JP2015075148A - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2015075148A
JP2015075148A JP2013210667A JP2013210667A JP2015075148A JP 2015075148 A JP2015075148 A JP 2015075148A JP 2013210667 A JP2013210667 A JP 2013210667A JP 2013210667 A JP2013210667 A JP 2013210667A JP 2015075148 A JP2015075148 A JP 2015075148A
Authority
JP
Japan
Prior art keywords
continuously variable
speed
variable transmission
toroidal
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013210667A
Other languages
Japanese (ja)
Inventor
西村 健
Takeshi Nishimura
健 西村
西井 大樹
Daiki Nishii
大樹 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013210667A priority Critical patent/JP2015075148A/en
Publication of JP2015075148A publication Critical patent/JP2015075148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a toroidal type continuously variable transmission that since the value of normal force Fc of each traction part to be ensured by pressing force of a pressing device is different with a transmission ratio, suppresses enlargement and power loss, ensures high transmission efficiency, and can make the adjustment speed of the transmission ratio fast within a high user frequency range.SOLUTION: A controller makes the adjustment speed of a transmission ratio in a state where the transmission ratio among respective disks is close to 1 slower than the adjustment speed of the transmission ratio in a state where the difference between the transmission ratio and 1 is made large.

Description

この発明は、例えば自動車用の自動変速機として利用されるトロイダル型無段変速機の改良に関する。具体的には、大型化及び動力損失を抑えつつ、トラクション部での過大なすべりの発生を防止できるトロイダル型無段変速機を実現するものである。   The present invention relates to an improvement of a toroidal type continuously variable transmission used as an automatic transmission for an automobile, for example. Specifically, a toroidal continuously variable transmission capable of preventing the occurrence of excessive slip at the traction portion while suppressing an increase in size and power loss is realized.

自動車用自動変速装置として使用可能なトロイダル型無段変速機が、例えば特許文献1〜3に記載される等により従来から広く知られている。又、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせて無段変速装置を構成する事も、特許文献4〜6に記載される等により、従来から広く知られている。特に、このうちの特許文献5〜6には、トロイダル型無段変速機の変速比(以下、単に「変速比」とする。本明細書及び特許請求の範囲で同じ。)を調節する事により、無段変速装置全体としての変速比(以下、「速度比」とする。本明細書及び特許請求の範囲で同じ。)を、停止状態(速度比無限大の状態)を挟んで、前進状態と後退状態とに切り換えられる無段変速装置が記載されている。又、特許文献7には、この様な無段変速装置の速度比等を制御する為の油圧制御回路に関する発明が記載されている。又、特許文献8、10には、この速度比を調節する為の変速比制御弁を開閉制御する為の構造が記載されている。更に、特許文献9、10には、前記速度比無限大の状態を実現する状態を学習記憶して、この状態を確実に実現できる様にする為の発明が記載されている。   2. Description of the Related Art Toroidal continuously variable transmissions that can be used as an automatic transmission for automobiles have been widely known, for example, as described in Patent Documents 1 to 3. Further, it has been widely known that a continuously variable transmission device is configured by combining a toroidal type continuously variable transmission and a planetary gear type transmission, as described in Patent Documents 4 to 6. In particular, in Patent Documents 5 to 6, among these, by adjusting the speed ratio of the toroidal-type continuously variable transmission (hereinafter simply referred to as “speed ratio”; the same applies in the present specification and claims). The speed ratio of the continuously variable transmission as a whole (hereinafter referred to as “speed ratio”, the same applies in the present specification and claims), with the stop state (the state where the speed ratio is infinite) across the forward state And a continuously variable transmission that can be switched between a reverse state and a reverse state. Patent Document 7 describes an invention relating to a hydraulic control circuit for controlling the speed ratio of such a continuously variable transmission. Patent Documents 8 and 10 describe a structure for controlling opening / closing of a speed ratio control valve for adjusting the speed ratio. Further, Patent Documents 9 and 10 describe an invention for learning and storing a state that realizes the state where the speed ratio is infinite, so that this state can be reliably realized.

本発明は、上述の様な、速度比無限大の状態を実現できる無段変速装置に組み込まれるものを含めて、トロイダル型無段変速機の改良に関するものであるから、先ず、この様な無段変速装置の構造及び作用に就いて、前記特許文献10の記載を基にして、図4〜5により説明する。この無段変速装置は、ハーフトロイダル型無段変速機1と、遊星歯車式変速機2とを組み合わせて成り、入力部材である入力軸3と、出力部材である出力軸4とを有する。これら入力軸3と出力軸4との間には、前記ハーフトロイダル型無段変速機1の入力回転軸5と伝達軸6とを、これら両軸3、4と同心に設けている。そして、前記遊星歯車式変速機2のうちの前段ユニット7と中段ユニット8とを前記入力回転軸5と前記伝達軸6との間に掛け渡す状態で、後段ユニット9をこの伝達軸6と前記出力軸4との間に掛け渡す状態で、それぞれ設けている。   The present invention relates to improvements in toroidal type continuously variable transmissions, including those incorporated in continuously variable transmissions capable of realizing a state with an infinite speed ratio as described above. The structure and operation of the step transmission will be described with reference to FIGS. This continuously variable transmission is formed by combining a half-toroidal continuously variable transmission 1 and a planetary gear type transmission 2 and has an input shaft 3 as an input member and an output shaft 4 as an output member. Between the input shaft 3 and the output shaft 4, an input rotation shaft 5 and a transmission shaft 6 of the half toroidal continuously variable transmission 1 are provided concentrically with the shafts 3 and 4. In the state where the front stage unit 7 and the middle stage unit 8 of the planetary gear type transmission 2 are spanned between the input rotary shaft 5 and the transmission shaft 6, the rear stage unit 9 is connected to the transmission shaft 6 and the transmission shaft 6. Each is provided in a state of being spanned between the output shaft 4.

又、前記ハーフトロイダル型無段変速機1は、1対の入力ディスク10a、10bと、一体型の出力ディスク11と、複数のパワーローラ12a、12bとを備える。このうちの両入力ディスク10a、10bは、前記入力回転軸5を介して互いに同心に、且つ、同期した回転を自在として結合されている。又、前記出力ディスク11は、前記両入力ディスク10a、10b同士の間に、これら両入力ディスク10a、10bと同心に、且つ、これら両入力ディスク10a、10bに対する相対回転を可能として支持されている。更に、前記各パワーローラ12a、12bは、前記出力ディスク11の軸方向両側面と前記両入力ディスク10a、10bの軸方向片側面との間に、それぞれ複数個ずつ(図示の例の場合は2個ずつ、合計4個)挟持されている。そして、前記両入力ディスク10a、10bの回転に伴って回転しつつ、これら両入力ディスク10a、10bと前記出力ディスク11との間で動力を伝達する。   The half-toroidal continuously variable transmission 1 includes a pair of input disks 10a and 10b, an integrated output disk 11, and a plurality of power rollers 12a and 12b. Of these, both input disks 10a and 10b are concentrically connected to each other via the input rotating shaft 5 and are coupled so as to freely rotate in synchronization. The output disk 11 is supported between the input disks 10a and 10b so as to be concentric with the input disks 10a and 10b and to be rotatable relative to the input disks 10a and 10b. . Further, a plurality of each of the power rollers 12a and 12b is provided between the both axial side surfaces of the output disk 11 and one axial side surface of the both input disks 10a and 10b (2 in the illustrated example). 4 pieces each, a total of 4 pieces). Power is transmitted between the input disks 10a and 10b and the output disk 11 while rotating with the rotation of the input disks 10a and 10b.

又、前記出力ディスク11はその軸方向両端部を、ケーシング13内に、それぞれ1対ずつの支柱14、14と、スラストアンギュラ玉軸受である転がり軸受15、15とにより、回転自在に支持している。又、前記両支柱14、14の両端部近傍に、それぞれ支持板16、16を支持している。そして、これら両支持板16、16同士の間に複数のトラニオン17a、17bを、それぞれの両端部に互いに同心に設けた枢軸18、18を中心とする揺動及び軸方向(図4〜5の上下方向)の変位を可能に支持している。又、前記各トラニオン17a、17bの内側面(互いに対向する面)に前記各パワーローラ12a、12bを、それぞれ支持軸19、19並びに複数組の転がり軸受を介して、回転並びに前記入力回転軸5の軸方向に関する若干の変位を自在に支持している。そして、前記各パワーローラ12a、12bの周面と、前記両入力ディスク10a、10bの軸方向片側面及び前記出力ディスク11の軸方向両側面とを転がり接触させている。これら各面同士の転がり接触部がそれぞれ、トラクションオイルを介して動力を伝達する、各トラクション部となる。   The output disk 11 is rotatably supported at both ends in the axial direction by a pair of support columns 14 and 14 and rolling bearings 15 and 15 which are thrust angular ball bearings. Yes. Further, support plates 16 and 16 are supported in the vicinity of both end portions of the support columns 14 and 14, respectively. Then, a plurality of trunnions 17a and 17b are provided between the support plates 16 and 16 respectively, and swinging and axial directions about pivots 18 and 18 provided concentrically with each other at both ends (see FIGS. 4 to 5). Supports displacement in the vertical direction). Further, the power rollers 12a and 12b are respectively rotated on the inner side surfaces (surfaces facing each other) of the trunnions 17a and 17b via support shafts 19 and 19 and a plurality of sets of rolling bearings, and the input rotary shaft 5 A slight displacement in the axial direction is supported freely. The peripheral surfaces of the power rollers 12a and 12b are brought into rolling contact with the axial side surfaces of the input disks 10a and 10b and the axial side surfaces of the output disk 11. These rolling contact portions between the surfaces serve as traction portions that transmit power via traction oil.

又、前記入力回転軸5の基端部(図4の左端部)を図示しないエンジンのクランクシャフトに、前記入力軸3を介して結合し、このクランクシャフトにより前記入力回転軸5を回転駆動する様にしている。又、この入力回転軸5の基端部と、前記エンジンに近い側(図4の左側)の入力ディスク10aとの間に、油圧式の押圧装置20を設け、前記各トラクション部に、適正な面圧を付与できる様にしている。又、前記出力ディスク11に、中空回転軸21の基端部(図4の左端部)をスプライン係合させている。そして、この中空回転軸21を、前記エンジンから遠い側(図4の右側)の入力ディスク10bの内側に挿通して、前記出力ディスク11の回転力を取り出し可能としている。更に、前記中空回転軸21の先端部(図4の右端部)で前記入力ディスク10bの外側面から突出した部分に、前記遊星歯車式変速機2の前段ユニット7を構成する為の、太陽歯車22を固設している。   Further, the base end portion (left end portion in FIG. 4) of the input rotary shaft 5 is coupled to an engine crankshaft (not shown) via the input shaft 3, and the input rotary shaft 5 is rotationally driven by the crankshaft. Like. Also, a hydraulic pressing device 20 is provided between the base end portion of the input rotating shaft 5 and the input disk 10a on the side close to the engine (left side in FIG. 4), and each traction portion is provided with an appropriate The surface pressure can be applied. Further, the output disk 11 is spline-engaged with the base end portion (the left end portion in FIG. 4) of the hollow rotary shaft 21. The hollow rotary shaft 21 is inserted into the input disk 10b on the side far from the engine (right side in FIG. 4) so that the rotational force of the output disk 11 can be taken out. Further, a sun gear for constituting the front stage unit 7 of the planetary gear type transmission 2 at a portion protruding from the outer surface of the input disk 10b at the tip end portion (right end portion in FIG. 4) of the hollow rotary shaft 21. 22 is fixed.

一方、前記入力回転軸5の先端部(図4の右端部)で前記中空回転軸21から突出した部分と前記入力ディスク10bとの間に、キャリア23を掛け渡す様に設けて、この入力ディスク10bと前記入力回転軸5とが、互いに同期して回転する様にしている。そして、前記キャリア23の軸方向両側面の円周方向等間隔位置(一般的には3〜4個所位置)に、それぞれがダブルピニオン型であって前記遊星歯車式変速機2の前段ユニット7及び前記中段ユニット8を構成する遊星歯車24〜26を、回転自在に支持している。更に、前記キャリア23の片半部(図4の右半部)周囲にリング歯車27を、回転自在に支持している。又、前記伝達軸6の基端部(図4の左端部)に固設した第二太陽歯車28を、前記リング歯車27の内径側に配置している。   On the other hand, a carrier 23 is provided between the input disk 10b and a portion protruding from the hollow rotation shaft 21 at the tip end portion (right end portion in FIG. 4) of the input rotation shaft 5, and this input disk. 10b and the input rotation shaft 5 rotate in synchronization with each other. And at the circumferentially equidistant positions (generally 3 to 4 positions) on both sides in the axial direction of the carrier 23, each is a double pinion type, and the front stage unit 7 of the planetary gear type transmission 2 and The planetary gears 24 to 26 constituting the middle unit 8 are rotatably supported. Further, a ring gear 27 is rotatably supported around one half of the carrier 23 (the right half of FIG. 4). A second sun gear 28 fixed to the base end portion (left end portion in FIG. 4) of the transmission shaft 6 is disposed on the inner diameter side of the ring gear 27.

又、前記後段ユニット9を構成する為の第二キャリア29を、前記出力軸4の基端部(図4の左端部)に結合固定している。そして、この第二キャリア29と前記リング歯車27とを、低速用クラッチ30を介して結合している。又、前記伝達軸6の先端寄り(図4の右端寄り)部分に第三太陽歯車31を固設している。又、この第三太陽歯車31の周囲に、第二リング歯車32を配置し、この第二リング歯車32と前記ケーシング13等の固定の部分との間に、高速用クラッチ33を設けている。更に、前記第二リング歯車32と前記第三太陽歯車31との間に配置した複数組の遊星歯車34、35を、前記第二キャリア29に回転自在に支持している。   A second carrier 29 for constituting the rear stage unit 9 is coupled and fixed to the base end portion (left end portion in FIG. 4) of the output shaft 4. The second carrier 29 and the ring gear 27 are coupled via a low speed clutch 30. Further, a third sun gear 31 is fixedly provided near the tip of the transmission shaft 6 (near the right end in FIG. 4). A second ring gear 32 is disposed around the third sun gear 31, and a high-speed clutch 33 is provided between the second ring gear 32 and a fixed portion such as the casing 13. Further, a plurality of sets of planetary gears 34 and 35 disposed between the second ring gear 32 and the third sun gear 31 are rotatably supported by the second carrier 29.

上述の様に構成する無段変速装置の場合、入力回転軸5から1対の入力ディスク10a、10b、各パワーローラ12a、12bを介して一体型の出力ディスク11に伝わった動力は、前記中空回転軸21を通じて取り出される。そして、前記低速用クラッチ30を接続し、前記高速用クラッチ33の接続を断った、所謂低速モードの状態では、前記トロイダル型無段変速機1の変速比を調節する事により、前記入力回転軸5の回転速度を一定にしたまま、前記出力軸4の回転速度を、所謂ギヤードニュートラル(G/N)と呼ばれる停止状態(速度比無限大の状態)を挟んで正転、逆転に変換自在となる。一方、前記高速用クラッチ33を接続し、前記低速用クラッチ30の接続を断った、所謂高速モードの状態では、前記ハーフトロイダル型無段変速機1の変速比を増速側に変化させる程、無段変速装置全体としての速度比も増速側に変化する。この状態で図4〜5に示した無段変速装置は、前記入力軸3から前記出力軸4に伝達する動力の一部を、前記入力側回転軸5を介して前記ハーフトロイダル型無段変速機1をバイパスさせる、所謂パワースプリット状態となる。このパワースプリット状態では、前記ハーフトロイダル型無段変速機1を通過するトルクを低減できる為、このハーフトロイダル型無段変速機1の耐久性向上と、無段変速装置全体としての伝達効率の向上とを図れる。前記低速、高速両モードでの、前記ハーフトロイダル型無段変速機1の変速比と前記無段変速装置の速度比との関係、各モード状態でこのハーフトロイダル型無段変速機1を通過するトルクの方向及び大きさ等に就いては、特許文献5、7、9等に記載されて従来から広く知られている為、図示並びに詳しい説明は省略する。   In the case of the continuously variable transmission configured as described above, the power transmitted from the input rotating shaft 5 to the integrated output disk 11 via the pair of input disks 10a and 10b and the power rollers 12a and 12b is the above described hollow. It is taken out through the rotating shaft 21. In the so-called low speed mode in which the low speed clutch 30 is connected and the high speed clutch 33 is disconnected, the input rotary shaft is adjusted by adjusting the gear ratio of the toroidal continuously variable transmission 1. The rotation speed of the output shaft 4 can be converted into forward rotation and reverse rotation with a stop state (a state where the speed ratio is infinite) called a so-called geared neutral (G / N) with the rotation speed of 5 kept constant. Become. On the other hand, in the so-called high speed mode in which the high speed clutch 33 is connected and the low speed clutch 30 is disconnected, the speed ratio of the half-toroidal continuously variable transmission 1 is changed to the higher speed side. The speed ratio of the continuously variable transmission as a whole also changes to the speed increasing side. In this state, the continuously variable transmission shown in FIGS. 4 to 5 transmits a part of the power transmitted from the input shaft 3 to the output shaft 4 through the input rotary shaft 5 through the half toroidal continuously variable transmission. It becomes a so-called power split state in which the machine 1 is bypassed. In this power split state, the torque passing through the half-toroidal continuously variable transmission 1 can be reduced, so that the durability of the half-toroidal continuously variable transmission 1 and the transmission efficiency of the continuously variable transmission as a whole are improved. I can plan. The relationship between the speed ratio of the half-toroidal continuously variable transmission 1 and the speed ratio of the continuously variable transmission in both the low-speed and high-speed modes, and passes through the half-toroidal continuously variable transmission 1 in each mode state. Since the direction and magnitude of the torque are described in Patent Documents 5, 7, 9 and the like and have been widely known in the past, illustration and detailed description thereof will be omitted.

上述の様な無段変速装置に組み込まれたハーフトロイダル型無段変速機1の変速比の調節は、前記各トラニオン17a、17bを、油圧式のアクチュエータ36、36により、前記各枢軸18、18の軸方向に変位させる事により行う。前記各トラニオン17a、17bをこれら各枢軸18、18の軸方向に変位させると、これら各トラニオン17a、17bに支持された前記各パワーローラ12a、12bの周面と、前記各ディスク10a、10b、11の軸方向側面との転がり接触部(トラクション部)に作用する接線方向の力の向きが、前記各枢軸18、18の軸方向に対し変化する。具体的には、前記各トラクション部が中立位置(各トラクション部の中心が、前記各ディスク10a、10b、11の中心軸を含み、前記各枢軸18、18の中心軸同士を結ぶ仮想直線に対し直交する仮想平面上に存在する状態)からずれると、ずれの方向に応じて、前記各トラニオン17a、17bに、前記各枢軸18、18を中心として、減速側又は増速側に揺動させる方向の力が加わる。そして、前記各トラクション部の位置が、前記各ディスク10a、10b、11の径方向に関して変化し、前記変速比が変化する。この変速比が所望の値になった状態で、前記各トラクション部を前記中立位置に戻せば、前記ハーフトロイダル型無段変速機1の変速比を、前記所望の値に保持できる。尚、前記各アクチュエータ36、36は、このハーフトロイダル型無段変速機1が動力を伝達している間中、この動力伝達に基づいて前記各トラニオン17a、17bに加わる、前記各枢軸18、18の軸方向のスラスト荷重(トロイダル型無段変速機の技術分野で「2Ft」と呼ばれるトラクション力)を支承する。又、前記ハーフトロイダル型無段変速機1の変速比を変化させる速さである調節速度は、前記各トラクション部の前記中立位置からのずれ量が多くなる程速くなる。   Adjustment of the gear ratio of the half-toroidal continuously variable transmission 1 incorporated in the continuously variable transmission as described above is performed by using the trunnions 17a and 17b and the pivot shafts 18 and 18 by hydraulic actuators 36 and 36, respectively. This is done by displacing in the axial direction. When the trunnions 17a and 17b are displaced in the axial direction of the pivots 18 and 18, the circumferential surfaces of the power rollers 12a and 12b supported by the trunnions 17a and 17b and the disks 10a, 10b, The direction of the tangential force acting on the rolling contact portion (traction portion) with the 11 axial side surface changes with respect to the axial direction of each of the pivot shafts 18 and 18. Specifically, each traction part is in a neutral position (the center of each traction part includes the central axis of each disk 10a, 10b, 11 and the virtual straight line connecting the central axes of the pivots 18, 18). In a direction in which the trunnions 17a and 17b are swung to the deceleration side or the acceleration side about the pivots 18 and 18, depending on the direction of the deviation. The power of. And the position of each said traction part changes regarding the radial direction of each said disk 10a, 10b, 11, and the said gear ratio changes. If the respective traction portions are returned to the neutral position in a state where the gear ratio has reached a desired value, the gear ratio of the half-toroidal continuously variable transmission 1 can be maintained at the desired value. The actuators 36, 36 are applied to the trunnions 17 a, 17 b based on the power transmission while the half-toroidal continuously variable transmission 1 is transmitting power. The axial thrust load (the traction force called “2Ft” in the technical field of toroidal type continuously variable transmissions) is supported. The adjustment speed, which is the speed at which the gear ratio of the half-toroidal continuously variable transmission 1 is changed, becomes faster as the amount of deviation from the neutral position of each traction portion increases.

上述の様に、前記ハーフトロイダル型無段変速機1の変速比を所望の値に調節し、調節後の値に保持する為の機構に就いて、特許文献8、10の記載に基づいて説明する。この機構は、図6に示す様に、変速比制御弁37と、ステッピングモータ38と、プリセスカム39とにより構成している。このうちの変速比制御弁37は、スプール40とスリーブ41とを、軸方向の相対変位を可能に組み合わせたもので、これらスプール40とスリーブ41との相対変位に基づき、油圧源42と、前記アクチュエータ36の油圧室43a、43bとの給排状態を切り換える。又、前記スプール40とスリーブ41とは、前記各トラニオン17a、17bのうちの何れか1個のトラニオン17aの動きと前記ステッピングモータ38とにより、相対変位させる様にしている。図示の例では、前記何れか1個のトラニオン17aの動き、即ち、前記枢軸18の軸方向の変位及びこの枢軸18を中心とする揺動変位を、前記プリセスカム39及びリンク腕44を介して前記スプール40に伝達してこのスプール40を軸方向に変位させると共に、前記ステッピングモータ38により前記スリーブ41を軸方向に変位させる様にしている。   As described above, a mechanism for adjusting the gear ratio of the half-toroidal continuously variable transmission 1 to a desired value and maintaining the adjusted value will be described based on the descriptions in Patent Documents 8 and 10. To do. As shown in FIG. 6, this mechanism includes a transmission ratio control valve 37, a stepping motor 38, and a recess cam 39. Among these, the transmission ratio control valve 37 is a combination of the spool 40 and the sleeve 41 so as to allow relative displacement in the axial direction. Based on the relative displacement between the spool 40 and the sleeve 41, the hydraulic power source 42, The supply / discharge state of the actuator 36 with the hydraulic chambers 43a and 43b is switched. The spool 40 and the sleeve 41 are relatively displaced by the movement of any one of the trunnions 17a and 17b and the stepping motor 38. In the illustrated example, the movement of any one trunnion 17 a, that is, the axial displacement of the pivot 18 and the swing displacement about the pivot 18 are transmitted via the recess cam 39 and the link arm 44. The spool 40 is transmitted to the spool 40 and displaced in the axial direction, and the sleeve 41 is displaced in the axial direction by the stepping motor 38.

前記ハーフトロイダル型無段変速機1の変速比を調節する際には、前記ステッピングモータ38により前記スリーブ41を所定位置にまで変位させ、前記変速比制御弁37を所定方向に開く。すると、前記各トラニオン17a、17bに付属の前記各アクチュエータ36、36の油圧室43a、43bに対して圧油が所定方向に給排されて、これら各アクチュエータ36、36により前記各トラニオン17a、17bが、それぞれ前記各枢軸18、18の軸方向に変位する。この結果、これら各トラニオン17a、17bに支持された前記各パワーローラ12a、12bに関する前記各トラクション部が前記中立位置からずれて、前記変速比が変化し始める。この様にこれら各トラクション部が中立位置からずれて変速比が変化し始める瞬間には、前記各トラニオン17a、17bの軸方向変位に伴って、前記変速比制御弁37の開閉状態が、前記所定方向とは逆方向に切り換わる。従って、前記各トラニオン17a、17bは、変速の為に揺動変位を開始し始めた瞬間から、軸方向に関して中立位置に向け移動し(戻り)始める。そして、前記変速比が前記所望の値になった状態で、前記各トラクション部が前記中立位置に戻ると同時に、前記プリセスカム39と前記リンク腕44との働きにより、前記変速比制御弁37が閉じられる。この結果、前記ハーフトロイダル型無段変速機1の変速比が、前記所望の値に保持される。前記ハーフトロイダル型無段変速機1の変速比を変化させる速さである調節速度を速くすべく、前記各トラクション部の前記中立位置からのずれ量を多くするには、前記ステッピングモータ38による、前記スリーブ41の変位量を多くする。逆に、前記調節速度を遅くすべく、前記各トラクション部の前記中立位置からのずれ量を少なくするには、前記ステッピングモータ38による、前記スリーブ41の変位量を少なくする。   When adjusting the gear ratio of the half-toroidal continuously variable transmission 1, the sleeve 41 is displaced to a predetermined position by the stepping motor 38, and the gear ratio control valve 37 is opened in a predetermined direction. Then, pressure oil is supplied to and discharged from the hydraulic chambers 43a and 43b of the actuators 36 and 36 attached to the trunnions 17a and 17b in a predetermined direction, and the trunnions 17a and 17b are supplied by the actuators 36 and 36. Are displaced in the axial direction of each of the pivots 18 and 18, respectively. As a result, the traction portions related to the power rollers 12a and 12b supported by the trunnions 17a and 17b are displaced from the neutral position, and the speed ratio starts to change. In this way, at the moment when each of these traction portions deviates from the neutral position and the gear ratio begins to change, the open / close state of the gear ratio control valve 37 is changed according to the axial displacement of each of the trunnions 17a and 17b. The direction is switched to the opposite direction. Accordingly, the trunnions 17a and 17b start to move (return) toward the neutral position with respect to the axial direction from the moment when the swing displacement starts for shifting. In the state where the gear ratio has reached the desired value, each traction portion returns to the neutral position, and at the same time, the gear ratio control valve 37 is closed by the action of the recess cam 39 and the link arm 44. It is done. As a result, the gear ratio of the half toroidal continuously variable transmission 1 is maintained at the desired value. In order to increase the amount of deviation from the neutral position of each traction portion in order to increase the adjustment speed, which is the speed at which the gear ratio of the half-toroidal continuously variable transmission 1 is changed, the stepping motor 38 The amount of displacement of the sleeve 41 is increased. Conversely, in order to reduce the adjustment speed, the displacement of the sleeve 41 by the stepping motor 38 is reduced in order to reduce the amount of displacement of each traction portion from the neutral position.

トロイダル型無段変速機の変速比を調節する機構の構造及び作用は、上述の通りであるが、変速時に運転者に与える違和感の低減と、各トラクション部での有害な滑りの発生を抑える事による耐久性の確保と、前記トロイダル型無段変速機の伝達効率の確保とを並立させる面からは、改良の余地がある。この点に就いて、図7を参照しつつ、以下に説明する。   The structure and operation of the mechanism that adjusts the gear ratio of the toroidal-type continuously variable transmission is as described above, but it reduces the uncomfortable feeling given to the driver at the time of shifting, and suppresses the occurrence of harmful slipping in each traction section. There is room for improvement from the standpoint of ensuring the durability by the above and securing the transmission efficiency of the toroidal continuously variable transmission. This point will be described below with reference to FIG.

トロイダル型無段変速機を構成する各パワーローラ12a(12b)が、変速動作を伴わずにトルクを伝達している状態で、これら各パワーローラ12a(12b)には、前記トラクション力2Ft(各トラクション部毎ではFt)が、図7に矢印aで示す様に、前記各ディスク10a、10b、11の回転方向に加わる。これら各ディスク10a、10b、11同士の間で伝達すべき伝達トラクション力2Ftの大きさは、これら各ディスク10a、10b、11同士の間で伝達するトルクが大きい程大きく(前記矢印aが長く)なる。そして、これら各ディスク10a、10b、11同士の間でトルクを伝達している状態のまま、変速を行うべく、前記各パワーローラ12a(12b)を支持した各トラニオン17a、17bを、各枢軸18、18(図5参照)の軸方向に変位させると、前記各パワーローラ12a(12b)に、図7に矢印bで示す様に、前記各トラニオン17a、17bを、前記各枢軸18、18を中心として傾斜させる方向のサイドスリップ力Fsが作用する。このサイドスリップ力Fsの大きさは、調節速度が速い程大きく(前記矢印bが長く)なる。そして、前記各ディスク10a、10b、11同士の間でトルクを伝達しつつ変速を行う場合には、前記各面毎の伝達トラクション力Ftと前記サイドスリップ力Fsとの合力である合成トラクション力Fmが、図7に矢印cで示す様に、前記各ディスク10a、10b、11の回転方向に傾斜した方向に作用する。そして、図7から明らかな通り、前記合成トラクション力Fmの大きさ(矢印cの長さ)は、前記伝達トラクション力Ftの大きさ(矢印aの長さ)よりも、僅かとは言え、大きく(長く)なる。   In a state where each power roller 12a (12b) constituting the toroidal-type continuously variable transmission is transmitting torque without a speed change operation, each of the power rollers 12a (12b) receives the traction force 2Ft (each For each traction part, Ft) is applied in the rotational direction of each of the disks 10a, 10b, 11 as shown by arrow a in FIG. The magnitude of the transmission traction force 2Ft to be transmitted between the disks 10a, 10b, and 11 increases as the torque transmitted between the disks 10a, 10b, and 11 increases (the arrow a is longer). Become. The trunnions 17a and 17b that support the power rollers 12a (12b) are connected to the pivots 18 in order to perform a shift while the torque is transmitted between the disks 10a, 10b, and 11 respectively. , 18 (refer to FIG. 5), the respective trunnions 17a, 17b are moved to the respective power rollers 12a (12b) as indicated by arrows b in FIG. A side slip force Fs in the direction of tilting acts as the center. The magnitude of the side slip force Fs increases as the adjustment speed increases (the arrow b is longer). Then, when shifting is performed while transmitting torque between the disks 10a, 10b, and 11, the combined traction force Fm that is the resultant force of the transmission traction force Ft for each surface and the side slip force Fs. However, as shown by an arrow c in FIG. 7, this acts in a direction inclined in the rotational direction of each of the disks 10a, 10b, and 11. As apparent from FIG. 7, the magnitude of the combined traction force Fm (the length of the arrow c) is slightly larger than the magnitude of the transmission traction force Ft (the length of the arrow a). (become longer.

一方、トロイダル型無段変速機の運転時には、前記各トラクション部で、過大な滑りが生じる事を防止する必要がある。例えば非特許文献1に記載される等により、トロイダル型無段変速機の技術分野で周知の如く、前記各トラクション部でのトルク伝達は、厚さが1μm程度のトラクションオイルの薄膜を介して行われる。この際、前記押圧装置20の油圧室45a、45b内に油圧を導入して、前記各トラクション部に前記各パワーローラ12a(12b)及び前記各ディスク10a、10b、11の転がり接触面に直角方向の力(法線力Fc)を付与し、前記各トラクション部の面圧を高める。この結果、これら各トラクション部で、前記トラクションオイルの薄膜の片面毎にFt(両面合わせて2Ft)なる大きさの接線力(トラクション力、トルク)を伝達できる。この様にして行われる、前記各ディスク10a、10b、11同士の間でのトルク伝達時に、前記各トラクション部に存在する前記トラクションオイルの薄膜には、クリープと呼ばれる微小な滑りが発生し、この滑りに伴ってこの薄膜内に発生する剪断力により、前記各トラクション部でトルクを伝達する。これら各トラクション部で伝達可能なトルクの大きさの最大値は、前記トラクションオイルの性能を表わすトラクション係数μt(=Ft/Fc)により規制されるが、このトラクション係数μtの最大値は0.08程度である。   On the other hand, when the toroidal continuously variable transmission is operated, it is necessary to prevent excessive slippage from occurring in each of the traction portions. For example, as is well known in the technical field of toroidal-type continuously variable transmissions as described in Non-Patent Document 1, torque transmission at each of the traction portions is performed through a thin film of traction oil having a thickness of about 1 μm. Is called. At this time, hydraulic pressure is introduced into the hydraulic chambers 45 a and 45 b of the pressing device 20, and the power rollers 12 a (12 b) and the disks 10 a, 10 b, and 11 are perpendicular to the rolling contact surfaces of the traction portions. Force (normal force Fc) is applied to increase the surface pressure of each traction portion. As a result, each traction section can transmit a tangential force (traction force, torque) having a magnitude of Ft (2 Ft in total on both sides) for each side of the traction oil thin film. When torque is transmitted between the disks 10a, 10b, and 11 performed in this way, a minute slip called creep occurs in the thin film of the traction oil existing in each traction section. Torque is transmitted by each of the traction portions by a shearing force generated in the thin film as it slides. The maximum value of the torque that can be transmitted by each of these traction units is regulated by a traction coefficient μt (= Ft / Fc) representing the performance of the traction oil. The maximum value of the traction coefficient μt is 0.08. Degree.

そして、使用されているトラクションオイルのトラクション係数μtと、前記押圧装置20が発生する押圧力に基づく法線力Fcとにより定まる接線力Ftよりも大きなトルクを伝達しようとすると、前記各トラクション部で発生する滑りが大きくなる。この様な状態では、前記非特許文献1の記載から明らかな通り、前記トロイダル型無段変速機の伝達効率が著しく低下するだけでなく、特に、グロススリップと呼ばれる著しい滑りが発生する可能性がある。そして、この様なグロススリップが発生すると、前記各パワーローラ12a(12b)の周面と前記各ディスク10a、10b、11の軸方向側面とが、トラクションオイルの薄膜を介する事なく金属同士で直接転がり接触し(金属接触が発生し)、前記各トラクション部を構成する各面に著しい摩耗を生じさせて、前記トロイダル型無段変速機の耐久性を著しく低下させる。前記図7中の円Rは、前記押圧装置20が発生する押圧力の最大値に基づいて、前記各トラクション部で伝達可能なトラクション力の最大値を表している。前記各トラクション部のトラクション力Ft又は前記合成トラクション力Fmの大きさが前記円Rで表された最大値を、短時間でも上回ると、前記耐久性低下の原因となるグロススリップを惹起する。そこで従来から、前記円Rの半径rで表される、前記法線力Fcの最大値にトラクション係数μtを乗じた値を、前記トロイダル型無段変速機により伝達する可能性があるトラクション力Ftの最大値よりも少し大きく(半径r>矢印aの長さ)している。この様なグロススリップは、調節速度が速くなる前記サイドスリップ力Fsが大きい(=図7の矢印bが長い)程、発生し易くなる。尚、前記トルク伝達時に変速動作を行なう事による、前記円Rと前記合成トラクション力Fmとの差であるマージン(スリップマージン)δfの低下は、前記サイドスリップ力Fsの分だけでなく、前記各トラクション部に存在するトラクションオイルの温度上昇の程度が著しくなり、このトラクションオイルのトラクション係数μtが低下する事でも生じる。   When a torque larger than the tangential force Ft determined by the traction coefficient μt of the traction oil used and the normal force Fc based on the pressing force generated by the pressing device 20 is transmitted, The generated slip increases. In such a state, as is apparent from the description of Non-Patent Document 1, not only the transmission efficiency of the toroidal-type continuously variable transmission is remarkably lowered, but in particular, there is a possibility that significant slip called gross slip may occur. is there. When such gross slip occurs, the circumferential surface of each power roller 12a (12b) and the axial side surface of each disk 10a, 10b, 11 are directly connected to each other without a thin film of traction oil. Rolling contact (metal contact occurs) causes significant wear on each surface constituting each of the traction portions, thereby significantly reducing the durability of the toroidal continuously variable transmission. The circle R in FIG. 7 represents the maximum value of the traction force that can be transmitted by each of the traction units based on the maximum value of the pressing force generated by the pressing device 20. When the magnitude of the traction force Ft or the combined traction force Fm of each of the traction parts exceeds the maximum value represented by the circle R even for a short time, a gloss slip that causes the durability deterioration is caused. Therefore, conventionally, a traction force Ft that may be transmitted by the toroidal continuously variable transmission, represented by the radius r of the circle R, obtained by multiplying the maximum value of the normal force Fc by the traction coefficient μt. Is slightly larger than the maximum value (radius r> length of arrow a). Such a gloss slip is more likely to occur as the side slip force Fs at which the adjustment speed becomes faster (= the arrow b in FIG. 7 is longer). Note that the reduction of the margin (slip margin) δf, which is the difference between the circle R and the combined traction force Fm, by performing a speed change operation during the torque transmission is not limited to the amount of the side slip force Fs. The degree of temperature rise of the traction oil existing in the traction section becomes remarkable, and this also occurs when the traction coefficient μt of the traction oil is lowered.

これに対して、前記押圧装置20が発生する押圧力を大きくする事により、この押圧力に基づく前記法線力Fcを大きくし、前記図7の円Rの直径を大きくすれば、前記合成トラクション力Fmに関するマージンδfも十分に確保できる。そして、上述の様なトロイダル型無段変速機の耐久性低下に結び付くグロススリップの発生を抑えられる。但し、前記押圧装置20が発生する押圧力を大きくすべく、この押圧装置20の受圧面積を広くすると、この押圧装置20を備えた前記トロイダル型無段変速機が大型化する。又、この押圧装置20を大型化せずに、前記各油圧室45a、45b内に導入する油圧を高くすると、この油圧を発生させる為のポンプの駆動に要する動力(ポンプロス)が大きくなり、前記トロイダル型無段変速機全体としての伝達効率が低下するだけでなく、前記各トラクション部の転がり抵抗が徒に増大する。言い換えれば、通常運転時に於けるマージン△F(前記円Rと前記トラクション力Ftとの差)が過大になり、前記ポンプロスの増大と合わせて、前記トロイダル型無段変速機の伝達効率が低下する。これらの事を考慮すれば、このトロイダル型無段変速機の運転中、稀にしか行われない、大きなトルクを伝達している状態での急な変速動作に対応する為、前記押圧装置20が発生する押圧力を大きくする事は、前記トロイダル型無段変速機の実用性を向上させる面からは、好ましくない。   On the other hand, when the pressing force generated by the pressing device 20 is increased, the normal force Fc based on the pressing force is increased, and the diameter of the circle R in FIG. A sufficient margin δf for the force Fm can be secured. And generation | occurrence | production of the gross slip which leads to the durable fall of the above toroidal type continuously variable transmission can be suppressed. However, if the pressure receiving area of the pressing device 20 is increased in order to increase the pressing force generated by the pressing device 20, the toroidal continuously variable transmission provided with the pressing device 20 is enlarged. Further, if the hydraulic pressure introduced into each of the hydraulic chambers 45a and 45b is increased without increasing the size of the pressing device 20, the power (pump loss) required for driving the pump to generate the hydraulic pressure increases. Not only the transmission efficiency of the toroidal type continuously variable transmission as a whole is lowered, but also the rolling resistance of each of the traction parts is increased. In other words, the margin ΔF during normal operation (difference between the circle R and the traction force Ft) becomes excessive, and the transmission efficiency of the toroidal continuously variable transmission decreases with an increase in the pump loss. . In consideration of these matters, the pressing device 20 is used in order to cope with a sudden shift operation in a state where a large torque is transmitted, which is rarely performed during operation of the toroidal type continuously variable transmission. Increasing the generated pressing force is not preferable from the viewpoint of improving the practicality of the toroidal continuously variable transmission.

特許文献11、12には、調節速度が速い程、押圧装置が発生する押圧力を大きくして、急な変速操作に伴う各トラクション部での過大な滑りの発生を抑える事が記載されている。但し、トロイダル型無段変速機の制御器からの信号に基づいて油圧式の押圧装置が発生する押圧力を高めるまでには、油圧制御弁の応答遅れ、油圧導入路の抵抗等により、無視できない程の遅れが生じ、前記過大な滑り(グロススリップ)を抑える効果を十分に得られるとは言えない。   Patent Documents 11 and 12 describe that, as the adjustment speed increases, the pressing force generated by the pressing device is increased to suppress the occurrence of excessive slipping at each traction portion due to a sudden gear change operation. . However, until the pressing force generated by the hydraulic pressing device is increased based on the signal from the controller of the toroidal continuously variable transmission, it cannot be ignored due to the response delay of the hydraulic control valve, the resistance of the hydraulic pressure introduction path, etc. It cannot be said that the effect of suppressing the excessive slip (gross slip) is sufficiently obtained.

特開平7−208569号公報JP 7-20569 A 特開平11−166605号公報Japanese Patent Laid-Open No. 11-166605 特開2007−298098号公報JP 2007-298098 A 特開平11−063146号公報Japanese Patent Laid-Open No. 11-063146 特開2000−346190号公報JP 2000-346190 A 特開2009−030749号公報JP 2009-030749 A 特開2004−308853号公報JP 2004-308553 A 特開2006−283800号公報JP 2006-283800 A 特開2002−089678号公報JP 2002-089678 A 特開2012−159159号公報JP 2012-159159 A 特開平7−259948号公報Japanese Patent Laid-Open No. 7-259948 特開2001−108047号公報JP 2001-108047 A

田中裕久著,「トロイダルCVT」,初版,株式会社コロナ社,2000年7月13日,p.1−2Tanaka Hirohisa, “Toroidal CVT”, first edition, Corona Co., Ltd., July 13, 2000, p. 1-2

本発明は、上述の様な事情に鑑み、大型化及び動力損失を抑え、高い伝達効率を確保しつつ、トラクション部での過大なすべりの発生を防止できる、トロイダル型無段変速機を実現すべく発明したものである。   In view of the circumstances as described above, the present invention realizes a toroidal continuously variable transmission capable of preventing an excessive slip at a traction section while suppressing an increase in size and power loss and ensuring high transmission efficiency. Invented accordingly.

本発明のトロイダル型無段変速機は、前述した従来から知られているトロイダル型無段変速機と同様に、出力ディスクと、入力ディスクと、複数個ずつ(で互いに同数)の支持部材及びパワーローラと、押圧装置と、変速比調節ユニットとを備える。
このうちの出力ディスクは、トロイド曲面である出力側曲面を有する。
又、前記入力ディスクは、トロイド曲面である入力側曲面を前記出力側曲面に対向させた状態で前記出力ディスクと同心に、且つ、この出力ディスクに対する相対回転を可能に支持されている。
又、前記各支持部材は、トラニオン(ハーフトロイダル型のトロイダル型無段変速機の場合)又はキャリア(フルトロイダル型のトロイダル型無段変速機の場合)と呼ばれるもので、前記各ディスクの中心軸に対し捩れの位置にある枢軸を中心として揺動変位可能に配置されている。
又、前記各パワーローラは、それぞれが前記支持部材に回転自在に支持された状態で、互いに対向する前記出力側曲面と前記入力側曲面との間に挟持されている。
又、前記押圧装置は、油圧式で、前記各パワーローラの周面と前記出力側、入力側各曲面との転がり接触部であるトラクション部の面圧を確保する為に、前記入力ディスクと前記出力ディスクとを互いに近づく方向に押圧する。
更に、前記変速比調節ユニットは、前記入力ディスクと前記出力ディスクの回転速度の比である変速比を調節する為のものである。
そして、この変速比調節ユニットは、制御器からの指令に基づいて、前記各支持部材を前記各枢軸の軸方向に、油圧式のアクチュエータにより変位させる事でこれら各支持部材をこれら各枢軸を中心として揺動変位させる事により、前記入力ディスクと前記出力ディスクとの間の変速比の調節を行わせる。
The toroidal type continuously variable transmission of the present invention has a plurality of output disks and input disks (the same number as each other), a support member and a power, like the conventionally known toroidal type continuously variable transmissions. A roller, a pressing device, and a gear ratio adjustment unit;
Among these, the output disk has an output-side curved surface that is a toroidal curved surface.
The input disk is supported concentrically with the output disk in a state where the input-side curved surface which is a toroidal curved surface is opposed to the output-side curved surface and capable of relative rotation with respect to the output disk.
Each of the support members is called a trunnion (in the case of a half-toroidal toroidal continuously variable transmission) or a carrier (in the case of a full toroidal toroidal continuously variable transmission). On the other hand, it is arranged so as to be swingable and displaceable around a pivot axis in a twisted position.
Each of the power rollers is sandwiched between the output-side curved surface and the input-side curved surface facing each other in a state of being rotatably supported by the support member.
Further, the pressing device is hydraulic, and in order to secure the surface pressure of the traction portion which is a rolling contact portion between the peripheral surface of each power roller and each curved surface on the output side and the input side, Press the output disc in a direction approaching each other.
Further, the gear ratio adjusting unit is for adjusting a gear ratio which is a ratio of a rotational speed of the input disk and the output disk.
The gear ratio adjusting unit displaces the support members in the axial direction of the pivots by a hydraulic actuator based on a command from the controller so that the support members are centered on the pivots. As a result, the gear ratio between the input disk and the output disk is adjusted.

特に、本発明に於いては、前記制御器は、前記押圧装置が発生すべき押圧力(必要軸力)が所定値以上(所定値の値は、設計的に定める事ができ、例えば最大軸力値の70〜90%以上)の場合の前記変速比の調節速度を、前記押圧装置が発生すべき押圧力が所定値未満(例えば最大軸力値の70〜90%未満)の場合のこの変速比の調節速度よりも遅くする機能を有する。
又、前記変速比を遅くする程度は、前記押圧装置が発生すべき押圧力の大きさに拘わらず一定とする事もできるし、押圧力の大きさが最大値に近づく程、より遅くする事もできる。
In particular, in the present invention, the controller is such that the pressing force (necessary axial force) to be generated by the pressing device is not less than a predetermined value (the value of the predetermined value can be determined by design, for example, the maximum axis The adjustment speed of the speed ratio in the case of a force value of 70 to 90% or more) is determined when the pressing force to be generated by the pressing device is less than a predetermined value (for example, less than 70 to 90% of the maximum axial force value). It has a function of making it slower than the speed ratio adjustment speed.
The speed ratio can be kept constant regardless of the amount of pressing force to be generated by the pressing device, or it can be made slower as the pressing force approaches the maximum value. You can also.

本発明を実施する場合には、例えば請求項2に記載した発明の様に、前記トロイダル型無段変速機を、ハーフトロイダル型無段変速機とし、前記各支持部材を、それぞれの両端部に互いに同心の枢軸を有すると共に、それぞれの片側面に前記各パワーローラを回転自在に支持したトラニオンとする。
そして、前記制御器に、前記押圧装置が発生すべき押圧力が大きくなる、前記入力ディスクと前記出力ディスクとの間の変速比が1に近い状態での、前記変速比の調節速度を、前記押圧装置が発生すべき押圧力が小さくなる、この変速比の値の1からの差が大きい状態での、この変速比の調節速度よりも遅くする機能を持たせる。
When carrying out the present invention, for example, as in the invention described in claim 2, the toroidal type continuously variable transmission is a half toroidal type continuously variable transmission, and the support members are provided at both ends. The trunnions have pivots that are concentric with each other, and each power roller is rotatably supported on each side surface.
Then, the controller sets the adjustment speed of the transmission ratio in a state where the transmission ratio between the input disk and the output disk is close to 1, in which the pressing force to be generated by the pressing device increases. A function is provided to make the pressing force to be generated by the pressing device smaller, and to make the speed ratio slower than the speed of adjustment of the speed ratio when the difference from the value of the speed ratio is large.

上述の様に構成する本発明のトロイダル型無段変速機によれば、大型化及び動力損失を抑え、高い伝達効率を確保しつつ、トラクション部での過大なすべりの発生を防止できる。この理由は、以下の通りである。
トロイダル型無段変速機の運転時に、押圧装置の押圧力により確保すべき、各トラクション部の法線力Fcの値は、前記トロイダル型無段変速機の変速比に応じて変化する。この為、前記押圧装置が発生すべき押圧力が所定値以上の場合のこの変速比の調節速度を、発生すべき押圧力が所定値未満である場合の調節速度よりも遅くすれば、スリップマージンが小さくなる、前記押圧装置が発生すべき押圧力が大きい状態での、変速比変更に伴うサイドスリップ力Fsの値を小さく抑えられる。この為、トラクション部に関して、法線力Fcの最大値に対するトラクション力のマージンδfが消滅する事はなく、これら各トラクション部で、グロススリップの如き過大な滑りが発生する事を防止できる。しかも、この過大な滑りの発生を抑える為に、前記押圧装置の押圧力を高くする必要もないので、この押圧装置の受圧面積を広くする事によるトロイダル型無段変速機の大型化や、この押圧装置の油圧室内に導入する油圧を高くする事に伴うポンプロスの増大を抑えられる。
又、前記各トラクション部での過大な滑りの発生防止とポンプロスの増大抑制とにより、トロイダル型無段変速機全体として、高い伝達効率の確保を図れる。
According to the toroidal continuously variable transmission of the present invention configured as described above, it is possible to prevent the occurrence of excessive slip at the traction portion while suppressing increase in size and power loss and ensuring high transmission efficiency. The reason for this is as follows.
During operation of the toroidal continuously variable transmission, the value of the normal force Fc of each traction portion that should be secured by the pressing force of the pressing device varies depending on the gear ratio of the toroidal continuously variable transmission. For this reason, if the adjustment speed of the gear ratio when the pressing force to be generated by the pressing device is greater than or equal to a predetermined value is slower than the adjustment speed when the pressing force to be generated is less than the predetermined value, the slip margin When the pressing force to be generated by the pressing device is large, the value of the side slip force Fs accompanying the change in the gear ratio can be kept small. Therefore, the traction force margin δf with respect to the maximum value of the normal force Fc does not disappear with respect to the traction portion, and an excessive slip such as a gross slip can be prevented from occurring in each traction portion. Moreover, since it is not necessary to increase the pressing force of the pressing device in order to suppress the occurrence of this excessive slip, the enlargement of the toroidal type continuously variable transmission by increasing the pressure receiving area of the pressing device, It is possible to suppress an increase in pump loss caused by increasing the hydraulic pressure introduced into the hydraulic chamber of the pressing device.
In addition, by preventing the occurrence of excessive slipping in each of the traction sections and suppressing the increase in pump loss, it is possible to ensure high transmission efficiency as a whole toroidal type continuously variable transmission.

又、請求項2に記載した発明の様な、ハーフトロイダル型無段変速機の場合には、変速比が1の近傍で、押圧装置が発生すべき押圧力が大きくなり(スリップマージンが小さくなり)、変速比が1からずれた増速側及び減速側で、押圧装置が発生すべき押圧力が小さくなる(スリップマージンが大きくなる)。この為、入力ディスクと出力ディスクとの間の変速比が、1に近い状態での変速比の調節速度を遅くすれば、この変速比変更に伴うサイドスリップ力Fsの値を小さく抑えられ、過大な滑りの発生を防止できる。又、変速比が1の近傍である場合にのみ、変速比の調節速度を抑え、使用頻度が高い変速比が1からずれた状態での調節速度は速くできるので、トロイダル型無段変速機としての利便性が悪化する事はない。例えば、運転者に違和感を与える事もない。   Further, in the case of a half-toroidal continuously variable transmission as in the invention described in claim 2, the pressing force to be generated by the pressing device becomes large (the slip margin becomes small) when the gear ratio is near 1. ) On the acceleration side and the deceleration side where the gear ratio deviates from 1, the pressing force that should be generated by the pressing device decreases (the slip margin increases). For this reason, if the speed ratio adjustment speed in the state where the speed ratio between the input disk and the output disk is close to 1 is slowed down, the value of the side slip force Fs accompanying this speed ratio change can be kept small and excessive. Can prevent slippage. Further, only when the gear ratio is in the vicinity of 1, the adjustment speed of the gear ratio can be suppressed, and the adjustment speed when the frequently used gear ratio deviates from 1 can be increased. Therefore, as a toroidal continuously variable transmission Convenience will not deteriorate. For example, the driver does not feel uncomfortable.

本発明の実施の形態の1例に関して、制御器の動作を示すフローチャート。The flowchart which shows operation | movement of a controller regarding one example of embodiment of this invention. 押圧装置が発生する押圧力の大きさと、各トラクション部でトルクを伝達する為に必要とされる押圧力の大きさと、ハーフトロイダル型無段変速機の変速比の値と、同じく変速比の調節速度の値との関係を示す線図。The amount of pressing force generated by the pressing device, the amount of pressing force required to transmit torque at each traction section, the value of the gear ratio of the half-toroidal continuously variable transmission, and the adjustment of the gear ratio The diagram which shows the relationship with the value of speed. 本発明の対象となるフルトロイダル型無段変速機に関して、押圧力の大きさと、変速比の値と、変速比の調節速度の値との関係を示す、図2と同様の線図。FIG. 3 is a diagram similar to FIG. 2 showing the relationship between the magnitude of the pressing force, the value of the transmission ratio, and the value of the adjustment speed of the transmission ratio for the full toroidal continuously variable transmission that is the subject of the present invention. 本発明の対象となるハーフトロイダル型無段変速機を組み込んだ無段変速装置の1例を示す断面図。Sectional drawing which shows one example of the continuously variable transmission which incorporated the half toroidal type continuously variable transmission used as the object of this invention. 図4のA−A断面図。AA sectional drawing of FIG. 変速比制御の為の油圧制御装置部分の略断面図。FIG. 3 is a schematic cross-sectional view of a hydraulic control device portion for gear ratio control. 変速比調節を高速で行った場合に各トラクション部の滑りが発生し易い理由を説明する為の模式図。The schematic diagram for demonstrating why slip of each traction part is easy to generate | occur | produce when gear ratio adjustment is performed at high speed.

本発明の実施の形態の1例に就いて説明する。尚、本例を含めて本発明の特徴は、ハーフトロイダル型無段変速機1を構成する入力ディスク10a、10bと出力ディスク11(図4参照)との間の変速比を調節する為の制御器が、押圧装置20が必要とする押圧力(必要軸力)の大きさ(各ディスク10a、10b、11同士の間の変速比)に応じて、前記変速比を変化させる変速比調節速度を異ならせる事に伴って、各トラクション部の合成トラクション力Fmに対する余裕代(マージン)δf(図7参照)が消滅する事を防止し、前記各トラクション部でのグロススリップの発生防止を図る点にある。その他の、機械的構造部分の構成及び作用に就いては、前述の図4〜5に示した構造を含めて、従来から知られている各種トロイダル型無段変速機と同様であるから、図示並びに説明は省略し、以下、本発明の特徴である、前記押圧力(変速比)の相違に応じて前記変速比調節速度を変化させる制御に就いて、図1〜2を参照しつつ説明する。   An example of the embodiment of the present invention will be described. The feature of the present invention including this example is that the control for adjusting the gear ratio between the input disks 10a and 10b and the output disk 11 (see FIG. 4) constituting the half-toroidal continuously variable transmission 1 is performed. A gear ratio adjustment speed for changing the gear ratio according to the magnitude of the pressing force (necessary axial force) required by the pressing device 20 (speed ratio between the disks 10a, 10b, 11). Along with the difference, it is possible to prevent the margin (delta) δf (see FIG. 7) for the combined traction force Fm of each traction portion from disappearing and to prevent the occurrence of gross slip in each traction portion. is there. Since the structure and operation of the other mechanical structural parts are the same as those of various conventionally known toroidal type continuously variable transmissions including the structures shown in FIGS. In the following, the control of changing the speed ratio adjusting speed according to the difference in the pressing force (speed ratio), which is a feature of the present invention, will be described with reference to FIGS. .

図1のステップ1(S1)で、前記ハーフトロイダル型無段変速機1の変速比を変更すべき指令が出されると、ステップ2(S2)で、このハーフトロイダル型無段変速機1の運転状況(運転条件)に応じ、当該運転状況で、このハーフトロイダル型無段変速機1の変速比を変更可能な変速比調節速度の最大値を求める。   When a command to change the gear ratio of the half-toroidal continuously variable transmission 1 is issued in step 1 (S1) of FIG. 1, the operation of the half-toroidal continuously variable transmission 1 is performed in step 2 (S2). The maximum value of the gear ratio adjustment speed capable of changing the gear ratio of the half-toroidal-type continuously variable transmission 1 is determined in accordance with the situation (driving conditions).

本発明に於いて前記制御器は、ハーフトロイダル型無段変速機1の変速比を変更すべく、このハーフトロイダル型無段変速機1の運転状況に応じて変化する物理量を表す信号を、このハーフトロイダル型無段変速機1の各部に組み付けたセンサから取り込む。この物理量として本例の場合には、このハーフトロイダル型無段変速機1の変速比と、このハーフトロイダル型無段変速機1を収納したケーシング13(図4〜5参照)内に貯溜されたトラクションオイルの温度と、前記各ディスク10a、10b、11(又は各パワーローラ12a、12b)の回転速度と、これら各パワーローラ12a、12bにより伝達しているトルクの大きさを表す信号を取り込む。そして、前記制御器は、これら各物理量を表す信号に基づいて、前記変速比調節速度の許容最大値(最大変速速度)を決定する。前記ハーフトロイダル型無段変速機1の変速比を変更する速度は、この最大変速速度以下の範囲で、アクセルペダルの踏込量等、運転者が行う運転操作に応じて決定する。   In the present invention, in order to change the transmission ratio of the half-toroidal continuously variable transmission 1, the controller outputs a signal representing a physical quantity that changes in accordance with the operating state of the half-toroidal continuously variable transmission 1. It takes in from the sensor assembled | attached to each part of the half toroidal type continuously variable transmission 1. FIG. In the case of this example, the physical quantity is stored in the gear ratio of the half-toroidal continuously variable transmission 1 and in the casing 13 (see FIGS. 4 to 5) that houses the half-toroidal continuously variable transmission 1. A signal representing the temperature of the traction oil, the rotational speed of each of the disks 10a, 10b, 11 (or each of the power rollers 12a, 12b) and the magnitude of the torque transmitted by each of the power rollers 12a, 12b is captured. Then, the controller determines an allowable maximum value (maximum shift speed) of the gear ratio adjustment speed based on signals representing these physical quantities. The speed at which the gear ratio of the half-toroidal continuously variable transmission 1 is changed is determined in accordance with the driving operation performed by the driver, such as the amount of depression of the accelerator pedal, within a range equal to or less than the maximum transmission speed.

前記各物理量に対応して前記最大変速速度を変更する態様は、次の通りである。先ず、変速比に関しては、この変速比が、1に近い(前記各ディスク10a、10b、11をほぼ同一角速度で回転させる)状態での、前記最大変速速度を最も小さく(遅く)する。これに対して、この変速比の値の1からの差が大きい(減速比又は増速比が大きい)状態での、前記最大変速速度を、前記変速比が1に近い状態の場合よりも大きく(速く)する。
必要とする変速比の調節速度を確保しつつ、前記最大変速速度を前記変速比に応じて上述の様に異ならせる理由に就いて、図2を参照しつつ説明する。この図2中の直線イは、押圧装置20が発生する押圧力(この押圧装置20の油圧室45a、45b内に導入する必要がある油圧)の最大値(最大軸力)であり、本例の場合には一定値としている。又、曲線ロは、各変速比に関して、前記トラクション部で過大な滑り(グロススリップ)が発生するのを抑える為に必要とされる押圧力(必要軸力)の大きさ(法線力Fcの大きさ)を表している。そして、前記直線イと前記曲線ロとの間隔(スリップマージン)が広い程、各トラクション部で過大な滑りを生じる事なくトルク伝達を行える、トラクション力に対する余裕代(マージン)△F、△Fが大きい事を意味する。即ち、前記押圧装置20が発生すべき押圧力が大きい状態での余裕代△Fは、この押圧装置20が発生すべき押圧力が小さい状態での余裕代△F2よりも小さくなる。従って、前記変速比の値が1の近傍でスリップマージン(△F)が小さくなり、この変速比の値が1からずれた(1からの差が大きい)増速側、減速側でスリップマージン(△F)が大きくなる。
A mode in which the maximum shift speed is changed corresponding to each physical quantity is as follows. First, regarding the transmission ratio, the maximum transmission speed is minimized (slow) when the transmission ratio is close to 1 (the disks 10a, 10b, and 11 are rotated at substantially the same angular speed). On the other hand, the maximum transmission speed in the state where the difference from the value of the transmission ratio from 1 is large (the reduction ratio or the acceleration ratio is large) is larger than that in the state where the transmission ratio is close to 1. (Fast).
The reason why the maximum transmission speed is varied as described above according to the transmission ratio while securing the necessary transmission ratio adjustment speed will be described with reference to FIG. 2 represents the maximum value (maximum axial force) of the pressing force generated by the pressing device 20 (the hydraulic pressure that needs to be introduced into the hydraulic chambers 45a and 45b of the pressing device 20). In this case, the value is constant. The curve (b) indicates the magnitude of the pressing force (required axial force) (normal force Fc) required for suppressing the occurrence of excessive slip (gross slip) in the traction portion for each gear ratio. Size). And, as the distance (slip margin) between the straight line A and the curved line B is wider, torque transmission can be performed without causing excessive slip in each traction portion, and margins (margins) ΔF 1 , ΔF for the traction force 2 means big. That is, the margin allowance ΔF 1 when the pressing force to be generated by the pressing device 20 is large is smaller than the margin allowance ΔF 2 when the pressing force to be generated by the pressing device 20 is small. Accordingly, the slip margin (ΔF 1 ) becomes small when the gear ratio value is near 1, and the slip margin is shifted on the acceleration side and the deceleration side where the gear ratio value deviates from 1 (the difference from 1 is large). (ΔF 2 ) increases.

図2から明らかな通り、前記変速比の値の1からの差が大きい状態{例えば押圧装置20が発生すべき押圧力が最大値(直線イの値)の80%未満}では、前記マージン△Fが大きいので、前記最大変速速度を大きく(速く)しても、前記各トラクション部で過大な滑りを生じる事なくトルク伝達を行える。これに対して前記変速比の値が1に近い状態(例えば押圧装置20が発生すべき押圧力が最大値の80%以上)では、前記マージン△Fが小さいので、前記最大変速速度を大きく(速く)すると、前記各トラクション部で過大な滑りを生じ易くなり、安定したトルク伝達を行えなくなる。 As is clear from FIG. 2, in a state where the difference from the value of the gear ratio is large (for example, the pressing force to be generated by the pressing device 20 is less than 80% of the maximum value (the value of the straight line A)), the margin Δ since F 2 is large, the even if the maximum shift speed increase (fast), enabling torque transmission without causing excessive slippage at each traction unit. On the other hand, in the state where the value of the gear ratio is close to 1 (for example, the pressing force to be generated by the pressing device 20 is 80% or more of the maximum value), the margin ΔF 1 is small, so that the maximum gear shift speed is increased. If it is (faster), excessive slippage is likely to occur in each of the traction sections, and stable torque transmission cannot be performed.

この為に本例の場合には、例えば発生すべき押圧力が最大値の80%以上(80%なる値は設計値である)となり、前記マージン△Fが小さい状態では、図2に曲線ハの中央部で示す様に、前記最大変速速度を小さく(遅く)して、サイドスリップ力Fs延いては合成トラクション力Fm(図7参照)を小さく抑える。これにより、前記マージン△Fが消滅し、前記各トラクション部で、著しい滑りが発生する事を防止する。ハーフトロイダル型無段変速機の運転時に前記変速比の値が1に近い状態で、しかも大きなトルク伝達を行う頻度はあまり高くないので、前記変速比の値が1に近い状態での変速比の調節速度を多少遅くしても、運転者に違和感を与える程度を低く抑えられる。 Therefore, in the case of this example, for example, when the pressing force to be generated is 80% or more of the maximum value (a value of 80% is a design value) and the margin ΔF 1 is small, a curve is shown in FIG. As shown by the central part of C, the maximum speed change speed is reduced (slow), and the side slip force Fs and the combined traction force Fm (see FIG. 7) are reduced. As a result, the margin ΔF 1 disappears, and a significant slip is prevented from occurring in each traction portion. When the half-toroidal continuously variable transmission is in operation, the speed ratio is close to 1, and the frequency of transmission of large torque is not so high. Therefore, the speed ratio in the state where the speed ratio is close to 1 Even if the adjustment speed is somewhat slow, the degree of uncomfortable feeling to the driver can be kept low.

これに対して、例えば発生すべき押圧力が最大値の80%未満(80%なる値は設計値である)となり、前記マージン△Fが大きい状態では、図2に曲線ハの両端部で示す様に、前記最大変速速度を大きく(速く)して、サイドスリップ力Fs延いては合成トラクション力Fm(図7参照)が或る程度大きくなる事を許容する。この様に合成トラクション力Fmを大きくしても、前記マージン△Fが十分に大きいので、このマージン△Fが消滅する事はない。従って、ハーフトロイダル型無段変速機の運転時に出現する可能性が比較的高い、前記変速比の値が1から外れている状態での変速比の調節速度を速くして、運転者に違和感を与える程度を低く抑えられる。 In contrast, for example, generating the pressing force is less than 80% of the maximum value to be (a value comprised 80% is a design value), and in the margin △ F 2 is large state, at both ends of the curve C in FIG. 2 As shown, the maximum speed change speed is increased (fastened) to allow the side slip force Fs and the resultant traction force Fm (see FIG. 7) to increase to some extent. Even if the combined traction force Fm is increased in this way, the margin ΔF 2 is sufficiently large, so that the margin ΔF 2 will not disappear. Therefore, the possibility of appearing during operation of a half-toroidal continuously variable transmission is relatively high, and the speed ratio adjustment speed is increased in a state where the speed ratio value is deviated from 1, thereby making the driver feel uncomfortable. The degree of giving can be kept low.

尚、トラクションオイルの温度を表す信号と、前記各ディスク10a、10b、11(又は各パワーローラ12a、12b)の回転速度を表す信号と、これら各パワーローラ12a、12bにより伝達しているトルクの大きさを表す信号とに関しても、前記各トラクション部で過大な滑りが発生するのを防止すべく、前記最大変速速度を規制する面から利用する。
例えば、前記トラクションオイルの温度が高くなると、このトラクションオイルのトラクション係数μtが低下し、前記各トラクション部で過大な滑りが発生し易くなる。そこで、前記トラクションオイルの温度が高くなる程、前記最大変速速度を遅くする。
又、前記回転速度が速くなる程、前記トルクが大きくなる程、それぞれ前記各トラクション部で過大な滑りが発生し易くなる。そこで、前記回転速度が速くなる程、前記トルクが大きくなる程、それぞれ前記最大変速速度を遅くする。
A signal representing the temperature of the traction oil, a signal representing the rotational speed of each of the disks 10a, 10b, 11 (or each power roller 12a, 12b), and the torque transmitted by each of the power rollers 12a, 12b. The signal indicating the magnitude is also used from the aspect of regulating the maximum shift speed in order to prevent excessive slippage from occurring in each traction section.
For example, when the temperature of the traction oil increases, the traction coefficient μt of the traction oil decreases, and excessive slippage tends to occur in each traction portion. Therefore, the maximum shift speed is decreased as the temperature of the traction oil increases.
In addition, as the rotational speed increases and the torque increases, excessive slippage is likely to occur in each of the traction portions. Therefore, as the rotational speed increases and the torque increases, the maximum shift speed is decreased.

上述の様に構成する本例のハーフトロイダル型無段変速機によれば、前述した様な理由により、大型化及び動力損失を抑え、高い伝達効率を確保しつつ、トラクション部での過大なすべりの発生を防止できる。又、使用頻度の高い範囲での変速比の調節速度を速くできる。   According to the half-toroidal continuously variable transmission of this example configured as described above, for the reasons described above, excessive slip at the traction portion is achieved while suppressing increase in size and power loss and ensuring high transmission efficiency. Can be prevented. Also, the speed ratio adjustment speed can be increased within a frequently used range.

本発明は、遊前述の図4〜5に示した様な、遊星歯車式変速機2と組み合わせた無段変速装置の変速ユニットとして実施するだけでなく、トロイダル型無段変速機を単独で構成する(変速ユニットとして機能するトロイダル型無段変速機と、発進クラッチとして機能するトルクコンバータとを組み合わせただけの)自動変速機の変速ユニットとして実施する事もできる。   The present invention is not only implemented as a transmission unit of a continuously variable transmission in combination with the planetary gear type transmission 2 as shown in FIGS. 4 to 5 described above, but also a toroidal type continuously variable transmission is configured alone. It can also be implemented as a transmission unit of an automatic transmission (which is simply a combination of a toroidal type continuously variable transmission that functions as a transmission unit and a torque converter that functions as a starting clutch).

更には、図示の様なハーフトロイダル型に限らず、例えば非特許文献1に記載されている様な、フルトロイダル型のトロイダル型無段変速機で実施する事もできる。フルトロイダル型無段変速機に関する、押圧力の大きさ(曲線ロ´)と、変速比の値(曲線ハ´)と、変速比の調節速度の値との関係を、図3に示している。この図3から明らかな通り、押圧装置が発生する押圧力の最大値を表す直線イ´と、この押圧装置が発生すべき押圧力を表す曲線ロ´との間隔が小さくなる、押圧装置が発生する押圧力が大きい状態での余裕代△Fは、前記間隔が大きくなる、この押圧装置が発生する押圧力が小さい状態での余裕代△F2よりも小さくなる。従って、フルトロイダル型無段変速機の場合にも、ハーフトロイダル型無段変速機の場合と同様に、押圧装置が発生すべき押圧力が所定値(例えば押圧力が最大値の80%)以上の場合(変速比の値が最大減速状態の近傍)の変速比の調節速度を、この押圧力が所定値(例えば押圧力が最大値の80%)未満の場合での調節速度よりも遅くする事で、トラクション部での過大なすべりを防止できる。 Furthermore, the present invention is not limited to the half-toroidal type as shown in the figure, and can be implemented by a full-toroidal type toroidal-type continuously variable transmission as described in Non-Patent Document 1, for example. FIG. 3 shows the relationship between the magnitude of the pressing force (curve b ′), the speed ratio value (curve c ′), and the speed ratio adjustment speed value for the full toroidal continuously variable transmission. . As is apparent from FIG. 3, the distance between the straight line a ′ representing the maximum value of the pressing force generated by the pressing device and the curve b ′ indicating the pressing force to be generated by the pressing device is reduced, and the pressing device is generated. The margin allowance ΔF 1 when the pressing force to be applied is large is smaller than the allowance allowance ΔF 2 when the pressing force generated by the pressing device is small. Therefore, also in the case of a full toroidal continuously variable transmission, the pressing force to be generated by the pressing device is equal to or greater than a predetermined value (for example, the pressing force is 80% of the maximum value), as in the case of the half toroidal continuously variable transmission. In this case (speed ratio value is near the maximum deceleration state), the speed ratio adjustment speed is made slower than the speed adjustment speed when the pressing force is less than a predetermined value (for example, the pressing force is less than 80% of the maximum value). In this way, excessive sliding in the traction section can be prevented.

1 ハーフトロイダル型無段変速機
2 遊星歯車式変速機
3 入力軸
4 出力軸
5 入力回転軸
6 伝達軸
7 前段ユニット
8 中段ユニット
9 後段ユニット
10a、10b 入力ディスク
11 出力ディスク
12a、12b パワーローラ
13 ケーシング
14 支柱
15 転がり軸受
16 支持板
17a、17b トラニオン
18 枢軸
19 支持軸
20 押圧装置
21 中空回転軸
22 太陽歯車
23、23a キャリア
24 遊星歯車
25 遊星歯車
26 遊星歯車
27 リング歯車
28 第二太陽歯車
29 第二キャリア
30 低速用クラッチ
31 第三太陽歯車
32 第二リング歯車
33 高速用クラッチ
34 遊星歯車
35 遊星歯車
36 アクチュエータ
37 変速比制御弁
38 ステッピングモータ
39 プリンセスカム
40 スプール
41 スリーブ
42 油圧源
43a、43b 油圧室
44 リンク腕
45a、45b 油圧室
DESCRIPTION OF SYMBOLS 1 Half toroidal type continuously variable transmission 2 Planetary gear type transmission 3 Input shaft 4 Output shaft 5 Input rotation shaft 6 Transmission shaft 7 Front stage unit 8 Middle stage unit 9 Rear stage unit 10a, 10b Input disk 11 Output disk 12a, 12b Power roller 13 Casing 14 Post 15 Rolling bearing 16 Support plate 17a, 17b Trunnion 18 Pivot 19 Support shaft 20 Pressing device 21 Hollow rotating shaft 22 Sun gear 23, 23a Carrier 24 Planetary gear 25 Planetary gear 26 Planetary gear 27 Ring gear 28 Second sun gear 29 Second carrier 30 Low speed clutch 31 Third sun gear 32 Second ring gear 33 High speed clutch 34 Planetary gear 35 Planetary gear 36 Actuator 37 Gear ratio control valve 38 Stepping motor 39 Princess cam 40 Spool 41 Three 42 hydraulic source 43a, 43b hydraulic chamber 44 link arms 45a, 45b hydraulic chamber

Claims (2)

トロイド曲面である出力側曲面を有する出力ディスクと、トロイド曲面である入力側曲面をこの出力側曲面に対向させた状態でこの出力ディスクと同心に、且つ、この出力ディスクに対する相対回転を可能に支持された入力ディスクと、これら各ディスクの中心軸に対し捩れの位置にある枢軸を中心として揺動変位可能に配置された複数個の支持部材と、それぞれがこれら各支持部材に回転自在に支持された状態で、互いに対向する前記出力側曲面と前記入力側曲面との間に挟持された複数個のパワーローラと、これら各パワーローラの周面と前記出力側、入力側各曲面との転がり接触部であるトラクション部の面圧を確保する為、前記入力ディスクと前記出力ディスクとを互いに近づく方向に押圧する油圧式の押圧装置と、この入力ディスクとこの出力ディスクの回転速度の比である変速比を調節する為の変速比調節ユニットとを備え、この変速比調節ユニットは、制御器からの指令に基づいて、前記各支持部材を前記各枢軸の軸方向に、油圧式のアクチュエータにより変位させる事でこれら各支持部材をこれら各枢軸を中心として揺動変位させる事により、前記入力ディスクと前記出力ディスクとの間の変速比の調節を行わせるトロイダル型無段変速機に於いて、
前記制御器は、前記押圧装置が発生すべき押圧力が所定値以上である場合の前記変速比の調節速度を、この押圧力が所定値未満の場合のこの変速比の調節速度よりも遅くする機能を有する事を特徴とするトロイダル型無段変速機。
An output disk having an output-side curved surface that is a toroidal curved surface, and an input-side curved surface that is a toroidal curved surface facing the output-side curved surface, are concentric with the output disk and support relative rotation with respect to the output disk. And a plurality of support members disposed so as to be swingable and displaceable about a pivot that is twisted with respect to the central axis of each of the input disks, and each of the support members is rotatably supported by the respective support members. A plurality of power rollers sandwiched between the output-side curved surface and the input-side curved surface facing each other, and rolling contact between the peripheral surfaces of the power rollers and the output-side and input-side curved surfaces. In order to ensure the surface pressure of the traction section, which is a section, a hydraulic pressing device that presses the input disk and the output disk toward each other, and the input disk And a gear ratio adjusting unit for adjusting a gear ratio, which is a ratio of the rotational speeds of the output disk, and the gear ratio adjusting unit is configured to attach the support members to the pivots based on a command from a controller. In this axial direction, the support member is oscillated and displaced about each pivot by adjusting the gear ratio between the input disk and the output disk by being displaced by a hydraulic actuator. In toroidal type continuously variable transmissions,
The controller causes the speed ratio adjustment speed when the pressing force to be generated by the pressing device is equal to or greater than a predetermined value to be slower than the speed ratio adjustment speed when the pressing force is less than the predetermined value. A toroidal-type continuously variable transmission characterized by having a function.
前記トロイダル型無段変速機が、ハーフトロイダル型無段変速機であり、
前記各支持部材が、それぞれの両端部に互いに同心の枢軸を有すると共に、それぞれの片側面に前記各パワーローラを回転自在に支持したトラニオンであり、
前記制御器が、前記入力ディスクと前記出力ディスクとの間の変速比が1に近い状態での前記変速比の調節速度を、この変速比の値の1からの差が大きい状態でのこの変速比の調節速度よりも遅くする機能を有する、
請求項1に記載したトロイダル型無段変速機。
The toroidal type continuously variable transmission is a half toroidal type continuously variable transmission,
Each support member is a trunnion that has concentric pivots at both ends, and that rotatably supports each power roller on each side surface,
The controller controls the speed ratio adjustment speed when the speed ratio between the input disk and the output disk is close to 1, and the speed change ratio when the speed ratio value is greatly different from 1. It has the function to make it slower than the adjustment speed of the ratio,
A toroidal continuously variable transmission according to claim 1.
JP2013210667A 2013-10-08 2013-10-08 Toroidal type continuously variable transmission Pending JP2015075148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210667A JP2015075148A (en) 2013-10-08 2013-10-08 Toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013210667A JP2015075148A (en) 2013-10-08 2013-10-08 Toroidal type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2015075148A true JP2015075148A (en) 2015-04-20

Family

ID=53000159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210667A Pending JP2015075148A (en) 2013-10-08 2013-10-08 Toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2015075148A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885371B1 (en) * 2015-08-07 2016-03-15 株式会社エフ・シー・シー Continuously variable transmission
KR20180120772A (en) * 2016-03-18 2018-11-06 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 Continuously Variable Transmission System and Method
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9765862B2 (en) 2015-08-07 2017-09-19 Kabushiki Kaisha F.C.C. Continuously variable transmission
JP5885371B1 (en) * 2015-08-07 2016-03-15 株式会社エフ・シー・シー Continuously variable transmission
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
JP2019510941A (en) * 2016-03-18 2019-04-18 フォールブルック インテレクチュアル プロパティー カンパニー エルエルシー Continuously variable transmission, system and method
KR102364407B1 (en) * 2016-03-18 2022-02-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 continuously variable transmission system and method
KR20180120772A (en) * 2016-03-18 2018-11-06 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 Continuously Variable Transmission System and Method
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Similar Documents

Publication Publication Date Title
JP2015075148A (en) Toroidal type continuously variable transmission
JP2003194207A (en) Toroidal type continuously variable transmission
JP4062809B2 (en) Continuously variable transmission
JP2005036878A (en) Continuously variable transmission
US6514168B2 (en) Toroidal type continuous variable speed transmission
JP3698048B2 (en) Toroidal continuously variable transmission
JP2015017664A (en) Drive device for electric vehicle
JP2003314645A (en) Toroidal type continuously variable transmission and continuously variable transmission device
JP5471876B2 (en) Continuously variable transmission
JP5234015B2 (en) Continuously variable transmission
JP5699646B2 (en) Continuously variable transmission
JP4715794B2 (en) Continuously variable transmission
JP6167881B2 (en) Continuously variable transmission
JP6631067B2 (en) Continuously variable transmission
JP4007136B2 (en) Continuously variable transmission
JP3960182B2 (en) Continuously variable transmission
JP5187301B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP3698060B2 (en) Toroidal continuously variable transmission
JP6413377B2 (en) Toroidal continuously variable transmission
JP2004125119A (en) Continuously-variable transmission
JP4329262B2 (en) Toroidal continuously variable transmission
JP4172102B2 (en) Toroidal continuously variable transmission
JP2008014357A (en) Continuously variable transmission
JP6519991B2 (en) Stepless transmission