JP2015193848A - Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith - Google Patents

Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith Download PDF

Info

Publication number
JP2015193848A
JP2015193848A JP2015114848A JP2015114848A JP2015193848A JP 2015193848 A JP2015193848 A JP 2015193848A JP 2015114848 A JP2015114848 A JP 2015114848A JP 2015114848 A JP2015114848 A JP 2015114848A JP 2015193848 A JP2015193848 A JP 2015193848A
Authority
JP
Japan
Prior art keywords
heat
mass
thermal radiation
coating material
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015114848A
Other languages
Japanese (ja)
Other versions
JP6517086B2 (en
Inventor
森本 剛
Takeshi Morimoto
剛 森本
晃 永井
Akira Nagai
永井  晃
稲田 禎一
Teiichi Inada
禎一 稲田
雄一郎 坂本
Yuichiro Sakamoto
雄一郎 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015114848A priority Critical patent/JP6517086B2/en
Publication of JP2015193848A publication Critical patent/JP2015193848A/en
Application granted granted Critical
Publication of JP6517086B2 publication Critical patent/JP6517086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a heat-radiating coating material which can enhance emissivity in the infrared region, and efficiently radiating heat; and a light-emitting diode (LED) illumination, a heat sink, and a solar cell module back sheet each coated therewith.SOLUTION: The heat-radiating coating material includes: (a) a ceramic powder with an average particle size of 0.1-50 μm, containing a zinc oxide powder and/or a titanium oxide powder; and (b) a binder. The content of the (a) component is 25-100 pts.mass based on 100 pts.mass of the (b) component.

Description

本発明は、高い熱放射性を有し、発生する熱を赤外線として効率よく系外へ放出する、熱放射性塗料及びそれを塗布した発光ダイオード(LED)照明、ヒートシンク、太陽電池モジュール用バックシートに関する。   The present invention relates to a heat-radiating paint that has high heat radiation and efficiently releases generated heat as infrared rays to the outside of the system, and to a light emitting diode (LED) illumination, a heat sink, and a solar cell module backsheet coated with the same.

黒体放射で知られているように、熱放射とは物体から電磁波、特に赤外線として熱エネルギーが物体から放出される現象のことである。これに対して、熱源から放射された電磁波によって物体が温められる現象を熱エネルギーの吸収という。熱放射と熱吸収はエネルギー変換の方向が逆であり、その方向は熱力学第2法則に従う。熱放射を有利に進行させるためには、広領域の波長で電磁波を吸収することと表面積を大きくすることが挙げられる。しかし、LED(発光ダイオード)照明や電子部品等の発熱温度は70〜200℃程度であり、この熱は赤外領域で放射されるため完全黒体である必要はない。セラミックスは赤外領域で選択的に熱放射する特徴をもつためこれまで多く使用されてきた(特許文献1〜3参照)。   As is known in black body radiation, thermal radiation is a phenomenon in which heat energy is emitted from an object as electromagnetic waves, particularly infrared rays. In contrast, the phenomenon in which an object is warmed by electromagnetic waves radiated from a heat source is called thermal energy absorption. Thermal radiation and heat absorption have opposite energy conversion directions, which follow the second law of thermodynamics. In order to advance thermal radiation advantageously, it is possible to absorb electromagnetic waves at a wide wavelength range and to increase the surface area. However, the heat generation temperature of LED (light emitting diode) illumination, electronic components, etc. is about 70 to 200 ° C., and since this heat is radiated in the infrared region, it is not necessary to be a complete black body. Ceramics have been widely used so far because they have a feature of selectively emitting heat in the infrared region (see Patent Documents 1 to 3).

特開平3−136807号公報JP-A-3-136807 特開平10−279845号公報Japanese Patent Laid-Open No. 10-279845 特開2004−43612号公報JP 2004-43612 A

しかしながら、従来の技術では熱放射性と塗膜密着性を両立させることは困難な場合があった。
本発明は、赤外領域の放射率を高め、効率よく放熱できる、熱放射性塗料及びそれを塗布した発光ダイオード(LED)照明、ヒートシンク、太陽電池モジュール用バックシートを提供することを目的とする。
However, with conventional techniques, it may be difficult to achieve both thermal radiation and coating film adhesion.
It is an object of the present invention to provide a thermal radiation coating, a light emitting diode (LED) illumination, a heat sink, and a solar cell module back sheet on which the emissivity in the infrared region is increased and heat can be efficiently radiated.

本発明者らは、上記問題点を解決すべく検討した結果、特定のセラミックスを使用し、さらにセラミックス粉末(以下、セラミックスとも表す)とバインダーの配合比をある特定の比とすることにより、熱放射性と塗膜密着性を高めることを見出した。   As a result of investigations to solve the above problems, the present inventors have used specific ceramics, and further made the mixing ratio of ceramic powder (hereinafter also referred to as ceramics) and binder a certain specific ratio, It has been found that the radiation and coating film adhesion are improved.

本発明は、(a)平均粒径が0.1〜50μmで、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方を含むセラミックス粉末と、(b)熱硬化性樹脂あるいはコロイダルシリカであるバインダーとを含み、該バインダー100質量部に対し、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方の合計を30〜100質量部含む熱放射性塗料に関する。   The present invention includes (a) a ceramic powder having an average particle diameter of 0.1 to 50 μm and containing zinc oxide powder and / or titanium oxide powder, and (b) a binder which is a thermosetting resin or colloidal silica. Further, the present invention relates to a thermal radiation coating material containing 30 to 100 parts by mass of zinc oxide powder or titanium oxide powder or a total of both to 100 parts by mass of the binder.

また本発明は、(b)バインダーが、フェノール樹脂、アルキド樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコン樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ゴム系樹脂、塩化ビニル樹脂、フッ素樹脂、セルロースガム、コロイダルシリカのうち少なくとも1種である前記の熱放射性塗料に関する。   In the present invention, (b) the binder is phenol resin, alkyd resin, melamine urea resin, epoxy resin, polyurethane resin, silicon resin, vinyl acetate resin, acrylic resin, chlorinated rubber resin, vinyl chloride resin, fluororesin, cellulose The present invention relates to the above-mentioned thermal radiation paint which is at least one of gum and colloidal silica.

また本発明は、波長域2〜22μmにおける放射率が0.90以上である前記の熱放射性塗料に関する。   The present invention also relates to the above-mentioned thermal radiation paint having an emissivity of 0.90 or more in a wavelength range of 2 to 22 μm.

また本発明は、前記の熱放射性塗料を平均膜厚1〜50μmで塗布された発光ダイオード(LED)照明に関する。   Moreover, this invention relates to the light emitting diode (LED) illumination which apply | coated the said heat radiation coating material with the average film thickness of 1-50 micrometers.

また本発明は、前記の熱放射性塗料を平均膜厚1〜50μmで塗布されたヒートシンクに関する。   The present invention also relates to a heat sink in which the thermal radiation paint is applied with an average film thickness of 1 to 50 μm.

また本発明は、前記の熱放射性塗料を平均膜厚1〜50μmで塗布された太陽電池モジュール用バックシートに関する。   Moreover, this invention relates to the solar cell module backsheet which apply | coated said thermal radiation coating material with the average film thickness of 1-50 micrometers.

本発明によって、赤外領域の放射率を高め、効率よく放熱できる熱放射性塗料及びそれを塗布した発光ダイオード(LED)照明、ヒートシンク、太陽電池モジュール用バックシートを提供することが可能となった。   According to the present invention, it has become possible to provide a thermal radiation paint that can increase the emissivity in the infrared region and efficiently dissipate heat, and a light emitting diode (LED) illumination, a heat sink, and a solar cell module backsheet coated with the same.

塗料を塗装したLED電球の温度の測定方法を示した模式図である。It is the schematic diagram which showed the measuring method of the temperature of the LED bulb which applied the coating material. 塗料を塗装したヒートシンクを示した模式図である。It is the schematic diagram which showed the heat sink which applied the coating material. 塗料を塗装した太陽電池モジュール用バックシートを示した展開図である。It is the expanded view which showed the solar cell module backsheet which applied the coating material.

本発明の実施の形態について以下説明する。
本発明は、(a)平均粒径が0.1〜50μmで、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方を含むセラミックス粉末と、(b)熱硬化性樹脂あるいはコロイダルシリカであるバインダーとを含み、該バインダー100質量部に対し、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方の合計を30〜100質量部含む熱放射性塗料である。
Embodiments of the present invention will be described below.
The present invention includes (a) a ceramic powder having an average particle diameter of 0.1 to 50 μm and containing zinc oxide powder and / or titanium oxide powder, and (b) a binder which is a thermosetting resin or colloidal silica. The heat-radiating paint contains 30 to 100 parts by mass of zinc oxide powder or titanium oxide powder or a total of both with respect to 100 parts by mass of the binder.

本発明で用いる酸化亜鉛粉末、酸化チタン粉末としては、従来公知のものが使用でき、特に限定されない。例えば、市販されている23−K(ハクスイテック株式会社製、酸化亜鉛)、TIG R−900(デュポン株式会社製、酸化チタン)、JR−1000(テイカ株式会社製、酸化チタン)などを好適に用いることができる。また、その他熱放射特性を有するセラミックス粉末を含んでもよく、従来公知のものが使用でき、特に限定されない。これ以下、セラミックス粉末とは酸化亜鉛粉末、酸化チタン粉末も含んだ総称として用いる。他に用いることができるセラミックス粉末としては、例えば、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化鉄、酸化銅、酸化ニッケル、酸化コバルトの粉末等が挙げられる。   A conventionally well-known thing can be used as a zinc oxide powder and titanium oxide powder used by this invention, It does not specifically limit. For example, commercially available 23-K (manufactured by Hakusuitec Co., Ltd., zinc oxide), TIG R-900 (manufactured by DuPont Co., Ltd., titanium oxide), JR-1000 (manufactured by Teika Co., Ltd., titanium oxide) and the like are preferably used. be able to. Moreover, the ceramic powder which has another heat radiation characteristic may be included, a conventionally well-known thing can be used and it does not specifically limit. Hereinafter, the ceramic powder is used as a generic term including zinc oxide powder and titanium oxide powder. Other ceramic powders that can be used include, for example, powders of silicon oxide, zirconium oxide, magnesium oxide, iron oxide, copper oxide, nickel oxide, and cobalt oxide.

本発明における酸化亜鉛粉末、酸化チタン粉末の粒子の平均粒径は、熱放射性の観点から0.1〜50μmであるが、塗膜性の観点から1〜45μmであることが好ましい。これら以外に用いることができるセラミックス粉末の平均粒径においても、好ましくは0.1〜50μm、より好ましくは1〜45μmである。セラミックス粉末の平均粒径が50μmを超えると効率よく熱放射性するための推奨膜厚50μmの膜を貫通してしまい、塗膜の強度や被塗装体との接着強度、密着力が低下する恐れがある。一方、セラミックス粉末の平均粒径が0.1μm未満であると、セラミックス粉末が、バインダーに完全に覆われてしまい、熱放射性塗料の塗膜表面の放射率を低下させてしまう恐れがある。これらセラミックス粉末は、単独または2種またはそれ以上で使用されてもよく、遠赤外域の放射性に優れる酸化チタン、酸化ケイ素や近赤外域も高放射性を有する酸化亜鉛を組み合わせて使用することも可能である。
なお、セラミックス粉末の平均粒径は、例えば、レーザ回折式粒度分布測定法等で測定することができる。
The average particle diameter of the zinc oxide powder and titanium oxide powder in the present invention is 0.1 to 50 μm from the viewpoint of thermal radiation, but is preferably 1 to 45 μm from the viewpoint of coating properties. The average particle diameter of the ceramic powder that can be used in addition to these is also preferably 0.1 to 50 μm, more preferably 1 to 45 μm. If the average particle size of the ceramic powder exceeds 50 μm, it penetrates through a film with a recommended film thickness of 50 μm for efficient thermal radiation, and there is a risk that the strength of the coating film, the adhesive strength with the object to be coated, and the adhesive strength will be reduced. is there. On the other hand, if the average particle size of the ceramic powder is less than 0.1 μm, the ceramic powder is completely covered with the binder, which may reduce the emissivity of the surface of the coating film of the thermal radiation paint. These ceramic powders may be used alone or in combination of two or more. It is also possible to use titanium oxide with excellent far-infrared radiation, silicon oxide or zinc oxide with high radiation in the near-infrared region. It is.
The average particle size of the ceramic powder can be measured by, for example, a laser diffraction particle size distribution measurement method.

本発明におけるセラミックス粉末は空孔を有していてもよい。また、セラミック粉末の一次粒子が凝集することにより空孔を形成されていてもよい。空孔を有するセラミックスを含むことで放射率が向上する傾向がある。これについて、本願発明者らは、空孔を有していることで塗装後に塗膜表面に浮き上がって、熱放射性塗料の塗膜の表面積を拡大できることで放射率を高めることができる、と考えている。また、表面のセラミックス粉末の割合が増加し、樹脂(バインダー)の割合が減少することでセラミックス本来の放射率を発現することができる、と考えている。   The ceramic powder in the present invention may have pores. Further, pores may be formed by agglomeration of primary particles of the ceramic powder. Inclusion of ceramics having pores tends to improve the emissivity. In this regard, the inventors of the present application think that the emissivity can be increased by increasing the surface area of the coating film of the thermal radiation paint by floating on the coating film surface after painting due to having pores. Yes. Further, it is considered that the emissivity inherent in ceramics can be expressed by increasing the proportion of ceramic powder on the surface and decreasing the proportion of resin (binder).

本発明の熱放射性塗料は、波長域2〜22μmにおける放射率が0.90以上であることが好ましい。なお、放射率(熱放射率とも表す)を求めるためには、一般的に、放射率測定器TSS−5X(ジャパンセンサー株式会社製、波長域2〜22μm)を使用、測定はアクリルケース内で行う。放射率(熱放射率)が0.90未満では、非金属に対して放熱効果が不十分である可能がある。   The thermal radiation coating material of the present invention preferably has an emissivity of 0.90 or more in a wavelength range of 2 to 22 μm. In order to obtain the emissivity (also referred to as thermal emissivity), an emissivity measuring device TSS-5X (manufactured by Japan Sensor Co., Ltd., wavelength range 2 to 22 μm) is generally used, and the measurement is performed in an acrylic case. Do. If the emissivity (thermal emissivity) is less than 0.90, the heat dissipation effect may be insufficient for non-metals.

本発明に用いられるバインダーとしては、従来公知のものが使用でき、特に限定されないが、例えば、合成樹脂や水系エマルション樹脂などのエマルション樹脂が挙げられる。合成樹脂としては、アルキド樹脂、アミノアルキド樹脂、アクリル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリウレタン、ポリ塩化ビニル、ポリ酢酸ビニル等の合成樹脂があり、中でも価格の観点からアクリル樹脂が好ましい。また水系エマルション樹脂としては、シリコンアクリルエマルション、アクリルエマルション、ウレタンエマルション、ウレタンアクリルエマルション等があり、中でも分散性、耐熱性の観点からシリコンアクリルエマルションが好ましい。更に、合成樹脂は、機械安定性が良く、ガラス転移温度(以下、Tgと略す)が0〜70℃のものが好ましい。0℃未満では、付着性は良いが塗膜が柔軟すぎて、耐摩耗性、耐汚染性、乾燥性、塗膜強度が劣る。70℃を超えると、過剰の造膜助剤の添加、塗料の粘度の著しい上昇、塗膜の柔軟性の低下によるクラックが発生し、更には塗膜の耐水性が低下する傾向がある。0〜70℃の範囲であれば前述のようなことが生じず良好な塗膜となる。   As the binder used in the present invention, conventionally known binders can be used, and are not particularly limited, and examples thereof include emulsion resins such as synthetic resins and aqueous emulsion resins. Synthetic resins include alkyd resin, amino alkyd resin, acrylic resin, phenol resin, urea resin, melamine resin, epoxy resin, polyurethane, polyvinyl chloride, polyvinyl acetate, etc., and acrylic resin from the viewpoint of price. Is preferred. Examples of the water-based emulsion resin include silicon acrylic emulsion, acrylic emulsion, urethane emulsion, urethane acrylic emulsion, and the like. Among them, silicon acrylic emulsion is preferable from the viewpoint of dispersibility and heat resistance. Furthermore, the synthetic resin preferably has good mechanical stability and a glass transition temperature (hereinafter abbreviated as Tg) of 0 to 70 ° C. Below 0 ° C., the adhesion is good, but the coating film is too flexible and the wear resistance, stain resistance, drying property, and coating film strength are poor. When the temperature exceeds 70 ° C., excessive film-forming aids are added, the viscosity of the paint is remarkably increased, cracks are caused by a decrease in the flexibility of the coating film, and the water resistance of the coating film tends to decrease. If it is the range of 0-70 degreeC, the above thing does not arise and it becomes a favorable coating film.

また、バインダーとして使用される合成樹脂の平均分子量(ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量)は、100,000〜200,000が好ましい。平均分子量が100,000未満のものを使用すると、塗膜強度が弱すぎて、塗膜がちぎれるように剥離したり、耐汚染性が劣る傾向がある。また200,000を超えると、塗膜強度、耐汚染性は問題ないが、粘度が高くなる傾向がある。より好ましくは130,000〜170,000である。重量平均分子量が前記範囲であれば前述のようなことが生じず良好な塗膜となる。水系エマルション樹脂の場合は、固形分濃度(以下、NVと略す)が43〜62質量%であることが好ましい。43質量%未満の場合、塗料中のNVが低くなり、乾燥性に劣る傾向があり、62質量%を超えると塗料粘度が上昇したり、耐クラック性が低下する傾向がある。合成樹脂、水系エマルション樹脂等のバインダーの配合量は、熱放射性塗料に対して10〜70質量%が好ましく、20〜60質量%がより好ましく、30〜50質量%がさらに好ましい。10質量%未満では塗料粘度の増加により作業性が傾向にあり、一方70質量%を超えると乾燥性、汚染性が劣る傾向にある。   Moreover, the average molecular weight (weight average molecular weight in terms of standard polystyrene by gel permeation chromatography) of the synthetic resin used as the binder is preferably 100,000 to 200,000. If a polymer having an average molecular weight of less than 100,000 is used, the coating film strength is too weak, and the coating film may be peeled off such that the coating film is torn off or the stain resistance tends to be poor. On the other hand, if it exceeds 200,000, there is no problem in coating strength and stain resistance, but the viscosity tends to increase. More preferably, it is 130,000-170,000. If the weight average molecular weight is in the above range, the above-mentioned phenomenon does not occur and a good coating film is obtained. In the case of an aqueous emulsion resin, the solid content concentration (hereinafter abbreviated as NV) is preferably 43 to 62% by mass. When the amount is less than 43% by mass, the NV in the coating tends to be low and the drying property tends to be inferior. When the amount exceeds 62% by mass, the viscosity of the coating tends to increase or the crack resistance tends to decrease. 10-70 mass% is preferable with respect to a thermal radiation coating material, and, as for the compounding quantity of binders, such as a synthetic resin and water-system emulsion resin, 20-60 mass% is more preferable, and 30-50 mass% is further more preferable. If it is less than 10% by mass, the workability tends to increase due to an increase in the viscosity of the paint, while if it exceeds 70% by mass, the drying property and the contamination tend to be inferior.

また、200℃を超える高温部位への適用の場合、耐熱性を付与するために、バインダーとして熱硬化性樹脂を含むことが特に好ましい。かかる熱硬化性樹脂は、市販のものを入手可能であり、常法により合成することもできる。熱硬化性樹脂としては、好ましくはエポキシ樹脂が挙げられ、YDCN−700−10、YSLV−80XY(東都化成株式会社製、商品名)などが挙げられる。この樹脂の硬化剤としては、通常用いられている公知の硬化剤を使用することができる。例えば、アミン類、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA、ビスフェノールF、ビスフェノールSのようなフェノール性水酸基を1分子中に2個以上有するビスフェノール類、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂又はクレゾールノボラック樹脂等のフェノール樹脂などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。かかるフェノール樹脂は、市販のものを入手可能であり、常法により合成することもできる。市販の上記フェノール樹脂としては、例えば、ミレックスXLCシリーズ及びミレックスXLシリーズ(以上、三井化学株式会社製、商品名)、並びに、HE−200C−10(日本エアウォーター株式会社製、フェノール樹脂、商品名))が挙げられる。   In addition, in the case of application to a high temperature region exceeding 200 ° C., it is particularly preferable to include a thermosetting resin as a binder in order to impart heat resistance. Such a thermosetting resin is commercially available and can be synthesized by a conventional method. As a thermosetting resin, Preferably an epoxy resin is mentioned, YDCN-700-10, YSLV-80XY (the Toto Kasei Co., Ltd. make, brand name) etc. are mentioned. As a curing agent for this resin, a known curing agent that is usually used can be used. For example, bisphenols having two or more phenolic hydroxyl groups in one molecule such as amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenol A, bisphenol F, bisphenol S, phenol novolac resins, bisphenol A Examples thereof include phenolic resins such as novolak resin and cresol novolak resin. These are used singly or in combination of two or more. Such a phenol resin is commercially available and can be synthesized by a conventional method. Examples of the commercially available phenol resins include the Millex XLC series and the Millex XL series (trade name, manufactured by Mitsui Chemicals, Inc.), and HE-200C-10 (produced by Nippon Air Water Co., Ltd., phenol resin, trade name). )).

また、コロイダルシリカ等をバインダーとして用いてゾルゲル法で焼結後の塗膜は、塗膜全てがセラミックスとなり高い熱放射性と高い耐熱性を有することができる。   In addition, the coating film after sintering by the sol-gel method using colloidal silica or the like as a binder can be made into a ceramic, and can have high heat radiation and high heat resistance.

本発明は、(a)平均粒径が0.1〜50μmで、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方を含むセラミックスと、(b)バインダーとを含み、該(b)成分100質量部に対し該(a)成分を25〜100質量部含む熱放射性塗料である。また、上記(b)バインダー100質量部に対して、上記酸化粉末あるいは酸化チタン粉末の一方またはその両方を含むセラミックス(粉末)は、30〜100質量部であることが好ましい。さらに、熱放射性の観点から40〜90質量部であることが好ましく、塗膜性の観点から50〜85質量部であることが特に好ましい。上記(a)成分が25質量部未満の場合はバインダー内に埋もれてしまい熱放射性能を低下させる恐れがある。また、上記(a)成分が100質量部を超えると塗膜表面に不規則な凹凸が多数現れて外観を損ねる可能性がある。   The present invention includes (a) a ceramic having an average particle diameter of 0.1 to 50 μm and containing zinc oxide powder and / or titanium oxide powder, and (b) a binder, On the other hand, it is a thermal radiation coating containing 25 to 100 parts by mass of the component (a). Moreover, it is preferable that the ceramic (powder) containing one or both of the oxide powder and the titanium oxide powder is 30 to 100 parts by mass with respect to 100 parts by mass of the binder (b). Furthermore, it is preferable that it is 40-90 mass parts from a thermal radiation viewpoint, and it is especially preferable that it is 50-85 mass parts from a coating-film viewpoint. When the component (a) is less than 25 parts by mass, the component is buried in the binder and the heat radiation performance may be deteriorated. Moreover, when the said (a) component exceeds 100 mass parts, many irregular irregularities appear on the coating-film surface, and there exists a possibility of impairing an external appearance.

本発明で使用される熱放射性塗料には、一般に上記成分と共にその他の成分を充填又は混練して製造されてもよい。このような成分としては、造膜助剤、可塑剤、顔料、シランカップリング剤、分散剤、消泡剤等がある。   In general, the heat-radiating paint used in the present invention may be produced by filling or kneading other components together with the above components. Examples of such components include a film forming aid, a plasticizer, a pigment, a silane coupling agent, a dispersant, and an antifoaming agent.

造膜助剤としては、ブチルカルビトールアセテート、ブチルカルビトール、ブチルセロソルブ、ブチルセロソルブアセテート、ベンジルアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、2,2,4−トリメチル−1,3−ペンタンジオールジイソブチレート、2,2,4−トリメチル−1,3−ペンタンジオール2−エチルヘキサノエート イソブチレート、2,2,4−トリメチル−1,3−ペンタンジオール ジ2−エチルヘキサノエート、2−エチルヘキシルグリコール、プロピレングリコールモノブチルエーテル等が挙げられる。前記造膜助剤の含有量は、熱放射性塗料中、0.1〜20質量%含有することが好ましく、0.5〜10質量%含有することがより好ましく、1〜5質量%含有することがさらに好ましい。ここで造膜助剤の含有量が0.1質量%未満では塗装時の成膜が得られない傾向があり、20質量%を超えると、成膜は良好であるが塗膜乾燥が悪化する傾向がある。   As film-forming aids, butyl carbitol acetate, butyl carbitol, butyl cellosolve, butyl cellosolve acetate, benzyl acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, 2,2,4-trimethyl 1,3-pentanediol diisobutyrate, 2,2,4-trimethyl-1,3-pentanediol 2-ethylhexanoate isobutyrate, 2,2,4-trimethyl-1,3-pentanediol di-2- Examples include ethyl hexanoate, 2-ethylhexyl glycol, and propylene glycol monobutyl ether. The content of the film-forming auxiliary is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and 1 to 5% by mass in the thermal radiation coating. Is more preferable. Here, if the content of the film-forming auxiliary is less than 0.1% by mass, there is a tendency that film formation at the time of coating cannot be obtained, and if it exceeds 20% by mass, the film formation is good but the drying of the coating film is deteriorated. Tend.

可塑剤としては、ジオクチルフタレート(DOP)等のフタル酸エステル、トリエチルホスフェート(TEP)、トリブチルホスフェート(TBP)等のリン酸エステル、フェニルグリシジルエーテル(PGE)、ベンジルアルコール、アセチルクエン酸系可塑剤、エポキシ系可塑剤、トリメット系可塑剤等が挙げられる。可塑剤の配合量は、熱放射性塗料中、0.5〜5質量%が好ましく、1〜4質量%がより好ましく、1.5〜2.5質量%がさらに好ましい。0.5質量%未満では低温時の可とう性が劣る傾向があり、一方5質量%を超えると乾燥性、汚染性が劣る傾向がある。   Examples of the plasticizer include phthalic acid esters such as dioctyl phthalate (DOP), phosphoric acid esters such as triethyl phosphate (TEP) and tributyl phosphate (TBP), phenyl glycidyl ether (PGE), benzyl alcohol, acetyl citrate plasticizer, An epoxy plasticizer, a trimet plasticizer, etc. are mentioned. 0.5-5 mass% is preferable in a thermal radiation coating material, and, as for the compounding quantity of a plasticizer, 1-4 mass% is more preferable, and 1.5-2.5 mass% is further more preferable. If it is less than 0.5% by mass, the flexibility at low temperature tends to be inferior, whereas if it exceeds 5% by mass, the drying property and the contamination tend to be inferior.

シランカップリング剤としては種々のものが挙げられ、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、イソシアネート基、スルフィド基等の官能基を持つ物が挙げられるが、エポキシ基が好ましい。前記シランカップリング剤は、熱放射性塗料中、0.01〜5質量%含有されることが好ましく、0.02〜4質量%含有合されることがより好ましく、0.03〜3質量%含有されることがさらに好ましい。ここで、シランカップリング剤の含有量が0.01質量%未満であると塗膜強度、耐水性向上の効果が不十分となる傾向があり、5質量%を超えると塗料バランスがくずれ、接着力、粘度、耐クラック性、などの低下や経日増粘する傾向がある。   Examples of silane coupling agents include various ones having functional groups such as epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, amino groups, ureido groups, chloropropyl groups, mercapto groups, isocyanate groups, and sulfide groups. An epoxy group is preferable. The silane coupling agent is preferably contained in the thermal radiation paint in an amount of 0.01 to 5% by mass, more preferably 0.02 to 4% by mass, and 0.03 to 3% by mass. More preferably. Here, if the content of the silane coupling agent is less than 0.01% by mass, the effect of improving the coating film strength and water resistance tends to be insufficient. There is a tendency to decrease in strength, viscosity, crack resistance, etc. and increase in viscosity over time.

分散剤としては、ポリカルボン酸のアルキルアミン塩、アルキルアンモニウム塩、アルキルロールアミノアマイド、ポリカルボン酸ポリアミノアマイド、アクリル系共重合物のアンモニウム塩、ポリカルボン酸ナトリウム塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アミノアルコール塩、ポリアミノアマイド系カルボン酸塩、ポリアミノアマイド系の極性酸エステル塩等が挙げられる。   Examples of dispersants include polycarboxylic acid alkylamine salts, alkylammonium salts, alkylroll aminoamides, polycarboxylic acid polyaminoamides, acrylic copolymer ammonium salts, polycarboxylic acid sodium salts, polycarboxylic acid ammonium salts, polycarboxylic acid salts. Examples thereof include carboxylic acid amino alcohol salts, polyaminoamide carboxylates, and polyaminoamide polar acid ester salts.

消泡剤としては、変性シリコーン系消泡剤、特殊シリコーン系消泡剤、シリコーン系消泡剤、シリカ系消泡剤、シリカシリコーン系消泡剤、疎水性シリカ、疎水性シリコーン、ワックス、特殊ワックス、ポリシロキサン等が挙げられる。   Antifoaming agent includes modified silicone antifoaming agent, special silicone antifoaming agent, silicone antifoaming agent, silica antifoaming agent, silica silicone antifoaming agent, hydrophobic silica, hydrophobic silicone, wax, special Examples thereof include wax and polysiloxane.

分散剤、消泡剤の配合量は、各々、熱放射性塗料中、0.1〜5質量%が好ましく、0.3〜4質量%がより好ましく、0.5〜3質量%がさらに好ましい。0.1質量%未満では、塗料の分散、消泡性が低くなる傾向がある。一方5質量%を超えると、分散、消泡性は良好であるが、塗装時において塗膜表面にはじきや柚子肌現象が生じやすくなる。   The blending amount of the dispersant and the antifoaming agent is preferably 0.1 to 5% by mass, more preferably 0.3 to 4% by mass, and still more preferably 0.5 to 3% by mass in the thermal radiation coating. If it is less than 0.1% by mass, the dispersion and antifoaming properties of the paint tend to be low. On the other hand, if it exceeds 5% by mass, the dispersion and defoaming properties are good, but repellency and cocoon skin phenomenon tend to occur on the coating surface during coating.

本発明の熱放射性塗料を用いて塗料を製造する場合、塗料の製造方法は特に制限はないが、まず、セラミックス粉末をバインダーに分散させる必要がある。この方法としては通常、バインダー及びセラミックス粉末を水又は有機溶剤と混合し、この混合物を三本ロール、ボールミル、サンドミル、ビーズミル、ニーダー等の各種分散、混錬装置を用いて分散、混練することにより行うことができる。バインダーがエマルション樹脂である場合には、水又は有機溶剤は必ずしも必要ではなく、必要に応じて適宜使用することができる。   When producing a paint using the thermal radiation paint of the present invention, the production method of the paint is not particularly limited, but first, it is necessary to disperse ceramic powder in a binder. As this method, a binder and ceramic powder are usually mixed with water or an organic solvent, and this mixture is dispersed and kneaded using various dispersing and kneading devices such as a three roll, ball mill, sand mill, bead mill, kneader and the like. It can be carried out. In the case where the binder is an emulsion resin, water or an organic solvent is not always necessary, and can be appropriately used as necessary.

また、セラミックスの分散時に上記の分散剤を用いると、顔料の分散性や分散安定性が良好になり好ましい。なお、顔料としては、亜鉛華、鉛白、リトポン、二酸化チタン、ウルトラマリン青、プロシア青(フェロシアン化鉄カリ)、カーボンブラック等の無機顔料、あるいは、アゾ化合物等を成分とする有機顔料が挙げられる。
分散剤は、セラミックス粉末の分散時に顔料100質量部に対して50質量部以下で用いることが好ましい。大粒径二酸化チタン、シリカ粉又はシリケート粉、その他の成分は、それぞれ、顔料分散時に加えてもよく、分散後に加えてもよい。同様に水又は有機溶剤もセラミックス粉末の分散時に全量用いてもよく、それらの一部を分散後に加えてもよい。ただし、水や有機溶剤は、分散時のバインダー及びセラミックス粉末の全量100質量部に対して、分散時に少なくとも50質量部以上用いることが好ましい。50質量部未満では、分散時の粘度が高すぎて、特にボールミル、サンドミル、ビーズミル等で分散する場合には分散が困難になる可能性がある。
In addition, it is preferable to use the above-mentioned dispersant when dispersing the ceramic because the dispersibility and dispersion stability of the pigment are improved. Examples of the pigment include inorganic pigments such as zinc white, lead white, lithopone, titanium dioxide, ultramarine blue, prussian blue (potassium ferrocyanide), carbon black, or organic pigments containing azo compounds as components. Can be mentioned.
The dispersant is preferably used in an amount of 50 parts by mass or less with respect to 100 parts by mass of the pigment when the ceramic powder is dispersed. The large particle diameter titanium dioxide, silica powder or silicate powder, and other components may be added at the time of pigment dispersion or after dispersion. Similarly, water or an organic solvent may be used in its entirety when the ceramic powder is dispersed, or a part thereof may be added after the dispersion. However, it is preferable to use at least 50 parts by weight of water or organic solvent at the time of dispersion with respect to 100 parts by weight of the total amount of binder and ceramic powder at the time of dispersion. If it is less than 50 parts by mass, the viscosity at the time of dispersion is too high, and it may be difficult to disperse particularly when dispersed with a ball mill, sand mill, bead mill or the like.

分散時に用いる水又は有機溶剤としては特に制限はなく、有機溶剤としては、例えば、ケトン系、アルコール系、芳香族系等が挙げられる。具体的には、アセトン、メチルエチルケトン、シクロヘキサン、エチレングリコール、プロピレングリコール、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブチルアルコール、ベンゼン、トルエン、キシレン、乳酸エチル、酢酸エチル等が挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   There is no restriction | limiting in particular as water or the organic solvent used at the time of dispersion | distribution, As an organic solvent, a ketone type, alcohol type, an aromatic type etc. are mentioned, for example. Specific examples include acetone, methyl ethyl ketone, cyclohexane, ethylene glycol, propylene glycol, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, benzene, toluene, xylene, ethyl lactate, and ethyl acetate. These may be used alone or in combination of two or more.

ただし、水もしくは有機溶剤の選定は、セラミックス、分散剤等、他の材料との組み合わせにおいて適切に決められるものであり、場合によっては、ある有機溶剤を用いると本発明の特徴である熱放射性能が特定の範囲からはずれることになれば、その有機溶剤はその系には使用できないことは自明である。したがって、用いる有機溶剤に制限はないが、その系に適した有機溶剤を選定しなければならない。   However, the selection of water or an organic solvent is appropriately determined in combination with other materials such as ceramics and a dispersant, and in some cases, when a certain organic solvent is used, the heat radiation performance that is a feature of the present invention Obviously, the organic solvent cannot be used in the system. Therefore, although there is no restriction | limiting in the organic solvent to be used, You must select the organic solvent suitable for the type | system | group.

次にこのようにして得られた熱放射性塗料の塗布方法としては、ハケ塗り、スプレー塗布、ロールコータ塗布が好ましいが、塗布する対象物により、静電塗装、カーテン塗装、浸漬方法、電着塗装等も適用可能である。さらに塗布後、乾燥させて塗膜化させる方法については、自然乾燥、焼き付け等の方法を用いることができ、塗料性状等によって適宜選択される。   Next, the application method of the thermal radiation paint thus obtained is preferably brush application, spray application, roll coater application, but depending on the object to be applied, electrostatic coating, curtain coating, dipping method, electrodeposition coating Etc. are also applicable. Further, after coating, the method of drying to form a coating film may be a method such as natural drying or baking, which is appropriately selected depending on the paint properties and the like.

熱放射性塗料の塗装後の平均膜厚に関して特に限定されないが、50μm以下であることが好ましい。50μmを超えると、膜内の熱抵抗の影響が無視できず、塗膜表面まで熱が十分に伝わらずに放熱効率を低下させる恐れがある。また、平均膜厚は1μm以上であることが好ましい。1μm未満では、放熱効果が十分発揮できない恐れがある。   Although it does not specifically limit regarding the average film thickness after application | coating of a thermal radiation coating material, It is preferable that it is 50 micrometers or less. If it exceeds 50 μm, the influence of the thermal resistance in the film cannot be ignored, and heat may not be sufficiently transmitted to the surface of the coating film, which may reduce the heat radiation efficiency. Moreover, it is preferable that an average film thickness is 1 micrometer or more. If it is less than 1 μm, the heat dissipation effect may not be sufficiently exhibited.

上記熱放射性塗料を塗装する系は特に限定されないが、LED電球(LED照明)用をはじめとするヒートシンクや液晶テレビのバックシャーシなどへ適用が可能である。例えばAl製ヒートシンク2が挙げられる。塗装方法は前記方法で行なわれ、図2のように熱源と接しない部分の塗装が好ましい。一般的に金属は放射率が非常に低く、熱放射による放熱は期待できないため、熱放射性塗料による金属表面へのコーティングは放熱に有用である。
また、非金属であっても塗膜の放射率より低い放射率である被塗装体であれば本発明の効果を期待することができる。例えば、図3に示すように太陽電池モジュール用バックシートが挙げられる。なお、塗装部位は図3に示すとおり、バックシート面が好ましい。
また、LED照明、ヒートシンク、太陽電池モジュール用バックシート等の適当な部位に塗布される熱放射性塗料の平均膜厚は1〜50μmであることが好ましい。
The system for applying the thermal radiation paint is not particularly limited, but can be applied to heat sinks for LED bulbs (LED lighting), back chassis of liquid crystal televisions, and the like. For example, the heat sink 2 made of Al is mentioned. The coating method is performed by the above-described method, and it is preferable to coat a portion not in contact with the heat source as shown in FIG. In general, metal has a very low emissivity, and heat radiation by heat radiation cannot be expected. Therefore, coating on a metal surface with a heat radiation paint is useful for heat radiation.
Moreover, even if it is a non-metal, the effect of this invention can be anticipated if it is a to-be-coated body whose emissivity is lower than the emissivity of a coating film. For example, as shown in FIG. 3, a solar cell module backsheet can be mentioned. In addition, as shown in FIG. 3, the coating part is preferably a back sheet surface.
Moreover, it is preferable that the average film thickness of the thermal radiation coating material apply | coated to appropriate parts, such as LED lighting, a heat sink, and a solar cell module backsheet, is 1-50 micrometers.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1〜6、比較例1〜3、参考例1)
表1及び表2に商品名及び配合比(質量比)を示す。各成分を均一になるまで攪拌して塗料を得た。
(Examples 1-6, Comparative Examples 1-3, Reference Example 1)
Tables 1 and 2 show trade names and blending ratios (mass ratios). Each component was stirred until uniform to obtain a paint.

Figure 2015193848
Figure 2015193848

Figure 2015193848
Figure 2015193848

以下に、各成分の詳細を示す。
23−K(商品名):ハクスイテック株式会社製、酸化亜鉛、平均粒径5.5μm
TIG R−900(商品名):デュポン株式会社製、酸化チタン、平均粒径0.2μm
JR−1000(商品名):テイカ株式会社製、酸化チタン、平均粒径1.0μm
プライマルAC−3001(商品名):ローム・アンド・ハースジャパン株式会社製、アクリルエマルジョン
SNディスパーサント5029(商品名):サンノプコ株式会社製、ポリカルボン酸アンモニウム
CS16(商品名):チッソ石油化学株式会社製、2,2,4−トリメチル−1,3−ペンタジオールイソブチレート
ノプコ8034(商品名):サンノプコ株式会社製、疎水性シリカポリエチレングリコール
アデカサイザーNRS−602(商品名):旭電化工業株式会社製、アジピン酸ジエステル
KBM−403(商品名):信越化学工業株式会社製、3―グリシドキシプロピルトリメトキシシラン
Below, the detail of each component is shown.
23-K (trade name): manufactured by Hakusuitec Co., Ltd., zinc oxide, average particle size 5.5 μm
TIG R-900 (trade name): manufactured by DuPont, titanium oxide, average particle size 0.2 μm
JR-1000 (trade name): manufactured by Teika Co., Ltd., titanium oxide, average particle size 1.0 μm
Primal AC-3001 (trade name): manufactured by Rohm and Haas Japan Co., Ltd., acrylic emulsion SN Dispersant 5029 (trade name): manufactured by San Nopco Co., Ltd., ammonium polycarboxylate CS16 (trade name): Chisso Petrochemical Co., Ltd. Manufactured by 2,2,4-trimethyl-1,3-pentadiolisobutyrate Nopco 8034 (trade name): manufactured by San Nopco Co., Ltd., hydrophobic silica polyethylene glycol Adeka Sizer NRS-602 (trade name): Asahi Denka Kogyo Co., Ltd. Adipic acid diester KBM-403 (trade name): Shin-Etsu Chemical Co., Ltd. 3-glycidoxypropyltrimethoxysilane

(評価)
実施例1〜6及び比較例1〜3で得られた塗料を用いて以下に示す評価項目について評価を行った。
(Evaluation)
The following evaluation items were evaluated using the paints obtained in Examples 1 to 6 and Comparative Examples 1 to 3.

[熱放射率の測定サンプル板作製]
熱放射率の測定サンプルは、厚さ1mmのアルミニウム板に塗料を卓上コーターで塗装し、80℃30分加熱乾燥させた。乾燥後の膜厚が40μmとなるようにし、作製した。
[Preparation of thermal emissivity sample plate]
As a sample for measuring the thermal emissivity, a paint was applied to an aluminum plate having a thickness of 1 mm with a desktop coater, followed by heating and drying at 80 ° C. for 30 minutes. The film thickness after drying was 40 μm.

[熱放射率]
熱放射率とは熱エネルギーの放出能力を完全黒体と比較して表した値である。また、キルヒホフの法則より熱放射と熱吸収は等価であり、熱放射率=熱吸収率の関係が成り立つ。また、不透明な物質に入射されたエネルギーは反射と吸収を同時に行うため、反射率+吸収率(放射率)=1の関係が成り立つ。そのため、反射率を測定すれば間接的に熱放射率を求めることができる。
上記のような原理で熱放射率を求めるために、放射率測定器TSS−5X(ジャパンセンサー株式会社製、波長域2〜22μm)を使用した。また、測定はアクリルケース内で行った。
[Thermal emissivity]
The thermal emissivity is a value representing the ability to release thermal energy in comparison with a complete black body. Also, from Kirchhoff's law, heat radiation and heat absorption are equivalent, and the relationship of heat emissivity = heat absorption rate holds. In addition, since energy incident on an opaque substance performs reflection and absorption at the same time, the relationship of reflectivity + absorption rate (emissivity) = 1 holds. Therefore, if the reflectance is measured, the thermal emissivity can be obtained indirectly.
In order to obtain the thermal emissivity based on the above principle, an emissivity measuring device TSS-5X (manufactured by Japan Sensor Co., Ltd., wavelength range 2 to 22 μm) was used. The measurement was performed in an acrylic case.

[LED電球の温度測定]
実施例1〜6及び比較例1〜3で得られた塗料を用いて、スプレーにてAl製ヒートシンク2表面とLED電球1近傍に膜厚25μmで塗装し、80℃30分加熱乾燥させた。この塗料を塗装した、ヒートシンク2とLED電球1近傍を図1に示した2点(測定点)において温度を測定した。温度の測定方法は、熱電対を3×5mmにカットしたポリイミドテープにて、図1に示したように2点(測定点)に固定し、点灯前と点灯1時間後の温度を測定した。この点灯前後における温度差を求めた。
[Temperature measurement of LED bulb]
Using the paints obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the surface of the Al heat sink 2 and the vicinity of the LED bulb 1 were coated with a film thickness of 25 μm by spraying, and dried by heating at 80 ° C. for 30 minutes. The temperature was measured at two points (measurement points) shown in FIG. 1 in the vicinity of the heat sink 2 and the LED bulb 1 coated with this paint. The temperature was measured by fixing a thermocouple with a polyimide tape cut to 3 × 5 mm at two points (measurement points) as shown in FIG. 1 and measuring temperatures before lighting and 1 hour after lighting. The temperature difference before and after lighting was determined.

[塗膜密着性試験]
実施例1〜6及び比較例1〜3で得られた塗料を用いて、厚さ1mmのアルミニウム板に塗料を卓上コーターで塗装し、80℃30分加熱乾燥する。尚、塗膜の厚さは乾燥後に40μmとなるよう調整した。この塗膜部分のみを2mmの間隔で縦横方向ともに平行にカットし、5×5で25マスの切り込みを付けた。この格子パターン部にセロハンテープ(ニチバン株式会社製)を強く圧着させてから引き剥がし、塗膜の剥離の有無を判定した。4サンプルで行い、剥離した数が10マス未満の場合を○、10マス以上の場合を×とした。
[Coating film adhesion test]
Using the paints obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the paint is applied to an aluminum plate having a thickness of 1 mm with a desktop coater and dried by heating at 80 ° C. for 30 minutes. The thickness of the coating was adjusted to 40 μm after drying. Only this coating film part was cut in parallel in both vertical and horizontal directions at intervals of 2 mm, and 25 squares were cut at 5 × 5. A cellophane tape (manufactured by Nichiban Co., Ltd.) was strongly pressure-bonded to the lattice pattern portion, and then peeled off to determine whether the coating film was peeled off. When four samples were used and the number of peeled pieces was less than 10 squares, the case where the number was 10 squares or more was indicated as x.

Figure 2015193848
Figure 2015193848

Figure 2015193848
Figure 2015193848

比較例1,3を対比するとセラミックスが前記範囲より少ない、あるいは含まれていない場合は放射率が0.90以下となり放熱性が低下したのに対し、実施例1〜6の全ては放射率が0.90より大きく、温度も1℃以上低減することができた。また、比較例2と対比するとセラミックスが前記範囲内であると塗膜密着性が良好であることが判明した。
なお、参考例1とは、塗料を塗布しない場合である。
When comparing Comparative Examples 1 and 3, when the ceramic content is less than or not included in the above range, the emissivity is 0.90 or less and the heat dissipation is reduced, whereas all of Examples 1 to 6 have the emissivity. It was greater than 0.90 and the temperature could be reduced by 1 ° C. or more. Further, when compared with Comparative Example 2, it was found that the coating film adhesion was good when the ceramic was in the above range.
Reference Example 1 is a case where no paint is applied.

1:LED電球、2:ヒートシンク、3:塗膜、4:熱源、5:カバーガラス、6:充填材、7:セル、8:タブ線、9:バックシート。 1: LED bulb, 2: heat sink, 3: coating film, 4: heat source, 5: cover glass, 6: filler, 7: cell, 8: tab wire, 9: backsheet.

Claims (5)

(a)平均粒径が0.1〜50μmで、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方を含むセラミックス粉末と、(b)熱硬化性樹脂あるいはコロイダルシリカであるバインダーとを含み、該バインダー100質量部に対し、酸化亜鉛粉末あるいは酸化チタン粉末又はその両方の合計を30〜100質量部含む熱放射性塗料。   (A) a ceramic powder having an average particle size of 0.1 to 50 μm and containing zinc oxide powder and / or titanium oxide powder, and (b) a binder which is a thermosetting resin or colloidal silica, and the binder 100 The thermal radiation coating material which contains 30-100 mass parts of zinc oxide powder or a titanium oxide powder or the total of both with respect to a mass part. 波長域2〜22μmにおける放射率が0.90以上である請求項1記載の熱放射性塗料。   The thermal radiation paint according to claim 1, wherein the emissivity in a wavelength range of 2 to 22 µm is 0.90 or more. 請求項1又は2に記載の熱放射性塗料を平均膜厚1〜50μmで塗布された発光ダイオード(LED)照明。   Light emitting diode (LED) illumination in which the thermal radiation paint according to claim 1 or 2 is applied with an average film thickness of 1 to 50 µm. 請求項1又は2に記載の熱放射性塗料を平均膜厚1〜50μmで塗布されたヒートシンク。   A heat sink in which the heat-radiating paint according to claim 1 or 2 is applied with an average film thickness of 1 to 50 µm. 請求項1又は2に記載の熱放射性塗料を平均膜厚1〜50μmで塗布された太陽電池モジュール用バックシート。   A back sheet for a solar cell module, wherein the thermal radiation paint according to claim 1 or 2 is applied with an average film thickness of 1 to 50 µm.
JP2015114848A 2015-06-05 2015-06-05 Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module Active JP6517086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114848A JP6517086B2 (en) 2015-06-05 2015-06-05 Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114848A JP6517086B2 (en) 2015-06-05 2015-06-05 Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011117897A Division JP2012246365A (en) 2011-05-26 2011-05-26 Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith

Publications (2)

Publication Number Publication Date
JP2015193848A true JP2015193848A (en) 2015-11-05
JP6517086B2 JP6517086B2 (en) 2019-05-22

Family

ID=54433157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114848A Active JP6517086B2 (en) 2015-06-05 2015-06-05 Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module

Country Status (1)

Country Link
JP (1) JP6517086B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032716A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for manufacturing heat sink
US20190086164A1 (en) * 2016-02-29 2019-03-21 The Regents Of The University Of Colorady, A Body Corporate Radiative cooling structures and systems
US10502505B2 (en) 2016-02-29 2019-12-10 The Regents of the Univeristy of Colorado, a body corporate Radiative cooling structures and systems
CN111989532A (en) * 2018-04-16 2020-11-24 罗米·M·费恩 Manufacturing method, structure and application of passive radiation cooling
EP3760678A1 (en) * 2019-07-05 2021-01-06 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling functional coating material and application thereof

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102644A (en) * 1979-01-29 1980-08-06 Osaka Soda Co Ltd Resin composition
JPS5533828B2 (en) * 1977-06-01 1980-09-03
JPS62220565A (en) * 1986-03-22 1987-09-28 Nippon Telegr & Teleph Corp <Ntt> Coating material composition for heat control
JPH04255767A (en) * 1991-02-08 1992-09-10 Nichiban Kenkyusho:Kk Coating composition and textile material
JPH04258675A (en) * 1991-02-14 1992-09-14 Mitsubishi Heavy Ind Ltd Coating material which insulates heat and prevents accumulation of snow
JPH07233348A (en) * 1994-02-24 1995-09-05 Showa Alum Corp Epoxy resin composition
JPH11279229A (en) * 1998-03-25 1999-10-12 Kansai Paint Co Ltd Acrylic resin for coating material and coating material composition
JP2002161244A (en) * 2000-11-27 2002-06-04 Jsr Corp Thermally conductive film, liquid for forming the same, substrate provided with thermally conductive film, method for producing the substrate, heat radiating plate and heat radiating structure
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material
JP2003113346A (en) * 2001-10-03 2003-04-18 Nippan Kenkyujo Co Ltd Rustproof coating material, galvanized steel sheet having rustproof film, and method for producing the same
JP2003326638A (en) * 2002-05-14 2003-11-19 Nippan Kenkyujo Co Ltd Heat insulating decorative material and manufacturing method therefor
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film
JP2004251108A (en) * 2003-01-31 2004-09-09 Kajima Road Co Ltd Paving body for road
JP2004298836A (en) * 2003-04-01 2004-10-28 Nippon Paint Co Ltd Method for forming multi-layer coating film
JP2005104157A (en) * 2004-10-04 2005-04-21 Sumitomo Metal Ind Ltd Heat emitting surface-treated material
JP2005120278A (en) * 2003-10-17 2005-05-12 Oki Electric Ind Co Ltd Optically reflective coating and optically reflective coated film formed therefrom
JP2005129565A (en) * 2003-10-21 2005-05-19 Kyocera Corp Solar cell module and its manufacturing method
JP2005325253A (en) * 2004-05-14 2005-11-24 Shin Etsu Chem Co Ltd Emulsion composition for functional inorganic filler-containing coating
JP2006128474A (en) * 2004-10-29 2006-05-18 Ceramission Kk Solar cell module
JP2006335949A (en) * 2005-06-03 2006-12-14 Hitachi Chem Co Ltd Heat insulation coating composition and constructed material having coated film of the same
US20070003721A1 (en) * 2005-06-30 2007-01-04 Polymatech Co., Ltd. Heat-radiating sheet and heat-radiating structure
JP2007518853A (en) * 2003-12-30 2007-07-12 ポスコ Coating composition having far-infrared radiation, antibacterial action and solvent resistance, and coated steel sheet coated with the coating composition
JP2007217584A (en) * 2006-02-17 2007-08-30 Furukawa Sky Kk Method for producing coating composition and resin-coated metal plate with resin coating film formed therefrom
WO2009044595A1 (en) * 2007-10-05 2009-04-09 Nippon Polyurethane Industry Co., Ltd. Two-component fluorine-containing coating composition
JP2009144009A (en) * 2007-12-12 2009-07-02 Nisshin Steel Co Ltd (meth)acrylic coating material and coated material coated with the same
JP2009152537A (en) * 2007-08-17 2009-07-09 Shinshu Univ Highly efficient heat sink, industrial apparatus, electronic apparatus, computer product, and automobile utilizing the same
JP2010006884A (en) * 2008-06-25 2010-01-14 Nkm Coatings Co Ltd Epoxy-based coating composition
WO2010050139A1 (en) * 2008-10-28 2010-05-06 堺化学工業株式会社 Zinc oxide particles, process for producing same, heat-releasing filler, resin composition, heat-releasing grease, and heat-releasing coating composition
JP2010111714A (en) * 2008-11-04 2010-05-20 Yokohama Rubber Co Ltd:The Thermally conductive emulsion
JP2010238760A (en) * 2009-03-30 2010-10-21 Lintec Corp Back protection sheet for solar cell module, solar cell module, and coating liquid for forming fluororesin cured coating film of back protection sheet for solar cell module
JP2010261012A (en) * 2009-04-09 2010-11-18 Shin-Etsu Chemical Co Ltd Uv-shielding coating composition and coated article
JP2011034958A (en) * 2009-07-06 2011-02-17 Sumitomo Light Metal Ind Ltd Heat dissipating member for led light bulb
JP2011046783A (en) * 2009-08-25 2011-03-10 Showa Denko Kk Aqueous emulsion resin composition and coating obtained by blending the same
US20120025132A1 (en) * 2009-02-25 2012-02-02 Panasonic Corporation Thermoconductive composition, heat dissipating plate, heat dissipating substrate and circuit module using thermoconductive composition, and process for production of thermoconductive composition

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533828B2 (en) * 1977-06-01 1980-09-03
JPS55102644A (en) * 1979-01-29 1980-08-06 Osaka Soda Co Ltd Resin composition
JPS62220565A (en) * 1986-03-22 1987-09-28 Nippon Telegr & Teleph Corp <Ntt> Coating material composition for heat control
JPH04255767A (en) * 1991-02-08 1992-09-10 Nichiban Kenkyusho:Kk Coating composition and textile material
JPH04258675A (en) * 1991-02-14 1992-09-14 Mitsubishi Heavy Ind Ltd Coating material which insulates heat and prevents accumulation of snow
JPH07233348A (en) * 1994-02-24 1995-09-05 Showa Alum Corp Epoxy resin composition
JPH11279229A (en) * 1998-03-25 1999-10-12 Kansai Paint Co Ltd Acrylic resin for coating material and coating material composition
JP2002161244A (en) * 2000-11-27 2002-06-04 Jsr Corp Thermally conductive film, liquid for forming the same, substrate provided with thermally conductive film, method for producing the substrate, heat radiating plate and heat radiating structure
JP2002226783A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat radiating surface treated material
JP2003113346A (en) * 2001-10-03 2003-04-18 Nippan Kenkyujo Co Ltd Rustproof coating material, galvanized steel sheet having rustproof film, and method for producing the same
JP2003326638A (en) * 2002-05-14 2003-11-19 Nippan Kenkyujo Co Ltd Heat insulating decorative material and manufacturing method therefor
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film
JP2004251108A (en) * 2003-01-31 2004-09-09 Kajima Road Co Ltd Paving body for road
JP2004298836A (en) * 2003-04-01 2004-10-28 Nippon Paint Co Ltd Method for forming multi-layer coating film
JP2005120278A (en) * 2003-10-17 2005-05-12 Oki Electric Ind Co Ltd Optically reflective coating and optically reflective coated film formed therefrom
JP2005129565A (en) * 2003-10-21 2005-05-19 Kyocera Corp Solar cell module and its manufacturing method
JP2007518853A (en) * 2003-12-30 2007-07-12 ポスコ Coating composition having far-infrared radiation, antibacterial action and solvent resistance, and coated steel sheet coated with the coating composition
JP2005325253A (en) * 2004-05-14 2005-11-24 Shin Etsu Chem Co Ltd Emulsion composition for functional inorganic filler-containing coating
JP2005104157A (en) * 2004-10-04 2005-04-21 Sumitomo Metal Ind Ltd Heat emitting surface-treated material
JP2006128474A (en) * 2004-10-29 2006-05-18 Ceramission Kk Solar cell module
JP2006335949A (en) * 2005-06-03 2006-12-14 Hitachi Chem Co Ltd Heat insulation coating composition and constructed material having coated film of the same
US20070003721A1 (en) * 2005-06-30 2007-01-04 Polymatech Co., Ltd. Heat-radiating sheet and heat-radiating structure
JP2007217584A (en) * 2006-02-17 2007-08-30 Furukawa Sky Kk Method for producing coating composition and resin-coated metal plate with resin coating film formed therefrom
JP2009152537A (en) * 2007-08-17 2009-07-09 Shinshu Univ Highly efficient heat sink, industrial apparatus, electronic apparatus, computer product, and automobile utilizing the same
WO2009044595A1 (en) * 2007-10-05 2009-04-09 Nippon Polyurethane Industry Co., Ltd. Two-component fluorine-containing coating composition
JP2009144009A (en) * 2007-12-12 2009-07-02 Nisshin Steel Co Ltd (meth)acrylic coating material and coated material coated with the same
JP2010006884A (en) * 2008-06-25 2010-01-14 Nkm Coatings Co Ltd Epoxy-based coating composition
WO2010050139A1 (en) * 2008-10-28 2010-05-06 堺化学工業株式会社 Zinc oxide particles, process for producing same, heat-releasing filler, resin composition, heat-releasing grease, and heat-releasing coating composition
JP2010111714A (en) * 2008-11-04 2010-05-20 Yokohama Rubber Co Ltd:The Thermally conductive emulsion
US20120025132A1 (en) * 2009-02-25 2012-02-02 Panasonic Corporation Thermoconductive composition, heat dissipating plate, heat dissipating substrate and circuit module using thermoconductive composition, and process for production of thermoconductive composition
JP2010238760A (en) * 2009-03-30 2010-10-21 Lintec Corp Back protection sheet for solar cell module, solar cell module, and coating liquid for forming fluororesin cured coating film of back protection sheet for solar cell module
JP2010261012A (en) * 2009-04-09 2010-11-18 Shin-Etsu Chemical Co Ltd Uv-shielding coating composition and coated article
JP2011034958A (en) * 2009-07-06 2011-02-17 Sumitomo Light Metal Ind Ltd Heat dissipating member for led light bulb
JP2011046783A (en) * 2009-08-25 2011-03-10 Showa Denko Kk Aqueous emulsion resin composition and coating obtained by blending the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190086164A1 (en) * 2016-02-29 2019-03-21 The Regents Of The University Of Colorady, A Body Corporate Radiative cooling structures and systems
US10502505B2 (en) 2016-02-29 2019-12-10 The Regents of the Univeristy of Colorado, a body corporate Radiative cooling structures and systems
EP3423298A4 (en) * 2016-02-29 2020-03-18 The Regents of the University of Colorado, a body corporate Radiative cooling structures and systems
US10724809B2 (en) * 2016-02-29 2020-07-28 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
AU2017225866B2 (en) * 2016-02-29 2021-10-07 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
US11768041B2 (en) 2016-02-29 2023-09-26 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
JP2018032716A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for manufacturing heat sink
CN111989532A (en) * 2018-04-16 2020-11-24 罗米·M·费恩 Manufacturing method, structure and application of passive radiation cooling
EP3760678A1 (en) * 2019-07-05 2021-01-06 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling functional coating material and application thereof

Also Published As

Publication number Publication date
JP6517086B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP2012246365A (en) Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
JP6437702B2 (en) Thermally radiant paint, coating film and method for producing coated object
JP6517086B2 (en) Thermal radiation coating, light emitting diode (LED) illumination having the same, heat sink, back sheet for solar cell module
JP6334839B2 (en) Thermal radiation paint and heat dissipation member
JP5996085B2 (en) White reflective film ink, white reflective film powder coating, and white reflective film manufacturing method
TWI364367B (en) Siloxane-based coating, optical article and process for producing the siloxane-based coating
EP2591060A2 (en) Coating systems capable of forming ambiently cured highly durable hydrophobic coatings on substrates
JP6113316B2 (en) Optical element, light-shielding paint set, and optical element manufacturing method
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
KR20070065858A (en) Paint for transparent film and transparent film coated substrate
JP6365532B2 (en) Water-based paint, heat dissipation member, metal parts, electronic equipment
JP2008297414A (en) Near infrared light-shielding composition and use thereof
JP2004142161A (en) Surface stainproof composite resin film, surface stainproof article and decorative plate
KR101595872B1 (en) Ceramic composition and method for manufacturing the same, and heat radiating member using the same
KR101495052B1 (en) Led lamp device having excellent heat-radiant property by using carbon nanotube
JP6512352B2 (en) Thermal radiation paint and light emitting diode (LED) illumination coated with the same, heat sink, back sheet for solar cell module
JP2004204175A (en) Coating containing colored pigment particle and substrate with visible light-shading film
JP6502183B2 (en) Coating for thermal radiation, and light emitting diode (LED) illumination having the coating, heat sink, back sheet for solar cell module
KR101483758B1 (en) Led lamp device having excellent heat-radiant property by using carbon nanotube
CN105885094B (en) A kind of Heat dissipation composition and the preparation method and application thereof
JP2016084411A (en) Aqueous heat shielding coating for transparent substrate, heat shielding treatment method of transparent substrate and heat shielding treated transparent substrate
KR20150004712A (en) Ceramic composition and method for manufacturing the same, and heat radiating member using the same
JP2012251100A (en) Silicone resin composition and thermal conductive sheet
KR20190105221A (en) Paint for forming an infrared shielding film, transparent gas with an infrared shielding film formed therein, and a method of manufacturing the same
JP2016020409A (en) Coating composition and optical member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160519

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170127

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6517086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350