JP2015183194A - Production method of anticorrosive coating film - Google Patents

Production method of anticorrosive coating film Download PDF

Info

Publication number
JP2015183194A
JP2015183194A JP2014057645A JP2014057645A JP2015183194A JP 2015183194 A JP2015183194 A JP 2015183194A JP 2014057645 A JP2014057645 A JP 2014057645A JP 2014057645 A JP2014057645 A JP 2014057645A JP 2015183194 A JP2015183194 A JP 2015183194A
Authority
JP
Japan
Prior art keywords
heat transfer
corrosion
surface layer
transfer tube
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014057645A
Other languages
Japanese (ja)
Inventor
晋作 西田
Shinsaku Nishida
晋作 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014057645A priority Critical patent/JP2015183194A/en
Publication of JP2015183194A publication Critical patent/JP2015183194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anticorrosive coating film capable of not only preventing corrosion or exfoliation caused by sour gas generated inside a coal-fired power generation boiler but also suppressing arrival of the sour gas to a heat transfer pipe; and to provide a heat transfer pipe having the same formed thereon.SOLUTION: An anticorrosive coating film is produced by forming a ground layer comprising the M-Cr-Al-Y-based alloy (M is at least one kind of Ni, Co and Fe) on a substrate, followed by forming a surface layer by plasma-spraying mixed powder of stabilized ZrOpowder and fumed silica.

Description

本発明は、石炭を燃焼し発生した高温ガスから、蒸気や空気等の流体を介して熱エネルギーを回収し発電を行う石炭火力発電等の伝熱管に用いられる耐食性被膜及びこれを形成した伝熱管に関する。   The present invention relates to a corrosion-resistant coating used for a heat transfer tube such as a coal-fired power generation that recovers thermal energy from a high-temperature gas generated by burning coal through a fluid such as steam or air, and a heat transfer tube formed with the same About.

火力発電では石炭や石油、LNGをボイラーで燃焼させ、その高温ガスの熱を使い蒸気を発生させタービンを回転させることで発電を行っている。これらの燃料の石炭や石油特に石炭には多くの硫黄分が含まれ、燃焼ガスには硫化水素や硫黄酸化物のような酸性ガスが含まれる。酸性ガスが含まれる高温ガスに伝熱管が長期に曝されると、酸性ガスにより伝熱管が腐食されてしまう。   In thermal power generation, coal, oil, and LNG are burned with a boiler, and steam is generated using the heat of the high-temperature gas to generate power by rotating the turbine. These fuel coals and petroleum, especially coal, contain a large amount of sulfur, and the combustion gas contains acid gases such as hydrogen sulfide and sulfur oxides. When the heat transfer tube is exposed to a high-temperature gas containing acid gas for a long period of time, the heat transfer tube is corroded by the acid gas.

このような酸性ガスによる腐食が原因で伝熱管の劣化が起こるため、伝熱管の交換を頻繁に行うことが必要となる。伝熱管の交換は発電コストを高めることになることから、より長期間劣化の起こらない伝熱管が求められている。   Since the heat transfer tube is deteriorated due to the corrosion caused by the acid gas, it is necessary to frequently replace the heat transfer tube. Since replacement of heat transfer tubes increases power generation costs, a heat transfer tube that does not deteriorate for a longer period of time is required.

特許文献1には、30〜60wt%の硼化物と40〜70wt%の金属間化合物からなり、Cr含有量が20wt%以下であることを特徴とする複合材料、また特許文献2には、下地層としてサーメットまたはセラミックスを溶射によって形成し、下地層表面に酸化物セラミックによる封孔処理を施し、さらにはガラス質被膜を形成した複合被膜が開示されている。   Patent Document 1 discloses a composite material characterized by comprising 30 to 60 wt% boride and 40 to 70 wt% intermetallic compound and having a Cr content of 20 wt% or less. There is disclosed a composite coating in which cermet or ceramics is formed by thermal spraying as a base layer, a sealing treatment is performed on the surface of the base layer with an oxide ceramic, and further a glassy coating is formed.

特開2005−213605号JP 2005-213605 A 特開2001−152307号JP 2001-152307 A

特許文献1によれば、高温環境下で使用する部材への表面保護用皮膜の主成分として、硼化物に着目している。硼化物は、難焼結性で結合相金属との濡れ性が悪い反面、冶金結合時には硼化物どうしが複硼化物を形成して脆化し易いという、複合化材料の成分としては致命的な欠点を有する。そのような問題を解決するために、金属間化合物に着目し、これを硼化物に添加して複合化した材料としている。しかし、特許文献1に記載の金属間化合物は、高温環境下での耐食性が十分とは言えない。   According to Patent Document 1, attention is focused on borides as a main component of a surface protecting film on a member used in a high temperature environment. Boride is difficult to sinter and has poor wettability with the binder phase metal, but it is a fatal defect as a component of composite materials that borides easily form embrittlement during metallurgical bonding. Have In order to solve such a problem, attention is paid to an intermetallic compound, and this is added to a boride to form a composite material. However, the intermetallic compound described in Patent Document 1 cannot be said to have sufficient corrosion resistance in a high temperature environment.

特許文献2によれば、基材がサーメットまたはセラミックスによる溶射被膜で保護され、溶射被膜は酸化物系セラミックスで封孔され、さらに表層にガラス質被膜が形成されているため、貫通気孔が無く、腐食性ガスに対して優れた耐食性を示すだけでなく、基材の使用寿命が著しく向上されるとしている。しかし、ガラス質被膜及び封孔に用いた酸化物系セラミックスは緻密であるために、運転・停止を頻繁に行う火力発電のボイラーに用いると、熱サイクルによる熱膨張、熱収縮に起因する熱応力を緩和することが難しく、被膜が容易に剥離してしまう。結果、基材を保護するのは溶射被膜だけとなる。溶射被膜には一般に気孔が存在することから、この気孔を介して酸性ガスが基材に到達し、基材が腐食してしまう。このように、封孔処理及びガラス質被膜の形成は熱サイクルにより容易に剥離することから基材の長寿命化が図れず、この点で防食効果は小さい。   According to Patent Document 2, the base material is protected with a thermal spray coating of cermet or ceramic, the thermal spray coating is sealed with an oxide-based ceramic, and further, a glassy coating is formed on the surface layer. In addition to exhibiting excellent corrosion resistance against corrosive gases, the service life of the substrate is remarkably improved. However, because the oxide-based ceramics used for the glassy coating and sealing are dense, thermal stresses caused by thermal expansion and contraction due to thermal cycling when used in boilers for thermal power generation that are frequently operated and stopped. Is difficult to relieve, and the coating is easily peeled off. As a result, only the thermal spray coating protects the substrate. Since the thermal spray coating generally has pores, the acidic gas reaches the substrate through the pores, and the substrate is corroded. As described above, since the sealing treatment and the formation of the glassy film are easily peeled off by a thermal cycle, the life of the substrate cannot be extended, and the anticorrosion effect is small in this respect.

本発明は上記事情を考慮して成されたものであり、火力発電、特に石炭火力発電において発生する高温の酸性ガスによって腐食、剥離しないだけでなく、酸性ガスの伝熱管への到達を抑制することが可能な耐食性被膜及びこれが形成された伝熱管を提供することを課題とする。   The present invention has been made in consideration of the above circumstances, and not only does it not corrode and peel off due to high-temperature acidic gas generated in thermal power generation, particularly coal-fired power generation, but also suppresses the arrival of acidic gas to the heat transfer tube. It is an object of the present invention to provide a corrosion-resistant coating that can be used and a heat transfer tube in which the coating is formed.

本発明者は鋭意検討の結果、M−Cr−Al−Y系合金(MはNi、Co、Feの少なくとも1種)からなる下地層上に、安定化ZrOとヒュームドシリカの混合粉末を溶射して作製した表層を設けることによって、上記課題が解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the inventor has obtained a mixed powder of stabilized ZrO 2 and fumed silica on an underlayer made of an M—Cr—Al—Y alloy (M is at least one of Ni, Co, and Fe). The present inventors have found that the above problem can be solved by providing a surface layer produced by thermal spraying, and propose the present invention.

即ち、本発明の耐食性被膜の製造方法は、基材上にM−Cr−Al−Y系合金(MはNi、Co、Feの少なくとも1種)からなる下地層を形成し、次いで安定化ZrO粉末とヒュームドシリカの混合粉末をプラズマ溶射して表層を形成することを特徴とする。本発明において「安定化」とは、ZrOをプラズマ溶射した後の冷却過程において、1000℃付近で発生するZrOの正方晶や立方晶から単斜晶への相転移が抑制されていることを意味する。 That is, in the method for producing a corrosion-resistant coating according to the present invention, a base layer made of an M-Cr-Al-Y alloy (M is at least one of Ni, Co, and Fe) is formed on a substrate, and then stabilized ZrO. A surface layer is formed by plasma spraying a mixed powder of two powders and fumed silica. By "stabilization" in the present invention, in the cooling process after the ZrO 2 plasma sprayed, the phase transition from tetragonal or cubic ZrO 2 generated near 1000 ° C. to monoclinic is suppressed Means.

上記構成によれば、気孔率の低い緻密な表層を、M−Cr−Al−Y系合金からなる下地層の上に形成することができる。   According to the said structure, a precise | minute surface layer with a low porosity can be formed on the base layer which consists of a M-Cr-Al-Y type alloy.

本発明においては、安定化ZrO粉末に対するヒュームドシリカの混合割合が、体積%で5〜20%である混合粉末を使用することが好ましい。 In the present invention, it is preferable to use a mixed powder in which the mixing ratio of fumed silica to the stabilized ZrO 2 powder is 5 to 20% by volume.

上記構成によれば、緻密で耐食性の高い表層を容易に得ることができる。   According to the said structure, a precise | minute and highly corrosion-resistant surface layer can be obtained easily.

本発明においては、平均粒径が1μm未満であるヒュームドシリカを使用することが好ましい。   In the present invention, it is preferable to use fumed silica having an average particle size of less than 1 μm.

上記構成によれば、緻密な表層を容易に得ることができる。   According to the said structure, a precise | minute surface layer can be obtained easily.

本発明の伝熱管の製造方法は、上記方法を用いて耐食性被膜を形成することを特徴とする。   The method for producing a heat transfer tube of the present invention is characterized in that a corrosion-resistant film is formed using the above method.

上記構成によれば、耐食性に優れた伝熱管を製造することができる。   According to the said structure, the heat exchanger tube excellent in corrosion resistance can be manufactured.

本発明の耐食性被膜は、上記方法で形成されてなることを特徴とする。   The corrosion-resistant film of the present invention is formed by the above method.

上記構成によれば、安定化ZrO粒子間の空隙にシリカ成分(ヒュームドシリカ由来)が存在する被膜となり易いことから、緻密な表層が形成される。それゆえ、この被膜を伝熱管表面に形成すれば、石炭火力発電のボイラーで発生する酸性ガスによって被膜が腐食、剥離しないだけでなく、酸性ガスの伝熱管への到達を抑制することが可能となり、伝熱管本体の劣化を防止することができる。またM−Cr−Al−Y系合金(MはNi、Co、Feの少なくとも1種)からなる下地層が基材と表層の間に介在しているために、表層の密着性が高く、剥離し難い。 According to the above configuration, a dense surface layer is formed because the coating is likely to have a silica component (derived from fumed silica) in the voids between the stabilized ZrO 2 particles. Therefore, if this film is formed on the surface of the heat transfer tube, the acid gas generated in the boiler of coal-fired power generation will not only corrode and peel off the film, but it will also be possible to suppress the acid gas from reaching the heat transfer tube. The deterioration of the heat transfer tube body can be prevented. In addition, since the base layer made of an M-Cr-Al-Y alloy (M is at least one of Ni, Co, and Fe) is interposed between the base material and the surface layer, the surface layer has high adhesion, and peeling It is hard to do.

本発明の被膜は、石炭火力発電の伝熱管に好適に用いられる。   The coating of the present invention is suitably used for a heat transfer tube for coal-fired power generation.

本発明の伝熱管は、上記で形成されてなることを特徴とする。   The heat transfer tube of the present invention is formed as described above.

上記構成によれば、石炭火力発電のボイラーで発生する酸性ガスによって被膜が腐食、剥離せず、また伝熱管本体の劣化を防止することができる。しかもM−Cr−Al−Y系合金(MはNi、Co、Feの少なくとも1種)からなる下地層が基材と表層の間に介在しているために、表層の密着性が高く、剥離し難い。   According to the said structure, a coating film does not corrode and peel with the acidic gas which generate | occur | produces in the boiler of coal thermal power generation, and deterioration of a heat exchanger tube main body can be prevented. Moreover, since the base layer made of an M-Cr-Al-Y alloy (M is at least one of Ni, Co, and Fe) is interposed between the base material and the surface layer, the adhesion of the surface layer is high, and peeling It is hard to do.

以下、本発明の実施形態について説明する。なお以下の説明において、基材として伝熱管本体を構成する金属管を用いれば、伝熱管を作製することができる。   Hereinafter, embodiments of the present invention will be described. In addition, in the following description, if the metal tube which comprises a heat exchanger tube main body is used as a base material, a heat exchanger tube can be produced.

本発明の方法は、基材上にM−Cr−Al−Y系合金からなる下地層を形成する工程と、下地層の上に安定化ZrO及び無機ガラスを含む表層を形成する工程を含む。 The method of the present invention includes a step of forming a base layer made of an M-Cr-Al-Y alloy on a base material, and a step of forming a surface layer containing stabilized ZrO 2 and inorganic glass on the base layer. .

下地層の形成は、特に制限されるものではないが、高速フレーム溶射(HVOF)のようなガス溶射によって形成することが好ましい。高速フレーム溶射を用いることで、伝熱管との密着性が良く、気孔率も低い下地層が得られやすくなる。またこの際に用いる溶射粉末には、M−Cr−Al−Y系合金からなる粉末を使用することが好ましい。M−Cr−Al−Y系合金(M=Ni、Co、Fe)は、耐高温酸化性や耐高温腐食性に優れた性質を有するNiあるいはCoを主成分とし、Cr、Al及びYを添加した合金である。この種の合金は、伝熱管及び表層の双方に密着し易いという特徴がある。また溶射粉末の平均粒径は10〜75μm、10〜53μm、特に10〜45μmであることが好ましい。溶射粉末の粒径が大きいと、ガス溶射によって形成される下層の気孔率が高くなり、酸性ガスの透過抑制が困難になり易い。また溶射粉末の粒径が小さいと溶射粉末をガスあるいはプラズマに供給する、ポートと呼ばれる噴出口の詰まりが発生しやすくなり、任意の膜厚の溶射被膜の形成に時間がかかり、結果的に溶射コストが高くなり易い。   The formation of the underlayer is not particularly limited, but is preferably formed by gas spraying such as high-speed flame spraying (HVOF). By using high-speed flame spraying, it becomes easy to obtain an underlayer having good adhesion to the heat transfer tube and low porosity. Moreover, it is preferable to use the powder which consists of a M-Cr-Al-Y type alloy for the thermal spraying powder used in this case. M-Cr-Al-Y alloy (M = Ni, Co, Fe) is mainly composed of Ni or Co having excellent high-temperature oxidation resistance and high-temperature corrosion resistance, and Cr, Al, and Y are added. Alloy. This type of alloy is characterized in that it easily adheres to both the heat transfer tube and the surface layer. The average particle size of the sprayed powder is preferably 10 to 75 μm, 10 to 53 μm, and particularly preferably 10 to 45 μm. When the particle size of the sprayed powder is large, the porosity of the lower layer formed by gas spraying is increased, and it is difficult to suppress permeation of acidic gas. In addition, if the particle size of the sprayed powder is small, clogging of the jet port called the port, which supplies the sprayed powder to gas or plasma, is likely to occur, and it takes time to form a sprayed coating with an arbitrary film thickness. Cost is likely to increase.

表層は、プラズマ溶射法によって形成する。プラズマ溶射法としては大気圧プラズマ溶射法、真空プラズマ溶射法等の種々の方法を用いることが可能である。この際に用いる溶射粉末には、安定化ZrO粉末とヒュームドシリカの混合粉末を使用する。 The surface layer is formed by a plasma spraying method. As the plasma spraying method, various methods such as an atmospheric pressure plasma spraying method and a vacuum plasma spraying method can be used. As the thermal spraying powder used in this case, a mixed powder of stabilized ZrO 2 powder and fumed silica is used.

安定化ZrO粉末は、ZrOを主成分とし、Y、MgO、CaO、SiO、CeO、Yb、Dy、HfO等から選ばれた1種類以上の安定化剤を添加したZrO粉末である。具体的には、ZrOの含有量が85質量%以上、好ましくは85〜95質量%、安定化剤の含有量が15質量%以下、好ましくは5〜15質量%であるものを意味する。ZrOの含有量が85質量%以上であれば、表層の耐食性が確保できるとともに、プラズマ溶射後の冷却過程において1000℃付近で発生するZrOの正方晶や立方晶から単斜晶への相転移も抑制することができる。なおZrOの含有量が85質量%よりも少ないと、表層の耐食性が低下してしまう。 The stabilized ZrO 2 powder is mainly composed of ZrO 2 , and one or more kinds selected from Y 2 O 3 , MgO, CaO, SiO 2 , CeO 2 , Yb 2 O 3 , Dy 2 O 3 , HfO 2 and the like. It is a ZrO 2 powder to which a stabilizer is added. Specifically, the ZrO 2 content is 85% by mass or more, preferably 85 to 95% by mass, and the stabilizer content is 15% by mass or less, preferably 5 to 15% by mass. If the ZrO 2 content is 85% by mass or more, the corrosion resistance of the surface layer can be ensured, and the phase from the tetragonal or cubic to monoclinic phase of ZrO 2 generated at around 1000 ° C. in the cooling process after plasma spraying. Metastasis can also be suppressed. When the content of ZrO 2 is less than 85% by mass, the corrosion resistance of the surface layer is lowered.

安定化ZrO粉末の平均粒径は10〜75μm、10〜53μm、特に10〜45μmであることが好ましい。安定化ZrO粉末の平均粒径が大きいと、プラズマ溶射によって形成される表層の気孔率が高くなり、酸性ガスの透過抑制が困難になる。また安定化ZrO粉末の平均粒径が小さいと溶射粉末をプラズマに供給する噴出口(ポート)の詰まりが発生しやすくなり、任意の膜厚の溶射被膜の形成に時間がかかり、結果的に溶射コストが高くなり易い。 The average particle size of the stabilized ZrO 2 powder is preferably 10 to 75 μm, 10 to 53 μm, particularly preferably 10 to 45 μm. When the average particle diameter of the stabilized ZrO 2 powder is large, the porosity of the surface layer formed by plasma spraying becomes high, and it becomes difficult to suppress permeation of acid gas. In addition, if the average particle size of the stabilized ZrO 2 powder is small, clogging of the spray port (port) for supplying the sprayed powder to the plasma is likely to occur, and it takes time to form a sprayed coating having an arbitrary film thickness. Thermal spraying cost tends to be high.

ヒュームドシリカは、ケイ素塩化物を気化し高温の水素炎中において気相反応によって合成したシリカ微粒子である。ヒュームドシリカの平均粒径は、1μm未満、特に50〜500nmであることが好ましい。上記粒径のヒュームドシリカを選択すれば、静電気によってヒュームドシリカが安定化ZrO粉末の表面に付着し易くなる。ヒュームドシリカが付着した安定化ZrO粉末をプラズマ溶射すると、溶射時にヒュームドシリカがZrO粒子界面に集合し易くなり、粒子間の空隙がシリカ成分で満たされる。ヒュームドシリカの平均粒径が大きすぎると、静電気による安定化ZrO粉末表面への付着が困難になる。その結果、プラズマ溶射時に、シリカ成分がZrO粒子と分離してしまい、ZrO粒子間の空隙をシリカ成分で満たすことが難しくなる。 Fumed silica is silica fine particles synthesized by vapor phase reaction in a high-temperature hydrogen flame by vaporizing silicon chloride. The average particle size of fumed silica is preferably less than 1 μm, particularly 50 to 500 nm. If fumed silica having the above particle size is selected, fumed silica is likely to adhere to the surface of the stabilized ZrO 2 powder due to static electricity. When the stabilized ZrO 2 powder to which fumed silica is adhered is plasma sprayed, fumed silica is likely to gather at the ZrO 2 particle interface during spraying, and the voids between the particles are filled with the silica component. If the average particle size of the fumed silica is too large, it becomes difficult to adhere to the surface of the stabilized ZrO 2 powder due to static electricity. As a result, during the plasma spraying, the silica component will separate from the ZrO 2 particles, to meet the gap between the ZrO 2 particles in the silica component is difficult.

安定化ZrO粉末に対するヒュームドシリカの混合割合は、体積%で5〜20%、好ましくは5〜15%である。ヒュームドシリカの混合割合が低すぎると、シリカ成分の不足により気孔率低減効果が得難くなる。ヒュームドシリカの混合割合が高すぎると、表層のシリカ成分の割合が高くなりやすく、結果として表層の耐食性が低下する。 The mixing ratio of fumed silica to the stabilized ZrO 2 powder is 5 to 20% by volume, preferably 5 to 15%. When the mixing ratio of fumed silica is too low, it is difficult to obtain a porosity reduction effect due to a shortage of silica components. When the mixing ratio of fumed silica is too high, the ratio of the silica component in the surface layer tends to increase, and as a result, the corrosion resistance of the surface layer decreases.

以上のようにして基材上に耐食性被膜を形成することができる。なお密着性等を向上させる目的で、基材と下地層の間、及び/又は下地層と表層の間に他の層を形成しても良い。   A corrosion-resistant film can be formed on the substrate as described above. For the purpose of improving adhesion and the like, another layer may be formed between the base material and the base layer and / or between the base layer and the surface layer.

なお得られる耐食性被膜の表層の気孔率は5%以下、特に4%以下とすることが好ましい。表層を緻密にすることによって、酸性ガスが被膜を透過することによって生じる基材の腐食を防止することが可能になる。表層の気孔率が5%よりも高いと、酸性ガスの透過抑制が困難になる。ここで「気孔率が5%以下」とは、表層の断面を走査型電子顕微鏡により倍率1000倍で観察した際に、観察画面の面積に対する表層の割れや空隙の総面積の割合が5%以下であることを意味する。   The porosity of the surface layer of the obtained corrosion-resistant film is preferably 5% or less, particularly 4% or less. By densifying the surface layer, it becomes possible to prevent corrosion of the base material caused by the acidic gas permeating the coating. When the porosity of the surface layer is higher than 5%, it becomes difficult to suppress permeation of acid gas. Here, “porosity is 5% or less” means that when the cross section of the surface layer is observed with a scanning electron microscope at a magnification of 1000 times, the ratio of the total area of cracks and voids to the surface area of the observation screen is 5% or less. It means that.

また表層の膜厚は10〜500μm、特に50〜400μm、さらには100〜300μmとすることが好ましい。表層の膜厚が小さすぎると、酸性ガスの透過抑制が困難になり易い。一方、表層の膜厚が大きすぎると、ボイラー内部の熱サイクルによって発生する熱応力が大きくなり、表層が剥離しやすくなる。なお表層の気孔率は、溶射粉末の粒径を変えることによって調整することができる。   Further, the film thickness of the surface layer is preferably 10 to 500 μm, particularly 50 to 400 μm, and more preferably 100 to 300 μm. If the film thickness of the surface layer is too small, it is difficult to suppress permeation of acidic gas. On the other hand, when the film thickness of the surface layer is too large, the thermal stress generated by the heat cycle inside the boiler becomes large, and the surface layer is easily peeled off. The porosity of the surface layer can be adjusted by changing the particle size of the sprayed powder.

下地層の気孔率は1%以下とすることが好ましい。下地層の気孔率が高いと、酸性ガスの透過抑制が困難になり易い。   The porosity of the underlayer is preferably 1% or less. When the porosity of the underlayer is high, it is difficult to suppress transmission of acid gas.

下地層の膜厚は10〜500μm、特に50〜400μm、さらには100〜300μmとすることが好ましい。下地層の膜厚が薄いと、酸性ガスの透過抑制が困難になり易い。また下地層は、一般に伝熱管と表層の界面に生じる熱膨張特性の相違に起因した熱応力を緩和する効果を有するが、下地層の膜厚が小さすぎると熱応力の緩和効果を得難くなる。一方、下地層の膜厚が大きすぎると、ボイラー内部の熱サイクルによって発生する熱応力が大きくなり、下地層が剥離し易くなる。なお下地層の気孔率は、溶射するM−Cr−Al−Y系合金粉末の粒径を変えることによって調整することができる。   The thickness of the underlayer is preferably 10 to 500 μm, particularly 50 to 400 μm, and more preferably 100 to 300 μm. When the film thickness of the underlayer is thin, it is difficult to suppress transmission of acid gas. The underlayer generally has an effect of alleviating thermal stress due to the difference in thermal expansion characteristics generated at the interface between the heat transfer tube and the surface layer. However, if the underlayer is too thin, it is difficult to obtain the effect of mitigating thermal stress. . On the other hand, if the film thickness of the underlayer is too large, the thermal stress generated by the thermal cycle inside the boiler becomes large, and the underlayer easily peels off. The porosity of the underlayer can be adjusted by changing the particle size of the M-Cr-Al-Y alloy powder to be sprayed.

また本発明の耐食性被膜は、石炭の高温燃焼ガスから、蒸気や空気等の流体を介して熱エネルギーを回収し発電を行う石炭火力発電の伝熱管の保護膜として用いられることが好ましい。ただしこれらに限定されるものでない。例えば、石炭ガス化複合発電、石油火力発電、廃棄物発電、地熱発電等の伝熱管や、ガスタービン、各種エンジン等などにも好適に用いられる。   Moreover, it is preferable that the corrosion-resistant film of the present invention is used as a protective film for a heat transfer tube of coal-fired power generation that recovers thermal energy from a high-temperature combustion gas of coal via a fluid such as steam or air and generates power. However, it is not limited to these. For example, it can be suitably used for heat transfer tubes such as coal gasification combined power generation, petroleum thermal power generation, waste power generation, and geothermal power generation, gas turbines, various engines, and the like.

また本発明の方法を用いて伝熱管を作製する場合、基材(伝熱管本体)の材料としては、Fe、Ni、Co、Crの少なくとも1つを主成分とする金属材料を選択することが好ましい。また下地層は伝熱管本体上に直接形成されることが好ましいが、密着性等を向上させる目的で、伝熱管本体と下地層の間に別の層を設けても差し支えない。   Moreover, when producing a heat transfer tube using the method of the present invention, a metal material mainly comprising at least one of Fe, Ni, Co, and Cr can be selected as the material of the base material (heat transfer tube body). preferable. The underlayer is preferably formed directly on the heat transfer tube body, but another layer may be provided between the heat transfer tube body and the underlayer for the purpose of improving adhesion and the like.

以下、実施例に基づいて、本発明を詳細に説明する。
表1、2は本発明の実施例(試料No.1〜3)及び比較例(試料No.4)を示している。
Hereinafter, based on an Example, this invention is demonstrated in detail.
Tables 1 and 2 show Examples (Sample Nos. 1 to 3) and Comparative Examples (Sample No. 4) of the present invention.

まず、SUS310S基材を脱脂、洗浄後、ブラスト処理を行い、Co−Ni−Cr−Al−Y系合金からなる平均粒径10〜45μmの合金粉末を高速フレーム溶射し、耐高温酸化性・耐高温腐食性に優れた下地層(Co−Ni−Cr−Al−Y合金層)を得た。下地層の膜厚は均一で150〜300μmであった。なお膜厚の調整はまず溶射装置を基材と平行に移動させて溶射し、一回あたりにどの程度の膜厚が得られるかを後述の膜厚計を用いて測定し、これを基に溶射の回数を調節することにより行った。   First, the SUS310S base material is degreased, washed, and blasted, and an alloy powder having an average particle diameter of 10 to 45 μm made of a Co—Ni—Cr—Al—Y alloy is sprayed at high speed to provide high temperature oxidation resistance and resistance. An underlayer (Co—Ni—Cr—Al—Y alloy layer) excellent in high temperature corrosivity was obtained. The film thickness of the underlayer was uniform and was 150 to 300 μm. The film thickness is adjusted by first moving the spraying device parallel to the substrate and spraying, and measuring how much film thickness can be obtained at one time using a film thickness meter described later. This was done by adjusting the number of spraying.

次に、平均粒径10〜45μmの8%Y−ZrO粉末と、日本アエロジル株式会社のアエロジルRY−50(粒径0.05〜0.5μm)とを、体積%でそれぞれ80〜95%、5〜20%の割合で混合して混合粉末を得た。続いて得られた混合粉末を、下地層上に大気圧プラズマ溶射して表層を形成した。表層の膜厚は均一で100〜250μmであった。なお表層の膜厚の調整はCo−Ni−Cr−Al−Y合金を溶射する際と同様の方法で行った。 Next, 8% Y 2 O 3 —ZrO 2 powder having an average particle size of 10 to 45 μm and Aerosil RY-50 (particle size of 0.05 to 0.5 μm) of Nippon Aerosil Co., Ltd. were each 80% by volume. The mixed powder was obtained by mixing at a ratio of -95% and 5-20%. Subsequently, the obtained mixed powder was subjected to atmospheric pressure plasma spraying on the base layer to form a surface layer. The film thickness of the surface layer was uniform and was 100 to 250 μm. Note that the thickness of the surface layer was adjusted by the same method as in the case of thermal spraying the Co—Ni—Cr—Al—Y alloy.

比較例として、上記実施例と同じ手順でSUS310S基材にCo−Ni−Cr−Al−Y合金からなる下地層を形成した。続いて、平均粒径100μmの8%Y−ZrO粉末を大気圧プラズマ溶射した。 As a comparative example, a base layer made of a Co—Ni—Cr—Al—Y alloy was formed on a SUS310S base material in the same procedure as in the above example. Subsequently, 8% Y 2 O 3 —ZrO 2 powder having an average particle size of 100 μm was subjected to atmospheric pressure plasma spraying.

各試料の評価結果を表1、2に示す。   The evaluation results of each sample are shown in Tables 1 and 2.

なお、溶射粉末の平均粒径はレーザー回折式粒度分布測定装置(島津製作所製 SALD−2000J)で測定した際、粒子の個数基準で算出されるD50の値により確認した。 The average particle size of the thermal spray powder when measured by a laser diffraction particle size distribution analyzer (manufactured by Shimadzu SALD-2000J), was confirmed by the value of D 50 calculated by the number-based particle.

表層及び下地層の膜厚は、渦電流式の膜厚計(サンコウ電子製 SWT−8000II)で測定することにより確認した。   The film thickness of the surface layer and the underlayer was confirmed by measuring with an eddy current film thickness meter (SWT-8000II, manufactured by Sanko Denshi).

気孔率は本発明の実施例及び比較例の断面を走査型電子顕微鏡(日立S−3400N typeII)により観察・断面写真を撮影し、各々の断面写真を画像解析して撮影場所の総面積に対する各層の割れや空隙の総面積の割合として算出した。断面写真の撮影にあたっては、観察モードを二次電子像、倍率を1000倍とし、下地層と表層の任意の3点における画像を取得した。表1、2に記載の気孔率はこれら3点における気孔率の平均値である。   The porosity is determined by observing the cross sections of the examples and comparative examples of the present invention with a scanning electron microscope (Hitachi S-3400N type II), taking cross-sectional photographs, analyzing each cross-sectional photograph, and analyzing each layer with respect to the total area of the photographing location. It was calculated as a ratio of the total area of cracks and voids. In taking a cross-sectional photograph, the observation mode was a secondary electron image, the magnification was 1000 times, and images at arbitrary three points of the base layer and the surface layer were obtained. The porosity described in Tables 1 and 2 is an average value of the porosity at these three points.

表1、2から明らかなように、本発明の実施例である試料No.1〜3は、表層の気孔率が4%であったのに対し、比較例である試料No.4の気孔率は15%と高かった。つまり、本発明の実施例は、比較例に比べ酸性ガスの透過抑制能力の高い被膜が形成されていることが確認できた。   As is apparent from Tables 1 and 2, sample No. which is an example of the present invention. Nos. 1 to 3 had a surface layer porosity of 4%, whereas the sample No. 1 was a comparative example. The porosity of 4 was as high as 15%. That is, it was confirmed that the example of the present invention formed a film having a higher ability to suppress permeation of acidic gas than the comparative example.

本発明の耐食性被膜及び伝熱管は、石炭を燃焼し発生した高温ガスから、蒸気や空気等の流体を介して熱エネルギーを回収し発電を行う石炭火力発電等の伝熱管に用いられる耐食性被膜及びこれを形成した伝熱管として有用である。   The corrosion-resistant coating and heat transfer tube of the present invention are a corrosion-resistant coating used for heat transfer tubes such as coal-fired power generation that recovers thermal energy from a high-temperature gas generated by burning coal through a fluid such as steam or air, and It is useful as a heat transfer tube that forms this.

Claims (7)

基材上にM−Cr−Al−Y系合金(MはNi、Co、Feの少なくとも1種)からなる下地層を形成し、次いで安定化ZrO粉末とシリカヒュームドシリカの混合粉末をプラズマ溶射して表層を形成することを特徴とする耐食性被膜の製造方法。 An underlayer made of an M-Cr-Al-Y alloy (M is at least one of Ni, Co, and Fe) is formed on a substrate, and then a mixed powder of stabilized ZrO 2 powder and silica fumed silica is plasma treated A method for producing a corrosion-resistant coating, characterized by spraying to form a surface layer. 安定化ZrO粉末に対するヒュームドシリカの混合割合が、体積%で5〜20%である混合粉末を使用することを特徴とする請求項1に記載の耐食性被膜の製造方法。 2. The method for producing a corrosion-resistant coating according to claim 1, wherein a mixed powder in which the mixing ratio of fumed silica to the stabilized ZrO 2 powder is 5 to 20% by volume is used. 平均粒径が1μm未満であるヒュームドシリカを使用することを特徴とする請求項1又は2に載の耐食性被膜の製造方法。   The method for producing a corrosion-resistant coating film according to claim 1 or 2, wherein fumed silica having an average particle diameter of less than 1 µm is used. 請求項1〜3の何れかの方法を用いて耐食性被膜を形成することを特徴とする伝熱管の製造方法。   A method for producing a heat transfer tube, wherein a corrosion-resistant film is formed using the method according to claim 1. 請求項1〜3の何れかに記載の方法で形成されてなることを特徴とする耐食性被膜。   A corrosion-resistant film formed by the method according to claim 1. 石炭火力発電の伝熱管の伝熱管に用いられることを特徴とする請求項5に記載の耐食性被膜。   The corrosion-resistant coating film according to claim 5, which is used for a heat transfer tube of a coal-fired power generation heat transfer tube. 請求項4に記載の方法で形成されてなることを特徴とする伝熱管。   A heat transfer tube formed by the method according to claim 4.
JP2014057645A 2014-03-20 2014-03-20 Production method of anticorrosive coating film Pending JP2015183194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057645A JP2015183194A (en) 2014-03-20 2014-03-20 Production method of anticorrosive coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057645A JP2015183194A (en) 2014-03-20 2014-03-20 Production method of anticorrosive coating film

Publications (1)

Publication Number Publication Date
JP2015183194A true JP2015183194A (en) 2015-10-22

Family

ID=54350097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057645A Pending JP2015183194A (en) 2014-03-20 2014-03-20 Production method of anticorrosive coating film

Country Status (1)

Country Link
JP (1) JP2015183194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094565A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Film deposition apparatus and film deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094565A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Film deposition apparatus and film deposition method

Similar Documents

Publication Publication Date Title
Afrasiabi et al. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+ Al2O3 and YSZ/Al2O3
JP5075880B2 (en) Heat-resistant parts and high-temperature parts for gas turbines
JP5561733B2 (en) Gas turbine component having thermal barrier coating and gas turbine using the same
JP2011167994A (en) Heat-resistant member having thermal barrier coating and gas turbine component using the same
JP2019533090A (en) Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and coating substrate obtained by the method
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
JP2009041059A (en) High-temperature wear-resistant member and its manufacturing method
Suzuki et al. The current status of environmental barrier coatings and future direction of thermal spray process
JP6499271B2 (en) Thermal barrier coating and power generation system
JP2021519386A (en) CMAS resistance, high strain tolerance and low thermal conductivity thermal barrier coating and thermal spray coating method
JP2015183194A (en) Production method of anticorrosive coating film
JP2015183193A (en) Anticorrosive coating film, heat transfer pipe and production method thereof
JP2015183195A (en) Anticorrosive coating film, heat transfer pipe and production method thereof
JP2014141699A (en) Anticorrosive coating film, heat transfer pipe and production method thereof
JP7450733B2 (en) Pipe and its manufacturing method
JP2015183192A (en) Anticorrosive coating film, heat transfer pipe and production method thereof
JP2013194617A (en) Gas turbine blade, combustor, shroud and gas turbine employing them
TWI749097B (en) Boiler water pipe of waste incinerator and manufacturing method thereof
JP2017052671A (en) Corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP5584161B2 (en) Thermal spray material
JP2017052672A (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2017190263A (en) Sealer, sealer coating liquid, anticorrosive coat, high temperature member and method for producing the same
JP2018193606A (en) Sealer, sealer application liquid, corrosion-resistant film, high-temperature member, and methods for producing the same
JP2024073502A (en) Pipe and its manufacturing method
WO2017043423A1 (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member