式会社 放射線撮影システムとその作動方法

Similar Documents

Publication Publication Date Title
JP4703119B2 (ja) X線診断装置
JP5675117B2 (ja) X線ct装置及びx線ct装置の制御プログラム
JP6822781B2 (ja) 医用画像診断装置
US10813609B2 (en) X-ray imaging apparatus
JP5388472B2 (ja) 制御装置、x線撮影システム、制御方法、及び当該制御方法をコンピュータに実行させるためのプログラム。
JP5437001B2 (ja) 放射線撮影装置
JP6466132B2 (ja) 医用画像処理装置及びx線画像診断装置
JP2015195970A (ja) X線診断装置
JP2018089065A (ja) X線透視装置
JP2007007255A (ja) X線ct装置
JP2002136507A (ja) X線診断装置
JP2008148866A (ja) X線画像診断装置及び移動制御方法
JP6970203B2 (ja) コンピュータ断層撮影および撮像されるべき解剖学的構造の位置決め
JP2020156620A (ja) X線撮影装置
JP2016036515A (ja) X線診断装置
JP2018153277A (ja) X線透視装置
JP4697642B2 (ja) Ct装置
JP7000795B2 (ja) 放射線撮影装置
JP2014057664A (ja) 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JP2014195642A (ja) X線診断装置
JP2012100738A (ja) 放射線断層撮影装置
JP2017209333A (ja) 放射線治療システム
JP6179394B2 (ja) 放射線撮影装置
JP6380237B2 (ja) 放射線透視装置
JP6716196B2 (ja) X線装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160510