JP2015109237A - Battery control system and battery control method - Google Patents

Battery control system and battery control method Download PDF

Info

Publication number
JP2015109237A
JP2015109237A JP2013252235A JP2013252235A JP2015109237A JP 2015109237 A JP2015109237 A JP 2015109237A JP 2013252235 A JP2013252235 A JP 2013252235A JP 2013252235 A JP2013252235 A JP 2013252235A JP 2015109237 A JP2015109237 A JP 2015109237A
Authority
JP
Japan
Prior art keywords
internal resistance
deterioration
lead battery
battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013252235A
Other languages
Japanese (ja)
Inventor
琢磨 飯田
Takuma Iida
琢磨 飯田
裕行 神保
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013252235A priority Critical patent/JP2015109237A/en
Publication of JP2015109237A publication Critical patent/JP2015109237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery control system and a battery control method capable of improving the determination accuracy of the deterioration state of a lead battery.SOLUTION: The battery control system includes: internal resistance estimation means that estimates internal resistance while charging a lead battery and internal resistance while discharging the lead battery; and deterioration state determination means that calculates a first deterioration level of the lead battery during charging the battery based on an initial value of the internal resistance during charging and the estimated internal resistance during charging and calculates a second deterioration level of the lead battery during discharging based on the initial value of the internal resistance during discharging and the estimated internal resistance during the discharging to determine the deterioration state of the lead battery based on the first deterioration level and the second deterioration level.

Description

本発明は、二次電池の劣化状態を判定する電池制御システム及び電池制御方法に関する。   The present invention relates to a battery control system and a battery control method for determining a deterioration state of a secondary battery.

電気自動車(EV:Electric Vehicle)、ハイブリッド自動車(HEV:Hybrid Electric Vehicle)、プラグインハイブリッド自動車(PHEV:Plug-in Hybrid Electric Vehicle)等には、充電と放電が可能な二次電池が用いられている。   Secondary batteries that can be charged and discharged are used for electric vehicles (EV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and the like. Yes.

二次電池の内部抵抗は、二次電池の劣化状態と関係があり、劣化状態の度合いを示す劣化度は、基準となる内部抵抗からの上昇率で知ることができる。そのため、二次電池の内部抵抗を測定することにより、二次電池の劣化度を知ることが可能である(例えば、特許文献1参照)。   The internal resistance of the secondary battery is related to the deterioration state of the secondary battery, and the deterioration degree indicating the degree of the deterioration state can be known from the rate of increase from the reference internal resistance. Therefore, it is possible to know the degree of deterioration of the secondary battery by measuring the internal resistance of the secondary battery (see, for example, Patent Document 1).

特開2008−256673号公報JP 2008-256673 A

しかしながら、二次電池に鉛電池を用いた場合、充電時の内部抵抗によって劣化状態を判定する際、過充電が連続して発生すると負極に硫酸鉛が固定することにより、図1に示すように、一次的に内部抵抗が上昇してしまう。図1は、充電時における鉛電池の内部抵抗と電池容量との関係を示し、実線が硫酸鉛の固定のない正常な場合の特性を、点線が硫酸鉛の固定がある場合の特性をそれぞれ示す。このため、過充電が続く異常使用時には、内部抵抗を正確に測ることができないため、劣化状態の判定精度が低下するという問題がある。   However, when a lead battery is used as the secondary battery, when determining the deterioration state based on the internal resistance during charging, if overcharge occurs continuously, lead sulfate is fixed to the negative electrode, as shown in FIG. First, the internal resistance will rise. FIG. 1 shows the relationship between the internal resistance and the battery capacity of a lead battery during charging, and the solid line shows the characteristic when lead sulfate is not fixed and the dotted line shows the characteristic when lead sulfate is fixed. . For this reason, the internal resistance cannot be measured accurately during abnormal use in which overcharging continues, and thus there is a problem that the determination accuracy of the deteriorated state decreases.

本発明の目的は、鉛電池の劣化状態の判定精度を向上させる電池制御システム及び電池制御方法を提供することである。   The objective of this invention is providing the battery control system and battery control method which improve the determination precision of the deterioration state of a lead battery.

本発明の一態様に係る電池制御システムは、鉛電池の充電時の内部抵抗と、前記鉛電池の放電時の内部抵抗とを推定する内部抵抗推定手段と、充電時の内部抵抗の初期値と、推定された前記充電時の内部抵抗とから充電時における前記鉛電池の第1劣化度を求め、放電時の内部抵抗の初期値と、推定された前記放電時の内部抵抗とから放電時における前記鉛電池の第2劣化度を求め、前記第1劣化度と前記第2劣化度とに基づいて、前記鉛電池の劣化状態を判定する劣化状態判定手段と、を具備する構成を採る。   The battery control system according to one aspect of the present invention includes an internal resistance estimating means for estimating an internal resistance during charging of the lead battery and an internal resistance during discharging of the lead battery, and an initial value of the internal resistance during charging. The first deterioration degree of the lead battery at the time of charging is obtained from the estimated internal resistance at the time of charging, and the initial value of the internal resistance at the time of discharging and the estimated internal resistance at the time of discharging are determined at the time of discharging. Deterioration state determination means for obtaining a second deterioration degree of the lead battery and determining a deterioration state of the lead battery based on the first deterioration degree and the second deterioration degree is adopted.

本発明の一態様に係る電池制御方法は、鉛電池の充電時の内部抵抗と、前記鉛電池の放電時の内部抵抗とを推定するステップと、充電時の内部抵抗の初期値と、推定された前記充電時の内部抵抗とから充電時における前記鉛電池の第1劣化度を求めるステップと、放電時の内部抵抗の初期値と、推定された前記放電時の内部抵抗とから放電時における前記鉛電池の第2劣化度を求めるステップと、前記第1劣化度と前記第2劣化度とに基づいて、前記鉛電池の劣化状態を判定するステップと、を具備するようにした。   A battery control method according to an aspect of the present invention includes a step of estimating an internal resistance when charging a lead battery and an internal resistance when discharging the lead battery, and an initial value of the internal resistance during charging. The step of obtaining the first deterioration degree of the lead battery at the time of charging from the internal resistance at the time of charging, the initial value of the internal resistance at the time of discharging, and the estimated internal resistance at the time of discharging, A step of obtaining a second deterioration degree of the lead battery; and a step of determining a deterioration state of the lead battery based on the first deterioration degree and the second deterioration degree.

本発明によれば、鉛電池の劣化状態の判定精度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the determination precision of the deterioration state of a lead battery can be improved.

充電時における鉛電池の内部抵抗と電池容量との関係を示す図The figure which shows the relation between the internal resistance of the lead battery at the time of charge and battery capacity 放電時における鉛電池の内部抵抗と電池容量との関係を示す図The figure which shows the relationship between the internal resistance of the lead battery at the time of discharge and the battery capacity 本発明の一実施の形態に係る電池制御システムの構成を示す図The figure which shows the structure of the battery control system which concerns on one embodiment of this invention. 図3に示した電池制御システムの制御手順を示すフロー図The flowchart which shows the control procedure of the battery control system shown in FIG. パルス充電の様子を示す図Diagram showing the state of pulse charging 通常の充電制御の様子を示す図Diagram showing normal charging control

本発明の発明者は、図2に示すように、放電時の内部抵抗は、硫酸鉛が固定した場合と硫酸鉛が固定していない正常な場合とで、大きな変化がないことに着目して、本発明をするに到った。図2は、放電時における鉛電池の内部抵抗と電池容量との関係を示し、実線が硫酸鉛の固定のない正常な場合の特性を、点線が硫酸鉛の固定がある場合の特性をそれぞれ示す。   As shown in FIG. 2, the inventor of the present invention pays attention to the fact that the internal resistance during discharge does not change greatly between the case where lead sulfate is fixed and the case where lead sulfate is not fixed. The present invention has been reached. FIG. 2 shows the relationship between the internal resistance of the lead battery and the battery capacity during discharge, and the solid line shows the characteristics when the lead sulfate is not fixed and the dotted line shows the characteristics when the lead sulfate is fixed. .

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(一実施の形態)
図3は、本発明の一実施の形態に係る電池制御システム1の構成を示す図である。以下、図3を用いて電池制御システム1の構成について説明する。
(One embodiment)
FIG. 3 is a diagram showing a configuration of the battery control system 1 according to the embodiment of the present invention. Hereinafter, the configuration of the battery control system 1 will be described with reference to FIG.

鉛電池2は、電池容器となる略角型の電槽を有している。電槽内には、極板群が収容されている。電槽の材質には、例えば、ポリエチレン(PE)等の高分子樹脂が用いられる。各極板群は、複数枚の負極板および正極板がセパレータを介して積層されている。電槽の上部は、電槽の上部開口を密閉するPE等の高分子樹脂製の上蓋に接着ないし溶着されている。上蓋には、鉛電池2を電源として外部へ電力を供給するためのロッド状正極端子および負極端子が立設されている。   The lead battery 2 has a substantially rectangular battery case serving as a battery container. An electrode plate group is accommodated in the battery case. For example, a polymer resin such as polyethylene (PE) is used as the material of the battery case. In each electrode plate group, a plurality of negative electrodes and positive electrodes are laminated via a separator. The upper part of the battery case is bonded or welded to an upper lid made of a polymer resin such as PE that seals the upper opening of the battery case. A rod-shaped positive electrode terminal and a negative electrode terminal for supplying electric power to the outside by using the lead battery 2 as a power source are erected on the upper lid.

充放電部3は、後述する制御部105の制御に基づいて、鉛電池2への充電及び鉛電池2からの放電を行わせるものであり、例えば、発電機などが挙げられる。   The charging / discharging unit 3 causes the lead battery 2 to be charged and discharged from the lead battery 2 based on the control of the control unit 105 to be described later, and examples thereof include a generator.

電圧計測部101は、差動増幅回路等を有し、液式の鉛電池2の電圧を計測する。電流計測部102は、ホール素子等の電流センサ4と協働して鉛電池2に流れる電流を計測する。   The voltage measuring unit 101 includes a differential amplifier circuit and the like, and measures the voltage of the liquid type lead battery 2. The current measuring unit 102 measures the current flowing through the lead battery 2 in cooperation with the current sensor 4 such as a Hall element.

内部抵抗推定部103は、電圧計測部101および電流計測部102の計測結果に基づいて、充電時の内部抵抗と放電時の内部抵抗を推定し、推定結果を劣化状態判定部104に出力する。また、内部抵抗推定部103は、充電時の初期内部抵抗と、放電時の初期内部抵抗を予め保持しているか、自ら推定して保持しており、これらの初期内部抵抗を劣化状態判定部104に出力する。   The internal resistance estimation unit 103 estimates the internal resistance during charging and the internal resistance during discharging based on the measurement results of the voltage measurement unit 101 and the current measurement unit 102, and outputs the estimation results to the degradation state determination unit 104. Further, the internal resistance estimation unit 103 presumes whether or not the initial internal resistance at the time of charging and the initial internal resistance at the time of discharging are stored in advance, and these initial internal resistances are deteriorated. Output to.

劣化状態判定部104は、内部抵抗推定部103から出力された内部抵抗推定結果及び初期内部抵抗から充電時の劣化度(=現在の充電時内部抵抗/充電時の初期内部抵抗)と、放電時の劣化度(=現在の放電時内部抵抗/放電時の初期内部抵抗)とを求める。劣化状態判定部104は、求めたこれらの劣化度に基づいて、鉛電池2の劣化状態を判定し、劣化状態判定結果を制御部105に出力する。   The deterioration state determination unit 104 determines the deterioration degree during charging (= current internal resistance during charging / initial internal resistance during charging) from the internal resistance estimation result output from the internal resistance estimation unit 103 and the initial internal resistance, and during discharging. Degradation level (= current internal resistance during discharge / initial internal resistance during discharge). The deterioration state determination unit 104 determines the deterioration state of the lead battery 2 based on the obtained degree of deterioration, and outputs the deterioration state determination result to the control unit 105.

制御部105は、劣化度を算出するために鉛電池2への充電及び鉛電池2からの放電を行わせるよう充放電部3に指示する。また、制御部105は、劣化状態判定部104から出力された劣化状態判定結果に基づいて、充放電部3を制御する。   The control unit 105 instructs the charging / discharging unit 3 to charge the lead battery 2 and discharge from the lead battery 2 in order to calculate the degree of deterioration. Further, the control unit 105 controls the charge / discharge unit 3 based on the deterioration state determination result output from the deterioration state determination unit 104.

次に、上述した電池制御システム1の制御手順について図4を用いて説明する。   Next, the control procedure of the battery control system 1 will be described with reference to FIG.

充放電部3は、制御部105の指示により、鉛電池2へのパルス充電を行う(ST201)。なお、パルス充電は、例えば、図5に示すように、1.5A、3.0A、6.0A等、段階的に電流値を上げたパルス電流で充電することである。   Charging / discharging unit 3 performs pulse charging to lead battery 2 in accordance with an instruction from control unit 105 (ST201). In addition, pulse charge is charging with the pulse current which raised the electric current value in steps, such as 1.5A, 3.0A, 6.0A, as shown in FIG. 5, for example.

ST201のパルス充電に伴い、電圧計測部101が鉛電池2の電圧を計測し、電流計測部102が鉛電池2に流れる電流を計測し(ST202)、内部抵抗推定部103が、ST202において計測された電圧及び電流に基づいて、充電時の内部抵抗を推定する(ST203)。   Along with the pulse charging in ST201, the voltage measurement unit 101 measures the voltage of the lead battery 2, the current measurement unit 102 measures the current flowing through the lead battery 2 (ST202), and the internal resistance estimation unit 103 is measured in ST202. Based on the measured voltage and current, the internal resistance during charging is estimated (ST203).

充放電部3は、制御部105の指示により、鉛電池2からの放電を行い(ST204)、電圧計測部101が鉛電池2の電圧を計測し、電流計測部102が鉛電池2に流れる電流を計測する(ST205)。   The charging / discharging unit 3 discharges from the lead battery 2 in accordance with an instruction from the control unit 105 (ST204), the voltage measuring unit 101 measures the voltage of the lead battery 2, and the current measuring unit 102 flows through the lead battery 2. Is measured (ST205).

内部抵抗推定部103は、ST205において計測された電圧及び電流に基づいて、放電時の内部抵抗を推定する(ST206)。   Internal resistance estimation section 103 estimates the internal resistance during discharge based on the voltage and current measured in ST205 (ST206).

劣化状態判定部104は、充電時の初期内部抵抗及びST203において推定された充電時の内部抵抗から充電時の劣化度と、放電時の初期内部抵抗及びST206において推定された放電時の内部抵抗から放電時の劣化度とを求め、充電時の劣化度が第1の閾値α(例えば、1.5)を超え、かつ、放電時の劣化度が第2の閾値β(例えば、1.5)を超えるか否かを判定する(ST207)。   Degradation state determination unit 104 uses initial internal resistance during charging and internal resistance during charging estimated in ST203, initial degradation during charging, initial internal resistance during discharging, and internal resistance during discharging estimated in ST206. The degree of deterioration at the time of discharging is obtained, the degree of deterioration at the time of charging exceeds a first threshold value α (for example, 1.5), and the degree of deterioration at the time of discharging is a second threshold value β (for example, 1.5). It is determined whether or not (ST207).

充電時の劣化度が第1の閾値αを超え、かつ、放電時の劣化度が第2の閾値βを超える場合には(ST207:YES)、劣化状態判定部104は、鉛電池2が劣化していると判定し、制御部105は、ディスプレイ等に電池交換要求を示し、ユーザに通知する(ST208)。なお、ST208で判定された鉛電池2の劣化は、例えば、液枯れや格子腐食等の経年劣化を意味する。   When the deterioration degree during charging exceeds the first threshold value α and the deterioration degree during discharging exceeds the second threshold value β (ST207: YES), the deterioration state determination unit 104 determines that the lead battery 2 has deteriorated. Control unit 105 indicates a battery replacement request on a display or the like, and notifies the user (ST208). Note that the deterioration of the lead battery 2 determined in ST208 means, for example, aged deterioration such as liquid erosion or lattice corrosion.

充電時の劣化度が第1の閾値αを超え、かつ、放電時の劣化度が第2の閾値βを超えるという条件を満たさない場合(ST207:NO)、劣化状態判定部104は、充電時の劣化度が第1の閾値αを超え、かつ、放電時の劣化度が第2の閾値β未満であるか否かを判定する(ST209)。   When the deterioration degree at the time of charging exceeds the first threshold value α and the condition that the deterioration degree at the time of discharging exceeds the second threshold value β is not satisfied (ST207: NO), the deterioration state determination unit 104 It is determined whether or not the deterioration degree of the battery exceeds the first threshold value α and the deterioration degree during discharge is less than the second threshold value β (ST209).

充電時の劣化度が第1の閾値αを超え、かつ、放電時の劣化度が第2の閾値β未満である場合には(ST209:YES)、劣化状態判定部104は、過充電の連続発生により鉛電池2の負極に硫酸鉛の固定が生じていると判定し、制御部105は、充放電部3に過充電を減少させたり、放電を促進したりするように指示する(ST210)。これにより、鉛電池2の負極に固定した硫酸鉛を解消することができる。   When the deterioration level at the time of charging exceeds the first threshold value α and the deterioration level at the time of discharging is less than the second threshold value β (ST209: YES), the deterioration state determination unit 104 continues overcharging. It is determined that lead sulfate is fixed to the negative electrode of the lead battery 2 due to the occurrence, and the control unit 105 instructs the charging / discharging unit 3 to reduce overcharge or promote discharge (ST210). . Thereby, the lead sulfate fixed to the negative electrode of the lead battery 2 can be eliminated.

充電時の劣化度が第1の閾値αを超え、かつ、放電時の劣化度が第2の閾値β未満であるという条件を満たさない場合(ST209:NO)、制御部105は通常の充電制御を行う(ST211)。なお、通常の充電制御とは、図6に示すように、例えば、12A、6A、3A、1.5A等、段階的に電流値を下げて充電することである。   When the deterioration degree at the time of charging exceeds the first threshold value α and the condition that the deterioration degree at the time of discharging is less than the second threshold value β is not satisfied (ST209: NO), the control unit 105 performs normal charging control. Is performed (ST211). In addition, normal charging control is charging by decreasing a current value stepwise, for example, 12A, 6A, 3A, 1.5A, etc., as shown in FIG.

このように、本実施の形態によれば、充電時の内部抵抗及び初期内部抵抗から充電時の劣化度と、放電時の内部抵抗及び初期内部抵抗から放電時の劣化度とを求め、求めた充電時の劣化度と放電時の劣化度とに基づいて、鉛電池の劣化状態を判定することにより、過充電が連続して発生した際に、負極に硫酸鉛が固定することによる内部抵抗の上昇を判定することができるので、鉛電池の劣化状態の判定精度を向上させることができる。   As described above, according to the present embodiment, the degree of deterioration during charging is determined from the internal resistance during charging and the initial internal resistance, and the degree of deterioration during discharging is determined from the internal resistance during discharging and the initial internal resistance. By determining the deterioration state of the lead battery based on the deterioration degree at the time of charging and the deterioration degree at the time of discharging, the internal resistance of the lead sulfate is fixed to the negative electrode when overcharge occurs continuously. Since the increase can be determined, the determination accuracy of the deterioration state of the lead battery can be improved.

なお、本実施の形態では、放電時の内部抵抗が、硫酸鉛が固定した場合と硫酸鉛が固定していない正常な場合とで、大きな変化がないことに着目し、過充電の連続発生により鉛電池2の負極に硫酸鉛の固定が生じていることを例に説明したが、本発明はこれに限定されるものではなく、過充電の連続発生により負極の活物質に劣化が生じている場合(本実施の形態の硫酸鉛の固定や、負極の粗大化等)であれば同様の結果となる。すなわち、本発明によれば、充電時の劣化度と放電時の劣化度とから、負極の活物質に劣化が生じているか否かを判定することができるので、鉛電池の劣化状態の判定精度を向上させることができる。   In the present embodiment, focusing on the fact that the internal resistance at the time of discharge does not change greatly between the case where lead sulfate is fixed and the case where lead sulfate is not fixed normally, Although the example in which lead sulfate is fixed to the negative electrode of the lead battery 2 has been described, the present invention is not limited to this, and the active material of the negative electrode is deteriorated due to continuous overcharge. In the case (fixation of lead sulfate in this embodiment, coarsening of the negative electrode, etc.), the same result is obtained. That is, according to the present invention, it is possible to determine whether or not the negative electrode active material is deteriorated from the deterioration degree during charging and the deterioration degree during discharging. Can be improved.

本発明にかかる電池制御システム及び電池制御方法は、鉛電池の劣化状態の判定精度を向上させるのに有用である。   The battery control system and the battery control method according to the present invention are useful for improving the determination accuracy of the deterioration state of the lead battery.

1 電池制御システム
2 鉛電池
3 充放電部
4 電流センサ
101 電圧計測部
102 電流計測部
103 内部抵抗推定部
104 劣化状態判定部
105 制御部
DESCRIPTION OF SYMBOLS 1 Battery control system 2 Lead battery 3 Charging / discharging part 4 Current sensor 101 Voltage measurement part 102 Current measurement part 103 Internal resistance estimation part 104 Degradation state determination part 105 Control part

Claims (6)

鉛電池の充電時の内部抵抗と、前記鉛電池の放電時の内部抵抗とを推定する内部抵抗推定手段と、
充電時の内部抵抗の初期値と、推定された前記充電時の内部抵抗とから充電時における前記鉛電池の第1劣化度を求め、放電時の内部抵抗の初期値と、推定された前記放電時の内部抵抗とから放電時における前記鉛電池の第2劣化度を求め、前記第1劣化度と前記第2劣化度とに基づいて、前記鉛電池の劣化状態を判定する劣化状態判定手段と、
を具備する電池制御システム。
An internal resistance estimating means for estimating an internal resistance during charging of the lead battery and an internal resistance during discharging of the lead battery;
The first deterioration degree of the lead battery at the time of charging is obtained from the initial value of the internal resistance at the time of charging and the estimated internal resistance at the time of charging, and the initial value of the internal resistance at the time of discharging and the estimated discharging A deterioration state determining means for obtaining a second deterioration degree of the lead battery at the time of discharging from an internal resistance at the time, and determining a deterioration state of the lead battery based on the first deterioration degree and the second deterioration degree; ,
A battery control system comprising:
前記劣化状態判定手段は、前記第1劣化度が第1の閾値を超え、前記第2劣化度が第2の閾値未満であるとき、前記鉛電池の劣化状態が、活物質の劣化であると判定する、
請求項1に記載の電池制御システム。
The deterioration state determination means has a state in which the deterioration state of the lead battery is deterioration of an active material when the first deterioration degree exceeds a first threshold value and the second deterioration degree is less than a second threshold value. judge,
The battery control system according to claim 1.
前記鉛電池への充電及び前記鉛電池からの放電を行う充放電手段と、
前記充放電手段を制御する制御手段と、
を具備し、
前記制御手段は、前記鉛電池の劣化状態が活物質の劣化を示す場合、前記充放電手段に過充電の減少または放電の促進を行わせる、
請求項2に記載の電池制御システム。
Charging / discharging means for charging the lead battery and discharging from the lead battery;
Control means for controlling the charge / discharge means;
Comprising
When the deterioration state of the lead battery indicates the deterioration of the active material, the control means causes the charge / discharge means to reduce overcharge or promote discharge.
The battery control system according to claim 2.
前記劣化状態判定手段は、前記第1劣化度が第1の閾値を超え、前記第2劣化度が第2の閾値を超えているとき、前記鉛電池の劣化状態が、前記鉛電池の劣化であると判定し、 前記制御手段は、前記鉛電池の劣化状態が前記鉛電池の劣化を示す場合、前記鉛電池の交換要求を行う、
請求項3に記載の電池制御システム。
The deterioration state determining means determines that the deterioration state of the lead battery is the deterioration of the lead battery when the first deterioration degree exceeds a first threshold value and the second deterioration degree exceeds a second threshold value. Determining that there is, the control means makes a replacement request for the lead battery when the deterioration state of the lead battery indicates the deterioration of the lead battery,
The battery control system according to claim 3.
鉛電池の充電時の内部抵抗と、前記鉛電池の放電時の内部抵抗とを推定するステップと、
充電時の内部抵抗の初期値と、推定された前記充電時の内部抵抗とから充電時における前記鉛電池の第1劣化度を求めるステップと、
放電時の内部抵抗の初期値と、推定された前記放電時の内部抵抗とから放電時における前記鉛電池の第2劣化度を求めるステップと、
前記第1劣化度と前記第2劣化度とに基づいて、前記鉛電池の劣化状態を判定するステップと、
を具備する電池制御方法。
Estimating the internal resistance during charging of the lead battery and the internal resistance during discharging of the lead battery;
Obtaining a first deterioration level of the lead battery during charging from the initial value of the internal resistance during charging and the estimated internal resistance during charging; and
Obtaining a second deterioration degree of the lead battery at the time of discharge from the initial value of the internal resistance at the time of discharge and the estimated internal resistance at the time of discharge;
Determining a deterioration state of the lead battery based on the first deterioration degree and the second deterioration degree;
A battery control method comprising:
鉛電池の充電時の内部抵抗と、前記鉛電池の放電時の内部抵抗とを推定する内部抵抗推定手段と、
充電時の内部抵抗の初期値と、推定された前記充電時の内部抵抗とから充電時における前記鉛電池の第1劣化度を求め、放電時の内部抵抗の初期値と、推定された前記放電時の内部抵抗とから放電時における前記鉛電池の第2劣化度を求め、前記第1劣化度と前記第2劣化度とに基づいて、前記鉛電池の劣化状態を判定する劣化状態判定手段と、
を具備する車両。

An internal resistance estimating means for estimating an internal resistance during charging of the lead battery and an internal resistance during discharging of the lead battery;
The first deterioration degree of the lead battery at the time of charging is obtained from the initial value of the internal resistance at the time of charging and the estimated internal resistance at the time of charging, and the initial value of the internal resistance at the time of discharging and the estimated discharging A deterioration state determining means for obtaining a second deterioration degree of the lead battery at the time of discharging from an internal resistance at the time, and determining a deterioration state of the lead battery based on the first deterioration degree and the second deterioration degree; ,
A vehicle comprising:

JP2013252235A 2013-12-05 2013-12-05 Battery control system and battery control method Pending JP2015109237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252235A JP2015109237A (en) 2013-12-05 2013-12-05 Battery control system and battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252235A JP2015109237A (en) 2013-12-05 2013-12-05 Battery control system and battery control method

Publications (1)

Publication Number Publication Date
JP2015109237A true JP2015109237A (en) 2015-06-11

Family

ID=53439448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252235A Pending JP2015109237A (en) 2013-12-05 2013-12-05 Battery control system and battery control method

Country Status (1)

Country Link
JP (1) JP2015109237A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047192A1 (en) * 2015-09-18 2017-03-23 住友電気工業株式会社 Internal resistance calculation device, computer program, and internal resistance calculation method
JP2017161490A (en) * 2015-09-18 2017-09-14 住友電気工業株式会社 Internal resistance calculator, computer program, and internal resistance calculation method
JP2017203659A (en) * 2016-05-10 2017-11-16 住友電気工業株式会社 Degradation determination device, computer program and degradation determination method
EP3640084A1 (en) * 2018-10-19 2020-04-22 Toyota Jidosha Kabushiki Kaisha Display device and vehicle comprising the same
WO2020149288A1 (en) * 2019-01-15 2020-07-23 ゴイク電池株式会社 Soh/soc detecting device for power storage element, and power storage element managing unit
JP2021015015A (en) * 2019-07-10 2021-02-12 ゴイク電池株式会社 Power storage element management unit
WO2021112223A1 (en) * 2019-12-06 2021-06-10 株式会社Gsユアサ Degradation estimation device, degradation estimation system, degradation estimation method, and computer program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047192A1 (en) * 2015-09-18 2017-03-23 住友電気工業株式会社 Internal resistance calculation device, computer program, and internal resistance calculation method
JP2017161490A (en) * 2015-09-18 2017-09-14 住友電気工業株式会社 Internal resistance calculator, computer program, and internal resistance calculation method
CN108027396A (en) * 2015-09-18 2018-05-11 住友电气工业株式会社 Internal resistance computing device, computer program and internal resistance computational methods
US10656213B2 (en) 2015-09-18 2020-05-19 Sumitomo Electric Industries, Ltd. Internal resistance calculation device, recording medium, and internal resistance calculation method
JP2017203659A (en) * 2016-05-10 2017-11-16 住友電気工業株式会社 Degradation determination device, computer program and degradation determination method
EP3640084A1 (en) * 2018-10-19 2020-04-22 Toyota Jidosha Kabushiki Kaisha Display device and vehicle comprising the same
US11281417B2 (en) * 2018-10-19 2022-03-22 Toyota Jidosha Kabushiki Kaisha Display device and vehicle comprising the same
US11301195B2 (en) 2018-10-19 2022-04-12 Toyota Jidosha Kabushiki Kaisha Display device and vehicle comprising the same
WO2020149288A1 (en) * 2019-01-15 2020-07-23 ゴイク電池株式会社 Soh/soc detecting device for power storage element, and power storage element managing unit
JP2021015015A (en) * 2019-07-10 2021-02-12 ゴイク電池株式会社 Power storage element management unit
WO2021112223A1 (en) * 2019-12-06 2021-06-10 株式会社Gsユアサ Degradation estimation device, degradation estimation system, degradation estimation method, and computer program
JP2021092404A (en) * 2019-12-06 2021-06-17 株式会社Gsユアサ Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program

Similar Documents

Publication Publication Date Title
JP2015109237A (en) Battery control system and battery control method
JP5492291B2 (en) Secondary battery deterioration diagnosis method and deterioration diagnosis device
JP5979235B2 (en) Charge control device and charge time calculation method
JP6500789B2 (en) Control system of secondary battery
US10193198B2 (en) Cell management device and power supply device
JP5866063B2 (en) Fault detection device for voltage sensor
JP2006197727A (en) Method of controlling limited current of battery
US9500715B2 (en) Secondary battery tester
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
WO2015083372A1 (en) State-of-charge estimating device, state-of-charge determining method, and state-of-charge determining program
JP5738784B2 (en) Power storage system
JP2016014588A (en) Battery management device
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
JP2010273413A (en) Device for controlling battery pack
JP2007017357A (en) Method and device for detecting remaining capacity of battery
WO2015178075A1 (en) Battery control device
JP2010086901A (en) Deterioration diagnosing device and degradation diagnosing method of lithium secondary battery
JP5959566B2 (en) Storage battery control device
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP2011058961A (en) Battery control apparatus and method of estimating internal resistance of battery
KR20220094464A (en) Battery diagnosis system, battery diagnosis method, battery pack, and electric vehicle
JP6365820B2 (en) Secondary battery abnormality determination device
JP6647986B2 (en) Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device
US20220271550A1 (en) Management apparatus for energy storage device, energy storage apparatus, and input/output control method for energy storage device
JP2016014567A (en) Remaining battery capacity calculation system and remaining battery capacity calculation method