JP2015116023A - Non-contact power supply system and power receiver - Google Patents

Non-contact power supply system and power receiver Download PDF

Info

Publication number
JP2015116023A
JP2015116023A JP2013255597A JP2013255597A JP2015116023A JP 2015116023 A JP2015116023 A JP 2015116023A JP 2013255597 A JP2013255597 A JP 2013255597A JP 2013255597 A JP2013255597 A JP 2013255597A JP 2015116023 A JP2015116023 A JP 2015116023A
Authority
JP
Japan
Prior art keywords
power
vehicle
received
coil
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013255597A
Other languages
Japanese (ja)
Inventor
卓哉 藪本
Takuya Yabumoto
卓哉 藪本
松本 貞行
Sadayuki Matsumoto
貞行 松本
孝佳 永井
Takayoshi Nagai
孝佳 永井
良孝 大西
Yoshitaka Onishi
良孝 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013255597A priority Critical patent/JP2015116023A/en
Publication of JP2015116023A publication Critical patent/JP2015116023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply system and a power receiver which guide a vehicle to a parking position where electric power can be supplied in high efficiency and perform electric power supply.SOLUTION: A non-contact power supply system comprises: a power transmission coil 9 for transmitting electric power, which is installed on the ground side; a power receiving coil 10 for receiving the electric power transmitted from the power transmission coil 9 in a non-contact state, which is mounted on a vehicle 21; a power storage device 4 to which the received electric power is supplied; and a power receiving voltage detection circuit 13 for detecting a received voltage. The non-contact power supply system transmits the electric power at a constant output, presents information for guiding the vehicle 21 to a position where the received voltage becomes the maximum value, and supplies the electric power to the power storage device 4 at the position.

Description

本発明は、電気自動車およびハイブリッド自動車等の車載の蓄電池に、非接触で外部の給電施設から充電を行うための非接触給電システム及び受電装置に関するものである。   The present invention relates to a non-contact power supply system and a power receiving device for charging a storage battery mounted on an automobile such as an electric vehicle and a hybrid vehicle from an external power supply facility in a non-contact manner.

従来、車両に搭載された蓄電池に、プラグ接続を用いずに非接触で給電施設から充電を行えるようにするための非接触給電システムが提案されている。車両に搭載された蓄電池への充電を、非接触で行えるようになれば、電気コードの着脱等の手間が不要になる。そこで、例えば、駐車場等に設置された給電側の一次コイル(給電部)に交流電流を供給することにより、車両の底面に設置された受電側の二次コイル(受電部)に電磁誘導による交流電流を発生させ、当該受電側の二次コイルから蓄電池に電力を供給する充電装置が提案されている。   2. Description of the Related Art Conventionally, a non-contact power feeding system has been proposed for allowing a storage battery mounted on a vehicle to be charged from a power feeding facility without using a plug connection. If the storage battery mounted on the vehicle can be charged in a non-contact manner, the trouble of attaching and detaching the electric cord becomes unnecessary. Therefore, for example, by supplying an alternating current to the primary coil (power supply unit) on the power supply side installed in a parking lot or the like, the secondary coil (power reception unit) on the power reception side installed on the bottom surface of the vehicle is electromagnetically induced. There has been proposed a charging device that generates an alternating current and supplies electric power to the storage battery from the secondary coil on the power receiving side.

非接触給電では、地上側にある送電コイルと車両側にある受電コイルの位置関係によって給電効率が変化する。そのため、非接触給電を行うために自動車を駐車する際には、地上側の送電コイルと車両側の受電コイルを、高効率で給電できる位置に合わせる必要がある。従来の技術では、駐車位置を最適な位置に合わせるために、受電コイルに生じる電圧値を指標としている。受電コイルに生じる電圧値は、給電効率によって異なるので、給電効率が高い場合の電圧値をコイル、キャパシタの特性値から算出し、受電コイルに生じる電圧の測定値が、算出された電圧値に近づくか、あるいは、算出された電圧値になると、操縦者に知らせたり、あるいは自動運転システムに指示を出したりすることで、車両を高効率で給電できる駐車位置に誘導することができる。   In the non-contact power supply, the power supply efficiency changes depending on the positional relationship between the power transmission coil on the ground side and the power reception coil on the vehicle side. For this reason, when a vehicle is parked in order to perform non-contact power feeding, it is necessary to match the ground-side power transmission coil and the vehicle-side power receiving coil to a position where power can be fed with high efficiency. In the conventional technique, in order to adjust the parking position to the optimum position, a voltage value generated in the power receiving coil is used as an index. Since the voltage value generated in the power receiving coil varies depending on the power feeding efficiency, the voltage value when the power feeding efficiency is high is calculated from the characteristic values of the coil and the capacitor, and the measured value of the voltage generated in the power receiving coil approaches the calculated voltage value. Alternatively, when the calculated voltage value is reached, the vehicle can be guided to a parking position where power can be supplied with high efficiency by notifying the operator or giving an instruction to the automatic driving system.

このような非接触充電装置の例として、例えば、特許文献1に示される非接触給電システムでは、非接触の給電を行うために車両10が送電コイル21に対して駐車するときに、受電コイル121で受電する目標受電電圧を算出し、駐車動作中に、受電コイル121で受電する受電電圧が目標受電電圧に近づくように車両10を誘導する。受電側の車両を送電側の装置に対して受電効率上、良好な位置に誘導することができる。   As an example of such a non-contact charging device, for example, in the non-contact power feeding system disclosed in Patent Document 1, when the vehicle 10 is parked with respect to the power transmitting coil 21 in order to perform non-contact power feeding, the power receiving coil 121 is used. The target power receiving voltage to be received is calculated, and the vehicle 10 is guided so that the power receiving voltage received by the power receiving coil 121 approaches the target power receiving voltage during the parking operation. The vehicle on the power receiving side can be guided to a good position in terms of power receiving efficiency with respect to the device on the power transmission side.

特開2013−5539号公報JP 2013-5539 A

しかしながら、特許文献1の非接触給電システムにおいては、高効率で給電が可能となる最適な駐車位置の指標となる受電コイルに生じる受電電圧を、送電コイル、受電コイルおよび共振コンデンサの特性値から算出する必要があり、また、この送電コイル、受電コイルおよび共振コンデンサの特性値を事前に別途、測定しておく必要があった。また、経年変化や温度による特性値の変化により、誤差が生じてしまうという課題があった。   However, in the non-contact power feeding system of Patent Document 1, the power receiving voltage generated in the power receiving coil serving as an index of the optimal parking position that enables power feeding with high efficiency is calculated from the characteristic values of the power transmitting coil, the power receiving coil, and the resonance capacitor. In addition, the characteristic values of the power transmission coil, the power reception coil, and the resonance capacitor need to be separately measured in advance. In addition, there is a problem that an error occurs due to a change in the characteristic value due to aging or temperature.

本発明は、上記のような課題を解決するためになされたものであり、送電コイルや受電コイル、共振コンデンサの特性値に依存すること無く、より簡易に最適な駐車位置に車両を誘導する非接触給電システム及び受電装置を実現することを目的としている。   The present invention has been made in order to solve the above-described problems, and it is simple to guide the vehicle to the optimal parking position more easily without depending on the characteristic values of the power transmission coil, the power reception coil, and the resonance capacitor. The object is to realize a contact power feeding system and a power receiving device.

上記課題を解決するために、本発明に係る非接触給電システムは、地上側に設置されるとともに電力を送電する送電コイルと、車両に搭載されるとともに送電コイルから送電された電力を非接触により受電する受電コイルと、受電された電力が給電される蓄電装置と、受電された電力を検出する受電電力検出手段と、を備え、送電する電力を一定の出力に設定し、受電された電力が最大値となる位置に車両を誘導する情報を提示し、当該位置において蓄電装置に給電を行うことを特徴とするものである。   In order to solve the above-described problems, a contactless power feeding system according to the present invention includes a power transmission coil that is installed on the ground side and transmits power, and power that is mounted on a vehicle and transmitted from the power transmission coil in a contactless manner. A power receiving coil for receiving power, a power storage device to which the received power is fed, and a received power detecting means for detecting the received power, wherein the power to be transmitted is set to a constant output, and the received power is Information for guiding the vehicle to a position where the maximum value is obtained is presented, and power is supplied to the power storage device at the position.

また、本発明に係る受電装置は、車両に搭載されるとともに外部に設置された送電装置から送電された電力を非接触により受電する受電コイルと、受電された電力を検出する受電電力検出手段と、を備え、送電する電力が一定の出力に設定され、受電された電力が最大値となる位置にて車両に搭載された蓄電装置に給電を行うように車両を誘導する情報を提示することを特徴とするものである。   In addition, a power receiving device according to the present invention includes a power receiving coil that receives power transmitted from a power transmitting device that is mounted on a vehicle and installed outside, in a non-contact manner, and a received power detection unit that detects the received power. And presenting information for guiding the vehicle to supply power to the power storage device mounted on the vehicle at a position where the power to be transmitted is set to a constant output and the received power reaches the maximum value. It is a feature.

本発明の非接触給電システム及び受電装置によれば、車両が非接触給電を行うために駐車位置に駐車しようとするときに、地上側の送電コイルから一定の出力で電力を送り、受電コイルの受電電力が最大値に近づくように車両を誘導することにより、給電効率が最大となる位置に車両を誘導することができ、高効率で蓄電装置に給電することができるという効果がある。   According to the non-contact power feeding system and the power receiving device of the present invention, when the vehicle tries to park at the parking position in order to perform the non-contact power feeding, power is sent from the ground side power transmission coil with a constant output, By guiding the vehicle so that the received power approaches the maximum value, the vehicle can be guided to a position where the power supply efficiency is maximized, and power can be supplied to the power storage device with high efficiency.

実施の形態1に係る非接触給電システムの構成を示す図である。It is a figure which shows the structure of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施の形態1における受電電圧検出回路の回路構成を示す図である。3 is a diagram illustrating a circuit configuration of a received voltage detection circuit according to Embodiment 1. FIG. 実施の形態1における駐車動作時の非接触給電システムの状態を示す図である。It is a figure which shows the state of the non-contact electric power feeding system at the time of the parking operation | movement in Embodiment 1. FIG. 実施の形態1に係る非接触給電システムにおける受電装置の誘導処理手順を示すフローチャートである。3 is a flowchart illustrating a guidance processing procedure of the power receiving device in the non-contact power feeding system according to Embodiment 1. 実施の形態1に係る非接触給電システムにおける送電装置の誘導処理手順を示すフローチャートである。3 is a flowchart showing an induction processing procedure of the power transmission device in the non-contact power feeding system according to Embodiment 1. 実施の形態1に係る非接触給電システムの他の実施態様(その1)の構成を示す図である。It is a figure which shows the structure of the other embodiment (the 1) of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施の形態1の他の実施態様(その1)における受電電流検出回路の第1の例の回路構成を示す図である。FIG. 10 is a diagram showing a circuit configuration of a first example of a received current detection circuit in another embodiment (part 1) of the first embodiment. 実施の形態1の他の実施態様(その1)における受電電流検出回路の第2の例の回路構成を示す図である。FIG. 10 is a diagram illustrating a circuit configuration of a second example of the received current detection circuit according to another embodiment (part 1) of the first embodiment. 実施の形態1に係る非接触給電システムの他の実施態様(その2)の構成を示す図である。It is a figure which shows the structure of the other embodiment (the 2) of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施の形態1における最適駐車位置に対する車両の誘導表示画面例を示す図である。6 is a diagram showing an example of a vehicle guidance display screen for an optimal parking position in the first embodiment. FIG. 実施の形態1に係る非接触給電システムの他の実施態様(その3)の構成を示す図である。It is a figure which shows the structure of the other embodiment (the 3) of the non-contact electric power feeding system which concerns on Embodiment 1. FIG. 実施の形態2に係る非接触給電システムの構成を示す図である。It is a figure which shows the structure of the non-contact electric power feeding system which concerns on Embodiment 2. FIG. 実施の形態2に係る非接触給電システムにおける受電装置の誘導処理手順を示すフローチャートである。6 is a flowchart illustrating a guidance processing procedure of a power receiving device in the non-contact power feeding system according to the second embodiment. 実施の形態2に係る非接触給電システムにおける送電装置の誘導処理手順を示すフローチャートである。6 is a flowchart illustrating an induction processing procedure of a power transmission device in a contactless power feeding system according to a second embodiment.

以下、本発明の実施の形態に係る非接触給電システムについて、図1から図14を参照して説明する。   Hereinafter, a non-contact power feeding system according to an embodiment of the present invention will be described with reference to FIGS.

実施の形態1.
図1は、実施の形態1に係る非接触給電システムの構成を示す図であり、図2は、非接触給電システムの受電電圧検出回路の回路構成を示す図である。図3は、駐車動作時の非接触給電システムの状態を示す図である。図4は、受電装置の誘導処理手順を示すフローチャートであり、図5は、送電装置の誘導処理手順を示すフローチャートである。また、図6は、最適駐車位置に対する誘導表示例を示す図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a contactless power feeding system according to Embodiment 1, and FIG. 2 is a diagram illustrating a circuit configuration of a received voltage detection circuit of the contactless power feeding system. FIG. 3 is a diagram illustrating a state of the non-contact power feeding system during the parking operation. FIG. 4 is a flowchart illustrating a guidance processing procedure of the power receiving apparatus, and FIG. 5 is a flowchart illustrating a guidance processing procedure of the power transmission apparatus. FIG. 6 is a diagram showing an example of guidance display for the optimum parking position.

まず、図1および図2を用いて、実施の形態1に係る非接触給電システムの構成について説明する。非接触給電システムは、地上側の送電装置1と、車両側の受電装置2と、送電装置1を介して受電装置2に電力を供給する電源3と、受電装置2に供給された電力を蓄える蓄電装置4と、で構成されている。また、蓄電装置4には、モータ用インバータ17が接続されており、蓄電池のエネルギがモータ用インバータ17により変換され、モータジェネレータ18を駆動させることによって、車両21を駆動する。   First, the configuration of the non-contact power feeding system according to Embodiment 1 will be described with reference to FIGS. 1 and 2. The non-contact power feeding system stores the power supplied to the power receiving device 2, the power receiving device 2 on the ground side, the power receiving device 2 on the vehicle side, the power source 3 that supplies power to the power receiving device 2 via the power transmitting device 1. Power storage device 4. The power storage device 4 is connected to a motor inverter 17. The energy of the storage battery is converted by the motor inverter 17, and the motor generator 18 is driven to drive the vehicle 21.

送電装置1は、駐車場などの地上側に設置されており、また、系統電源や蓄電池などの電源3に接続され、電源3から電力が供給される。送電装置1は、電源3から供給された交流電力を直流電力に変換する整流回路5と、整流回路5から出力された直流電力を高周波電力に変換するインバータ6と、インバータ6に接続され、受電装置2との通信を行う通信機7と、インバータ6からの高周波電力を高周波磁界に変換して送出するために直列に接続された共振コンデンサ8および送電コイル9と、で構成されている。   The power transmission device 1 is installed on the ground side such as a parking lot, and is connected to a power source 3 such as a system power source or a storage battery, and is supplied with power from the power source 3. The power transmission device 1 is connected to the rectifier circuit 5 that converts AC power supplied from the power source 3 into DC power, the inverter 6 that converts DC power output from the rectifier circuit 5 into high-frequency power, and the inverter 6. A communication device 7 that communicates with the device 2 and a resonance capacitor 8 and a power transmission coil 9 that are connected in series to convert the high-frequency power from the inverter 6 into a high-frequency magnetic field and send it out.

受電装置2は、送電コイル9から送出された高周波磁界により形成された誘導電流から高周波電力を出力するために直列に接続された受電コイル10および共振コンデンサ11と、出力された高周波電力を直流電力に変換する整流回路12と、整流回路12から出力された直流電力を抵抗13aの両端にかかる受電電圧Vを検出する受電電圧検出回路13と、受電電圧検出回路13を介して直流電力の電圧を変換し、蓄電装置4に電力を供給する昇降圧コンバータ(DC/DCコンバータ)14と、受電電圧検出回路13にて検出された受電電圧Vを測定するとともに受電電圧検出回路13のスイッチ13bの開閉動作を行う制御装置15と、制御装置15からの指令により送電装置1の通信機7との通信を行う通信機16と、で構成されている。なお、ここでは、受電電力検出手段として、受電電圧を検出する受電電圧検出回路13を用いた実施の形態について説明する。   The power receiving device 2 includes a power receiving coil 10 and a resonance capacitor 11 connected in series to output high frequency power from an induction current formed by a high frequency magnetic field transmitted from the power transmission coil 9, and the output high frequency power is converted into DC power. A rectifier circuit 12 that converts the DC power output from the rectifier circuit 12, a received voltage detection circuit 13 that detects a received voltage V across the resistor 13a, and a voltage of the DC power through the received voltage detection circuit 13. A buck-boost converter (DC / DC converter) 14 that converts and supplies power to the power storage device 4, measures the received voltage V detected by the received voltage detection circuit 13, and opens and closes the switch 13 b of the received voltage detection circuit 13 A control device 15 that performs the operation, and a communication device 16 that performs communication with the communication device 7 of the power transmission device 1 in accordance with a command from the control device 15. That. Here, an embodiment using a received voltage detection circuit 13 that detects a received voltage as received power detection means will be described.

次に、非接触給電システムの動作について説明する。
電源3から供給された電力は、電源3が系統電源のような交流である場合には、整流回路5で直流に整流され、平滑される。整流回路5は、例えば、ダイオードブリッジ、平滑用リアクトルおよび平滑用コンデンサで構成される。なお、整流回路5は平滑用リアクトルを用いずに構成される場合であってもよい。整流回路5で平滑された電力は、整流回路5の後段に接続されたインバータ6で高周波電力に変換される。インバータ6には、通信機7が接続されており、通信機7が通信機16から受け取った信号により、所定の動作を行う。
Next, the operation of the non-contact power feeding system will be described.
The power supplied from the power source 3 is rectified and smoothed by the rectifier circuit 5 when the power source 3 is an alternating current such as a system power source. The rectifier circuit 5 includes, for example, a diode bridge, a smoothing reactor, and a smoothing capacitor. The rectifier circuit 5 may be configured without using a smoothing reactor. The power smoothed by the rectifier circuit 5 is converted into high-frequency power by the inverter 6 connected to the subsequent stage of the rectifier circuit 5. A communication device 7 is connected to the inverter 6, and the communication device 7 performs a predetermined operation according to a signal received from the communication device 16.

通信機7が、通信機16から車両21が駐車動作を開始したことを知らせる信号を受け取ったとき、インバータ6からの電力を一定の出力で送出する。通信機7が、通信機16から車両21の駐車が完了したことを知らせる信号を受信したときは、蓄電装置4の蓄電池に通常の充電を開始する。インバータ6は、インバータ6からの出力電力を一定に保つことができるフィードバック制御機能を備えている。   When the communication device 7 receives a signal notifying that the vehicle 21 has started the parking operation from the communication device 16, the communication device 7 sends out the electric power from the inverter 6 with a constant output. When the communication device 7 receives a signal notifying that the parking of the vehicle 21 is completed from the communication device 16, normal charging of the storage battery of the power storage device 4 is started. The inverter 6 has a feedback control function that can keep the output power from the inverter 6 constant.

この制御を行うために、インバータ6には、出力電流と出力電圧を測定することができる、例えば、マイコン等の装置が備えられており、常に出力電力を一定にすることができるよう、測定された出力電圧値と出力電流値に応じて、インバータ6のスイッチング素子のオン/オフ比を制御する機能を有している。   In order to perform this control, the inverter 6 is provided with a device such as a microcomputer, which can measure the output current and the output voltage, and is measured so that the output power can always be kept constant. According to the output voltage value and the output current value, the on / off ratio of the switching element of the inverter 6 is controlled.

インバータ6の出力端には、共振コンデンサ8と送電コイル9が直列に接続され、インバータ6から送電コイル9に高周波電流が供給され、送電コイル9の周囲に高周波磁界が形成される。送電コイル9は、リッツ線などの導線を渦巻状やソレノイド状に巻回して形成してものを使用することができる。また、送電コイル9には、受電コイル10との結合係数を向上させるために、フェライトコアを挿入してもよいが、フェライトコアを用いない送電コイル9であってもよい。   A resonant capacitor 8 and a power transmission coil 9 are connected in series to the output end of the inverter 6, a high frequency current is supplied from the inverter 6 to the power transmission coil 9, and a high frequency magnetic field is formed around the power transmission coil 9. The power transmission coil 9 can be formed by winding a lead wire such as a litz wire in a spiral shape or a solenoid shape. In addition, a ferrite core may be inserted into the power transmission coil 9 in order to improve the coupling coefficient with the power reception coil 10, but the power transmission coil 9 that does not use a ferrite core may also be used.

受電装置2では、送電コイル9が作る高周波磁界によって、受電コイル10に誘導電流が生じ、受電コイル10と並列に接続された共振コンデンサ11とで構成された回路により、送電装置1から受電された高周波電力は、整流回路12により直流電力に変換される。ここで、受電コイル10も送電コイル9と同様、リッツ線などの導線で形成されたコイルであり、送電コイル9との結合係数を向上させるために、フェライトコアを挿入してもよいが、フェライトコアを用いない送電コイル9であってもよい。また、整流回路12はダイオードブリッジと平滑用リアクトル、平滑用コンデンサで構成される。なお、整流回路12は平滑用リアクトルを用いずに構成してもよい。   In the power receiving device 2, an induction current is generated in the power receiving coil 10 due to the high-frequency magnetic field generated by the power transmitting coil 9, and power is received from the power transmitting device 1 by a circuit including the resonant capacitor 11 connected in parallel with the power receiving coil 10. The high frequency power is converted into DC power by the rectifier circuit 12. Here, the power receiving coil 10 is also a coil formed of a conducting wire such as a litz wire like the power transmitting coil 9, and a ferrite core may be inserted to improve the coupling coefficient with the power transmitting coil 9. The power transmission coil 9 that does not use a core may be used. The rectifier circuit 12 includes a diode bridge, a smoothing reactor, and a smoothing capacitor. The rectifier circuit 12 may be configured without using a smoothing reactor.

整流回路12の後段には受電電圧検出回路13が接続されており、図2に示すように、受電電圧検出回路13は、直列に接続された抵抗13aとスイッチ13bとで構成されている。このスイッチ13bは、FETやIGBTなどのスイッチング素子等で構成される。また、このスイッチ13bの開閉操作は、制御装置15において行われる。   A power reception voltage detection circuit 13 is connected to the subsequent stage of the rectifier circuit 12, and as shown in FIG. 2, the power reception voltage detection circuit 13 includes a resistor 13a and a switch 13b connected in series. The switch 13b is composed of a switching element such as FET or IGBT. The opening / closing operation of the switch 13b is performed in the control device 15.

非接触給電システムが車両21の駐車動作時には、制御装置15からの指令により受電電圧検出回路13のスイッチ13bは導通状態にされ、非接触給電システムが蓄電池充電動作時には、制御装置15からの指令により受電電圧検出回路13のスイッチ13bは遮断状態にされる。また、車両21の駐車動作時には、制御装置15によって受電電圧検出回路13の抵抗13aの両端にかかる受電電圧Vが測定される。通信機16は、制御装置15に接続されており、通信機7との通信を行う。   When the non-contact power feeding system is in the parking operation of the vehicle 21, the switch 13 b of the received voltage detection circuit 13 is turned on by a command from the control device 15. When the non-contact power feeding system is in the storage battery charging operation, the command from the control device 15 is used. The switch 13b of the received voltage detection circuit 13 is turned off. Further, during the parking operation of the vehicle 21, the control device 15 measures the power reception voltage V applied to both ends of the resistor 13 a of the power reception voltage detection circuit 13. The communication device 16 is connected to the control device 15 and communicates with the communication device 7.

通信機16は、車両21の駐車動作の開始時には、駐車動作が開始されたことを知らせる信号を通信機7に送信する。また、通信機16は、車両21の駐車が完了したときは、駐車が完了したことを知らせる信号を通信機7に送信する。   The communication device 16 transmits a signal notifying that the parking operation has started to the communication device 7 when the parking operation of the vehicle 21 is started. Further, when the parking of the vehicle 21 is completed, the communication device 16 transmits a signal notifying that the parking is completed to the communication device 7.

受電電圧検出回路13の後段には、DC/DCコンバータ14が接続されている。非接触給電システムが蓄電池充電動作時には、整流回路12で平滑された電力は、DC/DCコンバータ14により適切な電圧に変換されたあと、DC/DCコンバータ14の後段に接続された蓄電装置4に電力が供給される。この蓄電装置4としては、ニッケル水素電池やリチウムイオン電池などが用いられる。また、駐車動作時には、蓄電装置4の蓄電池に充電が行われず、蓄電装置4は車両21を駆動するためのモータ用インバータ17に接続され、モータに電力に供給するため、非接触給電システムは、図3に示すように、DC/DCコンバータ14と蓄電装置4とが切り離された状態となる。   A DC / DC converter 14 is connected to the subsequent stage of the received voltage detection circuit 13. When the non-contact power supply system performs the storage battery charging operation, the electric power smoothed by the rectifier circuit 12 is converted into an appropriate voltage by the DC / DC converter 14 and then applied to the power storage device 4 connected to the subsequent stage of the DC / DC converter 14. Power is supplied. As the power storage device 4, a nickel metal hydride battery or a lithium ion battery is used. Further, during the parking operation, the storage battery of the power storage device 4 is not charged, and the power storage device 4 is connected to the motor inverter 17 for driving the vehicle 21 and supplies electric power to the motor. As shown in FIG. 3, the DC / DC converter 14 and the power storage device 4 are disconnected.

続いて、本実施の形態における非接触給電システムの処理手順について、図4、図5のフローチャートを参照して説明する。図4は、受電装置2の誘導処理手順を示すフローチャートであり、図5は、送電装置1の誘導処理手順を示すフローチャートである。   Next, a processing procedure of the non-contact power feeding system in the present embodiment will be described with reference to the flowcharts of FIGS. FIG. 4 is a flowchart illustrating the guidance processing procedure of the power receiving device 2, and FIG. 5 is a flowchart illustrating the guidance processing procedure of the power transmission device 1.

最初に、車両21の制御装置15で駐車動作が開始されたか否かの判定を行う(ステップS10)。車両21の駐車動作が開始されている場合には、ステップS12に移行し、制御装置15が通信機16を介して地上の通信機7に駐車動作が開始されたことを知らせる駐車開始信号を送信する。駐車動作が行われていない場合には、駐車動作が開始されるまで、ステップS10で駐車動作開始の判定を継続する。   First, it is determined whether or not the parking operation is started by the control device 15 of the vehicle 21 (step S10). When the parking operation of the vehicle 21 is started, the process proceeds to step S12, and the control device 15 transmits a parking start signal notifying the ground communication device 7 that the parking operation has started via the communication device 16. To do. When the parking operation is not performed, the determination of the parking operation start is continued in step S10 until the parking operation is started.

通信機7は、通信機16から駐車開始信号を受信したか否かの判定を行う(ステップS30)。駐車開始信号が受信された場合には、車両21を最適駐車位置に誘導するために、インバータ6からの電力が一定の出力となるように制御を行い、一定の出力での送電を開始する(ステップS32)。駐車開始信号が受信されていない場合には、駐車開始信号が受信されまで、ステップS30で駐車開始信号の受信の判定を継続する。この際の電力は、蓄電装置4を充電する場合の電力よりも小さな電力で送電を行う。それによって、駐車動作中の無駄な電力消費が抑制され、受電装置2および送電装置1の回路やコイルの発熱、破壊を防止でき、また漏れ磁束を抑制することができる。   The communication device 7 determines whether or not a parking start signal has been received from the communication device 16 (step S30). When the parking start signal is received, in order to guide the vehicle 21 to the optimal parking position, control is performed so that the power from the inverter 6 becomes a constant output, and power transmission with a constant output is started ( Step S32). If the parking start signal has not been received, the determination of reception of the parking start signal is continued in step S30 until the parking start signal is received. At this time, the electric power is transmitted with electric power smaller than the electric power for charging the power storage device 4. Accordingly, useless power consumption during the parking operation is suppressed, and heat generation and destruction of the circuits and coils of the power reception device 2 and the power transmission device 1 can be prevented, and leakage magnetic flux can be suppressed.

通信機16が駐車開始信号を通信機7に送信後、制御装置15により受電装置2の受電電圧検出回路13のスイッチ13bをオンにする(ステップS14)。ここでは、まだ駐車動作を行っているので、図3に示すように、DC/DC14と蓄電装置4は、切り離された状態である。受電装置2の受電コイル10は、送電コイル9と磁界結合しており、非接触で、送電装置1から、電力の供給を受ける。送電された電力は、整流回路12を介して受電電圧検出回路13にて受電電圧Vの測定を行う(ステップS16)。送電装置1のインバータ6により、送電コイル9と受電コイル10の位置関係に関わらず、常に、インバータ6からの出力電力は一定に保たれているので、車両21が移動し、送電コイル9に対して、受電コイル10が接近すると、給電効率ηが向上し、受電電圧検出回路13で測定される受電電圧Vは、給電効率ηの向上とともに大きくなり、給電効率ηが最大になったときに、受電電力Poutも最大となる。   After the communication device 16 transmits a parking start signal to the communication device 7, the control device 15 turns on the switch 13b of the received voltage detection circuit 13 of the power receiving device 2 (step S14). Here, since the parking operation is still performed, the DC / DC 14 and the power storage device 4 are separated as shown in FIG. The power receiving coil 10 of the power receiving device 2 is magnetically coupled to the power transmitting coil 9 and receives supply of electric power from the power transmitting device 1 in a non-contact manner. The transmitted power is measured by the received voltage detection circuit 13 via the rectifier circuit 12 (step S16). Regardless of the positional relationship between the power transmission coil 9 and the power receiving coil 10, the output power from the inverter 6 is always kept constant by the inverter 6 of the power transmission device 1. When the power receiving coil 10 approaches, the power feeding efficiency η is improved, and the power receiving voltage V measured by the power receiving voltage detection circuit 13 increases as the power feeding efficiency η increases, and when the power feeding efficiency η becomes maximum, The received power Pout is also maximized.

ここで、受電電圧検出回路13にて測定される受電コイル10での受電電力をPout、給電効率をη、送電装置1の送電コイル9からの送電電力をPinとすると、
Pout=η×Pin (1)
で表される。また、この受電電力をPoutは、受電電圧検出回路13にかかる受電電圧をV、負荷抵抗13aをRとすると(図2)、
Pout=V/R (2)
となる。(2)式より、受電電圧検出回路13にかかる受電電圧Vが最大であるときに、受電電力Poutが最大となる。したがって、受電電圧検出回路13にかかる受電電圧Vをモニタしながら駐車動作を行い、受電電圧検出回路13にかかる受電電圧Vが最大になるところで、ドライバーにその情報を提供することで、車両21を給電効率ηが最大になる場所に誘導することができる。この方法では、受電電圧Vをモニタするだけで、給電効率ηがわかるため、車両21の位置検出が容易であり、また、追加部品が少なくて済み低コストで実現することができることから、電圧検出および最適駐車位置への誘導の演算処理を少なくすることができる。
Here, when the received power in the power receiving coil 10 measured by the received voltage detection circuit 13 is Pout, the power feeding efficiency is η, and the power transmitted from the power transmitting coil 9 of the power transmitting device 1 is Pin,
Pout = η × Pin (1)
It is represented by In addition, when the received power is Pout, the received voltage applied to the received voltage detection circuit 13 is V, and the load resistance 13a is R (FIG. 2),
Pout = V 2 / R (2)
It becomes. From the equation (2), when the received voltage V applied to the received voltage detection circuit 13 is the maximum, the received power Pout is the maximum. Therefore, the parking operation is performed while monitoring the received voltage V applied to the received voltage detection circuit 13, and the vehicle 21 is provided by providing the driver with the information when the received voltage V applied to the received voltage detection circuit 13 becomes maximum. It can be guided to a place where the power supply efficiency η is maximized. In this method, since the power supply efficiency η can be known simply by monitoring the power reception voltage V, the position of the vehicle 21 can be easily detected, and it is possible to reduce the number of additional components and realize the voltage detection. In addition, it is possible to reduce the calculation processing of guidance to the optimum parking position.

また、図6の他の実施態様(その1)の構成に示すように、受電電力検出手段として、受電電圧検出回路13ではなく、受電電流検出回路23を用いてもよく、図7の受電電流検出回路23の第1の回路構成例に示すように、この受電電力をPoutは、受電電流検出回路23のシャント抵抗23cに流れる電流をI、負荷抵抗23aをRとすると、
Pout=IR (3)
となる。(3)式より、受電電流検出回路23に流れる電流Iが最大であるときに、受電電力Poutが最大となる。したがって、受電電流検出回路23に流れる電流Iをモニタしながら駐車動作を行い、受電電流検出回路23に流れる電流Iが最大になるところで、ドライバーにその情報を提供することで、電圧検出の場合と同様、車両21を給電効率ηが最大になる場所に誘導することができる。ここで、図8の受電電流検出回路23の第2の回路構成例に示すように、電流検出にシャント抵抗23cの替わりにカレントトランス
23dを用いてもよい。
Further, as shown in the configuration of the other embodiment (part 1) in FIG. 6, the received current detection circuit 23 may be used instead of the received voltage detection circuit 13 as the received power detection means. As shown in the first circuit configuration example of the detection circuit 23, if the received power is Pout, the current flowing through the shunt resistor 23c of the received current detection circuit 23 is I, and the load resistance 23a is R,
Pout = I 2 R (3)
It becomes. From equation (3), when the current I flowing through the received current detection circuit 23 is maximum, the received power Pout is maximum. Therefore, the parking operation is performed while monitoring the current I flowing through the received current detection circuit 23, and the current I flowing through the received current detection circuit 23 is maximized. Similarly, the vehicle 21 can be guided to a place where the power supply efficiency η is maximized. Here, as shown in the second circuit configuration example of the received current detection circuit 23 in FIG. 8, a current transformer 23d may be used for current detection instead of the shunt resistor 23c.

また、図9の他の実施態様(その2)の構成に示すように、受電電力検出手段として、受電電圧検出回路13ではなく、受電電圧の検出と受電電流の検出の両方を備えた受電電力検出回路33を用いてもよく、受電電力Poutをモニタしながら駐車動作を行い、受電電力Poutが最大になるところで、ドライバーにその情報を提供することで、車両21を給電効率ηが最大になる場所に誘導することができる。   Further, as shown in the configuration of the other embodiment (part 2) in FIG. 9, the received power having both the detection of the received voltage and the detection of the received current as the received power detection means, instead of the received voltage detection circuit 13. The detection circuit 33 may be used, and the parking operation is performed while monitoring the received power Pout, and when the received power Pout is maximized, the information is provided to the driver, so that the power supply efficiency η of the vehicle 21 is maximized. You can be guided to a place.

ステップS16で、受電電圧検出回路13にて受電電圧Vの測定を行った結果を制御装置15により、カーナビゲーションシステムなどの情報表示が可能な表示装置20に、現在の車両位置情報を表示させる(ステップS18)。例えば、表示装置20に、車両21が最適駐車位置に近づいていることの状況を示す図10(a)の表示Aを表示し、ドライバーに車両を誘導する情報を提供する。さらに、ステップS20において、制御装置15は、受電電圧検出回路13で測定された受電電圧Vが減少したか否かの判定を行う。送電コイル9と受電コイル10の相対位置が接近し、給電効率ηが増加するに従って、受電電圧検出回路13の受電電圧Vが増加する。受電電圧Vが増加しなくなった位置、減少に転じた位置を最適駐車位置としている。受電電圧検出回路13の受電電圧Vが増加中の場合は、ステップS16に戻り、受電電圧検出回路13で受電電圧Vの測定を継続し、表示装置20に現在の状況を表示して、ドライバーに車両操作を誘導する情報を提供する。   In step S16, the result of measuring the received voltage V by the received voltage detection circuit 13 is displayed by the control device 15 on the display device 20 that can display information such as a car navigation system, as the current vehicle position information ( Step S18). For example, the display device 20 displays the display A in FIG. 10A indicating the situation that the vehicle 21 is approaching the optimum parking position on the display device 20, and provides information for guiding the vehicle to the driver. Further, in step S20, the control device 15 determines whether or not the received voltage V measured by the received voltage detection circuit 13 has decreased. As the relative position between the power transmission coil 9 and the power reception coil 10 approaches and the power supply efficiency η increases, the power reception voltage V of the power reception voltage detection circuit 13 increases. The optimal parking position is a position where the received voltage V no longer increases, or a position where the received voltage V starts to decrease. If the received voltage V of the received voltage detection circuit 13 is increasing, the process returns to step S16, the received voltage V is continuously measured by the received voltage detection circuit 13, the current status is displayed on the display device 20, and the driver is notified. Provides information to guide vehicle operation.

ステップS20において、受電電圧検出回路13で測定された受電電圧Vが、増加から減少に転じたと判定された場合には、ステップS22において、車両21が最適駐車位置に来たと判断し、制御装置15により、表示装置20に、車両21が最適駐車位置にあることの状況を示す図10(b)の表示Bを表示し、ドライバーにその情報を提供する。   If it is determined in step S20 that the power reception voltage V measured by the power reception voltage detection circuit 13 has changed from increasing to decreasing, it is determined in step S22 that the vehicle 21 has reached the optimal parking position, and the control device 15 Thus, the display B of FIG. 10B showing the situation that the vehicle 21 is at the optimum parking position is displayed on the display device 20, and the information is provided to the driver.

さらに、ステップS24において、車両21が最適駐車位置にあると表示装置20に表示された情報に基づきドライバーが車両21を停止させ、駐車が完了すると、制御装置15は受電電圧検出回路13のスイッチ13bをオフにし、通信機16を介して通信機7に駐車が完了したとの情報を送信する。受電電圧検出回路13のスイッチ13bをオフにさせることにより、蓄電装置4に充電する際に受電電圧検出回路13で無駄な電力を消費することが無くなる。   Further, in step S24, the driver stops the vehicle 21 based on the information displayed on the display device 20 that the vehicle 21 is at the optimum parking position, and when the parking is completed, the control device 15 switches the switch 13b of the received voltage detection circuit 13. Is turned off, and information indicating that the parking is completed is transmitted to the communication device 7 via the communication device 16. By turning off the switch 13b of the received voltage detection circuit 13, useless power is not consumed in the received voltage detection circuit 13 when the power storage device 4 is charged.

ステップS34では、通信機7が通信機16から駐車が完了したとの情報を受信したかどうかの判定を行い、ステップS24から駐車完了の情報を受信した場合には、ステップS36に移り、送電装置1は、インバータ6からの位置誘導用の一定電力の送電を終了させる。駐車完了の情報を受信していない場合には、ステップS34に戻り、インバータ6からの位置誘導用の一定電力の送電を継続する。   In step S34, it is determined whether or not the communication device 7 has received information that parking has been completed from the communication device 16. If the parking completion information has been received from step S24, the process proceeds to step S36, and the power transmission device 1 terminates transmission of constant power for position guidance from the inverter 6. If the parking completion information has not been received, the process returns to step S34, and transmission of constant power for position guidance from the inverter 6 is continued.

インバータ6からの位置誘導用の一定電力の送電が終了すると、ステップS38とステップS26に移り、送電装置1は、給電用電力の送電動作を開始し(ステップS38)、受電装置2は、蓄電装置4の蓄電池の充電動作を開始する(ステップS26)。ここで、蓄電池の充電動作に移行する際には、非接触給電システムは、DC/DCコンバータ14と蓄電装置4が受電電圧検出回路13を介して整流回路12と回路的に接続された状態となる。   When the transmission of the constant power for position guidance from the inverter 6 is completed, the process proceeds to step S38 and step S26, the power transmission device 1 starts the power transmission operation of the power for power supply (step S38), and the power receiving device 2 is the power storage device. The charging operation of the storage battery 4 is started (step S26). Here, when shifting to the charging operation of the storage battery, the non-contact power feeding system includes a state in which the DC / DC converter 14 and the power storage device 4 are connected in circuit with the rectifier circuit 12 via the received voltage detection circuit 13. Become.

従来の特許文献1では、送電装置の送電コイルと共振コンデンサの特性値を、受電装置に送信し、受電装置の受電コイルと共振コンデンサの特性値から、給電効率が最大となるときの受電装置での受電電圧値を算出し、その電圧値を指標として、車両を誘導する。この方法では、各素子の特性値を予め測定記憶しておく必要があり、また、使用状態や使用状況による特性値の変化に対応することができない。   In the conventional patent document 1, the characteristic values of the power transmission coil and the resonance capacitor of the power transmission device are transmitted to the power reception device. From the characteristic values of the power reception coil and the resonance capacitor of the power reception device, And the vehicle is guided using the voltage value as an index. In this method, it is necessary to measure and store the characteristic values of each element in advance, and it is not possible to cope with changes in the characteristic values depending on the use state or use state.

これに対して、本発明では、非接触給電で蓄電装置4に充電を行うために車両21が駐車動作を行う際、送電装置1が、常に送電コイル9からの送電電力が一定となるように制御し、受電コイル10の受電電圧Vを受電電圧検出回路13においてモニタし、受電電圧Vが最大となるように車両21を誘導する。したがって、受電電圧検出回路13にかかる受電電圧Vが最大となるとき、給電効率ηは最大となるので、本発明の制御機構を有していれば、車種の違いによる受電コイル10の位置の違い、送電コイル9、受電コイル10、共振コンデンサ8、共振コンデンサ11の特性値の違いに依らず、また、それらの情報を、送電装置1から受電装置2に送信することなしに、車両21を、給電効率ηの最大点となる位置に誘導することができる汎用性の高い非接触給電システムを得ることができる。   In contrast, in the present invention, when the vehicle 21 performs a parking operation in order to charge the power storage device 4 by non-contact power feeding, the power transmission device 1 always keeps the transmission power from the power transmission coil 9 constant. The received voltage V of the receiving coil 10 is monitored by the received voltage detection circuit 13 and the vehicle 21 is induced so that the received voltage V becomes maximum. Therefore, when the power receiving voltage V applied to the power receiving voltage detection circuit 13 is maximized, the power feeding efficiency η is maximized. Therefore, if the control mechanism of the present invention is provided, the difference in the position of the power receiving coil 10 due to the difference in vehicle type Regardless of the difference in the characteristic values of the power transmission coil 9, the power reception coil 10, the resonance capacitor 8, and the resonance capacitor 11, and without transmitting the information from the power transmission device 1 to the power reception device 2, the vehicle 21 is A highly versatile non-contact power feeding system that can be guided to a position where the power feeding efficiency η becomes the maximum can be obtained.

なお、図11の他の実施態様(その3)の構成に示すように、受電電圧検出回路13は、整流回路12の前段にある構成であってもよい。また、受電電流検出回路23、受電電力検出回路33を用いる場合であっても、これらが、整流回路12の前段にある構成でも、後段にある構成でもどちらであってもよい。   Note that, as shown in the configuration of another embodiment (part 3) in FIG. 11, the power reception voltage detection circuit 13 may have a configuration in front of the rectifier circuit 12. Further, even when the received current detection circuit 23 and the received power detection circuit 33 are used, either the configuration in the preceding stage or the configuration in the subsequent stage of the rectifier circuit 12 may be used.

このように、実施の形態1に係る非接触給電システムによれば、車両が非接触給電を行うために駐車位置に駐車しようとするときに、地上側の送電コイルからの電力を一定の出力に設定し、受電コイルの受電電力が最大値に近づくように車両を誘導することにより、給電効率が最大となる位置に車両を誘導することができ、高効率で蓄電装置に給電することができるという効果がある。   Thus, according to the contactless power supply system according to Embodiment 1, when the vehicle attempts to park at the parking position in order to perform contactless power supply, the power from the power transmission coil on the ground side is set to a constant output. By setting and guiding the vehicle so that the power received by the power receiving coil approaches the maximum value, the vehicle can be guided to a position where the power feeding efficiency is maximized, and the power storage device can be fed with high efficiency. effective.

実施の形態2.
図12は、実施の形態2に係る非接触給電システムの構成を示す図である。図13は、受電装置の誘導処理手順を示すフローチャートであり、図14は、送電装置の誘導処理手順を示すフローチャートである。図1に示す実施の形態1に係る非接触給電システムと図12に示す実施の形態2に係る非接触給電システムとの相違点は、実施の形態1では、給電効率が最大となる最適駐車位置についての情報をカーナビゲーションシステムなどのディスプレイに表示することによって、ドライバーに車両21が最適駐車位置に駐車できるよう誘導するのに対して、実施の形態2では、自動運転制御装置19を備え、最適駐車位置についての情報を自動運転制御装置19に送り、自動運転システムによって、車両21を制御し、最適駐車位置に駐車させるものである。
Embodiment 2. FIG.
FIG. 12 is a diagram illustrating a configuration of a non-contact power feeding system according to the second embodiment. FIG. 13 is a flowchart illustrating the guidance processing procedure of the power receiving apparatus, and FIG. 14 is a flowchart illustrating the guidance processing procedure of the power transmission apparatus. The difference between the non-contact power feeding system according to the first embodiment shown in FIG. 1 and the non-contact power feeding system according to the second embodiment shown in FIG. 12 is that the optimal parking position at which the power feeding efficiency is maximum in the first embodiment. By displaying the information about the vehicle on a display such as a car navigation system, the driver is guided so that the vehicle 21 can park at the optimal parking position. In the second embodiment, the automatic driving control device 19 is provided to optimize the vehicle. Information about the parking position is sent to the automatic driving control device 19, and the vehicle 21 is controlled by the automatic driving system and parked at the optimum parking position.

まず、図12を用いて、実施の形態2に係る非接触給電システムの構成について説明する。実施の形態2の非接触給電システムでは、モータ用インバータ17に自動運転制御装置19が接続されている点を除き、図1の実施の形態1と同様であるので、他の構成要素についての説明を省略する。モータ用インバータ17は、自動運転制御装置19により制御され、モータジェネレータ18を駆動させることによって、車両21を運転制御する。制御装置15は、自動運転制御装置19に、最適駐車位置であるかどうかの情報を送信する。   First, the configuration of the non-contact power feeding system according to Embodiment 2 will be described with reference to FIG. The non-contact power feeding system of the second embodiment is the same as that of the first embodiment of FIG. 1 except that the automatic operation control device 19 is connected to the motor inverter 17, so that the other components are described. Is omitted. The motor inverter 17 is controlled by the automatic operation control device 19 and controls the operation of the vehicle 21 by driving the motor generator 18. The control device 15 transmits information indicating whether or not it is the optimum parking position to the automatic driving control device 19.

続いて、本実施の形態における非接触給電システムの処理手順について、図13、図14のフローチャートを参照して説明する。図13は、受電装置2の誘導処理手順を示すフローチャートであり、図14は、送電装置1の誘導処理手順を示すフローチャートである。   Subsequently, a processing procedure of the non-contact power feeding system in the present embodiment will be described with reference to the flowcharts of FIGS. 13 and 14. FIG. 13 is a flowchart illustrating a guidance processing procedure of the power receiving device 2, and FIG. 14 is a flowchart illustrating a guidance processing procedure of the power transmission device 1.

最初に、車両21の制御装置15で駐車動作が開始されたか否かの判定を行う(ステップS40)。車両21の駐車動作が開始されている場合には、ステップS42に移行し、制御装置15が通信機16を介して地上の通信機7に駐車動作が開始されたことを知らせる駐車開始信号を送信する。駐車動作が行われていない場合には、駐車動作が開始されるまで、ステップS40で駐車動作開始の判定を継続する。   First, it is determined whether or not the parking operation is started by the control device 15 of the vehicle 21 (step S40). When the parking operation of the vehicle 21 is started, the process proceeds to step S42, and the control device 15 transmits a parking start signal notifying the ground communication device 7 that the parking operation has started via the communication device 16. To do. When the parking operation is not performed, the determination of the parking operation start is continued in step S40 until the parking operation is started.

通信機7は、通信機16から駐車開始信号を受信したか否かの判定を行う(ステップS60)。駐車開始信号が受信された場合には、車両21を最適駐車位置に誘導するために、インバータ6からの電力が一定の出力となるように制御を行い、一定の出力での送電を開始する(ステップS62)。駐車開始信号が受信されていない場合には、駐車開始信号が受信されまで、ステップS60で駐車開始信号の受信の判定を継続する。この際の電力は、蓄電装置4を充電する場合の電力よりも小さな電力で送電を行う。それによって、駐車動作中の無駄な電力消費が抑制され、受電装置2および送電装置1の回路やコイルの発熱、破壊を防止でき、また漏れ磁束を抑制することができる。   The communication device 7 determines whether or not a parking start signal has been received from the communication device 16 (step S60). When the parking start signal is received, in order to guide the vehicle 21 to the optimal parking position, control is performed so that the power from the inverter 6 becomes a constant output, and power transmission with a constant output is started ( Step S62). If the parking start signal has not been received, the determination of reception of the parking start signal is continued in step S60 until the parking start signal is received. The electric power at this time is transmitted with electric power smaller than the electric power for charging the power storage device 4. Accordingly, useless power consumption during the parking operation is suppressed, and heat generation and destruction of the circuits and coils of the power reception device 2 and the power transmission device 1 can be prevented, and leakage magnetic flux can be suppressed.

通信機16が駐車開始信号を通信機7に送信後、制御装置15により受電装置2の受電電圧検出回路13のスイッチ13bをオンにする(ステップS44)。ここでは、まだ駐車動作を行っているので、図3に示すように、DC/DC14と蓄電装置4は、切り離された状態である。受電装置2の受電コイル10は、送電コイル9と磁界結合しており、非接触で、送電装置1から、電力の供給を受ける。送電された電力は、整流回路12を介して受電電圧検出回路13にて受電電圧Vの測定を行う(ステップS46)。送電装置1のインバータ6により、送電コイル9と受電コイル10の位置関係に関わらず、常に、インバータ6からの出力電力は一定に保たれているので、車両21が移動し、送電コイル9に対して、受電コイル10が接近すると、給電効率ηが向上し、受電電圧検出回路13で測定される受電電圧Vは、給電効率ηの向上とともに大きくなり、給電効率ηが最大になったときに、受電電力Poutも最大となる。   After the communication device 16 transmits a parking start signal to the communication device 7, the control device 15 turns on the switch 13b of the received voltage detection circuit 13 of the power receiving device 2 (step S44). Here, since the parking operation is still performed, the DC / DC 14 and the power storage device 4 are separated as shown in FIG. The power receiving coil 10 of the power receiving device 2 is magnetically coupled to the power transmitting coil 9 and receives supply of electric power from the power transmitting device 1 in a non-contact manner. The received power V is measured by the received voltage detection circuit 13 through the rectifier circuit 12 (step S46). Regardless of the positional relationship between the power transmission coil 9 and the power receiving coil 10, the output power from the inverter 6 is always kept constant by the inverter 6 of the power transmission device 1. When the power receiving coil 10 approaches, the power feeding efficiency η is improved, and the power receiving voltage V measured by the power receiving voltage detection circuit 13 increases as the power feeding efficiency η increases, and when the power feeding efficiency η becomes maximum, The received power Pout is also maximized.

したがって、制御装置15が受電電圧検出回路13にかかる受電電圧Vをモニタしながら駐車動作を行い、受電電圧検出回路13にかかる受電電圧Vが最大になったところで、自動運転制御装置19が駐車動作を完了することで、車両21を給電効率ηが最大になる場所に誘導することができる。   Therefore, the controller 15 performs the parking operation while monitoring the received voltage V applied to the received voltage detection circuit 13, and when the received voltage V applied to the received voltage detection circuit 13 becomes maximum, the automatic operation control device 19 performs the parking operation. By completing the above, the vehicle 21 can be guided to a place where the power supply efficiency η is maximized.

ステップS46で、受電電圧検出回路13にて受電電圧Vの測定を行った結果を制御装置15が、自動運転制御装置19に車両21が最適駐車位置に接近中であることを送信する(ステップS48)。さらに、ステップS50において、制御装置15は、受電電圧検出回路13で測定された受電電圧Vが減少したか否かの判定を行う。送電コイル9と受電コイル10の相対位置が接近し、給電効率ηが増加するに従って、受電電圧検出回路13の受電電圧Vが増加する。受電電圧Vが増加しなくなった位置、減少に転じた位置を最適駐車位置としている。受電電圧検出回路13の受電電圧Vが増加中の場合は、ステップS46に戻り、受電電圧検出回路13で受電電圧Vの測定を継続し、表示装置20に現在の状況を表示する。   In step S46, the control device 15 transmits to the automatic operation control device 19 that the vehicle 21 is approaching the optimum parking position, as a result of measuring the received voltage V by the received voltage detection circuit 13 (step S48). ). Furthermore, in step S50, the control device 15 determines whether or not the power reception voltage V measured by the power reception voltage detection circuit 13 has decreased. As the relative position between the power transmission coil 9 and the power reception coil 10 approaches and the power supply efficiency η increases, the power reception voltage V of the power reception voltage detection circuit 13 increases. The optimal parking position is a position where the received voltage V no longer increases, or a position where the received voltage V starts to decrease. If the received voltage V of the received voltage detection circuit 13 is increasing, the process returns to step S46, and the received voltage V is continuously measured by the received voltage detection circuit 13, and the current state is displayed on the display device 20.

ステップS50において、受電電圧検出回路13で測定された受電電圧Vが、増加から減少に転じたと判定された場合には、車両21が最適駐車位置に来たと判断し、ステップS52において、制御装置15から自動運転制御装置19に車両21が最適駐車位置にある信号を送信するともに、表示装置20に車両21の位置情報を表示し、ドライバーにもその情報を提供する。   If it is determined in step S50 that the received voltage V measured by the received voltage detection circuit 13 has changed from increasing to decreasing, it is determined that the vehicle 21 has reached the optimal parking position, and in step S52, the control device 15 Transmits a signal indicating that the vehicle 21 is at the optimum parking position to the automatic driving control device 19, displays the position information of the vehicle 21 on the display device 20, and provides the driver with the information.

さらに、ステップS52において、自動運転制御装置19が、制御装置15から車両21が最適駐車位置にあるという信号を受信すると、車両21を停止させる。駐車が完了すると、制御装置15は、受電電圧検出回路13のスイッチ13bをオフにし、通信機16を介して通信機7に駐車が完了したとの情報を送信する。受電電圧検出回路13のスイッチ13bをオフにさせることにより、蓄電装置4に充電する際に受電電圧検出回路13で
無駄な電力を消費することが無くなる。
Further, in step S52, when the automatic driving control device 19 receives a signal from the control device 15 that the vehicle 21 is at the optimum parking position, the automatic driving control device 19 stops the vehicle 21. When the parking is completed, the control device 15 turns off the switch 13 b of the received voltage detection circuit 13 and transmits information that the parking is completed to the communication device 7 via the communication device 16. By turning off the switch 13b of the received voltage detection circuit 13, useless power is not consumed in the received voltage detection circuit 13 when the power storage device 4 is charged.

ステップS64では、通信機7が通信機16から駐車が完了したとの情報を受信したかどうかの判定を行い、ステップS52から駐車完了の情報を受信した場合には、ステップS66に移り、送電装置1は、インバータ6からの位置誘導用の一定電力の送電を終了させる。駐車完了の情報を受信していない場合には、ステップS64に戻り、インバータ6からの位置誘導用の一定電力の送電を継続する。   In step S64, it is determined whether or not the communication device 7 has received information that parking has been completed from the communication device 16. If the parking completion information has been received from step S52, the process proceeds to step S66, and the power transmission device. 1 terminates transmission of constant power for position guidance from the inverter 6. If parking completion information has not been received, the process returns to step S64, and transmission of constant power for position guidance from the inverter 6 is continued.

インバータ6からの位置誘導用の一定電力の送電が終了すると、ステップS68とステップS54に移り、送電装置1は、給電用電力の送電動作を開始し(ステップS68)、受電装置2は、蓄電装置4の蓄電池の充電動作を開始する(ステップS54)。ここで、蓄電池の充電動作に移行する際には、非接触給電システムは、DC/DCコンバータ14と蓄電装置4が受電電圧検出回路13を介して整流回路12と回路的に接続された状態となる。   When the transmission of the constant power for position guidance from the inverter 6 is completed, the process proceeds to step S68 and step S54, the power transmission device 1 starts the power transmission operation of the power for power supply (step S68), and the power receiving device 2 is the power storage device. The charging operation of the storage battery 4 is started (step S54). Here, when shifting to the charging operation of the storage battery, the non-contact power feeding system includes a state in which the DC / DC converter 14 and the power storage device 4 are connected in circuit with the rectifier circuit 12 via the received voltage detection circuit 13. Become.

このように、実施の形態2に係る非接触給電システムによれば、車両が非接触給電を行うために駐車位置に駐車しようとするときに、地上側の送電コイルからの電力を一定の出力に設定し、受電コイルの受電電力が最大値に近づくように自動運転制御装置により車両を誘導することにより、給電効率が最大となる位置に車両を誘導することができ、高効率で蓄電装置に給電することができるという効果がある。   Thus, according to the non-contact power feeding system according to the second embodiment, when the vehicle attempts to park at the parking position in order to perform non-contact power feeding, the power from the power transmission coil on the ground side is set to a constant output. By setting and guiding the vehicle by the automatic operation control device so that the power received by the power receiving coil approaches the maximum value, the vehicle can be guided to a position where the power feeding efficiency is maximized, and the power storage device is fed with high efficiency. There is an effect that can be done.

なお、本実施の形態では、送電装置を地上面に設置する例について説明したが、壁面等に設置してもよく、駐車場等の駐車領域において地上面や壁面等、設置可能な場所に設置し、これに対向させて車両側の受電装置も設置すればよく、これに限定されるものではない。   In this embodiment, an example in which the power transmission device is installed on the ground surface has been described. However, the power transmission device may be installed on a wall surface or the like, and installed in a place where it can be installed, such as the ground surface or a wall surface in a parking area such as a parking lot. However, the power receiving device on the vehicle side may be installed to face this, and the present invention is not limited to this.

また、本実施の形態では、地上側に設置された送電装置から車両側に設置された受電装置に電力を送る場合について説明したが、地上面に受電装置、車両側に送電装置を設けることにより、車両の蓄電装置から地上側に電力を送ることも可能である。   Further, in the present embodiment, a case has been described in which power is transmitted from a power transmission device installed on the ground side to a power reception device installed on the vehicle side, but by providing a power reception device on the ground surface and a power transmission device on the vehicle side. It is also possible to send electric power from the power storage device of the vehicle to the ground side.

また、本実施の形態では、非接触による給電方法として、二つのコイル間に発生する誘導電流から高周波電力による給電を利用する方式について説明したが、例えば、電磁界の共鳴現象を利用した電磁界共鳴方式、マイクロ波を使った無線電力伝送方式を利用してもよい。   In the present embodiment, as a non-contact power feeding method, a method of using power feeding by high-frequency power from an induced current generated between two coils has been described. However, for example, an electromagnetic field using a resonance phenomenon of an electromagnetic field A resonance method or a wireless power transmission method using microwaves may be used.

また、本発明の非接触給電システム及び受電装置において、対象となる車両としては、外部の給電施設からの充電により供給される電力によって走行することが可能な動力源がモータのみの電気自動車であってもよいし、内燃機関とモータを併用するハイブリッド車両であってもよい。さらには、車両は、直流を電源とする燃料電池を搭載した燃料電池車であってもよい。   In the non-contact power feeding system and the power receiving device of the present invention, the target vehicle is an electric vehicle having only a motor as a power source that can be driven by electric power supplied by charging from an external power feeding facility. Alternatively, it may be a hybrid vehicle that uses both an internal combustion engine and a motor. Further, the vehicle may be a fuel cell vehicle equipped with a fuel cell using DC as a power source.

また、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。   Also, within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

また、図中、同一符号は、同一または相当部分を示す。   Moreover, in the figure, the same code | symbol shows the same or an equivalent part.

1 送電装置、2 受電装置、3 電源、4 蓄電装置、5,12 整流回路、6 インバータ、7,16 通信機、9 送電コイル、10 受電コイル、13 受電電圧検出回路、14 DC/DCコンバータ、15 制御装置、17 モータ用インバータ、18 モータジェネレータ、19 自動運転制御装置、20 表示装置、21 車両、23 受電電流検出回路、33 受電電力検出回路。   DESCRIPTION OF SYMBOLS 1 Power transmission device, 2 Power receiving device, 3 Power supply, 4 Power storage device, 5,12 Rectifier circuit, 6 Inverter, 7,16 Communication device, 9 Power transmission coil, 10 Power receiving coil, 13 Power receiving voltage detection circuit, 14 DC / DC converter, DESCRIPTION OF SYMBOLS 15 Control apparatus, 17 Motor inverter, 18 Motor generator, 19 Automatic operation control apparatus, 20 Display apparatus, 21 Vehicle, 23 Received electric current detection circuit, 33 Received electric power detection circuit.

Claims (8)

地上側に設置されるとともに電力を送電する送電コイルと、
車両に搭載されるとともに前記送電コイルから送電された前記電力を非接触により受電する受電コイルと、
前記受電された電力が給電される蓄電装置と、
前記受電された電力を検出する受電電力検出手段と、を備え、
前記送電する電力を一定の出力に設定し、前記受電された電力が最大値となる位置に前記車両を誘導する情報を提示し、前記位置において前記蓄電装置に給電を行うことを特徴とする非接触給電システム。
A power transmission coil installed on the ground side and transmitting power;
A power receiving coil that is mounted on a vehicle and receives the power transmitted from the power transmitting coil in a contactless manner;
A power storage device to which the received power is fed; and
Receiving power detection means for detecting the received power,
The power to be transmitted is set to a constant output, information for guiding the vehicle to a position where the received power reaches a maximum value is presented, and power is supplied to the power storage device at the position. Contact power supply system.
地上側に設置されるとともに電力を送電する送電コイルと、
車両に搭載されるとともに前記送電コイルから送電された前記電力を非接触により受電する受電コイルと、
前記受電された電力が給電される蓄電装置と、
前記受電された電力を検出する受電電力検出手段と、
前記車両を自動運転により制御する自動運転制御装置と、を備え、
前記送電する電力を一定の出力に設定し、前記受電された電力が最大値となる位置に前記自動運転制御装置により前記車両を誘導し、前記位置において前記蓄電装置に給電を行うことを特徴とする非接触給電システム。
A power transmission coil installed on the ground side and transmitting power;
A power receiving coil that is mounted on a vehicle and receives the power transmitted from the power transmitting coil in a contactless manner;
A power storage device to which the received power is fed; and
A received power detection means for detecting the received power;
An automatic operation control device for controlling the vehicle by automatic operation,
The power to be transmitted is set to a constant output, the vehicle is guided by the automatic driving control device to a position where the received power becomes a maximum value, and power is supplied to the power storage device at the position. A contactless power supply system.
表示装置が前記車両に設けられ、前記表示装置に前記車両を誘導する情報を表示させることを特徴とする請求項1または請求項2に記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein a display device is provided in the vehicle, and information for guiding the vehicle is displayed on the display device. 前記一定の出力は、前記給電時の電力よりも小さいことを特徴とする請求項1または請求項2に記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein the constant output is smaller than power at the time of feeding. 車両に搭載されるとともに外部に設置された送電装置から送電された電力を非接触により受電する受電コイルと、
前記受電された電力を検出する受電電力検出手段と、を備え、
前記送電する電力が一定の出力に設定され、前記受電された電力が最大値となる位置にて前記車両に搭載された蓄電装置に給電を行うように前記車両を誘導する情報を提示することを特徴とする受電装置。
A power receiving coil that is mounted in a vehicle and receives power transmitted from a power transmitting device installed outside in a contactless manner;
Receiving power detection means for detecting the received power,
Presenting information for guiding the vehicle to supply power to the power storage device mounted on the vehicle at a position where the electric power to be transmitted is set to a constant output and the received electric power reaches a maximum value. A power receiving device.
車両に搭載されるとともに外部に設置された送電装置から送電された電力を非接触により受電する受電コイルと、
前記受電された電力を検出する受電電力検出手段と、
前記車両を自動運転により制御する自動運転制御装置と、を備え、
前記送電する電力を一定の出力に設定し、前記受電された電力が最大値となる位置にて前記車両に搭載された蓄電装置に給電を行うように前記自動運転制御装置により前記車両を誘導することを特徴とする受電装置。
A power receiving coil that is mounted in a vehicle and receives power transmitted from a power transmitting device installed outside in a contactless manner;
A received power detection means for detecting the received power;
An automatic operation control device for controlling the vehicle by automatic operation,
The electric power to be transmitted is set to a constant output, and the vehicle is guided by the automatic operation control device so as to supply power to the power storage device mounted on the vehicle at a position where the received electric power reaches a maximum value. A power receiving device.
表示装置が前記車両に設けられ、前記表示装置に前記車両を誘導する情報を表示させることを特徴とする請求項5または請求項6に記載の受電装置。   The power receiving device according to claim 5 or 6, wherein a display device is provided in the vehicle, and information for guiding the vehicle is displayed on the display device. 前記一定の出力は、前記給電時の電力よりも小さいことを特徴とする請求項5または請求項6に記載の受電装置。
The power receiving device according to claim 5, wherein the constant output is smaller than electric power at the time of the power feeding.
JP2013255597A 2013-12-11 2013-12-11 Non-contact power supply system and power receiver Pending JP2015116023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013255597A JP2015116023A (en) 2013-12-11 2013-12-11 Non-contact power supply system and power receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013255597A JP2015116023A (en) 2013-12-11 2013-12-11 Non-contact power supply system and power receiver

Publications (1)

Publication Number Publication Date
JP2015116023A true JP2015116023A (en) 2015-06-22

Family

ID=53529370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013255597A Pending JP2015116023A (en) 2013-12-11 2013-12-11 Non-contact power supply system and power receiver

Country Status (1)

Country Link
JP (1) JP2015116023A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093129A (en) * 2015-11-09 2017-05-25 株式会社デンソー Non-contact power transmission device
WO2017199374A1 (en) * 2016-05-18 2017-11-23 日産自動車株式会社 Coil position detection method for non-contact power supply system, and power reception device
DE102018107153A1 (en) 2017-03-28 2018-10-04 Tdk Corporation WIRELESS ENERGY RECEIVING DEVICE AND WIRELESS POWER TRANSMISSION SYSTEM
JP2019001305A (en) * 2017-06-15 2019-01-10 株式会社Subaru Battery cooling control device and battery cooling control method, and electric vehicle
JP6719682B1 (en) * 2019-04-01 2020-07-08 三菱電機株式会社 Wireless power supply system and power receiving device
JP2020537483A (en) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト Resonant circuit for transmitting electrical energy
JP2020537482A (en) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト Resonant circuit for transmitting electrical energy without a power amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132272A1 (en) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 Vehicle parking assistance device and electric vehicle equipped with same
JP2012188042A (en) * 2011-03-11 2012-10-04 Toyota Motor Corp Vehicle, automatic parking support equipment and automatic parking system
WO2013077340A1 (en) * 2011-11-25 2013-05-30 株式会社Ihi Mobile vehicle and non-contact power transmission device
JP2013115877A (en) * 2011-11-25 2013-06-10 Ihi Corp Mobile vehicle and non-contact power transmission device
JP2013116004A (en) * 2011-11-30 2013-06-10 Ihi Corp Mobile vehicle and non-contact power transmission apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132272A1 (en) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 Vehicle parking assistance device and electric vehicle equipped with same
JP2012188042A (en) * 2011-03-11 2012-10-04 Toyota Motor Corp Vehicle, automatic parking support equipment and automatic parking system
WO2013077340A1 (en) * 2011-11-25 2013-05-30 株式会社Ihi Mobile vehicle and non-contact power transmission device
JP2013115877A (en) * 2011-11-25 2013-06-10 Ihi Corp Mobile vehicle and non-contact power transmission device
JP2013116004A (en) * 2011-11-30 2013-06-10 Ihi Corp Mobile vehicle and non-contact power transmission apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093129A (en) * 2015-11-09 2017-05-25 株式会社デンソー Non-contact power transmission device
WO2017199374A1 (en) * 2016-05-18 2017-11-23 日産自動車株式会社 Coil position detection method for non-contact power supply system, and power reception device
KR20180135000A (en) * 2016-05-18 2018-12-19 닛산 지도우샤 가부시키가이샤 Method and apparatus for detecting coil position of non-contact feeding system
JPWO2017199374A1 (en) * 2016-05-18 2019-03-22 日産自動車株式会社 Coil position detection method and power receiving device of noncontact power feeding system
KR102035957B1 (en) 2016-05-18 2019-10-23 닛산 지도우샤 가부시키가이샤 Coil position detection method and power receiving device of non-contact power supply system
US10491054B2 (en) 2016-05-18 2019-11-26 Nissan Motor Co., Ltd. Coil position detection method for non-contact power supply system, and power reception device
US11081912B2 (en) 2017-03-28 2021-08-03 Tdk Corporation Wireless power receiver and wireless power transmission system
DE102018107153A1 (en) 2017-03-28 2018-10-04 Tdk Corporation WIRELESS ENERGY RECEIVING DEVICE AND WIRELESS POWER TRANSMISSION SYSTEM
JP2019001305A (en) * 2017-06-15 2019-01-10 株式会社Subaru Battery cooling control device and battery cooling control method, and electric vehicle
JP2020537483A (en) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト Resonant circuit for transmitting electrical energy
JP2020537482A (en) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト Resonant circuit for transmitting electrical energy without a power amplifier
US11539245B2 (en) 2017-11-03 2022-12-27 Hilti Aktiengesellschaft Resonant circuit for transmitting electric energy without a power amplifier
US11735955B2 (en) 2017-11-03 2023-08-22 Hilti Aktiengesellschaft Resonant circuit for transmitting electric energy
WO2020202422A1 (en) * 2019-04-01 2020-10-08 三菱電機株式会社 Wireless power supplying system and power receiving device
JP6719682B1 (en) * 2019-04-01 2020-07-08 三菱電機株式会社 Wireless power supply system and power receiving device
US11735959B2 (en) 2019-04-01 2023-08-22 Mitsubishi Electric Corporation Wireless power feeding system and power reception device

Similar Documents

Publication Publication Date Title
JP2015116023A (en) Non-contact power supply system and power receiver
US9649946B2 (en) Vehicle and contactless power supply system for adjusting impedence based on power transfer efficiency
US9379572B2 (en) Contactless power transmitting device, contactless power receiving device, and contactless power transfer system
JP6119756B2 (en) Non-contact power supply system and power transmission device
US10052963B2 (en) Contactless power transfer system and method of controlling the same
US9438064B2 (en) System and method for alignment and compatibility detection for a wireless power transfer system
JP5664544B2 (en) Non-contact power receiving device and non-contact charging system
JP6217388B2 (en) Power receiving device and vehicle including the same
US9409491B2 (en) Parking assist system for vehicle, contactless power transmitting device, and contactless power receiving device
US9673664B2 (en) Wireless power reception apparatus, wireless power transmission apparatus, and wireless power transmission and reception system
JP5991372B2 (en) Power transmission device, power reception device, vehicle, and non-contact power supply system
WO2012165242A1 (en) Contactless electricity supply device
US20130300354A1 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
JP5419857B2 (en) Secondary power receiving circuit of non-contact power supply equipment
US10894478B2 (en) Vehicle and power transmission system
JP6090333B2 (en) Non-contact power supply device, non-contact power supply system, and non-contact power supply method
JP6089464B2 (en) Non-contact power transmission device
KR20140073545A (en) Power receiving device of vehicle, power transmitting device, and noncontact power transmitting/receiving system
US20160001669A1 (en) Vehicle And Contactless Power Feeding System
US20170194817A1 (en) Power transmission device, power transmission method, and wireless power transfer system
KR20150113981A (en) Power transmission device, power receiving device, vehicle, and contactless power supply system
WO2015076290A1 (en) Non-contact electric power transmission and reception system
CN109314409B (en) Coil position detection method for non-contact power supply system and non-contact power supply system
KR20120028310A (en) Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation
JP2015216739A (en) Power transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110