JP2015113927A - Foil bearing, foil bearing unit having the same, and turbomachine - Google Patents

Foil bearing, foil bearing unit having the same, and turbomachine Download PDF

Info

Publication number
JP2015113927A
JP2015113927A JP2013256847A JP2013256847A JP2015113927A JP 2015113927 A JP2015113927 A JP 2015113927A JP 2013256847 A JP2013256847 A JP 2013256847A JP 2013256847 A JP2013256847 A JP 2013256847A JP 2015113927 A JP2015113927 A JP 2015113927A
Authority
JP
Japan
Prior art keywords
foil
bearing
holder
circumferential direction
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256847A
Other languages
Japanese (ja)
Other versions
JP6305749B2 (en
Inventor
真人 吉野
Masato Yoshino
真人 吉野
藤原 宏樹
Hiroki Fujiwara
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013256847A priority Critical patent/JP6305749B2/en
Priority to EP14869649.5A priority patent/EP3096028B1/en
Priority to US15/102,038 priority patent/US10012109B2/en
Priority to PCT/JP2014/080639 priority patent/WO2015087675A1/en
Priority to CN201480064681.6A priority patent/CN105765245B/en
Publication of JP2015113927A publication Critical patent/JP2015113927A/en
Application granted granted Critical
Publication of JP6305749B2 publication Critical patent/JP6305749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a vibration attenuation effect of a shaft due to a multiple circular type foil bearing.SOLUTION: A foil bearing 30 includes a cylindrical foil holder 31, and a plurality of foils 32 having a radial bearing surface S1 and aligned in a circumferential direction on an inner peripheral surface 31a of the foil holder 31. In the foil bearing in which both ends (projection part 32e, projection part 32c) in the circumferential direction of each foil 32 are held to the foil holder 31 and a shaft 6 inserted into the inner periphery is rotatably supported, the plurality of foils 32 is held to the foil holder 31 in a circumferential movable state.

Description

本発明は、内周に挿入された軸を回転自在に支持するフォイル軸受と、これを有するフォイル軸受ユニット及びターボ機械に関する。   The present invention relates to a foil bearing that rotatably supports a shaft inserted in an inner periphery, a foil bearing unit having the same, and a turbomachine.

ガスタービンやターボチャージャ等のターボ機械の主軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。このような条件下での使用に適合する軸受として、フォイル軸受が着目されている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。軸の回転時には、軸の外周面とフォイルの軸受面との間に流体膜(例えば空気膜)が形成され、軸が非接触支持される。   A bearing that supports a main shaft of a turbo machine such as a gas turbine or a turbocharger is required to withstand a severe environment such as high temperature and high speed rotation. As a bearing suitable for use under such conditions, a foil bearing has attracted attention. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. When the shaft rotates, a fluid film (for example, an air film) is formed between the outer peripheral surface of the shaft and the bearing surface of the foil, and the shaft is supported in a non-contact manner.

例えば、下記の特許文献1及び2には、複数のフォイルを周方向に並べて配置し、各フォイルの周方向両端をフォイルホルダ(ハウジング)に取り付けた、いわゆる多円弧型のフォイル軸受が示されている。これらのフォイル軸受では、フォイルホルダの内周面から内径に突出した突出部(特許文献1の偏移抑制部62、特許文献2の峰70)に各フォイルの周方向両端を突き当てることで、各フォイルの周方向両端がフォイルホルダに保持されている。   For example, the following Patent Documents 1 and 2 show so-called multi-arc type foil bearings in which a plurality of foils are arranged in the circumferential direction and both ends of each foil in the circumferential direction are attached to a foil holder (housing). Yes. In these foil bearings, by striking both ends in the circumferential direction of each foil against the protruding portion (the shift suppressing portion 62 of Patent Document 1 and the peak 70 of Patent Document 2) protruding from the inner peripheral surface of the foil holder to the inner diameter, Both ends in the circumferential direction of each foil are held by the foil holder.

特開2009−216239号公報JP 2009-216239 A 特開2006−57828号公報JP 2006-57828 A

フォイル軸受では、フォイルと他部材(バックフォイルやフォイルホルダ)との間の微小摺動の摩擦エネルギーにより、軸の振動を減衰する効果が得られる。しかし、上記特許文献1及び2のフォイル軸受では、フォイルホルダに設けられた突出部により各フォイルが周方向両側から拘束されており、各フォイルの周方向両側への移動がフォイルホルダの突出部で規制される。このため、フォイルと他部材との摺動量が極めて微小となり、軸の振動減衰効果が十分に得られない恐れがある。   In the foil bearing, an effect of attenuating the vibration of the shaft is obtained by the frictional energy of minute sliding between the foil and another member (back foil or foil holder). However, in the foil bearings of Patent Documents 1 and 2, each foil is constrained from both sides in the circumferential direction by the protrusion provided on the foil holder, and the movement of each foil in the circumferential direction on both sides is the protrusion of the foil holder. Be regulated. For this reason, the sliding amount between the foil and the other member becomes extremely small, and there is a possibility that the vibration damping effect of the shaft cannot be sufficiently obtained.

本発明が解決しようとする課題は、多円弧型のフォイル軸受による軸の振動減衰効果を高めることにある。   The problem to be solved by the present invention is to increase the vibration damping effect of the shaft by the multi-arc type foil bearing.

上記の課題を解決するためになされた本発明は、筒状をなしたフォイルホルダと、軸受面を有し、前記フォイルホルダの内周面に周方向に並べて配された複数のフォイルとを備え、各フォイルの周方向両端が前記フォイルホルダに保持され、内周に挿入された軸を回転自在に支持するフォイル軸受であって、各フォイルが、周方向移動可能な状態でフォイルホルダに保持されたことを特徴とするものである。   The present invention made to solve the above-mentioned problems includes a foil holder having a cylindrical shape, and a plurality of foils having a bearing surface and arranged side by side in the circumferential direction on the inner peripheral surface of the foil holder. The foil holder is a foil bearing that is supported by the foil holder at both ends in the circumferential direction and rotatably supports the shaft inserted in the inner circumference, and each foil is held by the foil holder in a state of being movable in the circumferential direction. It is characterized by that.

このように、本発明のフォイル軸受では、各フォイルが周方向移動可能な状態でフォイルホルダに保持されている。すなわち、各フォイルの周方向両端がフォイルホルダに突き当たっているのではなく、フォイルが周方向移動を許容された状態でフォイルホルダに保持されている。このように、フォイルの周方向移動を許容することで、フォイルとフォイルホルダとの摺動量を増やすことができるため、フォイルの摺動による軸の振動減衰効果を高めることができる。   Thus, in the foil bearing of this invention, each foil is hold | maintained at the foil holder in the state which can move to the circumferential direction. That is, both ends of each foil in the circumferential direction do not abut against the foil holder, but the foil is held by the foil holder while being allowed to move in the circumferential direction. In this way, by allowing the foil to move in the circumferential direction, the sliding amount between the foil and the foil holder can be increased, so that the vibration damping effect of the shaft due to the sliding of the foil can be enhanced.

例えば、各フォイルの回転方向先行側の端部を、前記フォイルホルダの内周面に形成された凹部に周方向移動可能な状態で差し込むと共に、各フォイルの回転方向後方側の端部を、隣接するフォイルとフォイルホルダの内周面との間に配することで、各フォイルの周方向両端をフォイルホルダに保持することができる。この場合、各フォイルの回転方向先行側への移動は、各フォイルの回転方向先行側の端部が凹部に突き当たることで規制されるが、各フォイルの回転方向後方側への移動は規制されない。これにより、各フォイルが、周方向移動可能な状態でフォイルホルダに保持される。尚、「回転方向」とは、フォイル軸受で支持される軸の回転方向のことを言う(以下同様)。   For example, the end of each foil in the rotational direction leading side is inserted into a recessed portion formed on the inner peripheral surface of the foil holder in a state of being movable in the circumferential direction, and the end of each foil in the rotational direction rear side is adjacent to each other. By arranging between the foil and the inner peripheral surface of the foil holder, both ends in the circumferential direction of each foil can be held by the foil holder. In this case, the movement of each foil in the rotation direction leading side is regulated by the end of the foil in the rotation direction leading side striking the recess, but the movement of each foil in the rotation direction rear side is not regulated. Thereby, each foil is hold | maintained at a foil holder in the state which can move to the circumferential direction. The “rotation direction” refers to the rotation direction of the shaft supported by the foil bearing (the same applies hereinafter).

あるいは、各フォイルの周方向両端を、前記フォイルホルダの内周面に形成された凹部に差し込むことで、各フォイルの周方向両端をフォイルホルダの内周面に保持することができる。この場合、各フォイルの周方向両端を凹部と周方向で係合させるのではなく、各フォイルの周方向一端を前記凹部と周方向で係合させた状態で、各フォイルの周方向他端が前記凹部と周方向で係合しないようにすることで、各フォイルのフォイルホルダに対する周方向移動が許容される。   Or the circumferential direction both ends of each foil can be hold | maintained on the internal peripheral surface of a foil holder by inserting the circumferential direction both ends of each foil in the recessed part formed in the internal peripheral surface of the said foil holder. In this case, the circumferential end of each foil is not engaged with the recess in the circumferential direction, but the circumferential end of each foil is engaged with the recess in the circumferential direction. By not engaging with the recess in the circumferential direction, the movement of each foil in the circumferential direction with respect to the foil holder is allowed.

上記のフォイル軸受は、凹部の内壁に、各フォイルの回転方向先行側の端部が突き当たる角部を設けることが好ましい。この角部に、各フォイルの回転方向先行側の端部が突き当たることにより、各フォイルの回転方向先行側の端部を所定の周方向及び半径方向位置に配することができる。これにより、軸が回転した時のフォイルの変形を制御しやすくなり、軸受性能を安定させることができる。   In the foil bearing described above, it is preferable to provide a corner portion on the inner wall of the recess where the end portion of each foil in the rotation direction leading side abuts. When the end of each foil in the rotational direction leading side abuts on this corner, the end of each foil in the rotational direction leading side can be arranged at a predetermined circumferential direction and radial position. Thereby, it becomes easy to control the deformation of the foil when the shaft rotates, and the bearing performance can be stabilized.

例えば上記特許文献1及び2のフォイル軸受では、各フォイルの周方向両端を、フォイルホルダの内周面に設けた突出部に突っ張らせることで、各フォイルを外径側に張り出させて、フォイルホルダの内周面に沿わせることができる。一方、本発明に係るフォイル軸受では、各フォイルの周方向移動を許容するため、各フォイルの周方向両端をフォイルホルダに突っ張らせることはできない。このため、各フォイルが内径側に大きくせり出し、軸の外周面と過剰に接触して回転トルクを増大させる恐れがある。そこで、隣接するフォイルの周方向端部同士を周方向で突っ張り合わせることにより、各フォイルを外径側に張り出させることが好ましい。これにより、各フォイルをフォイルホルダの内周面に沿わせて、回転トルクの増大を回避できる。   For example, in the foil bearings of Patent Documents 1 and 2 described above, the foil in the circumferential direction is stretched to the outer diameter side by projecting both ends in the circumferential direction of the foil holders on the inner peripheral surface of the foil holder. It can be along the inner peripheral surface of the holder. On the other hand, in the foil bearing according to the present invention, since the movement of each foil in the circumferential direction is allowed, both ends in the circumferential direction of each foil cannot be stretched by the foil holder. For this reason, there is a possibility that each foil protrudes greatly toward the inner diameter side and excessively contacts the outer peripheral surface of the shaft to increase the rotational torque. Then, it is preferable to project each foil to the outer-diameter side by sticking together the circumferential direction edge parts of adjacent foil in the circumferential direction. Thereby, each foil is made to follow the inner peripheral surface of a foil holder, and the increase in rotational torque can be avoided.

フォイル軸受で支持する軸が鉛直方向と交差する方向(例えば水平方向)に配される場合、軸の起動停止時等の低速回転時に軸が重力で降下することで、フォイル軸受の下方部分に軸が摺接する。この場合、上記特許文献1及び2のように、各フォイルがフォイルホルダに対して周方向に固定されていると、軸の低速回転時に、フォイルの同じ場所に軸が摺接するため、フォイルに局部的な摩耗が生じる恐れがある。そこで、上記のように、フォイルをフォイルホルダに対して周方向移動可能とすれば、フォイルと軸との摺接位置を分散させることができるため、フォイルの局部的な摩耗を抑えることができる。   When the shaft supported by the foil bearing is arranged in a direction that intersects the vertical direction (for example, in the horizontal direction), the shaft descends due to gravity during low-speed rotation such as when the shaft starts and stops, so that Is in sliding contact. In this case, as in Patent Documents 1 and 2, when the foils are fixed in the circumferential direction with respect to the foil holder, the shaft is in sliding contact with the same location of the foil when the shaft rotates at a low speed. Wear may occur. Therefore, as described above, if the foil can be moved in the circumferential direction with respect to the foil holder, the sliding contact position between the foil and the shaft can be dispersed, so that local wear of the foil can be suppressed.

上記のフォイル軸受と、フォイル軸受の内周に挿入された回転部材とを、フォイル軸受ユニットとしてユニット化すれば、これらを一体的に取り扱うことができるため、ターボ機械等への組み付けが容易化される。   If the above-mentioned foil bearing and the rotating member inserted in the inner periphery of the foil bearing are unitized as a foil bearing unit, these can be handled as a unit, and assembling to a turbomachine or the like is facilitated. The

上記のフォイル軸受は、例えばターボ機械に好適に適用することができる。   The above foil bearing can be suitably applied to, for example, a turbomachine.

以上のように、本発明の多円弧型のフォイル軸受では、各フォイルを周方向移動可能とすることで、軸の振動減衰効果を高めることができる。   As described above, in the multi-arc foil bearing of the present invention, the vibration damping effect of the shaft can be enhanced by making each foil movable in the circumferential direction.

ガスタービンの構成を概念的に示す図である。It is a figure which shows notionally the structure of a gas turbine. 上記ガスタービンにおけるロータの支持構造を示す断面図である。It is sectional drawing which shows the support structure of the rotor in the said gas turbine. 上記支持構造に組み込まれた、本発明の一実施形態に係るフォイル軸受ユニットの断面図である。It is sectional drawing of the foil bearing unit which concerns on one Embodiment of this invention integrated in the said support structure. 上記フォイル軸受ユニットに組み込まれたラジアルフォイル軸受の断面図である。It is sectional drawing of the radial foil bearing integrated in the said foil bearing unit. 上記ラジアルフォイル軸受のフォイルホルダの溝付近の断面図であり、(A)は軸が停止しているとき、(B)は軸が回転したときの様子を示す。It is sectional drawing of the groove | channel vicinity of the foil holder of the said radial foil bearing, (A) shows a mode when the axis | shaft rotated when the axis | shaft has stopped. (A)は、上記ラジアルフォイル軸受のフォイルの斜視図であり、(B)は3枚のフォイルを仮組みした状態の斜視図である。(A) is a perspective view of the foil of the radial foil bearing, and (B) is a perspective view of a state in which three foils are temporarily assembled. スラストフォイル軸のフォイル及びフォイルホルダの平面図である。It is a top view of the foil and foil holder of a thrust foil axis | shaft. (A)は第1スラストフォイル軸受の平面図であり、(B)は第2スラストフォイル軸受の平面図である。(A) is a top view of a 1st thrust foil bearing, (B) is a top view of a 2nd thrust foil bearing. 第1スラストフォイル軸受の断面図である。It is sectional drawing of a 1st thrust foil bearing. ラジアルフォイル軸受の断面図であり、周方向を直線方向に変換して示している。It is sectional drawing of a radial foil bearing, and it has converted and showed the circumferential direction to the linear direction. 他の実施形態に係るラジアルフォイル軸受のフォイルホルダの溝付近の断面図であり、(A)は軸が停止しているとき、(B)は軸が回転したときの様子を示す。It is sectional drawing of the groove vicinity of the foil holder of the radial foil bearing which concerns on other embodiment, (A) shows a mode when the axis | shaft rotates, when (A) has stopped the axis | shaft. さらに他の実施形態に係るラジアルフォイル軸受の断面図である。It is sectional drawing of the radial foil bearing which concerns on other embodiment. 図12の拡大図である。It is an enlarged view of FIG.

図1に、ターボ機械の一種であるガスタービンの構成を概念的に示す。このガスタービンは、翼列を形成したタービン1および圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、および発電機3には、水平方向に延びる共通の軸6が設けられ、この軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、高温、高圧のガスでタービン1を回転させる。タービン1の回転力が軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。   FIG. 1 conceptually shows the configuration of a gas turbine that is a kind of turbomachine. This gas turbine mainly includes a turbine 1 and a compressor 2 that form blade cascades, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common shaft 6 that extends in the horizontal direction, and the shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas. The rotational force of the turbine 1 is transmitted to the generator 3 via the shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.

図2に、上記ガスタービンにおけるロータの軸6を支持するフォイル軸受ユニット10を示す。フォイル軸受ユニット10は、軸6に固定された回転部材20と、軸6及び回転部材20をラジアル方向に支持するラジアルフォイル軸受30と、軸6及び回転部材20をスラスト方向に支持する第1スラストフォイル軸受40及び第2スラストフォイル軸受50とを備える。   FIG. 2 shows a foil bearing unit 10 that supports the rotor shaft 6 in the gas turbine. The foil bearing unit 10 includes a rotating member 20 fixed to the shaft 6, a radial foil bearing 30 that supports the shaft 6 and the rotating member 20 in the radial direction, and a first thrust that supports the shaft 6 and the rotating member 20 in the thrust direction. A foil bearing 40 and a second thrust foil bearing 50 are provided.

回転部材20は、図3に示すように、スリーブ部21と、スリーブ部21から外径に突出した円盤状のフランジ部22とを備える。フランジ部22は例えば炭素繊維強化複合材で形成され、スリーブ部21は例えば炭素焼結材で形成される。   As shown in FIG. 3, the rotating member 20 includes a sleeve portion 21 and a disk-like flange portion 22 that protrudes from the sleeve portion 21 to the outer diameter. The flange portion 22 is formed of, for example, a carbon fiber reinforced composite material, and the sleeve portion 21 is formed of, for example, a carbon sintered material.

本発明の一実施形態に係るフォイル軸受としてのラジアルフォイル軸受30は、図4に示すように、筒状(図示例では円筒状)のフォイルホルダ31と、フォイルホルダ31の内周面に取り付けられた複数(図示例では3枚)のフォイル32とを有する。複数のフォイル32は、フォイルホルダ31の内周面に周方向に並べて配置される。   As shown in FIG. 4, a radial foil bearing 30 as a foil bearing according to an embodiment of the present invention is attached to a cylindrical (in the illustrated example, cylindrical) foil holder 31 and an inner peripheral surface of the foil holder 31. And a plurality of (three in the illustrated example) foils 32. The plurality of foils 32 are arranged on the inner peripheral surface of the foil holder 31 in the circumferential direction.

フォイルホルダ31の内周面31aには、凹部としての溝31bが形成される。本実施形態では、フォイルホルダ31の円周方向等間隔の複数箇所(図示例では3箇所)に、軸方向に沿って延びる溝31bが設けられる。溝31bは、少なくとも各フォイル32の回転方向先行側の端部(後述する凸部32e)の軸方向領域に設けられる。本実施形態では、溝31bが、フォイルホルダ31の軸方向全長にわたって形成される。   A groove 31b as a recess is formed on the inner peripheral surface 31a of the foil holder 31. In this embodiment, the groove | channel 31b extended along an axial direction is provided in the multiple places (three places in the example of illustration) of the foil holder 31 at equal intervals in the circumferential direction. The groove 31b is provided at least in the axial region of the end (the convex part 32e described later) of the foil 32 in the rotational direction leading side. In the present embodiment, the groove 31 b is formed over the entire axial length of the foil holder 31.

溝31bは、内部にフォイル32の湾曲を許容する空間を有する。本実施形態では、図5(A)に示すように、溝31bの開口部の回転方向後方側の端部31b2と角部31b1を結ぶ直線よりも外径側に空間31b3が設けられる。溝31bの内壁には、各フォイル32の回転方向先行側の端部(凸部32e)が突き当たる角部31b1が設けられる。角部31b1は、溝31bの開口部の回転方向後方側の端部31b2におけるフォイルホルダ31の内周面31aの接線L上あるいはその近傍に設けられる。具体的に、角部31b1は、接線Lを接点(端部31b2)を中心に外径側に10°(望ましくは5°)回転させた直線L’と、フォイルホルダ31の内周面31aとの間の領域に設けられる。図示例では、角部31b1がほぼ接線L上に設けられる。尚、角部31b1は、接線Lよりもフォイルホルダ31の内周面31a側の領域に設けてもよい。この場合、溝31bの回転方向先行側の端部31b4の角度が図示例よりも小さくなる場合があり、この端部31b4が破損する恐れがあるため、端部31b4が十分な強度を有する範囲で角部31b1の位置を設定する必要がある。   The groove 31b has a space that allows the foil 32 to bend inside. In the present embodiment, as shown in FIG. 5A, a space 31b3 is provided on the outer diameter side of the straight line connecting the end portion 31b2 and the corner portion 31b1 on the rear side in the rotation direction of the opening portion of the groove 31b. The inner wall of the groove 31b is provided with a corner portion 31b1 with which the end portion (convex portion 32e) on the leading side in the rotation direction of each foil 32 abuts. The corner 31b1 is provided on or near the tangent L of the inner peripheral surface 31a of the foil holder 31 at the end 31b2 on the rear side in the rotation direction of the opening of the groove 31b. Specifically, the corner portion 31b1 includes a straight line L ′ obtained by rotating the tangent line L by 10 ° (desirably 5 °) around the contact point (end portion 31b2), and the inner peripheral surface 31a of the foil holder 31. It is provided in the area between. In the illustrated example, the corner 31b1 is provided substantially on the tangent line L. In addition, you may provide the corner | angular part 31b1 in the area | region of the inner peripheral surface 31a side of the foil holder 31 rather than the tangent L. FIG. In this case, the angle of the end portion 31b4 on the leading side in the rotational direction of the groove 31b may be smaller than that in the illustrated example, and the end portion 31b4 may be damaged, so that the end portion 31b4 has sufficient strength. It is necessary to set the position of the corner 31b1.

フォイルホルダ31は、溝31bを含めて一体に型成形される。本実施形態のフォイルホルダ31は、焼結金属で一体に型成形される。本実施形態では、溝31bの周方向寸法が比較的大きいため、溝31bを成形するための成形型の周方向の肉厚が厚くなり、成形型の破損を防止できる。尚、フォイル軸受ユニット10が比較的低温環境で使用される場合、フォイルホルダ31を樹脂で型成形してもよい。   The foil holder 31 is integrally molded including the groove 31b. The foil holder 31 of this embodiment is integrally molded with a sintered metal. In this embodiment, since the circumferential dimension of the groove 31b is relatively large, the circumferential thickness of the molding die for molding the groove 31b is increased, and damage to the molding die can be prevented. When the foil bearing unit 10 is used in a relatively low temperature environment, the foil holder 31 may be molded with resin.

各フォイル32は、図6(A)に示すように、周方向一端に設けられた凸部32cと、周方向他端に設けられた凹部32dとを備える。各フォイル32の凸部32cと凹部32dとは、軸方向で同じ位置に設けられる。図6(B)に示すように、各フォイル32の凸部32cを、隣接するフォイル32の凹部32dに嵌め込むことで、3枚のフォイル32を筒状に仮組みすることができる。この場合、図4に示す軸方向視において、各フォイル32の周方向一端(凸部32c)と、隣接するフォイル32の周方向他端(凹部32dの軸方向両側の凸部32e)とが交差した状態となる。この状態で、各フォイル32の周方向両端が、フォイルホルダ31に保持される。具体的には、各フォイル32の周方向他端の凸部32eがフォイルホルダ31の溝31bに差し込まれ、各フォイル32の周方向一端の凸部32cが、隣接するフォイル32の外径面32bとフォイルホルダ31の内周面31aとの間に配される。この場合、複数のフォイル32の回転方向先行側への移動は、各フォイル32の凸部32eが溝31bの角部31b1に突き当たることで規制されるが、複数のフォイル32の回転方向後方側への移動は規制されていない。これにより、複数のフォイル32が、フォイルホルダ31に対して周方向移動可能とされる。   As shown in FIG. 6A, each foil 32 includes a protrusion 32c provided at one end in the circumferential direction and a recess 32d provided at the other end in the circumferential direction. The convex portion 32c and the concave portion 32d of each foil 32 are provided at the same position in the axial direction. As shown in FIG. 6B, the three foils 32 can be temporarily assembled into a cylindrical shape by fitting the convex portions 32c of the respective foils 32 into the concave portions 32d of the adjacent foils 32. In this case, when viewed in the axial direction shown in FIG. 4, one end in the circumferential direction (convex portion 32c) of each foil 32 intersects with the other circumferential end of the adjacent foil 32 (convex portions 32e on both sides in the axial direction of the concave portion 32d). It will be in the state. In this state, both ends in the circumferential direction of each foil 32 are held by the foil holder 31. Specifically, the protrusion 32e at the other circumferential end of each foil 32 is inserted into the groove 31b of the foil holder 31, and the protrusion 32c at one circumferential end of each foil 32 is the outer diameter surface 32b of the adjacent foil 32. And the inner peripheral surface 31 a of the foil holder 31. In this case, the movement of the plurality of foils 32 in the rotational direction leading side is restricted by the protrusions 32e of the foils 32 striking the corners 31b1 of the grooves 31b. Movement is not regulated. Accordingly, the plurality of foils 32 can be moved in the circumferential direction with respect to the foil holder 31.

各フォイル32の内径面32aは、ラジアル軸受面S1として機能する(図4参照)。図示例では、3枚のフォイル32で多円弧型のラジアル軸受面S1を形成している。フォイルホルダ31の内周面31aと各フォイル32との間には、フォイル32に弾性を付与するための部材(バックフォイル等)は設けられておらず、フォイル32の外径面32bとフォイルホルダ31の内周面31aとが摺動可能とされる。各フォイル32の凸部32cは、隣接するフォイル32のラジアル軸受面S1の外径側に配され、アンダーフォイル部として機能する。   The inner diameter surface 32a of each foil 32 functions as a radial bearing surface S1 (see FIG. 4). In the illustrated example, a multi-arc radial bearing surface S1 is formed by three foils 32. No member (back foil or the like) for imparting elasticity to the foil 32 is provided between the inner peripheral surface 31a of the foil holder 31 and each foil 32, and the outer diameter surface 32b of the foil 32 and the foil holder. The inner peripheral surface 31a of 31 can be slid. The convex portion 32c of each foil 32 is disposed on the outer diameter side of the radial bearing surface S1 of the adjacent foil 32 and functions as an underfoil portion.

隣接するフォイル32の端部同士は、周方向で互いに突っ張り合っている。具体的に、交差部P{図5(B)参照}において、一方のフォイル32の凹部32dと他方のフォイル32の凸部32cの根元部とが周方向に係合している{図6(B)参照}。このとき、各フォイル32のラジアル軸受面S1の周方向寸法A{図6(A)参照}を適正に設定することで、仮組みした複数のフォイル32を外径側に張り出させて略円筒状とし、各フォイル32がフォイルホルダ31の内周面31aに沿った状態とされる。   The ends of the adjacent foils 32 stick to each other in the circumferential direction. Specifically, at the intersection P {see FIG. 5B), the concave portion 32d of one foil 32 and the root portion of the convex portion 32c of the other foil 32 are engaged in the circumferential direction {FIG. B) See}. At this time, by appropriately setting the circumferential dimension A {refer to FIG. 6A) of the radial bearing surface S1 of each foil 32, a plurality of provisionally assembled foils 32 are projected to the outer diameter side to be substantially cylindrical. Each foil 32 is in a state along the inner peripheral surface 31 a of the foil holder 31.

第1スラストフォイル軸受40は、図3に示すように、回転部材20のフランジ部22を軸方向一方側(図中右側)から支持するものであり、円盤状のフォイルホルダ41と、フォイルホルダ41の端面41aに固定された複数のフォイル42とを備える。本実施形態では、第1スラストフォイル軸受40のフォイルホルダ41と、ラジアルフォイル軸受30のフォイルホルダ31とが一体に形成される。   As shown in FIG. 3, the first thrust foil bearing 40 supports the flange portion 22 of the rotating member 20 from one side in the axial direction (right side in the figure), and includes a disc-shaped foil holder 41 and a foil holder 41. And a plurality of foils 42 fixed to the end face 41a. In the present embodiment, the foil holder 41 of the first thrust foil bearing 40 and the foil holder 31 of the radial foil bearing 30 are integrally formed.

第1スラストフォイル軸受40の各フォイル42は、図7に示すように、本体部42aと、本体部42aよりも外径側に設けられた固定部42bと、本体部42aと固定部42bとを連結する連結部42cとを一体に備える。本体部42aの回転方向先行側の縁42d及び回転方向後方側の縁42eは、何れも中央部を回転方向先行側へ突出した略V字形状を成している。本体部42aの縁42d,42eの中央部は、円弧状に丸まっている。   As shown in FIG. 7, each foil 42 of the first thrust foil bearing 40 includes a main body portion 42a, a fixing portion 42b provided on the outer diameter side of the main body portion 42a, a main body portion 42a, and a fixing portion 42b. A connecting portion 42c to be connected is integrally provided. Both the edge 42d on the rotation direction leading side and the edge 42e on the rear side in the rotation direction of the main body 42a are substantially V-shaped with the central portion protruding toward the rotation direction leading side. The central portions of the edges 42d and 42e of the main body 42a are rounded in an arc shape.

各フォイル42の固定部42bは、図8(A)に示すように、フォイルホルダ41の端面41aの外径端に固定される。図示例では、複数のフォイル42の固定部42bが同一円周上に配され、リング状の固定部材43とフォイルホルダ41の端面41aとで固定部42bの全域が挟持固定される。複数のフォイル42は、円周方向等ピッチで配され、図示例では、各フォイル42の半分だけ位相をずらして重ね合わせている。図9に示すように、各フォイル42の回転方向先行側の縁42dは、隣接するフォイル42の上(フランジ部22側)に配される。すなわち、各フォイル42の回転方向先行側部分は、隣接するフォイル42の回転方向後方側部分に乗り上げている。各フォイル42の本体部42aの表面のうち、フランジ部22の一方の端面22aと直接対向している部分{図8(A)で見えている部分}は、スラスト軸受面S2として機能する。尚、各フォイル42の固定部42bを、フォイルホルダ41あるいは固定部材43に溶接や接着等により固定してもよい。   The fixing portion 42b of each foil 42 is fixed to the outer diameter end of the end surface 41a of the foil holder 41 as shown in FIG. In the illustrated example, the fixing portions 42 b of the plurality of foils 42 are arranged on the same circumference, and the entire fixing portion 42 b is sandwiched and fixed by the ring-shaped fixing member 43 and the end surface 41 a of the foil holder 41. The plurality of foils 42 are arranged at equal pitches in the circumferential direction. In the illustrated example, the foils 42 are overlapped with a phase shifted by half of each foil 42. As shown in FIG. 9, the edge 42d on the rotational direction leading side of each foil 42 is disposed on the adjacent foil 42 (flange portion 22 side). That is, the rotation direction leading side portion of each foil 42 rides on the rotation direction rear side portion of the adjacent foil 42. Of the surface of the main body portion 42a of each foil 42, the portion that directly faces one end surface 22a of the flange portion 22 (the portion visible in FIG. 8A) functions as the thrust bearing surface S2. In addition, you may fix the fixing | fixed part 42b of each foil 42 to the foil holder 41 or the fixing member 43 by welding or adhesion | attachment.

第2スラストフォイル軸受50は、図3に示すように、回転部材20のフランジ部22を軸方向他方側(図中左側)から支持するものである。第2スラストフォイル軸受50は、図8(B)に示すように、円盤状のフォイルホルダ51と、フォイルホルダ51の端面51aに固定された複数のフォイル52とを備える。各フォイル52の本体部の表面のうち、フランジ部22の他方の端面22bと直接対向している部分{図8(B)で見えている部分}は、スラスト軸受面S3として機能する。第2スラストフォイル軸受50のその他の構成は、第1スラストフォイル軸受40と同様であるため、重複説明を省略する。   As shown in FIG. 3, the second thrust foil bearing 50 supports the flange portion 22 of the rotating member 20 from the other axial side (left side in the drawing). As shown in FIG. 8B, the second thrust foil bearing 50 includes a disc-shaped foil holder 51 and a plurality of foils 52 fixed to the end surface 51 a of the foil holder 51. Of the surface of the main body portion of each foil 52, the portion directly facing the other end surface 22b of the flange portion 22 (the portion visible in FIG. 8B) functions as the thrust bearing surface S3. Since the other structure of the 2nd thrust foil bearing 50 is the same as that of the 1st thrust foil bearing 40, duplication description is abbreviate | omitted.

フォイル32,42,52は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm〜200μm程度の金属フォイルにプレス加工を施すことで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、金属フォイルとしてステンレス鋼もしくは青銅製のものを使用するのが好ましい。   The foils 32, 42, 52 are formed by pressing a metal foil having a thickness of about 20 μm to 200 μm made of a metal having a high spring property and good workability, for example, a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in this embodiment, since there is no lubricating oil in the atmosphere, it is preferable to use a stainless steel or bronze metal foil.

上記構成のフォイル軸受ユニット10は、以下のような手順で組み立てられる。まず、ラジアルフォイル軸受30の内周に、回転部材20のスリーブ部21を挿入する。その後、回転部材20のフランジ部22を軸方向両側から挟み込むように、第2スラストフォイル軸受50を第1スラストフォイル軸受に取り付ける。具体的に、第1フォイル軸受40のフォイルホルダ41に取り付けた固定部材43と、第2フォイル軸受50のフォイルホルダ51に取り付けた固定部材53とを軸方向で当接させ、この状態で、図示しないボルト等で両フォイルホルダ41,51を固定する。以上により、図3に示すフォイル軸受ユニット10が完成する。   The foil bearing unit 10 having the above configuration is assembled in the following procedure. First, the sleeve portion 21 of the rotating member 20 is inserted into the inner periphery of the radial foil bearing 30. Then, the 2nd thrust foil bearing 50 is attached to a 1st thrust foil bearing so that the flange part 22 of the rotating member 20 may be inserted | pinched from the axial direction both sides. Specifically, the fixing member 43 attached to the foil holder 41 of the first foil bearing 40 and the fixing member 53 attached to the foil holder 51 of the second foil bearing 50 are brought into contact with each other in the axial direction. The foil holders 41 and 51 are fixed with bolts that are not used. Thus, the foil bearing unit 10 shown in FIG. 3 is completed.

上記構成のフォイル軸受ユニット10は、回転部材20の内周に軸6を圧入すると共に、フォイル軸受30,40,50のフォイルホルダ31,41,51の一部又は全部をガスタービンのハウジングに固定することにより、ガスタービンに組みつけられる。フォイル軸受ユニット10では、ラジアルフォイル軸受30及びスラストフォイル軸受40,50で構成される軸受部材の内部に回転部材20が収容され、軸受部材と回転部材20との分離が規制された状態でこれらが一体化されているため、ガスタービンへの組み付け時に軸受部材及び回転部材20を一体的に取り扱うことができ、組み付け性が向上する。   In the foil bearing unit 10 having the above-described configuration, the shaft 6 is press-fitted into the inner periphery of the rotating member 20, and part or all of the foil holders 31, 41, 51 of the foil bearings 30, 40, 50 are fixed to the housing of the gas turbine. By doing so, it is assembled to the gas turbine. In the foil bearing unit 10, the rotating member 20 is accommodated inside the bearing member constituted by the radial foil bearing 30 and the thrust foil bearings 40, 50, and these are in a state where separation between the bearing member and the rotating member 20 is restricted. Since they are integrated, the bearing member and the rotating member 20 can be handled integrally at the time of assembling to the gas turbine, and the assembling property is improved.

軸6が周方向一方(図4及び図8の矢印方向)に回転すると、ラジアルフォイル軸受30のフォイル32のラジアル軸受面S1と回転部材20のスリーブ部21の外周面21aとの間にラジアル軸受隙間が形成され、このラジアル軸受隙間に生じる空気膜の圧力により回転部材20及び軸6がラジアル方向に支持される。これと同時に、第1スラストフォイル軸受40のフォイル42のスラスト軸受面S2と回転部材20のフランジ部22の一方の端面22aとの間、及び、第2スラストフォイル軸受50のフォイル52のスラスト軸受面S3と回転部材20のフランジ部22の他方の端面22bとの間にそれぞれスラスト軸受隙間が形成され、各スラスト軸受隙間に生じる空気膜の圧力により、回転部材20及び軸6が両スラスト方向に支持される。   When the shaft 6 rotates in one circumferential direction (the arrow direction in FIGS. 4 and 8), the radial bearing is located between the radial bearing surface S 1 of the foil 32 of the radial foil bearing 30 and the outer peripheral surface 21 a of the sleeve portion 21 of the rotating member 20. A gap is formed, and the rotary member 20 and the shaft 6 are supported in the radial direction by the pressure of the air film generated in the radial bearing gap. At the same time, between the thrust bearing surface S2 of the foil 42 of the first thrust foil bearing 40 and one end surface 22a of the flange portion 22 of the rotating member 20, and the thrust bearing surface of the foil 52 of the second thrust foil bearing 50. A thrust bearing gap is formed between S3 and the other end face 22b of the flange portion 22 of the rotating member 20, and the rotating member 20 and the shaft 6 are supported in both thrust directions by the pressure of the air film generated in each thrust bearing gap. Is done.

このとき、フォイル32,42,52が有する可撓性により、各フォイル32,42,52の軸受面S1,S2,S3が、荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間及びスラスト軸受隙間は運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、ラジアル軸受隙間及びスラスト軸受隙間を最適幅に管理することができ、回転部材20及び軸6を安定して支持することが可能となる。   At this time, due to the flexibility of the foils 32, 42, 52, the bearing surfaces S 1, S 2, S 3 of the foils 32, 42, 52 depend on the operating conditions such as the load, the rotational speed of the shaft 6, and the ambient temperature. In order to deform arbitrarily, the radial bearing gap and the thrust bearing gap are automatically adjusted to appropriate widths according to the operating conditions. Therefore, even under severe conditions such as high temperature and high speed rotation, the radial bearing gap and the thrust bearing gap can be managed to the optimum width, and the rotating member 20 and the shaft 6 can be stably supported.

また、本実施形態では、軸6の回転に伴って流動する流体(空気)との摩擦により、各フォイル32が回転方向先行側に押し込まれ、図10に示すように、ラジアルフォイル軸受30の各フォイル32の周方向一端がフォイルホルダ31の内周面31aから立ち上がる。一方、各フォイル32の周方向他端は、フォイルホルダ31の内周面31aに沿って配されている。このため、各フォイル32の頂部32f(軸6の外周面に最も近接した領域)が、複数の溝31bの円周方向間領域の中央部よりも回転方向先行側に配される。これにより、フォイル32と軸6の外周面との間に形成されるラジアル軸受隙間のうち、正圧を発生させる領域、すなわち、回転方向先行側(図10の左側)へ向けて徐々に狭くなった領域を広く取ることができ、ラジアル方向の支持力が高められる。   Further, in the present embodiment, the foils 32 are pushed into the rotation direction leading side by friction with the fluid (air) that flows along with the rotation of the shaft 6, and as shown in FIG. 10, each of the radial foil bearings 30. One end in the circumferential direction of the foil 32 rises from the inner peripheral surface 31 a of the foil holder 31. On the other hand, the other circumferential end of each foil 32 is disposed along the inner peripheral surface 31 a of the foil holder 31. For this reason, the top portion 32f of each foil 32 (the region closest to the outer peripheral surface of the shaft 6) is disposed on the leading side in the rotational direction with respect to the central portion of the region between the circumferential directions of the plurality of grooves 31b. As a result, the radial bearing gap formed between the foil 32 and the outer peripheral surface of the shaft 6 gradually becomes narrower toward the region where positive pressure is generated, that is, toward the leading side in the rotational direction (left side in FIG. 10). The wide area can be taken, and the supporting force in the radial direction is increased.

また、フォイルホルダ31に組み込まれた複数のフォイル32は、隣接するフォイル32が交差部で周方向に互いに突っ張り合い、各フォイル32がフォイルホルダ31の内周面31aに沿った状態とされる。このため、フォイル32と回転部材20との摺接が抑えられ、回転トルクを低減することができる。   In addition, the plurality of foils 32 incorporated in the foil holder 31 are adjacent to each other in the circumferential direction at the intersections, and the foils 32 are in a state along the inner peripheral surface 31 a of the foil holder 31. For this reason, the sliding contact between the foil 32 and the rotating member 20 is suppressed, and the rotational torque can be reduced.

軸受の運転中は、軸受隙間に形成された空気膜の影響でフォイル32,42,52がフォイルホルダ31,41,51に押し付けられ、これに伴って両者の間で微小摺動が生じる。この微小摺動による摩擦エネルギーにより、軸6の振動を減衰させることができる。本実施形態では、ラジアルフォイル軸受30のフォイル32が、フォイルホルダ31に対して周方向で固定されていないため、フォイル32がフォイルホルダ31に対して周方向移動することで両者の摺動量が大きくなり、軸6の振動を減衰する効果がさらに高められる。図示例では、各フォイル32の回転方向後方側の端部(凸部32c)が、隣接するフォイル32とフォイルホルダ31の内周面31aとの間に配されることで、フォイルホルダ31の内周面31aと面接触した状態で周方向に摺動するため、軸6の振動減衰効果がさらに高められる。   During operation of the bearing, the foils 32, 42, 52 are pressed against the foil holders 31, 41, 51 due to the influence of the air film formed in the bearing gap, and accordingly, a slight sliding occurs between them. The vibration of the shaft 6 can be attenuated by the frictional energy generated by the minute sliding. In the present embodiment, since the foil 32 of the radial foil bearing 30 is not fixed in the circumferential direction with respect to the foil holder 31, the sliding amount of both of them increases when the foil 32 moves in the circumferential direction with respect to the foil holder 31. Thus, the effect of damping the vibration of the shaft 6 is further enhanced. In the illustrated example, the end (convex portion 32 c) on the rear side in the rotation direction of each foil 32 is disposed between the adjacent foil 32 and the inner peripheral surface 31 a of the foil holder 31. Since it slides in the circumferential direction while being in surface contact with the peripheral surface 31a, the vibration damping effect of the shaft 6 is further enhanced.

本実施形態では、図5(A)に示すように、フォイルホルダ31の内周面31aに、周方向幅が比較的広い凹部(溝31b)を設けることで、積極的に各フォイル32を周方向に移動させることができる。すなわち、軸6が回転すると、図5(B)に示すように、軸6の回転に伴って流動する流体(空気)との摩擦によりフォイル32が回転方向先行側に押し込まれる。このとき、各フォイル32の周方向一部領域が、溝31bに押し込まれることにより湾曲する。具体的に、軸6の回転に伴い、フォイル32の凸部32eの先端が溝31bの角部31b1に突き当たると共に、凸部32eを含むフォイル32の回転方向先行側の端部が湾曲する。図示例では、各フォイル32の回転方向先行側の端部が外径側に凸をなして湾曲する。各フォイル32の回転方向先行側の端部は、他の領域よりも大きい曲率で湾曲し、例えば、フォイルホルダ31の内周面31aよりも大きい曲率で湾曲する。こうしてフォイル32の端部が湾曲した分だけ、フォイル32のその他の領域(凸部32e以外の周方向領域)が回転方向先行側に移動する。これにより、フォイル32とフォイルホルダ31との摺動量が増大するため、軸6の振動減衰効果がさらに高められる。   In the present embodiment, as shown in FIG. 5 (A), each foil 32 is actively surrounded by providing a recess (groove 31b) having a relatively wide circumferential width on the inner peripheral surface 31a of the foil holder 31. Can be moved in the direction. That is, when the shaft 6 rotates, as shown in FIG. 5B, the foil 32 is pushed to the front side in the rotational direction by friction with the fluid (air) that flows along with the rotation of the shaft 6. At this time, a circumferential partial region of each foil 32 is curved by being pushed into the groove 31b. Specifically, as the shaft 6 rotates, the tip of the convex portion 32e of the foil 32 abuts against the corner portion 31b1 of the groove 31b, and the end portion of the foil 32 including the convex portion 32e on the leading side in the rotational direction is curved. In the illustrated example, the end of each foil 32 on the leading side in the rotational direction is curved with a convex toward the outer diameter side. The end on the rotational direction leading side of each foil 32 is curved with a larger curvature than the other regions, for example, curved with a larger curvature than the inner peripheral surface 31 a of the foil holder 31. In this way, the other region of the foil 32 (circumferential region other than the convex portion 32e) moves toward the rotation direction leading side by the amount of curvature of the end of the foil 32. Thereby, since the sliding amount of the foil 32 and the foil holder 31 increases, the vibration damping effect of the shaft 6 is further enhanced.

尚、軸6の停止直前や起動直後の低速回転時には、各フォイルの軸受面S1〜S3と回転部材20が接触摺動するため、これらの何れか一方または双方に、DLC膜、チタンアルミナイトライド膜、二硫化タングステン膜、あるいは二硫化モリブデン膜等の低摩擦化被膜を形成してもよい。また、フォイル32,42,52とフォイルホルダ31,41,51との間の微小摺動による摩擦力を調整するために、これらの何れか一方または双方に、上記のような低摩擦化被膜を形成してもよい。   In addition, since the bearing surfaces S1 to S3 of the foils and the rotating member 20 are in sliding contact with each other at the time of low-speed rotation immediately before the shaft 6 is stopped or immediately after starting, a DLC film, titanium aluminum nitride is provided on one or both of them. A low friction coating such as a film, a tungsten disulfide film, or a molybdenum disulfide film may be formed. Further, in order to adjust the frictional force caused by the minute sliding between the foils 32, 42, 52 and the foil holders 31, 41, 51, either one or both of them is provided with the above-described low friction coating. It may be formed.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same function as said embodiment, and duplication description is abbreviate | omitted.

例えば、上記の実施形態では、隣接するフォイル32の端部同士を交差部Pにおいて周方向に突っ張り合わせている。このため、図5(B)に示すように、軸6の回転に伴って、各フォイルの回転方向先行側の端部(凸部32e周辺)が溝31bの内部に押し込まれることにより、隣接するフォイル32の回転方向後方側の端部(凸部32c周辺)も溝31bの内部に押し込まれる。これにより、各フォイル32の回転方向後方側の端部付近が湾曲しながら溝31bに入り込むことで、フォイル32の周方向移動(特に凸部32cの周方向移動)が阻害され、軸6の振動減衰効果が小さくなる恐れがある。   For example, in the above-described embodiment, the ends of the adjacent foils 32 are stuck together in the circumferential direction at the intersection P. For this reason, as shown in FIG. 5 (B), as the shaft 6 rotates, the end of each foil in the rotation direction leading side (the vicinity of the convex portion 32e) is pushed into the groove 31b to be adjacent. The end of the foil 32 on the rear side in the rotation direction (around the convex portion 32c) is also pushed into the groove 31b. As a result, the circumferential vicinity of the foil 32 (particularly the circumferential movement of the convex portion 32c) is hindered by the fact that the vicinity of the end portion on the rear side in the rotation direction of each foil 32 enters the groove 31b while curving, and the vibration of the shaft 6 is inhibited. The attenuation effect may be reduced.

そこで、図11(A)に示す実施形態では、隣接するフォイル32の端部同士を周方向で係合させない構成としている。具体的には、各フォイル32の凸部32eの周方向寸法を上記の実施形態よりも長くして、凹部32dを交差部Pよりも回転方向後方側(図中左側)に配している。この場合、図11(B)に示すように、軸6の回転に伴って各フォイル32の回転方向先行側の端部(凸部32e周辺)が溝31bの内部に押し込まれたときでも、各フォイル32の回転方向後方側の端部(凸部32c周辺)は溝31bの内部に押し込まれず、フォイルホルダ31の内周面31aに沿った形状で維持される。これにより、各フォイル32の回転方向後方側の端部付近の周方向移動が阻害されず、優れた振動減衰効果を得ることができる。   Therefore, in the embodiment shown in FIG. 11A, the end portions of the adjacent foils 32 are not engaged in the circumferential direction. Specifically, the circumferential dimension of the convex portion 32e of each foil 32 is made longer than that in the above embodiment, and the concave portion 32d is arranged behind the intersecting portion P in the rotational direction (left side in the figure). In this case, as shown in FIG. 11B, each end of the foil 32 in the rotational direction leading side (around the convex portion 32e) is pushed into the groove 31b as the shaft 6 rotates. The end of the foil 32 on the rear side in the rotation direction (periphery of the convex portion 32 c) is not pushed into the groove 31 b and is maintained in a shape along the inner peripheral surface 31 a of the foil holder 31. Thereby, the circumferential movement in the vicinity of the end portion on the rear side in the rotation direction of each foil 32 is not inhibited, and an excellent vibration damping effect can be obtained.

図12に示す実施形態では、各フォイル32の周方向両端をフォイルホルダ31の溝31bに差し込んだ点で、上記の実施形態と異なる。本実施形態では、互いに交差する隣接するフォイル32の端部(凸部32e,凸部32c)が、共通の溝31bに差し込まれる。溝31bには、各フォイルの周方向一端(凸部32e)が突き当たる角部31b1と、各フォイルの周方向他端(凸部32c)が突き当たる角部31b5とが設けられる。この場合、各フォイル32の周方向両側への移動を規制することができるため、両方向に回転する軸6を支持することができる。すなわち、軸6が周方向一方(図12の実線矢印方向)に回転すると、各フォイル32の凸部32eが溝31bの角部31b1に突き当たると共に、この凸部32eが溝31bの内部で湾曲する{図5(B)あるいは図11(B)と同様}。一方、軸6が周方向他方(図12の点線矢印方向)に回転すると、各フォイル32の凸部32cが溝31bの角部31b5に突き当たると共に、この凸部32cが溝31bの内部で湾曲する。以上のように、凸部32eあるいは凸部32cが溝31bの内部で湾曲することにより、上記の実施形態と同様にフォイル32とフォイルホルダ31との摺動量が増え、軸6の振動減衰効果が得られる。   The embodiment shown in FIG. 12 differs from the above-described embodiment in that both ends in the circumferential direction of each foil 32 are inserted into the grooves 31b of the foil holder 31. In this embodiment, the edge part (convex part 32e, convex part 32c) of the foil 32 which mutually cross | intersects is inserted in the common groove | channel 31b. The groove 31b is provided with a corner portion 31b1 with which one end in the circumferential direction (convex portion 32e) of each foil abuts and a corner portion 31b5 with which the other end in the circumferential direction (convex portion 32c) of each foil abuts. In this case, since the movement of each foil 32 to both sides in the circumferential direction can be restricted, the shaft 6 rotating in both directions can be supported. That is, when the shaft 6 rotates in one circumferential direction (the direction indicated by the solid line in FIG. 12), the convex portions 32e of the foils 32 abut against the corner portions 31b1 of the grooves 31b, and the convex portions 32e are curved inside the grooves 31b. {Same as FIG. 5B or FIG. 11B}. On the other hand, when the shaft 6 rotates in the other circumferential direction (in the direction of the dotted arrow in FIG. 12), the convex portions 32c of the foils 32 abut against the corner portions 31b5 of the grooves 31b, and the convex portions 32c are curved inside the grooves 31b. . As described above, the convex portion 32e or the convex portion 32c is curved inside the groove 31b, so that the sliding amount between the foil 32 and the foil holder 31 is increased similarly to the above embodiment, and the vibration damping effect of the shaft 6 is increased. can get.

この場合、各フォイル32は、フォイルホルダ31に対して周方向移動可能とされる。本実施形態では、図13に示すように、各フォイル32の周方向両端と、溝31bの角部31b1,31b5との間に周方向の隙間が設けられる。これにより、各フォイル32の周方向一方の端部が溝31bの角部31b1に突き当たった状態では、各フォイル32の周方向他方の端部が溝31bの角部31b1に突き当たらない。従って、溝31bの角部31b1,31b5との間に形成される隙間の分だけ、各フォイル32の周方向移動が許容される。このように、各フォイル32が周方向の遊びを有する状態でフォイルホルダ31に保持されることにより、フォイル32とフォイルホルダ31との摺動量が増え、軸6の振動減衰効果を高めることができる。   In this case, each foil 32 is movable in the circumferential direction with respect to the foil holder 31. In this embodiment, as shown in FIG. 13, a circumferential clearance is provided between the circumferential ends of each foil 32 and the corners 31b1 and 31b5 of the groove 31b. Thus, in a state where one end in the circumferential direction of each foil 32 hits the corner 31b1 of the groove 31b, the other end in the circumferential direction of each foil 32 does not hit the corner 31b1 of the groove 31b. Therefore, the circumferential movement of each foil 32 is allowed by the gap formed between the corners 31b1 and 31b5 of the groove 31b. Thus, each foil 32 is held by the foil holder 31 in a state having a play in the circumferential direction, whereby the sliding amount between the foil 32 and the foil holder 31 is increased, and the vibration damping effect of the shaft 6 can be enhanced. .

また、以上の実施形態では、ラジアルフォイル軸受30及びスラストフォイル軸受40,50をフォイル軸受ユニット10として一体化した後、これをガスタービンに取り付ける場合を示したが、これに限らず、各フォイル軸受30,40,50をそれぞれ別々にガスタービンに取り付けてもよい。   In the above embodiment, the radial foil bearing 30 and the thrust foil bearings 40 and 50 are integrated as the foil bearing unit 10 and then attached to the gas turbine. However, the present invention is not limited to this. 30, 40, and 50 may be separately attached to the gas turbine.

本発明にかかるフォイル軸受の適用対象は、上述したガスタービンに限られず、例えば過給機のロータを支持する軸受としても使用することができる。また、本発明にかかるフォイル軸受は、ガスタービンや過給機等のターボ機械に限らず、潤滑油などの液体による潤滑が困難である、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難である、あるいは液体のせん断による抵抗が問題になる等の制限下で使用される自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。   The application object of the foil bearing according to the present invention is not limited to the gas turbine described above, and can be used as a bearing for supporting a rotor of a supercharger, for example. In addition, the foil bearing according to the present invention is not limited to a turbo machine such as a gas turbine or a turbocharger, and it is difficult to lubricate with a liquid such as a lubricating oil. It can be widely used as a bearing for a vehicle such as an automobile, which is used under a restriction that it is difficult to provide or resistance due to shearing of a liquid becomes a problem, and further, as a bearing for industrial equipment.

また、以上に説明した各フォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受であるが、これに限らず、圧力発生流体としてその他のガスを使用することもでき、あるいは水や油などの液体を使用することもできる。   Each of the foil bearings described above is an air dynamic pressure bearing that uses air as a pressure generating fluid. However, the present invention is not limited to this, and other gases can be used as the pressure generating fluid, or water or oil can be used. A liquid such as can also be used.

6 軸
10 フォイル軸受ユニット
20 回転部材
30 ラジアルフォイル軸受(フォイル軸受)
31 フォイルホルダ
31b 溝
31b1 角部
32 フォイル
40 スラストフォイル軸受
41 フォイルホルダ
42 フォイル
43 固定部材
50 スラストフォイル軸受
51 フォイルホルダ
52 フォイル
53 固定部材
P 交差部
S1 ラジアル軸受面
S2 スラスト軸受面
S3 スラスト軸受面
6 shaft 10 foil bearing unit 20 rotating member 30 radial foil bearing (foil bearing)
31 Foil Holder 31b Groove 31b1 Corner 32 Foil 40 Thrust Foil Bearing 41 Foil Holder 42 Foil 43 Fixing Member 50 Thrust Foil Bearing 51 Foil Holder 52 Foil 53 Fixing Member P Intersection S1 Radial Bearing Surface S2 Thrust Bearing Surface S3 Thrust Bearing Surface

Claims (9)

筒状をなしたフォイルホルダと、軸受面を有し、前記フォイルホルダの内周面に周方向に並べて配された複数のフォイルとを備え、各フォイルの周方向両端が前記フォイルホルダに保持され、内周に挿入された軸を回転自在に支持するフォイル軸受であって、
前記複数のフォイルが、周方向移動可能な状態でフォイルホルダに保持されたことを特徴とするフォイル軸受。
A foil holder having a cylindrical shape and a plurality of foils having a bearing surface and arranged in a circumferential direction on the inner peripheral surface of the foil holder, and both ends in the circumferential direction of each foil are held by the foil holder. A foil bearing that rotatably supports a shaft inserted in the inner periphery,
A foil bearing characterized in that the plurality of foils are held by a foil holder in a state of being movable in the circumferential direction.
各フォイルの回転方向先行側の端部が、前記フォイルホルダの内周面に形成された凹部に周方向移動可能な状態で差し込まれ、各フォイルの回転方向後方側の端部が、隣接するフォイルとフォイルホルダの内周面との間に配された請求項1記載のフォイル軸受。   The end of each foil in the rotational direction leading side is inserted into a recess formed on the inner peripheral surface of the foil holder in a circumferentially movable state, and the end of each foil in the rotational direction rear side is adjacent to the adjacent foil. The foil bearing according to claim 1, wherein the foil bearing is disposed between the inner peripheral surface of the foil holder and the foil holder. 各フォイルの周方向両端が、前記フォイルホルダの内周面に形成された凹部に差し込まれ、各フォイルの周方向一端を前記凹部と周方向で係合させた状態で、各フォイルの周方向他端が前記凹部と周方向で係合しないようにした請求項1記載のフォイル軸受。   Both ends of each foil in the circumferential direction are inserted into recesses formed on the inner peripheral surface of the foil holder, and one end in the circumferential direction of each foil is engaged with the recess in the circumferential direction. The foil bearing according to claim 1, wherein an end does not engage with the concave portion in a circumferential direction. 前記凹部の内壁に、各フォイルの回転方向先行側の端部が突き当たる角部を設けた請求項2又は3記載のフォイル軸受。   The foil bearing of Claim 2 or 3 which provided the corner | angular part which the edge part of the rotation direction preceding side of each foil collided with the inner wall of the said recessed part. 隣接するフォイルを周方向で突っ張り合わせることにより、各フォイルを外径側に張り出させた請求項1〜4の何れかに記載のフォイル軸受。   The foil bearing in any one of Claims 1-4 which protruded each foil to the outer-diameter side by sticking adjacent foil in the circumferential direction. 鉛直方向と交差する方向に配された軸を支持する請求項1〜5の何れかに記載のフォイル軸受。   The foil bearing in any one of Claims 1-5 which supports the axis | shaft arranged in the direction which cross | intersects a perpendicular direction. 請求項1〜6の何れかに記載のフォイル軸受と、前記フォイル軸受の内周に挿入された回転部材とを備えたフォイル軸受ユニット。   A foil bearing unit comprising: the foil bearing according to any one of claims 1 to 6; and a rotating member inserted into an inner periphery of the foil bearing. 請求項1〜6の何れかに記載のフォイル軸受と、前記フォイル軸受の内周に挿入された軸とを備えたターボ機械。   The turbomachine provided with the foil bearing in any one of Claims 1-6, and the axis | shaft inserted in the inner periphery of the said foil bearing. 請求項7に記載のフォイル軸受ユニットと、前記回転部材の内周に固定された軸とを備え、前記フォイル軸受により、前記回転部材及び前記軸が回転自在に支持されたターボ機械。   A turbomachine comprising the foil bearing unit according to claim 7 and a shaft fixed to an inner periphery of the rotating member, wherein the rotating member and the shaft are rotatably supported by the foil bearing.
JP2013256847A 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine Active JP6305749B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013256847A JP6305749B2 (en) 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine
EP14869649.5A EP3096028B1 (en) 2013-12-12 2014-11-19 Foil bearing, and foil bearing unit and turbo machine each having same
US15/102,038 US10012109B2 (en) 2013-12-12 2014-11-19 Foil bearing, and foil bearing unit and turbo machine each having same
PCT/JP2014/080639 WO2015087675A1 (en) 2013-12-12 2014-11-19 Foil bearing, and foil bearing unit and turbo machine each having same
CN201480064681.6A CN105765245B (en) 2013-12-12 2014-11-19 Foil bearing and the foil bearing unit with the foil bearing and turbomachinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256847A JP6305749B2 (en) 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine

Publications (2)

Publication Number Publication Date
JP2015113927A true JP2015113927A (en) 2015-06-22
JP6305749B2 JP6305749B2 (en) 2018-04-04

Family

ID=53527923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256847A Active JP6305749B2 (en) 2013-12-12 2013-12-12 Foil bearing, foil bearing unit having the same, and turbomachine

Country Status (1)

Country Link
JP (1) JP6305749B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016268A1 (en) * 2016-07-20 2018-01-25 Ntn株式会社 Foil bearing
WO2018100949A1 (en) * 2016-11-30 2018-06-07 Ntn株式会社 Foil bearing
WO2019124393A1 (en) * 2017-12-19 2019-06-27 Ntn株式会社 Foil bearing, foil bearing unit, turbo machine, and manufacturing method for foil bearing
JP2019108968A (en) * 2017-12-19 2019-07-04 Ntn株式会社 Foil bearing, foil bearing unit, turbomachine, and method of manufacturing foil bearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913116A (en) * 1982-07-01 1984-01-23 ザ・ギヤレツト・コ−ポレ−シヨン Fluid bearing
JPS5935723U (en) * 1982-08-31 1984-03-06 石川島播磨重工業株式会社 gas bearing structure
JP2001227535A (en) * 1999-12-03 2001-08-24 Mitsubishi Heavy Ind Ltd Foil gas bearing
JP2008241015A (en) * 2007-03-29 2008-10-09 Daido Metal Co Ltd Multirobe foil fluid bearing and its manufacturing method
US7553086B2 (en) * 2004-07-20 2009-06-30 Honeywell International Inc. Hydrodynamic journal bearing
WO2013015098A1 (en) * 2011-07-22 2013-01-31 株式会社Ihi Radial foil bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913116A (en) * 1982-07-01 1984-01-23 ザ・ギヤレツト・コ−ポレ−シヨン Fluid bearing
JPS5935723U (en) * 1982-08-31 1984-03-06 石川島播磨重工業株式会社 gas bearing structure
JP2001227535A (en) * 1999-12-03 2001-08-24 Mitsubishi Heavy Ind Ltd Foil gas bearing
US7553086B2 (en) * 2004-07-20 2009-06-30 Honeywell International Inc. Hydrodynamic journal bearing
JP2008241015A (en) * 2007-03-29 2008-10-09 Daido Metal Co Ltd Multirobe foil fluid bearing and its manufacturing method
WO2013015098A1 (en) * 2011-07-22 2013-01-31 株式会社Ihi Radial foil bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016268A1 (en) * 2016-07-20 2018-01-25 Ntn株式会社 Foil bearing
WO2018100949A1 (en) * 2016-11-30 2018-06-07 Ntn株式会社 Foil bearing
WO2019124393A1 (en) * 2017-12-19 2019-06-27 Ntn株式会社 Foil bearing, foil bearing unit, turbo machine, and manufacturing method for foil bearing
JP2019108968A (en) * 2017-12-19 2019-07-04 Ntn株式会社 Foil bearing, foil bearing unit, turbomachine, and method of manufacturing foil bearing
JP7065715B2 (en) 2017-12-19 2022-05-12 Ntn株式会社 Foil bearings, foil bearing units, turbomachinery, foil bearing manufacturing methods

Also Published As

Publication number Publication date
JP6305749B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2015087675A1 (en) Foil bearing, and foil bearing unit and turbo machine each having same
CN107061495B (en) Thin liner bearing
WO2013018605A1 (en) Thrust foil bearing
US9689422B2 (en) Foil bearing unit
JP5766562B2 (en) Thrust foil bearing
JP6104597B2 (en) Foil bearing
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP6305748B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP6104596B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP2013044394A (en) Thrust foil bearing
JP2013047555A (en) Foil bearing
WO2017073613A1 (en) Foil bearing, production method therefor, and intermediate product of foil bearing
JP6246574B2 (en) Foil bearing unit and turbomachine
JP6257965B2 (en) Foil bearing unit
WO2020195488A1 (en) Thrust foil bearing, foil bearing unit, turbo machine, and foil
JP6144222B2 (en) Foil bearing
JP6266329B2 (en) Thrust foil bearing, radial foil bearing, and manufacturing method thereof
JP6629042B2 (en) Foil bearing
WO2020179475A1 (en) Thrust foil bearing
JP6440999B2 (en) Foil bearing and foil provided on the same
JP6219489B2 (en) Foil bearing
JP6541946B2 (en) Foil bearing and foil provided thereto
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
JP2021067353A (en) Foil bearing and rotating machine comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6305749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250