JP2015059784A - Ozone concentration measurement apparatus - Google Patents

Ozone concentration measurement apparatus Download PDF

Info

Publication number
JP2015059784A
JP2015059784A JP2013192629A JP2013192629A JP2015059784A JP 2015059784 A JP2015059784 A JP 2015059784A JP 2013192629 A JP2013192629 A JP 2013192629A JP 2013192629 A JP2013192629 A JP 2013192629A JP 2015059784 A JP2015059784 A JP 2015059784A
Authority
JP
Japan
Prior art keywords
value
current value
measurement
light emitting
ozone concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013192629A
Other languages
Japanese (ja)
Other versions
JP6205656B2 (en
Inventor
有志 武田
Yuji Takeda
有志 武田
広隆 中村
Hirotaka Nakamura
広隆 中村
青柳 克信
Katsunobu Aoyanagi
克信 青柳
裕靖 菅野
Hiroyasu Sugano
裕靖 菅野
由美 阿彦
Yumi Abiko
由美 阿彦
勝靖 菅野
Katsuyasu Sugano
勝靖 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI DENTO KOGYOSHO KK
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
HIKARI DENTO KOGYOSHO KK
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI DENTO KOGYOSHO KK, Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical HIKARI DENTO KOGYOSHO KK
Priority to JP2013192629A priority Critical patent/JP6205656B2/en
Publication of JP2015059784A publication Critical patent/JP2015059784A/en
Application granted granted Critical
Publication of JP6205656B2 publication Critical patent/JP6205656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone concentration measurement apparatus using a nitride-based deep ultraviolet semiconductor light-emitting element which maintains constant output and can perform stable and accurate measurement for a long time.SOLUTION: The ozone concentration measurement apparatus includes: chopping drive measurement means for measuring an ozone concentration while applying current to a solid light-emitting element 201 and fluctuating the current between an upper limit current value and a lower limit current value so as to obtain a constant ultraviolet radiation output value; and output maintenance correction means for correcting the upper limit current value and the lower limit current value so as to obtain a constant ultraviolet radiation output value when an ultraviolet radiation output value recorded in immediately prior ozone concentration measurement fluctuates. This allows for correct ozone concentration measurement.

Description

本発明は、固体発光素子をチョッパ発信させ計測する紫外線吸収式オゾン濃度測定装置に関するものである。   The present invention relates to an ultraviolet absorption type ozone concentration measuring apparatus for measuring a solid light emitting element by chopper transmission.

紫外線を解説した参考書である非特許文献1によれば、オゾンには、Chappuis帯(850nm〜440nm)、Huggins帯(360nm〜300nm)、Hartley帯(200〜320nm)と呼ばれる吸収帯がある。 According to Non-Patent Document 1, which is a reference book explaining ultraviolet rays, ozone has absorption bands called Chapuis band (850 nm to 440 nm), Huggins band (360 nm to 300 nm), and Hartley band (200 to 320 nm).

1992年頃、オゾン濃度測定は従来の湿式法に代わり低圧水銀ランプが利用されるようになった。低圧水銀ランプは湿式法とは違い薬品を使用しないこと、メンテナンスが容易であること、測定感度が良いことからオゾン濃度測定に低圧水銀ランプの利用が増えていった。 Around 1992, ozone concentration was measured by using a low-pressure mercury lamp instead of the conventional wet method. Unlike wet methods, low-pressure mercury lamps do not use chemicals, are easy to maintain, and have high measurement sensitivity, so the use of low-pressure mercury lamps for ozone concentration measurement has increased.

低圧水銀ランプを使用するオゾン濃度測定は、特許文献1に示すように、真空放電を利用した低圧水銀ランプから発せられる単一波長254nmの紫外線を利用したものである。 As shown in Patent Document 1, the ozone concentration measurement using a low-pressure mercury lamp uses ultraviolet light having a single wavelength of 254 nm emitted from a low-pressure mercury lamp using vacuum discharge.

紫外線吸収式オゾン濃度測定は、オゾンに吸収される前の波長の放射出力強度Iとオゾンに吸収された後の波長の放射出力強度Oを測定し、吸収された紫外線量を求め、ランベルト・ベールの法則から当該波長におけるオゾン濃度が判明する原理を利用している。 The UV absorption type ozone concentration measurement measures the radiation output intensity I of the wavelength before being absorbed by ozone and the radiation output intensity O of the wavelength after being absorbed by ozone, and obtains the amount of absorbed ultraviolet rays. The principle that the ozone concentration at the wavelength is found from the above law is used.

また、光吸収式で濃度を測定する場合、測定する試料は気相及び液相のいずれの場合においてもランベルト・ベールの法則の数式1で求められる。試料ガスを透過してきた波長の透過光の放射出力強度をO、試料ガスを透過してきた波長の入射光の放射出力強度をI、波長におけるオゾンの吸収係数をε(オゾンの吸収係数をεは各波長によってオゾンの吸収係数の値が決められている。)、試料ガスまたは試料水中のオゾン濃度をc、波長が試料ガスまたは試料水を透過する際の光路長をLとすると、数式1は下記のようになる。 Further, when the concentration is measured by the light absorption method, the sample to be measured can be obtained by the Lambert-Beer law formula 1 in both the gas phase and the liquid phase. The radiant output intensity of the transmitted light having the wavelength transmitted through the sample gas is O, the radiant output intensity of the incident light having the wavelength transmitted through the sample gas is I, the absorption coefficient of ozone at the wavelength is ε (the absorption coefficient of ozone is ε is The value of the ozone absorption coefficient is determined by each wavelength.), Where the ozone concentration in the sample gas or sample water is c, and the optical path length when the wavelength is transmitted through the sample gas or sample water is L, Equation 1 is It becomes as follows.

しかしながら、オゾン計測に低圧水銀ランプを採用すると真空放電の放電ノイズが計測値の誤差として現れてくる為計測値には常にノイズの影響を除去する補正が不可欠である。また、低濃度におけるオゾン濃度測定の場合、低圧水銀ランプの出力を下げて計測した方が紫外線の減衰を感知しやすく精度良く計測できることが知られている。   However, when a low-pressure mercury lamp is used for ozone measurement, discharge noise of vacuum discharge appears as an error in the measured value, so correction that always removes the influence of noise is indispensable for the measured value. In addition, in the case of measuring ozone concentration at a low concentration, it is known that the measurement by reducing the output of the low-pressure mercury lamp makes it easier to perceive the attenuation of ultraviolet rays and can be measured with high accuracy.

低濃度オゾンの場合は光源が高出力だと紫外線はオゾンに吸収されず、光が減衰せずにそのままオゾンを通過してしまう。この事が、計測精度が悪くなる要因の一つでもある。一方、高濃度オゾンの場合に低出力だと、逆に光が全てオゾンに吸収されてしまう事になる。本発明は低濃度オゾン濃度測定に関するものであり、出力は微弱が適している。 In the case of low-concentration ozone, if the light source has a high output, ultraviolet rays are not absorbed by ozone, and light passes through ozone without being attenuated. This is also one of the factors that degrade measurement accuracy. On the other hand, if the output is low in the case of high-concentration ozone, all the light will be absorbed by ozone. The present invention relates to low-concentration ozone concentration measurement, and a weak output is suitable.

しかし、微弱な出力まで下げると放電が起こらず、結局、水銀ランプでは、放電できる出力が必要であり、放電ノイズと切り離すことはできない。低圧水銀ランプは原理的に微弱出力に設定することができず出力をあげて計測しなければならず、その事も放電ノイズが常に計測誤差として表れ正しい計測ができない問題がある。 However, when the output is lowered to a weak level, no discharge occurs. Eventually, the mercury lamp needs an output that can be discharged and cannot be separated from the discharge noise. A low-pressure mercury lamp cannot be set to a weak output in principle and must be measured with increased output. This also has the problem that discharge noise always appears as a measurement error and cannot be measured correctly.

一方、特許文献2は、オゾン濃度を計測する光源として窒化物系深紫外線半導体発光素子を採用したオゾン濃度測定装置を提供している。このLEDから発せられた紫外線の強度は微弱である。 On the other hand, Patent Document 2 provides an ozone concentration measuring device that employs a nitride-based deep ultraviolet semiconductor light emitting element as a light source for measuring the ozone concentration. The intensity of ultraviolet rays emitted from this LED is weak.

しかしながら、特許文献2の方法は、窒化物系深紫外線半導体発光素子を採用しているが、素子を点滅させるチョッパ発信駆動だけでは、LEDの時間経過とともに放射出力の強度の低下を防ぐ事は出来ず、微弱出力である故に、計測可能な出力の下限にすぐに到達してしまうという問題が生じた。その為、24時間稼働している工場や、無人島のオゾン計測にLEDを光源としたオゾン濃度計測器を採用する事が出来なかった。   However, although the method of Patent Document 2 employs a nitride-based deep ultraviolet semiconductor light emitting device, it is possible to prevent a decrease in the intensity of the radiation output with the lapse of time of the LED only by the chopper transmission driving that blinks the device. However, since the output was weak, there was a problem that the lower limit of the measurable output was reached immediately. For this reason, it was not possible to adopt an ozone concentration measuring instrument using LED as a light source for ozone measurement in factories operating for 24 hours and uninhabited islands.

特許文献3はS/N比を高くすることによって計測精度を上げられるため光チョッパを採用している。しかし、光源としてLEDを採用する方法は採られていない。LEDは高速スイッチング可能であることから、光源の明減周期を短くする(明減周波数を大きくする)観点においてすぐれているが、LEDは一般的にその出力が小さく(数十μW程度)、発生する光の強度が小さいため、特許文献3が提案する発明においては、LEDの微弱な出力が利用できないからと推測される。 Patent Document 3 employs an optical chopper because the measurement accuracy can be increased by increasing the S / N ratio. However, a method that employs an LED as a light source has not been adopted. Since LEDs are capable of high-speed switching, they are excellent in terms of shortening the lightening period of the light source (increasing the lightening frequency), but LEDs generally have a small output (about several tens of μW) and are generated. It is estimated that the weak output of the LED cannot be used in the invention proposed by Patent Document 3 because the intensity of the light to be transmitted is small.

特開平5−172743号公報JP-A-5-172743 特開2011−094970号公報JP 2011-094970 A 特開2010−197310号公報JP 2010-197310 A

大気の物理化学 小川利紘著 発行所 東京堂出版 1991年8月30日発行Physical chemistry of the atmosphere Toshiaki Ogawa Publication place Tokyodo Publishing August 30, 1991

上記問題を解決するために、発明者等は実験による試行錯誤を繰り返した。その結果、電子移動を滑らかにするための方策として、計測前に紫外線を出力する固体発光素子を高速に点滅させるチョッピング技術と、計測時には点灯したまま、矩形波状に出力を増減するチョッパ発信技術と、計測開始直前には、消灯による放熱後、一定電流を短時間流すなどの技術を採用し、それらの手順の最適組合せに注力した。また、ロックイン・アンプの原理を応用した計測ノイズの除去や、矩形波頂点での測定点の安定化を図るなど受光精度の向上に努めた。更に、時間経過と共に減衰する出力を一定に維持するために固体発光素子に印加する電流を微調整する工夫に思い至った。本発明の目的は、時間経過にともなう固体発光素子の放射出力強度の低下を制御し、微弱出力(μW/cm2)であっても、一定の出力を維持し、長時間、精度よく安定して計測できる駆動方法を有するオゾン濃度測定装置を提供することである。 In order to solve the above problem, the inventors repeated trial and error by experiments. As a result, as measures to smooth the movement of electrons, a chopping technology that flashes a solid-state light emitting element that outputs ultraviolet rays at high speed before measurement, and a chopper transmission technology that increases and decreases the output in a rectangular wave shape while lighting during measurement. Immediately before the start of measurement, we adopted a technique such as flowing a constant current for a short time after heat dissipation by turning off the lights, and focused on the optimal combination of these procedures. In addition, we tried to improve the light receiving accuracy by removing measurement noise by applying the principle of the lock-in amplifier and stabilizing the measurement point at the top of the rectangular wave. Furthermore, the inventors have come up with a device for finely adjusting the current applied to the solid state light emitting device in order to keep the output attenuated with time constant. The object of the present invention is to control the decrease of the radiant output intensity of the solid state light emitting device with the passage of time, maintain a constant output even with a weak output (μW / cm 2), and stably stably for a long time. To provide an ozone concentration measuring device having a driving method capable of measuring.

上記の課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

本発明であるオゾン濃度測定装置は、200nm〜320nmの波長域を含む紫外線を発光する固体発光素子を光源とする。本装置は、固体発光素子に電流を印加して一定の紫外線放射出力値を得られる上限電流値と下限電流値の間を振幅させながらオゾン濃度を測定するチョッピング駆動計測手段と、直前のオゾン濃度測定において記録した紫外線放射出力値が変動した場合に、一定の紫外線放射出力値となるように上限電流値と前記下限電流値を補正する出力維持補正手段とを有することを特徴とする。   The ozone concentration measuring apparatus according to the present invention uses, as a light source, a solid light-emitting element that emits ultraviolet light including a wavelength region of 200 nm to 320 nm. This apparatus comprises a chopping drive measuring means for measuring the ozone concentration while amplifying between the upper limit current value and the lower limit current value by applying a current to the solid state light emitting element to obtain a constant ultraviolet radiation output value, and the immediately preceding ozone concentration When the ultraviolet radiation output value recorded in the measurement is changed, it has an upper limit current value and an output maintaining correction means for correcting the lower limit current value so as to be a constant ultraviolet radiation output value.

紫外線放射出力値は、紫外線の放射強度であるが、本発明では、放射紫外線を受光した強度センサに与える電圧値として捉える。固体発光素子に電流を印加すると紫外線が放射される。どの程度の電流を印加するとどの程度の紫外線が放射されるかは、固体発光素子の性能特性に基づく。また、放射強度の測定は、強度センサの性能特性や装置仕様に基づく。素子や装置類が理想状態にあるならば、固体発光素子に印加する電流値と受光強度センサが受ける電圧値は一定の相関値を示すが、実際の計測環境においては、差異が生ずる。また、固体発光素子は放射を続けると通常はその出力が低下する。装置類の老朽化や記載環境により、受光強度センサが受ける電圧値も変動する。この対策のために一定の計測環境下において、固体発光素子への印加電流に対する受光強度センサが受ける電圧値を基準値として設定しておき、計測毎に、受光強度センサが受ける電圧値の変動を捉え、固体発光素子への印加電流を調整しながら、固体発光素子の紫外線放射出力を一定に維持する制御が必要になる。この制御を実行する手段が本発明においては、出力維持補正手段になる。また、実施形態では、固体発光素子を「発光素子」と略して呼ぶ。   Although the ultraviolet radiation output value is the radiation intensity of ultraviolet radiation, in the present invention, it is regarded as a voltage value applied to an intensity sensor that has received radiation ultraviolet radiation. When a current is applied to the solid state light emitting device, ultraviolet rays are emitted. How much current is applied and how much ultraviolet light is emitted is based on the performance characteristics of the solid state light emitting device. The measurement of the radiation intensity is based on the performance characteristics of the intensity sensor and the device specifications. If the element or device is in an ideal state, the current value applied to the solid state light emitting element and the voltage value received by the light receiving intensity sensor show a constant correlation value, but there is a difference in the actual measurement environment. In addition, the output of a solid state light emitting device usually decreases as radiation continues. The voltage value received by the light-receiving intensity sensor varies depending on the aging of the devices and the description environment. For this measure, the voltage value received by the received light intensity sensor with respect to the current applied to the solid state light emitting element is set as a reference value in a fixed measurement environment. In other words, it is necessary to control to maintain the ultraviolet radiation output of the solid light emitting element constant while adjusting the current applied to the solid light emitting element. In the present invention, the means for executing this control is output maintaining correction means. In the embodiments, the solid state light emitting device is abbreviated as “light emitting device”.

実際の計測環境では、固体発光素子への印加電流と受光強度センサが受ける電圧値には測定毎にブレが生ずる。前述したが、装置特性に加えて、オゾン等による紫外線の吸光作用が計測環境には存在するからである。本発明では、受光強度センサが受ける電圧値を固定にして、固体発光素子への印加電流の増減により、この調整を行なう。固体発光素子の出力低下に対してもこの選択が有利である。一定の受光強度センサが受ける電圧値に対して、固体発光素子への印加電流は幅があり、その上限電流値と下限電流値を計測電流の閾値とした。一定の受光強度センサが受ける電圧値が、前記した一定の紫外線放射出力値である。   In an actual measurement environment, the current applied to the solid state light emitting element and the voltage value received by the light receiving intensity sensor are blurred each time measurement is performed. As described above, in addition to the apparatus characteristics, an ultraviolet light absorption action by ozone or the like exists in the measurement environment. In the present invention, the voltage value received by the received light intensity sensor is fixed, and this adjustment is performed by increasing / decreasing the current applied to the solid state light emitting device. This selection is also advantageous for a decrease in the output of the solid state light emitting device. The applied current to the solid state light emitting element has a range with respect to the voltage value received by the constant light intensity sensor, and the upper limit current value and the lower limit current value are used as threshold values for the measurement current. The voltage value received by the constant light intensity sensor is the above-described constant ultraviolet radiation output value.

一定の紫外線放射出力値は1個であるが、その値は近似値であってもよい。または、その範囲をある程度の幅を持たせることも可能である。一定の紫外線放射出力値に幅があると、当然、固体発光素子への印加電流値も広くなる。極端な場合には、測定可能な限界値まで広げてもよいが、補正の効果が薄れてくることに注意が必要である。   The fixed ultraviolet radiation output value is one, but the value may be an approximate value. Alternatively, the range can have a certain width. If there is a range in the fixed ultraviolet radiation output value, the applied current value to the solid state light emitting element naturally becomes wider. In extreme cases, it may be extended to a measurable limit, but it should be noted that the effect of the correction is diminished.

固体発光素子の出力低下を抑制することが、本発明の課題である。実験と試行錯誤を通じて、発明者等は固体発光素子への印加電流を上限電流値と下限電流値の間で周期的に振幅させると固体発光素子の出力低下を抑制できることを見出した。この駆動方法は、チョッピングとも言われるが、一般のチョッピングは、点滅であり、本発明は点灯を維持した点が異なる。これが、本発明におけるチョッピング駆動計測手段である。なお、実施形態においては、「点灯式振幅計測」を使用している。   It is an object of the present invention to suppress a decrease in output of a solid state light emitting device. Through experiments and trial and error, the inventors have found that a decrease in output of the solid state light emitting device can be suppressed by periodically amplifying the current applied to the solid state light emitting device between the upper limit current value and the lower limit current value. This driving method is also called chopping, but general chopping is blinking, and the present invention is different in that lighting is maintained. This is the chopping drive measuring means in the present invention. In the embodiment, “lighting type amplitude measurement” is used.

本発明のチョッピング駆動計測手段は、固体発光素子からの紫外線を消灯せずに、上限電流値を上方頂点、下限電流値を下方頂点とする矩形波状に放射させ、上方頂点と前記下方頂点を測定点とすることを特徴とする。   The chopping drive measuring means of the present invention emits a rectangular wave having an upper limit current value as an upper vertex and a lower limit current value as a lower vertex without turning off ultraviolet rays from the solid state light emitting device, and measures the upper vertex and the lower vertex. It is characterized by being a point.

周期振幅を矩形波にすると矩形波の上方頂点と下方頂点は時間的に伸びているので、測定点の把握が楽になる利点がある。   If the periodic amplitude is a rectangular wave, the upper and lower vertices of the rectangular wave extend in time, which has the advantage that the measurement points can be easily grasped.

紫外線放射出力値は、オゾンゼロ状態の測定セルに固体発光素子から放射した紫外線を受光したときの強度センサから得た電圧値である。   The ultraviolet radiation output value is a voltage value obtained from the intensity sensor when ultraviolet light radiated from the solid state light emitting element is received by the measurement cell in a zero ozone state.

本発明においては、1個の強度センサで受光強度を検知している。固体発光素子の放射強度は、紫外線が吸光されなければ、強度センサが受けた強度とみなすことができる。この原理に基づいて、本オゾン濃度測定装置は、測定セル内を真空ポンプでゼロガス状態にして紫外線を照射した時の強度センサの値を検知する。測定セルに試料ガスを充填させ、固体発光素子の放射強度を変えずに放射すると紫外線がオゾンに吸光される。このとき使用した強度センサはゼロガス状態で計測したものと同一であるため、ランベルト・ベールの法則からオゾン濃度が計算できる。強度センサから得る値は電圧値である。本発明の実施形態における紫外線放射出力値の呼び名は「ゼロガス基準値」であり、オゾン計測によって得たゼロガス基準値を「当該ゼロガス基準値」、一定の紫外線放射出力値として、固体発光素子に印加する電流補正の指標となるゼロガス基準値を「確定ゼロガス基準値」と呼ぶ。   In the present invention, the received light intensity is detected by one intensity sensor. The radiation intensity of the solid state light emitting device can be regarded as the intensity received by the intensity sensor if ultraviolet rays are not absorbed. Based on this principle, the present ozone concentration measuring device detects the value of the intensity sensor when the measurement cell is irradiated with ultraviolet rays in a zero gas state with a vacuum pump. When the sample cell is filled with the sample gas and emitted without changing the radiation intensity of the solid state light emitting device, the ultraviolet light is absorbed by ozone. Since the intensity sensor used at this time is the same as that measured in the zero gas state, the ozone concentration can be calculated from the Lambert-Beer law. The value obtained from the intensity sensor is a voltage value. The name of the ultraviolet radiation output value in the embodiment of the present invention is “zero gas reference value”, and the zero gas reference value obtained by ozone measurement is applied to the solid state light emitting device as the “zero gas reference value”, a constant ultraviolet radiation output value. The zero gas reference value that serves as an index for current correction is referred to as a “determined zero gas reference value”.

出力維持補正手段において、上限電流値と下限電流値を補正する補正電流値は、紫外線放射出力値の変動値に応じて予め用意されたリストから抽出する。   In the output maintaining correction means, the correction current value for correcting the upper limit current value and the lower limit current value is extracted from a list prepared in advance according to the fluctuation value of the ultraviolet radiation output value.

前述したように、固体発光素子の放射出力は使用を通じて、低下する傾向にある。これを補うために固体発光素子への印加電流を補正する。この補正電流値は、使用する固体発光素子と強度センサの性能特性及び装置特性による。このため、紫外線放射出力値の変動値に応じて、予め実験等で得た補正電流値をリスト化し、マイクロコンピュータの内蔵メモリ等に記録し、これを利用することが実用的である。ただし、計測環境や装置特性から、このリスト適性が劣化してくるので、マイクロコンピュータ制御の下、測定データを使用して自動的に更新していくことが望ましい。なお、本実施形態においては、上限電流値を「最大点灯電流値」、下限電流値を「最小点灯電流値」と呼ぶ。   As described above, the radiation output of the solid state light emitting device tends to decrease through use. In order to compensate for this, the current applied to the solid state light emitting device is corrected. This correction current value depends on the performance characteristics and device characteristics of the solid-state light emitting element and the intensity sensor to be used. For this reason, it is practical to list the correction current values obtained in advance through experiments or the like according to the fluctuation value of the ultraviolet radiation output value, record it in a built-in memory of the microcomputer, and use it. However, the suitability of the list deteriorates due to the measurement environment and device characteristics. Therefore, it is desirable to automatically update using the measurement data under microcomputer control. In the present embodiment, the upper limit current value is referred to as “maximum lighting current value”, and the lower limit current value is referred to as “minimum lighting current value”.

出力維持補正手段において、前回紫外線放射出力値の増減状態に応じて補正電流値を加減し、連続計測の1回毎に一定の紫外線放射出力値に近づける。   In the output maintenance correction means, the correction current value is adjusted according to the previous increase / decrease state of the ultraviolet radiation output value, and approaches a constant ultraviolet radiation output value for each continuous measurement.

この方法は、前回の計測で得た紫外線放射出力値の変動に対して、リストから補正電流値を参照するのではなく、マイクロコンピュータが差異に応じて、補正電流値の妥当値を計算等の処理によって決定するものである。計測は連続して行なうので、前回の補正電流値が高ければ今回は低くし、計測を繰り返すことにより、次第に一定の紫外線放射出力値に近づけていく方法である。補正電流値を取得するため、予め用意されたリストを利用してもよいが、リストの補正電流値に誤差が出た場合の修正機能になる。また、リストの無い装置であっても、この機能により補正が可能になる。また、計測環境がリストのデータに適合しない場合や、装置劣化により、リストが利用不全になったり、製造上の違いにより、固体発光素子と強度センサの性能特性がかけ離れた状況であったりした場合に便利である。   This method does not refer to the correction current value from the list for the fluctuation of the UV radiation output value obtained in the previous measurement, but the microcomputer calculates the appropriate value of the correction current value according to the difference. It is determined by processing. Since the measurement is performed continuously, if the previous correction current value is high, the current value is reduced this time, and the measurement is repeated until it gradually approaches a certain ultraviolet radiation output value. A list prepared in advance may be used to obtain the correction current value, but this is a correction function when an error occurs in the correction current value of the list. Even if the device does not have a list, correction can be performed by this function. Also, when the measurement environment does not match the list data, when the list becomes unusable due to device deterioration, or when the performance characteristics of the solid state light emitting device and the intensity sensor are far apart due to manufacturing differences Convenient to.

チョッピング駆動計測手段の実行に先立ち、このチョッピング駆動計測手段の実行時間より短い時間の間、固体発光素子を消灯し、その後、この消灯時間より短い時間の間、上限電流値と下限電流値の中間の電流値を印加して固体発光素子をアイドリング駆動させる。   Prior to the execution of the chopping drive measuring means, the solid state light emitting device is turned off for a time shorter than the execution time of the chopping drive measuring means, and then between the upper limit current value and the lower limit current value for a time shorter than the turn-off time. Is applied to drive the solid state light emitting device to idling.

消灯は出力低下の原因となる熱を固体発光素子から放熱させる効果がある。また、チョッピング駆動する直前に、上限電流値と下限電流値の中間となる一定の電流値を印加することは、固体発光素子の電子状態を安定にする効果がある。これが、アイドリング駆動に相当する。消灯と定電流の適切な時間の長さは実験結果から得た。なお、これらの時間は装置環境に依存する。本実施形態では、このアイドリング駆動を「定電流駆動」と呼ぶ。   Turning off the light has an effect of radiating heat that causes a decrease in output from the solid state light emitting device. Further, applying a constant current value that is intermediate between the upper limit current value and the lower limit current value immediately before chopping driving has an effect of stabilizing the electronic state of the solid state light emitting device. This corresponds to idling driving. The appropriate length of time for extinguishing and constant current was obtained from the experimental results. These times depend on the device environment. In the present embodiment, this idling driving is referred to as “constant current driving”.

出力維持補正手段の実行の後、固体発光素子からの紫外線が、補正された上限電流値と電流値ゼロ値の間を周期的に振幅して放射される上限振幅エージング駆動と、次いで補正された下限電流値と電流値ゼロ値の間を周期的に振幅して放射される下限振幅エージング駆動とを実行する。   After execution of the output maintaining correction means, the ultraviolet light from the solid state light emitting element is radiated with a periodic amplitude between the corrected upper limit current value and the current value zero value, and then corrected by the upper limit amplitude aging drive. The lower limit amplitude aging drive is performed, which is radiated with an amplitude periodically between the lower limit current value and the current value zero.

出力維持補正手段を実行すると、固体発光素子に印加する電流値が補正される。オゾン測定に使用する電流値が異なるため、固体発光素子の電子状態を再度調整し、安定にするためにエージングを行なう。   When the output maintaining correction unit is executed, the current value applied to the solid state light emitting element is corrected. Since current values used for ozone measurement are different, aging is performed to adjust the electronic state of the solid state light emitting device again and stabilize it.

本発明は、微弱出力(μW/cm2)であっても、放射出力強度の低下に対して素子に印加する電流値を補正することにより、常に一定の放射出力強度が得られる効果を奏する。 According to the present invention, even if the output is weak (μW / cm 2), it is possible to always obtain a constant radiation output intensity by correcting the current value applied to the element with respect to the decrease in the radiation output intensity.

本発明は、計測前にエージングを実行して固体発光素子の電子状態を活性化させると共に、計測時には、点灯を連続させる矩形波状チョッパ発信により固体発光素子内部の電子が励起状態を繰り返しかつ電子移動も滑らかになるため、時間経過により一方的に出力が減衰する状態を阻止する効果を奏する。 The present invention activates the electronic state of the solid state light emitting device by performing aging before the measurement, and at the time of measurement, the electrons inside the solid state light emitting device repeat the excited state and the electron transfer by the rectangular wave chopper transmission that keeps lighting continuously Therefore, there is an effect of preventing a state where the output is unilaterally attenuated over time.

本発明は、前述した素子への印加電流値の補正による出力一定化と矩形波状チョッパ発信により、固体発光素子を光源として採用したオゾン濃度計測では出来なかった連続計測(24時間連続計測)が可能である。 The present invention enables continuous measurement (24-hour continuous measurement) that was not possible with ozone concentration measurement using a solid-state light-emitting element as a light source by stabilizing the output by correcting the applied current value to the element and transmitting a rectangular wave chopper. It is.

本発明は、微弱出力(μW/cm2)でありながら、矩形波チョッパ駆動を採用しているので、矩形波頂点での測定点が容易に掴め、かつ計測データのサンプル数を増やすことができるため、精度の高い、安定した計測が可能である。 Since the present invention employs rectangular wave chopper driving while having a weak output (μW / cm 2), the measurement point at the rectangular wave apex can be easily grasped and the number of measurement data samples can be increased. Highly accurate and stable measurement is possible.

本発明を実施する窒化物系深紫外半導体発光素子を用いた指向性調整機構式のチョッパ発信方式を用いた紫外線吸収式オゾン濃度測定装置の構成図である。It is a block diagram of the ultraviolet absorption type ozone concentration measuring apparatus using the directivity adjustment mechanism type chopper transmission system using the nitride system deep ultraviolet semiconductor light-emitting device which implements this invention. 本発明を実施する窒化物系深紫外半導体発光素子を用いた指向性調整機構の構成図である。It is a block diagram of the directivity adjustment mechanism using the nitride type deep ultraviolet semiconductor light-emitting device which implements this invention. 本発明を実施するチョッパ発信方式による窒化物系深紫外半導体発光素子を用いた発信波形である。It is a transmission waveform using the nitride type deep ultraviolet semiconductor light emitting element by the chopper transmission system which implements this invention. 本発明に使用した窒化物系深紫外半導体発光素子を用いた実験から基準駆動電流値と放射出力強度の関係をグラフにしたものである。FIG. 5 is a graph showing the relationship between the reference drive current value and the radiation output intensity from an experiment using the nitride-based deep ultraviolet semiconductor light emitting device used in the present invention. 本発明の点灯式振幅計測の模式図である。It is a schematic diagram of lighting type amplitude measurement of the present invention. 点灯式振幅計測で、正弦波を使用した場合の減衰を表したグラフである。It is a graph showing attenuation at the time of lighting type amplitude measurement and using a sine wave. 本発明の出力強度低下補正、出力安定化手段をフローチャートで表したものである。The output intensity reduction correction and output stabilization means of the present invention are shown in a flowchart. 本発明による時間経過に伴う出力の状態を表したものである。It shows the state of output over time according to the present invention. 点滅式短周期振幅駆動(最大)の模式図である。It is a schematic diagram of blink type short period amplitude drive (maximum). 点滅式短周期振幅駆動(最小)の模式図である。It is a schematic diagram of blink type short period amplitude drive (minimum).

本発明は、Hartley帯(200〜320nm)の紫外線を利用した紫外線吸収式オゾン濃度測定に関するものである。本発明においては、受光強度を検知する1個の強度センサ103が、紫外線がオゾンに吸光される前の発光強度(数式1に表されたランベルト・ベールの法則における入射光の放射出力強度(I))とオゾンに吸光された紫外線強度(同様に透過光の放射出力強度(O))の両方を検知する。入射光の放射出力強度(I)は、測定セル105内をゼロガス状態にして紫外線を照射した時の強度センサ103の検知する電圧値がオゾンの影響を受けていない入射光の放射出力強度とみなされ、マイクロコンピュータ114に入力される。これがオゾンゼロ基準値の設定処理である。オゾンゼロ基準値はオゾンによる吸光のない放射出力強度であるため、常に一定の強度を示すことが望ましい。しかし、発光素子201は使用を継続すると時間と共に出力がばらつくので(通常は低下傾向)、オゾンゼロ基準値に基づいて発光素子201に印加する電流値を加減してこの強度を一定にする。 The present invention relates to an ultraviolet absorption ozone concentration measurement using ultraviolet rays in the Hartley band (200 to 320 nm). In the present invention, one intensity sensor 103 for detecting the received light intensity is used to detect the emission intensity before the ultraviolet light is absorbed by ozone (the radiant output intensity of the incident light (Lambert-Beer's law expressed in Equation 1) (I )) And the intensity of ultraviolet light absorbed by ozone (similarly, the radiant output intensity (O) of transmitted light) is detected. The radiant output intensity (I) of incident light is regarded as the radiant output intensity of incident light that is not affected by ozone because the voltage value detected by the intensity sensor 103 when the measurement cell 105 is in a zero gas state and irradiated with ultraviolet rays. And input to the microcomputer 114. This is the ozone zero reference value setting process. Since the ozone zero reference value is a radiation output intensity without absorption by ozone, it is desirable to always show a constant intensity. However, since the output of the light emitting element 201 varies with time (usually decreasing) as the light emitting element 201 continues to be used, the current value applied to the light emitting element 201 is adjusted based on the ozone zero reference value to make this intensity constant.

発光素子201を点灯させた後、時間経過に従って素子の発光出力が低下するのは、素子内部の電子の移動が滑らかでないために抵抗が起き、発熱することが原因である。本発明では、発光素子201の駆動方法について様々な実験を行なった。その結果、発光素子201に加える電流を周期的に振幅させると一定範囲内の出力を持続させることができることがわかった。この駆動方法に更に実験と工夫を加え、本発明の出力安定化手段として採用した。この出力安定化手段は、マイクロコンピュータ114の指令により、発光素子機構118が発光素子201の駆動を制御することにより実現する。 The reason why the light emission output of the element decreases with the lapse of time after the light emitting element 201 is turned on is that resistance is generated and heat is generated because the movement of electrons inside the element is not smooth. In the present invention, various experiments were conducted on the driving method of the light emitting element 201. As a result, it was found that when the current applied to the light emitting element 201 is periodically amplified, the output within a certain range can be maintained. This driving method was further experimented and devised, and was adopted as the output stabilization means of the present invention. This output stabilization means is realized by the light emitting element mechanism 118 controlling the driving of the light emitting element 201 in accordance with a command from the microcomputer 114.

本発明では発光素子201の駆動に極力微弱な電流を使用し、低濃度のオゾンを計測することを特徴としている。ただし、前述したように微弱な電流を使用する場合には、放射強度が弱いため、照射した紫外線がオゾンに全吸収されるようなオゾン濃度環境では計測できない。従って、本発明のオゾン濃度計測装置は、計測対象のオゾン濃度の範囲が定められていることが前提である。更に、発光素子201の能力、受光する強度センサ103の感度等の利用機器の性能に応じて計測能力の限度が定まる。発光素子201は発光を継続すると通常は徐々に放射出力が変化する(通常は低下)。放射出力を復帰させるために発光素子201に印加する電流の強度を調整する必要がある。前述した出力安定化手段は、一定の放射出力を維持させるための放射出力調整手段とも言える。調整ができるためには機器の性能を目一杯使用するのではなく、余裕のある範囲で使用されねばならない。このように一定の放射出力は、発光素子201に印加する一定の電流から得られるとは限らず、電流の強さに幅がある。即ち、一定の放射出力値を維持する電流の幅が計測電流の閾値になる。本発明では閾値の上限を最大点灯電流値309、下限を最小点灯電流値310と呼ぶ。また、その中間値を基準駆動電流値311と呼ぶ。前述のように、これらの値は、計測機器環境に基づくため、本発明においては、実験を通じてその値を定めた。実際は、実施例を参照されたい。 The present invention is characterized by using a weak current as much as possible to drive the light emitting element 201 and measuring low-concentration ozone. However, when a weak current is used as described above, since the radiation intensity is weak, it cannot be measured in an ozone concentration environment where the irradiated ultraviolet rays are completely absorbed by ozone. Therefore, the ozone concentration measuring device of the present invention is premised on that the ozone concentration range to be measured is defined. Furthermore, the limit of the measurement capability is determined according to the performance of the utilization device such as the capability of the light emitting element 201 and the sensitivity of the intensity sensor 103 that receives light. As the light emitting element 201 continues to emit light, the radiation output usually changes gradually (usually decreases). In order to restore the radiation output, it is necessary to adjust the intensity of the current applied to the light emitting element 201. The output stabilizing means described above can be said to be a radiation output adjusting means for maintaining a constant radiation output. In order to be able to make adjustments, the equipment must be used in a marginal range, not at full capacity. As described above, the constant radiation output is not necessarily obtained from the constant current applied to the light emitting element 201, and the current intensity varies. That is, the current width that maintains a constant radiation output value becomes the threshold value of the measurement current. In the present invention, the upper limit of the threshold is called the maximum lighting current value 309 and the lower limit is called the minimum lighting current value 310. The intermediate value is referred to as a reference drive current value 311. As described above, since these values are based on the measurement equipment environment, in the present invention, the values are determined through experiments. In fact, see the examples.

出力安定化手段は、主要な機能として点滅式短周期振幅駆動(最大)301と点滅式短周期振幅駆動(最小)302という2タイプのエージング駆動と、吸光度を測定する点灯式振幅計測304があり、発光素子機構118の制御により動作する。点滅式短周期振幅駆動(最大)301は、最大点灯電流値309と電流ゼロ(消灯)の間を一定周期(正弦波状)で点滅させるエージング機能である。一方、点滅式短周期振幅駆動(最小)302は、最小点灯電流値310と電流ゼロ(消灯)の間を一定周期(正弦波状)で点滅させるエージング機能である。点灯式振幅計測304は、点灯状態を保ちつつ、計測電流の閾値間(最大点灯電流値309と最小点灯電流値310の間)を矩形波状にチョッピングサイクルを高速に繰り返し、最大電流時と最小電流時の両方の状態から紫外線の吸光計測値を得る機能である。また、点灯式振幅計測304を実行する前に、ゼロガス計測、試料ガス計測共、消灯(1)306と定電流駆動(2)307が先行して実行される。消灯(1)306は、発光素子201の電子状態を静めて放熱させる役割がある。定電流駆動(2)307は、消灯の電流ゼロ状態から発光素子201に電流を印加し、基準駆動電流値311に到達したら電流値を一定にする役割がある。消灯と基準駆動電流値311の一定電流の組合せも出力の安定化を補助的に助ける機能であり、出力安定化手段の一部であり、発光素子機構118が制御する。 The output stabilization means has two types of aging drive, a flashing short cycle amplitude drive (maximum) 301 and a flashing short cycle amplitude drive (minimum) 302, and a lighting type amplitude measurement 304 that measures absorbance as main functions. It operates under the control of the light emitting element mechanism 118. The blinking short cycle amplitude drive (maximum) 301 is an aging function that blinks between the maximum lighting current value 309 and zero current (lights off) at a constant cycle (sinusoidal). On the other hand, the blinking short cycle amplitude drive (minimum) 302 is an aging function that blinks between the minimum lighting current value 310 and the current zero (off) at a constant cycle (sinusoidal). The lighting type amplitude measurement 304 repeats a chopping cycle in a rectangular waveform at high speed between the thresholds of the measured current (between the maximum lighting current value 309 and the minimum lighting current value 310) while maintaining the lighting state, and at the maximum current and the minimum current. This is a function to obtain an ultraviolet absorption measurement value from both states. Further, before the lighting type amplitude measurement 304 is executed, the extinction (1) 306 and the constant current drive (2) 307 are executed in advance for both the zero gas measurement and the sample gas measurement. The light extinction (1) 306 has a role of calming the electronic state of the light emitting element 201 to dissipate heat. The constant current drive (2) 307 has a role of applying a current to the light emitting element 201 from a zero current state of extinguishing and making the current value constant when the reference drive current value 311 is reached. The combination of the turn-off and the constant current of the reference drive current value 311 is also a function that assists in stabilizing the output, is a part of the output stabilization means, and is controlled by the light emitting element mechanism 118.

また、本発明ではゼロガス計測によりオゾン吸光作用のない放射出力値を得て、次いで試料ガス計測によりオゾン吸光作用を受けた放射出力値を得て、この2つの放射出力値をランベルト・ベールの法則に基づきオゾン濃度を計算している。このゼロガス計測と試料ガス計測の2連の計測を繰り返し、濃度データのリストが得られる。計測は長時間を必要とするが、計測中の発光素子201の出力は変動し、この変動を抑止しなければならない。出力変動に対しては発光素子201に印加する電流量を調整してその出力を維持することができる。本発明はゼロガス計測時に得たゼロガス基準値(吸光の無い受光時の強度センサ103の電圧値)を出力維持の基準値に利用している。即ち、出力安定化手段の処理機能として、組み込んである。計測の初回に得たゼロガス基準値を確定値として記録しておき、計測サイクル毎に当該ゼロガス基準値と比較し、確定しているゼロガス基準値に復帰するように、駆動電流値を調整する。このために「発光素子201の放射強度を調整する印加電流量」を計測装置の性能特性に応じた実験を厳密に行い取得した。低下した出力(通常は低下する)を確定ゼロガス基準値に基づき補正する。この補正は前述した計測電流の閾値と基準駆動電流値311にも及ぶ。このようにして、最大点灯電流値309と最小点灯電流値310も補正され、僅かに発生した素子の出力低下も一定の値に戻すことができ、発光素子201は長時間安定した放射出力強度を維持することができる。以上説明した「ゼロガス基準値による出力調整機能」は出力安定化手段の中核機能であり、マイクロコンピュータ114の制御により実現する。 Further, in the present invention, a radiation output value having no ozone absorption action is obtained by zero gas measurement, and then a radiation output value receiving ozone absorption action is obtained by sample gas measurement, and these two radiation output values are calculated by Lambert-Beer law. Based on this, the ozone concentration is calculated. This zero gas measurement and sample gas measurement are repeated twice to obtain a list of concentration data. Although measurement requires a long time, the output of the light emitting element 201 during measurement varies, and this variation must be suppressed. With respect to output fluctuation, the amount of current applied to the light emitting element 201 can be adjusted to maintain the output. In the present invention, the zero gas reference value (voltage value of the intensity sensor 103 at the time of light reception without absorption) obtained at the time of zero gas measurement is used as a reference value for maintaining output. That is, it is incorporated as a processing function of the output stabilization means. The zero gas reference value obtained at the first measurement is recorded as a fixed value, compared with the zero gas reference value for each measurement cycle, and the drive current value is adjusted so as to return to the fixed zero gas reference value. For this purpose, the “applied current amount for adjusting the radiation intensity of the light emitting element 201” was obtained by conducting an experiment in accordance with the performance characteristics of the measuring apparatus. The reduced output (usually reduced) is corrected based on the fixed zero gas reference value. This correction extends to the measurement current threshold and the reference drive current value 311 described above. In this way, the maximum lighting current value 309 and the minimum lighting current value 310 are also corrected, and a slight decrease in the output of the element can be returned to a constant value, and the light emitting element 201 has a stable radiation output intensity for a long time. Can be maintained. The “output adjustment function based on the zero gas reference value” described above is a core function of the output stabilization means, and is realized by the control of the microcomputer 114.

図7は本発明の出力安定化手段を構成する各種駆動を組合せ実行させることによってオゾン測定を実施する一例を表したフローチャートである。図7について順次説明する。 FIG. 7 is a flowchart showing an example in which ozone measurement is performed by combining and executing various drives constituting the output stabilization means of the present invention. 7 will be sequentially described.

S701は実行初期値の取り出し処理である。オゾン濃度測定に当たり、計測環境に基づく初期値及び設定値をマイクロコンピュータ114の不揮発記憶部(図示せず)から取り出し、揮発記憶部(図示せず)のワークエリアに展開する。これらには、オゾン濃度を計測する測定時間(例えば1時間)、ゼロガス基準値設定の繰り返し回数(例えば10回)と試料ガス計測の繰り返し回数(例えば10回)である計測サイクル回数、当該計測機器の能力から予め指定された測定可能閾値(最大点灯電流値309(例えば9.1mA)と最小点灯電流値310(例えば8.9mA))及び基準駆動電流値311(例えば9.0mA)、真空ポンプ作動時間(例えば15秒)等を設定する。その他、点滅式短周期振幅駆動(最大)301と点滅式短周期振幅駆動(最小)302によるエージングを行なう時の繰り返し回数(正弦波の周波数)とその実行時間や、消灯(1)306,消灯(2)308や定電流駆動(1)305,定電流駆動(2)307の実行時間、点灯式振幅計測304における繰り返し回数(矩形波の周波数)とその実行時間もマイクロコンピュータ114の不揮発記憶部に装置固有の稼動値として予め設定しておいてもよい。 S701 is an execution initial value extraction process. In measuring the ozone concentration, initial values and set values based on the measurement environment are taken out from the nonvolatile storage unit (not shown) of the microcomputer 114 and developed in the work area of the volatile storage unit (not shown). These include measurement time for measuring ozone concentration (for example, 1 hour), number of repetitions of setting zero gas reference value (for example, 10 times), number of measurement cycles for sample gas measurement (for example, 10 times), Predeterminable measurable threshold values (maximum lighting current value 309 (eg 9.1 mA) and minimum lighting current value 310 (eg 8.9 mA)) and reference drive current value 311 (eg 9.0 mA), vacuum pump An operating time (for example, 15 seconds) is set. In addition, the number of repetitions (the frequency of the sine wave) and the execution time when performing aging by the flashing short cycle amplitude drive (maximum) 301 and the flashing short cycle amplitude drive (minimum) 302, the extinction (1) 306, the extinction (2) The execution time of 308, constant current drive (1) 305, constant current drive (2) 307, the number of repetitions (frequency of the rectangular wave) in the lighting type amplitude measurement 304 and the execution time thereof are also stored in the nonvolatile storage unit of the microcomputer 114. May be set in advance as an operation value unique to the apparatus.

計測サイクルが初回かをチェックする(S702)。初回であれば、まだ、オゾンゼロ基準値も入手できておらず、前の計測結果と比較し、調整する必要はない。発光素子201の基準駆動電流値311等、予め決められた値により発光素子201を駆動させればよい。それらの処理を実行せず、S704にいく。   It is checked whether the measurement cycle is the first time (S702). If it is the first time, the ozone zero reference value is not yet available, and there is no need to adjust it compared to the previous measurement result. The light emitting element 201 may be driven with a predetermined value such as the reference drive current value 311 of the light emitting element 201. Those processes are not executed, and the process goes to S704.

S703は、ゼロガス基準値による出力調整機能であり、出力安定化手段の中核機能である。前回の計測で取得した当該ガスゼロ基準値を確定ガスゼロ基準値と比較し、発光素子201の出力変動(低下)を元の放射出力に補正する処理である。この補正は、低下した程度に応じて、201に印加する基準駆動電流を変更することにより実現する。通常は低下した出力に対して基準駆動電流を増加するがその量は前述したように装置性能特性に依存する。その値は、実験値から予め取得する。ただし、一定量を増加し、次回の計測の結果により、基準駆動電流値311を増減する方法でもかまわない。電流の増減に従い、計測電流の閾値(最大・最小電流値)も補正される。これらの補正された基準駆動電流値311と閾値はワークエリアに更新し格納する。なお、本処理では確定ガスゼロ基準値は初回計測による取得した値でありその後の比較基準値として固定されるが、場合により、何度目かのテスト計測後に確定してもよい。また、初回計測では、基準駆動電流値311等の変動要素は装置性能特性により予め指定されており、S710の処理にてワークエリアに格納されている。従って、基準駆動電流値311等の更新処理は無い。   S703 is an output adjustment function based on the zero gas reference value, and is a core function of the output stabilization means. In this process, the gas zero reference value acquired in the previous measurement is compared with the determined gas zero reference value, and the output fluctuation (decrease) of the light emitting element 201 is corrected to the original radiation output. This correction is realized by changing the reference drive current applied to 201 in accordance with the degree of decrease. Normally, the reference drive current is increased with respect to the lowered output, but the amount depends on the device performance characteristics as described above. The value is obtained in advance from experimental values. However, a method of increasing the fixed amount and increasing or decreasing the reference drive current value 311 according to the result of the next measurement may be used. As the current increases or decreases, the threshold (maximum / minimum current value) of the measured current is also corrected. These corrected reference drive current value 311 and threshold value are updated and stored in the work area. In this process, the definite gas zero reference value is a value acquired by the first measurement and is fixed as a subsequent comparison reference value. However, in some cases, it may be confirmed after several test measurements. Further, in the initial measurement, variable elements such as the reference drive current value 311 are designated in advance by the device performance characteristics, and are stored in the work area in the process of S710. Therefore, there is no update process for the reference drive current value 311 or the like.

指定された時間、真空ポンプ107を作動させ、測定セル105内をゼロガス状態にする(S704)。 The vacuum pump 107 is operated for a specified time, and the measurement cell 105 is brought into a zero gas state (S704).

S705においてエージング駆動を実行する。エージングは素子をゆさぶり、電子の流れを安定させる効果がある。本発明においては、一定の放射出力値を維持する計測電流の閾値の上限である最大点灯電流値309と下限である最小点灯電流値310それぞれについて電流0の状態との間でチョッピングを実行する。まず、発光素子201に対して、最大点灯電流値309を上方の頂点、電流0値(消灯)を下方の頂点として振幅を周期的に繰り返す正弦波状に電流を印加する。発光素子201は計測電流の閾値の上限の電流による発光と消灯が繰り返され、素子の電子状態がゆさぶられる。この実行時間や周波数はS701で初期設定された値を使用する。正弦波の代わりに矩形波(擬似正弦波)を使用してもよい。この駆動を点滅式短周期振幅駆動(最大)301と呼ぶ。
この最大電流のエージングが終了したら、点滅式短周期振幅駆動(最小)302と呼ぶエージングを実行する。閾値の下限値と電流0を頂点とする以外、その動作仕様は同じである。
In step S705, aging drive is executed. Aging has the effect of shaking the device and stabilizing the flow of electrons. In the present invention, chopping is performed between the maximum lighting current value 309 that is the upper limit of the threshold value of the measurement current that maintains a constant radiation output value and the minimum lighting current value 310 that is the lower limit between the current zero state. First, a current is applied to the light emitting element 201 in a sine wave shape having a maximum lighting current value 309 as an upper vertex and a current 0 value (light extinction) as a lower vertex, with the amplitude periodically repeating. The light emitting element 201 repeats light emission and extinction due to the current at the upper limit of the threshold value of the measurement current, and the electronic state of the element is shaken. As the execution time and frequency, the values initially set in S701 are used. A rectangular wave (pseudo sine wave) may be used instead of the sine wave. This driving is called blinking short period amplitude driving (maximum) 301.
When the aging of the maximum current is completed, aging called flashing short period amplitude drive (minimum) 302 is executed. The operation specifications are the same except that the lower limit of the threshold value and the current 0 are set as the apexes.

図9は点滅式短周期振幅駆動(最大)の模式図である。最大点灯電流値(最大点灯)と消灯を繰り返し、光強度を振幅させる状態を模式的に示している。点滅式短周期振幅駆動(最大)は素子に印加する電流値を0mA(LED消灯)と最大点灯電流値(LED最大点灯)を短周期で繰り返し振幅させ素子に負荷を加える事で素子に流れる電流を安定させる事を目的としている。 FIG. 9 is a schematic diagram of flashing short period amplitude driving (maximum). The state in which the maximum lighting current value (maximum lighting) and the extinction are repeated and the light intensity is amplified is schematically shown. Flashing short-period amplitude drive (maximum) is a current that flows to the element by applying a load to the element by repeatedly amplifying the current value applied to the element to 0 mA (LED off) and the maximum lighting current value (LED maximum lighting) in a short period. The purpose is to stabilize.

図10は点滅式短周期振幅駆動(最小)の模式図である。点滅式短周期振幅駆動(最小)は素子を消灯と最小点灯電流値(LED最小点灯)を行い、目的は、前述した点滅式短周期振幅駆動(最大)と同じで素子に負荷を加える事で素子に流れる電流を安定させる事を目的としている。 FIG. 10 is a schematic diagram of blinking short cycle amplitude driving (minimum). The flashing short cycle amplitude drive (minimum) turns off the element and performs the minimum lighting current value (LED minimum lighting). The purpose is the same as the flashing short cycle amplitude drive (maximum) described above, by applying a load to the element. The purpose is to stabilize the current flowing through the element.

図7に戻る。S706からS711は、ゼロガス基準値を決定するステップであり、ゼロガス計測の手段を形成する。S701の初期処理で指定された回数を繰り返す。取得されたゼロガス基準値複数から1個のゼロガス基準値を確定する。確定の方法は、平均値でもよいし、標準偏差を適用してもよい。また、特定回の値や最も多い値を選択してもよい。   Returning to FIG. S706 to S711 are steps for determining a zero gas reference value, and form means for zero gas measurement. The number of times designated in the initial processing of S701 is repeated. One zero gas reference value is determined from a plurality of acquired zero gas reference values. The determination method may be an average value or a standard deviation. Also, a specific value or the most frequent value may be selected.

ゼロガス計測を行なう前に、発光素子201を消灯(1)306して素子の電子状態を静めて放熱を行なう。出力の安定化を補助的に助ける機能である。消灯する時間はS701の指定時間による(S707)。 Prior to zero gas measurement, the light emitting element 201 is turned off (1) 306 to calm the element's electronic state and release heat. This function assists the stabilization of output. The turn-off time depends on the designated time in S701 (S707).

消灯の電流ゼロの静まった電子状態から発光素子201に電流を印加していく。基準駆動電流値311に到達したら電流値を一定に持続させる。これが定電流駆動(2)307であり、出力の安定化を補助的に助ける機能である。持続時間はS701の指定時間による(S708)。 A current is applied to the light-emitting element 201 from a static electronic state in which the extinguishing current is zero. When the reference drive current value 311 is reached, the current value is kept constant. This is the constant current drive (2) 307, which is a function that assists in stabilizing the output. The duration depends on the designated time in S701 (S708).

S709は、オゾンゼロの状態になった測定セル105に紫外線照射の受光強度を電圧値として取得するステップである。点灯式振幅計測304の計測方法が取られる。点灯式振幅計測304は、点灯状態を保ちつつ、計測電流の閾値間(最大点灯電流値309と最小点灯電流値310の間)を矩形波状にチョッピングサイクルを高速に繰り返し、閾値の上限と下限の時に紫外線の吸光計測値を得る。この値は記録される。このステップにおける計測時間と周波数は
S701にて指定される。
S709 is a step of acquiring the received light intensity of ultraviolet irradiation as a voltage value in the measurement cell 105 in a state of zero ozone. The measuring method of the lighting type amplitude measurement 304 is taken. The lighting type amplitude measurement 304 repeats a chopping cycle between the measured current threshold values (between the maximum lighting current value 309 and the minimum lighting current value 310) in a rectangular waveform at high speed while maintaining the lighting state. Sometimes an ultraviolet absorbance measurement is obtained. This value is recorded. The measurement time and frequency in this step are specified in S701.

図5に点灯式振幅計測304における発光の矩形波の模式図を載せた。発光素子201に最大点灯電流値309を上方の頂点、最小点灯電流値310を下方の頂点として一定時間、矩形波状に電流を印加する。消灯せず、点灯を続けたままチョッピングする特徴を持つ。従来の機械的方法の回転ディスク式では出来なかった点灯させながらのチョッパ発信である。光を点灯させているので、光強度の立ち上がりが滑らかになり、強度が安定する事ができ、特に微小オゾン計測の場合の、ゼロガス状態と試料ガス状態の電圧値の差が僅かな場合でも、最小点灯電流値310が微小変化を感知することができる。 FIG. 5 is a schematic diagram of a light emitting rectangular wave in the lighting type amplitude measurement 304. A current is applied to the light emitting element 201 in the form of a rectangular wave for a certain period of time with the maximum lighting current value 309 as the top vertex and the minimum lighting current value 310 as the bottom vertex. It has the feature of chopping while turning on without turning off. It is a chopper transmission while turning on the light, which was not possible with the conventional rotating disk type mechanical method. Since the light is turned on, the rise of the light intensity becomes smooth and the intensity can be stabilized.Especially in the case of micro ozone measurement, even when the difference between the voltage values of the zero gas state and the sample gas state is slight, The minimum lighting current value 310 can detect a minute change.

図7に戻る。測定データはマイクロコンピュータ114制御下にある記録装置(図示せず)に記録される。測定データはそのまま解析処理に持ち込んでもよい。また、有意なデータを選別し、測定値としてあげてもよい(S710)。   Returning to FIG. The measurement data is recorded in a recording device (not shown) under the control of the microcomputer 114. The measurement data may be brought into the analysis process as it is. Further, significant data may be selected and given as a measured value (S710).

S712は、計測が正常にできたかを判定するステップである。オゾンゼロにするための処理なので、一定時間が経過すれば、測定値はほぼ同一の値を示すはずである。従って、測定データのばらつきが激しい場合、一定値が継続しない場合などが異常とみなすことができる。異常が発生した場合には計測を停止し、異常終了を告げる(S713)。   S712 is a step of determining whether or not the measurement has been normally performed. Since it is a process for reducing ozone to zero, the measured value should show almost the same value after a certain period of time. Therefore, it can be regarded as abnormal when the variation in measurement data is severe or when a constant value does not continue. If an abnormality occurs, the measurement is stopped and the abnormal end is notified (S713).

正常にゼロガス計測が終了したら、統計的手法等を利用して、適切な測定値を選別する。この値が当該ゼロガス基準値である。この値は、次の計測で発光素子201の出力補正(S703)で使用するため、ワークエリアに格納保存する(S714)。   When zero gas measurement is completed normally, an appropriate measurement value is selected using a statistical method or the like. This value is the zero gas reference value. This value is stored and saved in the work area (S714) for use in output correction (S703) of the light emitting element 201 in the next measurement.

当該ゼロガス計測が初回であったか判定する。初回であれば、確定ゼロガス基準値の設定が必要である(S715)。初回の場合にはS710へいく。   It is determined whether the zero gas measurement is the first time. If it is the first time, it is necessary to set a fixed zero gas reference value (S715). If this is the first time, go to S710.

初回計測なので、当該ゼロガス基準値は、確定ゼロガス基準値になる。当該ゼロガス基準値を確定ゼロガス基準値としてワークエリアに格納保存する(S716)。   Since this is the first measurement, the zero gas reference value is a fixed zero gas reference value. The zero gas reference value is stored and saved in the work area as a confirmed zero gas reference value (S716).

真空ポンプ107を駆動させたままで、電磁弁106を開け試料ガス入口側108から試料ガスを測定セル105内に流入させる。測定セル105内をゼロガス状態から試料ガス状態になる切り替え時間は初期設定で指定される(S717)。 While the vacuum pump 107 is driven, the electromagnetic valve 106 is opened, and the sample gas is allowed to flow into the measurement cell 105 from the sample gas inlet side 108. The switching time from the zero gas state to the sample gas state in the measurement cell 105 is specified by the initial setting (S717).

S718からS723は、オゾン濃度測定のための試料ガスの受光強度を計測するステップであり、試料ガス計測の手段を形成する。S701の初期処理で指定された回数を繰り返し、取得された試料ガス測定値複数が記録される。1個の測定値を確定する場合には、平均値でもよいし、標準偏差を適用してもよい。また、特定回の値や最も多い値を選択してもよい。取得データ及び測定されたオゾン濃度については、本発明であるオゾン濃度測定装置の利用分野の意図に任される。また、試料ガス計測を行なう前に、S719の消灯、S720の定電流駆動、S721の点灯式振幅計測304及びS722の処理はゼロガス計測のステップと同様の仕様になる。   S718 to S723 are steps for measuring the light receiving intensity of the sample gas for measuring the ozone concentration, and form means for measuring the sample gas. The number of sample gas measurement values acquired is recorded by repeating the number of times designated in the initial processing of S701. When determining one measurement value, an average value or a standard deviation may be applied. Also, a specific value or the most frequent value may be selected. The acquired data and the measured ozone concentration are left to the intention of the application field of the ozone concentration measuring apparatus according to the present invention. Further, before performing the sample gas measurement, the light emission in S719, the constant current drive in S720, the lighting type amplitude measurement 304 in S721, and the processing in S722 have the same specifications as the zero gas measurement step.

S724は、計測が正常にできたかを判定するステップである。試料ガスであってもほぼ同一の測定値を示すはずである。従って、測定データのばらつきが激しい場合、一定値が継続しない場合などが異常とみなすことができる。ただし、オゾンゼロ値と同じ値になった場合は、実際にオゾンゼロである可能性もあるので異常とはしない。また、オゾン濃度が高すぎて全紫外線が吸光された場合も異常と判定する。また、計測電流の閾値の下限値における最小点灯電流値310のデータに異常な値のデータが多数あった場合もオゾン濃度が低すぎるか、閾値設定がうまくいかないシステム障害とみなすことができ、異常と判断する。異常が発生した場合には計測を停止し、異常終了を告げる(S725)。   S724 is a step of determining whether the measurement has been normally performed. Even the sample gas should show almost the same measured value. Therefore, it can be regarded as abnormal when the variation in measurement data is severe or when a constant value does not continue. However, when the value is the same as the ozone zero value, there is a possibility that the ozone is actually zero. Also, when the ozone concentration is too high and all ultraviolet rays are absorbed, it is also determined as abnormal. In addition, if there is a lot of abnormal value data in the minimum lighting current value 310 in the lower limit value of the measured current threshold value, it can be considered that the ozone concentration is too low, or the system failure that the threshold value setting is not successful. to decide. If an abnormality occurs, the measurement is stopped and the abnormal end is notified (S725).

S726は、計測サイクルの終了を判断している。計測時間が終了になっていない場合には、再度計測を行なう(S727)。   In S726, the end of the measurement cycle is determined. If the measurement time has not ended, measurement is performed again (S727).

本発明は、発光素子201から発する紫外線の向き調整を行う事に特徴があり、発光素子201の時間経過にともなう放射出力強度の低下を間接的ではあるが抑えることができる。 The present invention is characterized in that the direction of ultraviolet rays emitted from the light emitting element 201 is adjusted, and a decrease in the radiant output intensity of the light emitting element 201 with the passage of time can be suppressed indirectly.

発光素子201の組み立ては、素子を点灯させ紫外線の照射の向きを確認しながら素子の組み立てを行っていない。その為、機械的精度のみの組み立ては、紫外線の照射の向きを制御できず、装置に照射されて劣化に影響していた。 The light emitting element 201 is not assembled while the element is turned on and the direction of ultraviolet irradiation is confirmed. For this reason, the assembly with only mechanical accuracy cannot control the direction of irradiation of ultraviolet rays, and the apparatus is irradiated to affect the deterioration.

発光素子201の紫外線の向きを制御する為にLEDメーカーは、素子にレンズを取り付けて販売しており、カタログには平行光(±6度)、分散光等の紫外線が一定の精度で照射できる事が出来る記載があり、レンズを取り付けることで、紫外線の向きが制御され販売されている。 In order to control the direction of the ultraviolet rays of the light emitting element 201, LED manufacturers have attached lenses to the elements for sale, and the catalog can irradiate ultraviolet rays such as parallel light (± 6 degrees) and dispersed light with a certain accuracy. There is a description that can be done, and by attaching a lens, the direction of ultraviolet rays is controlled and sold.

しかし、僅かな光の向きのズレまでは制御されておらず、照射される紫外線は、例えば、平行レンズを使用した場合には中心部と外周部の放射出力強度の違いとして現れてくる。また、光が平行レンズに対して直角に入射されず、入射角のずれは、平行レンズの性能が発揮されず、光が平行光に変換されず、レンズを通過した光がズレた状態では、測定セルにすべての光が入らず漏れた光が装置に照射されてしまう。 However, even a slight deviation in the direction of light is not controlled, and the irradiated ultraviolet light appears as a difference in radiant output intensity between the central portion and the outer peripheral portion when, for example, a parallel lens is used. In addition, the light is not incident on the parallel lens at a right angle, and the deviation of the incident angle does not exhibit the performance of the parallel lens, the light is not converted into parallel light, and the light passing through the lens is shifted, All light does not enter the measurement cell, and the leaked light is irradiated to the apparatus.

その結果、光の向きズレが原因で強度センサに紫外線が照射されずに放射出力強度の減少として現れ、発光素子201に印加する電流値を上げる事になっていた。 As a result, the intensity sensor is not irradiated with ultraviolet rays due to the deviation in the direction of light, and appears as a decrease in the radiation output intensity, and the current value applied to the light emitting element 201 is increased.

結果として、本来、発光素子201に印加する必要がない電流値を増加させる事となり、素子ダメージに繋がり、素子の性能が悪化し、時間経過とともに放射出力強度が低下していく事に間接的に繋がっていた。 As a result, the current value that does not need to be applied to the light emitting element 201 is increased, leading to element damage, the performance of the element deteriorates, and the radiation output intensity decreases with time. It was connected.

本発明によれば、発光素子201から発する光が光学フィルタで単一波長の紫外線となった後、紫外線の向きを左右方向、上下方向に調整する事に特徴がある。 According to the present invention, after the light emitted from the light-emitting element 201 is converted to ultraviolet light having a single wavelength by the optical filter, the direction of the ultraviolet light is adjusted in the horizontal direction and the vertical direction.

本発明は、左右方向、上下方向、前後方向の指向性調整治具で紫外線の向きを調整する方法であるが、市販されている手動のステージガイドを用いて傾斜方向、回転方向、多軸方向、直動方向を組み合わせて光の向きを調整してもよい。微調整の方法は、一般的にはマイクロメーターヘッド付きを用いるが、ファインピッチスクリュー付きでも構わない。 The present invention is a method for adjusting the direction of ultraviolet rays with a directivity adjustment jig in the left-right direction, the up-down direction, and the front-rear direction, but using a commercially available manual stage guide, the tilt direction, the rotation direction, and the multi-axis direction The direction of light may be adjusted by combining the linear motion directions. A fine adjustment method is generally used with a micrometer head, but a fine pitch screw may be used.

また、市販されているカタログに記載された平行レンズの設計上のフォーカスピント距離(焦点距離)は採用せずにフォーカスをずらす(LEDと平行レンズを近づける方向にフォーカスをずらす。)事を採用している。紫外線は、完全な平行光にならず、僅かに紫外線が広がる事を利用している。 Moreover, the focus is shifted without adopting the design focus focus distance (focal distance) of the parallel lens described in a commercially available catalog (the focus is shifted in the direction in which the LED and the parallel lens are brought closer). ing. Ultraviolet rays do not become completely parallel light, but take advantage of the fact that ultraviolet rays spread slightly.

フォーカスのずらし方法は、光の分散となり、強度センサへ照射される光の一点集中を避けることができ強度センサの劣化を防止する事ができる。結果として発光素子201から発する紫外線の時間経過に伴う放射出力強度の低下を抑える効果がある。 The focus shifting method results in light dispersion, and it is possible to avoid a single point concentration of light irradiated to the intensity sensor and to prevent deterioration of the intensity sensor. As a result, there is an effect of suppressing a decrease in radiation output intensity with the passage of time of ultraviolet rays emitted from the light emitting element 201.

エドモンド・オプティクス・ジャパン株式会社から市販されている、合成石英製平凸レンズ(PCX)焦点距離40mm(型番48818−L)を使用する場合、実験の結果から、焦点距離は26mmにセットするのが適している。 When using a synthetic quartz plano-convex lens (PCX) focal length of 40 mm (model number 48818-L) commercially available from Edmund Optics Japan, it is appropriate to set the focal length to 26 mm based on the results of experiments. ing.

図1は発光素子ボックス101の発光素子201を用いた出力安定化手段による紫外線吸収式オゾン濃度計1の構成図である。図1を利用して構成図の概略を説明する。始めにオゾンゼロ基準値設定を行う。オゾンゼロ基準値設定は市販されているゼロガス生成器で可能である。オゾンガスを触媒(パラジウム触媒、活性炭等)、吸着剤で除去することでオゾンゼロの状態を作りですことができる。本発明は真空ポンプ式を採用している。発光素子ボックス101の発光素子201を消灯し、光が照射されない状態にする。電磁弁106を閉じて試料ガスが測定セル105に流入しないようにする。真空ポンプ107を作動させ測定セル105内に滞留する酸素、オゾン、大気中に含まれるガス、微小水分、微小物等を排ガス出口111から排気して真空状態をつくる。測定セル105内を真空にする事でオゾン濃度の測定環境(温度、湿度)による平行レンズ110、強度センサ103の性能をイニシャライズする目的もある。強度センサ103は紫外線センサデバイスである。強度センサ103に光が照射されていない時の強度センサ103の電圧値は増幅器104を通り、インターフェイス113を介してマイクロコンピュータ114にこの電圧値がゼロ値として入力される。   FIG. 1 is a configuration diagram of an ultraviolet absorption ozone concentration meter 1 by an output stabilization means using a light emitting element 201 of a light emitting element box 101. An outline of the configuration diagram will be described with reference to FIG. First, set the zero ozone reference value. The ozone zero reference value can be set with a commercially available zero gas generator. By removing ozone gas with a catalyst (palladium catalyst, activated carbon, etc.) and an adsorbent, it is possible to create a zero ozone state. The present invention employs a vacuum pump type. The light emitting element 201 of the light emitting element box 101 is turned off so that light is not irradiated. The electromagnetic valve 106 is closed so that the sample gas does not flow into the measurement cell 105. The vacuum pump 107 is actuated to evacuate oxygen, ozone, gas contained in the atmosphere, minute moisture, minute matter, etc. from the exhaust gas outlet 111 to create a vacuum state. There is also an object to initialize the performance of the parallel lens 110 and the intensity sensor 103 according to the measurement environment (temperature, humidity) of ozone concentration by evacuating the measurement cell 105. The intensity sensor 103 is an ultraviolet sensor device. When the intensity sensor 103 is not irradiated with light, the voltage value of the intensity sensor 103 passes through the amplifier 104 and is input to the microcomputer 114 via the interface 113 as a zero value.

測定セル105内の排気が終わり真空状態になったならば、真空ポンプ107を作動させたままで測定セル105内に前述の出力安定化手段により発光素子ボックス101の発光素子201を駆動させる。点灯式振幅計測(S709)で計測を行う。光は照射方向112で進み、連続波長の紫外線は紫外線拘束管機構117(不活性ガス充填 真空でも可)内で収束されながら進み照射スポット径が小さくなり光学フィルタ202に照射される。光学フィルタ202で連続波長は単一波長に絞られ、発光素子ボックス101内(ガス充填、真空でも可)を進み、平行レンズ取り付機構102に取り付けられた平行レンズ110を通り、測定セル105に入射する。測定セル105内は真空状態なので平行光になった単一波長はオゾンに吸収されず放射出力強度は減衰しない。強度センサ103で放射出力強度を測定する。強度センサ103で測定された値は電圧値として出力され、入射光の放射出力強度をIとなる。この電圧値はマイクロコンピュータ114に入力される。I=入射光の放射出力強度(オゾンゼロ基準値)となりオゾンゼロ基準値設定が完了する。   When the exhaust of the measurement cell 105 is finished and the vacuum state is reached, the light emitting element 201 of the light emitting element box 101 is driven in the measurement cell 105 by the above-described output stabilizing means while the vacuum pump 107 is operated. Measurement is performed by lighting type amplitude measurement (S709). The light travels in the irradiation direction 112, and the ultraviolet light having a continuous wavelength travels while being converged in the ultraviolet constraining tube mechanism 117 (which can be filled with an inert gas or a vacuum), and the irradiation spot diameter becomes small and is irradiated to the optical filter 202. The continuous wavelength is narrowed down to a single wavelength by the optical filter 202, proceeds in the light emitting element box 101 (gas filling or vacuum is possible), passes through the parallel lens 110 attached to the parallel lens mounting mechanism 102, and enters the measurement cell 105. Incident. Since the measurement cell 105 is in a vacuum state, a single wavelength that has become parallel light is not absorbed by ozone and the radiation output intensity is not attenuated. The intensity sensor 103 measures the radiation output intensity. The value measured by the intensity sensor 103 is output as a voltage value, and the radiation output intensity of incident light is I. This voltage value is input to the microcomputer 114. I = radiant output intensity of incident light (ozone zero reference value), and setting of the ozone zero reference value is completed.

オゾンゼロ基準値設定後、試料ガスの測定を行う。真空ポンプ107を作動させたままで電磁弁106を開け試料ガス入口側108から試料ガスを測定セル105内に流入させる。流量計109に取り付けてあるバルブを調整して測定セル105内に流入する試料ガス流量を最小限に調整する事で測定セル105内は真空に保つ事ができる。試料ガスが測定セル105に試料ガスが流入した状態で出力安定化手段により発光素子201を駆動させ点灯式振幅計測(S721)を行う。光は試料ガスに含まれているオゾンに吸収され減衰した光は強度センサ103に入射され、透過光の放射出力強度となる。強度センサ103で測定された値は電圧値として出力される。透過光の放射出力強度はOとして、この電圧値はマイクロコンピュータ114に入力される。O=透過光の放射出力強度とする。   After setting the ozone zero reference value, measure the sample gas. The electromagnetic valve 106 is opened while the vacuum pump 107 is operated, and the sample gas flows into the measurement cell 105 from the sample gas inlet side 108. By adjusting a valve attached to the flow meter 109 to adjust the flow rate of the sample gas flowing into the measurement cell 105 to a minimum, the measurement cell 105 can be kept in a vacuum. With the sample gas flowing into the measurement cell 105, the light-emitting element 201 is driven by the output stabilization means to perform lighting-type amplitude measurement (S721). The light absorbed by ozone contained in the sample gas and attenuated is incident on the intensity sensor 103, and becomes the radiant output intensity of the transmitted light. The value measured by the intensity sensor 103 is output as a voltage value. The radiated output intensity of the transmitted light is O, and this voltage value is input to the microcomputer 114. Let O = radiant output intensity of transmitted light.

入射光の放射出力強度(オゾンゼロ基準値)I、透過光の放射出力強度をOがマイクロコンピュータ114に入力されると、マイクロコンピュータ114は、ランベルト・ベールの法則、数式1から計算してオゾン濃度を算出する。マイクロコンピュータ114で計算された値は表示器115に表示される。例えば、表示する値は、最大値、最小値、平均値、標準偏差等マイクロコンピュータ114が処理して表示器115に表示する。   When the incident light radiant output intensity (zero ozone reference value) I and the transmitted light radiant output intensity O are input to the microcomputer 114, the microcomputer 114 calculates the ozone concentration by calculating from Lambert-Beer's law, Equation 1. Is calculated. The value calculated by the microcomputer 114 is displayed on the display 115. For example, values to be displayed are processed by the microcomputer 114 such as the maximum value, minimum value, average value, standard deviation, and displayed on the display 115.

図2は調整機構取り付ベース203に取り付けられた発光素子201、紫外線拘束管機構212に取り付けられた光学フィルタ202(単一波長取り出しフィルタ)の指向性調整機構200の構成図である。発光素子201から200〜320nmの連続波長が照射され紫外線拘束管機構212を通り光学フィルタ202(単一波長取り出しフィルタ)により単一波長に絞られる。発光素子201と光学フィルタ202の間の紫外線拘束管機構212は円筒形に加工され、発光素子201から発する紫外線119の向きを所定の範囲内に抑えて光学フィルタ202に照射される。紫外線拘束管機構117(材質 金属、ガラス、セラミックス)に不活性ガス(真空状態でも可)を充填する事で放射された連続波長による活性酸素Oが発生しないので発光素子201表面、光学フィルタ202表面に酸化物膜が形成される事を防ぐ事もできる。光学フィルタ202を通過した紫外線119は、平行レンズ110の中心部に照射されるように指向性調整機構200で、紫外線119を紫外線上下調整方向208で光の上下の向き、紫外線左右調整方向209で光の左右の向きを微調整する事を可能にしている。紫外線上下調整方向208は、上下調整ガイド206に取り付けられた上下回転ピン207で調整を行い、上下固定ピン211で固定される。紫外線左右調整方向209は、固定台205に取り付けられた左右回転ピン204で調整をおこない、左右固定ピン210で固定される。発光素子ボックス101には、フォーカス調整ガイド116が固定台となり、紫外線を平行レンズ110に対して紫外線前後調整方向121をカタログ掲載値のフォーカス値よりフォーカス調整溝119でフォーカス値のずらしを行う。指向性調整機構200を所定の位置にセットさせフォーカス固定ネジ120でフォーカス調整ガイド116に固定させる。フォーカス値のずらしは、紫外線のピントのズレとなり、測定セル内へ万遍無く光を分散させオゾンに紫外線を吸収させて計測する事ができ、平行レンズ110、測定セル105、強度センサへの紫外線の一点集中がなくなり機器の劣化が防止できる。   FIG. 2 is a configuration diagram of the directivity adjusting mechanism 200 of the light emitting element 201 attached to the adjusting mechanism mounting base 203 and the optical filter 202 (single wavelength extraction filter) attached to the ultraviolet constraining tube mechanism 212. A continuous wavelength of 200 to 320 nm is irradiated from the light emitting element 201, passes through the ultraviolet constraining tube mechanism 212, and is narrowed down to a single wavelength by the optical filter 202 (single wavelength extraction filter). The ultraviolet restriction tube mechanism 212 between the light emitting element 201 and the optical filter 202 is processed into a cylindrical shape, and the optical filter 202 is irradiated with the direction of the ultraviolet light 119 emitted from the light emitting element 201 within a predetermined range. The surface of the light-emitting element 201 and the surface of the optical filter 202 can be obtained because the active oxygen O due to the continuous wavelength emitted by filling the ultraviolet constraining tube mechanism 117 (material metal, glass, ceramics) with an inert gas (even in a vacuum state) is not generated. It is also possible to prevent the formation of an oxide film. The ultraviolet ray 119 that has passed through the optical filter 202 is directed by the directivity adjusting mechanism 200 so that the central portion of the parallel lens 110 is irradiated with the ultraviolet ray 119. This makes it possible to fine-tune the left and right direction of the light. The ultraviolet vertical adjustment direction 208 is adjusted by the vertical rotation pin 207 attached to the vertical adjustment guide 206 and fixed by the vertical fixing pin 211. The ultraviolet light left / right adjustment direction 209 is adjusted by the left / right rotation pin 204 attached to the fixing base 205 and fixed by the left / right fixing pin 210. In the light emitting element box 101, a focus adjustment guide 116 is a fixed base, and the focus value is shifted in the focus adjustment groove 119 in the ultraviolet front-rear adjustment direction 121 with respect to the parallel lens 110 from the focus value of the catalog publication value. The directivity adjustment mechanism 200 is set at a predetermined position and fixed to the focus adjustment guide 116 with the focus fixing screw 120. The shift of the focus value results in a shift of the focus of the ultraviolet rays, and it is possible to measure by dispersing the light uniformly in the measurement cell and absorbing the ultraviolet rays in ozone, and the ultraviolet rays to the parallel lens 110, the measurement cell 105, and the intensity sensor. It is possible to prevent the deterioration of equipment due to the lack of concentration of one point.

また、光学フィルタ202は214nm〜296.5nm(0.5nmスパン)の単一波長を取り出すことが出来る。なお、発光素子ボックス101全体に不活性ガス(真空状態でも可)を充填させ、紫外線拘束管機構117に入り込ませた方法は、活性酸素Oが発生しない事で装置のダメージがなくなる。また、発光素子機構118の洗浄不具合、異物混入を防止する為に、発光素子機構118は、発光素子ボックス101の外部設置とすることで、発光素子ボックス101内、紫外線拘束管機構212内を安定して真空度を保つ事ができる。 The optical filter 202 can extract a single wavelength of 214 nm to 296.5 nm (0.5 nm span). Note that the method of filling the entire light emitting element box 101 with an inert gas (even in a vacuum state) and entering the ultraviolet light restricting tube mechanism 117 eliminates active oxygen O so that the apparatus is not damaged. In addition, in order to prevent the cleaning failure of the light emitting element mechanism 118 and the mixing of foreign matter, the light emitting element mechanism 118 is installed outside the light emitting element box 101, so that the inside of the light emitting element box 101 and the inside of the ultraviolet light restricting tube mechanism 212 can be stabilized. And the degree of vacuum can be maintained.

本発明の出力安定化手段の一例を下記に示す。発光素子201が発する紫外線のうち計測値に誤差を与え、再オゾン化を発生させる、オゾンの吸収波長(255nm)を外し、Hartley帯(200〜320nmの中心値近傍)の中心値近傍の紫外線である、265nmを採用した。 An example of the output stabilization means of the present invention is shown below. The ultraviolet ray emitted from the light emitting element 201 gives an error to the measurement value and causes re-ozonization. The ozone absorption wavelength (255 nm) is removed, and the ultraviolet ray near the central value of the Hartley band (near the central value of 200 to 320 nm) is used. Some 265 nm was adopted.

図3は、本発明の出力安定化手段の一例である。点滅式短周期振幅駆動(最大)301→点滅式短周期振幅駆動(最小)302→定電流駆動(1)305→ロックイン駆動303→消灯(1)306→定電流駆動(2)307→点灯式振幅計測304→消灯(2)308で発光素子機構118の200〜320nmの連続波長を発する発光素子201を駆動させた時の、強度センサ103の値を縦軸に電圧値として表したオシロスコープの画面である。発光素子201は265nmをピーク波長とする連続波長を発している。上段、下段のグラフの縦軸は、強度センサ103の電圧値を表していて「2V/スパン」であり、下段のグラフは上段のグラフのロックイン駆動303、点灯式振幅計測304等を拡大したものである。上段の横軸時間は、「100mS/スパン」で、下段の横軸時間は、「5mS/スパン」である。例えば、下段の定電流駆動1305→ロックイン駆動303の合計時間は、15mSになる。 FIG. 3 shows an example of the output stabilization means of the present invention. Flashing short cycle amplitude drive (maximum) 301 → Flashing short cycle amplitude drive (minimum) 302 → constant current drive (1) 305 → lock-in drive 303 → light-off (1) 306 → constant current drive (2) 307 → lighting When the light emitting element 201 that emits a continuous wavelength of 200 to 320 nm of the light emitting element mechanism 118 is driven by the expression amplitude measurement 304 → light-off (2) 308, the value of the intensity sensor 103 is expressed as a voltage value on the vertical axis. It is a screen. The light emitting element 201 emits a continuous wavelength having a peak wavelength of 265 nm. The vertical axis of the upper and lower graphs represents the voltage value of the intensity sensor 103 and is “2 V / span”, and the lower graph is an enlargement of the lock-in drive 303, the lighting type amplitude measurement 304, etc. of the upper graph. Is. The upper horizontal axis time is “100 mS / span”, and the lower horizontal axis time is “5 mS / span”. For example, the total time from the lower constant current drive 1305 to the lock-in drive 303 is 15 mS.

本発明の一例として、出力安定化手段にロックイン駆動(駆動時間≒10mS、周波数≒1KHz)を採用した。基準駆動電流値に正弦波をのせ最大点灯電流値309と最小点灯電流値310の範囲で振幅させ、駆動回路の位相補正、ポンプ、電磁弁から発生するノイズ除去補正を行う事ができ、マイクロコンピュータ114内にロックイン・アンプの原理(雑音に埋もれた微小信号を高感度で検出することが出来る。)が組み込まれ処理される。ロックイン駆動の最適化条件により素子の出力低下の防止ができる。ロックイン駆動と素子の出力低下の関係は更なる検討で解明する予定である。 As an example of the present invention, lock-in driving (driving time≈10 mS, frequency≈1 KHz) is adopted as the output stabilizing means. By applying a sine wave to the reference drive current value and amplifying it within the range of the maximum lighting current value 309 and the minimum lighting current value 310, it is possible to correct the phase of the drive circuit, and to eliminate noise generated from the pump and solenoid valve. In 114, the principle of the lock-in amplifier (a minute signal buried in noise can be detected with high sensitivity) is processed. The output reduction of the element can be prevented by the optimization condition of the lock-in drive. The relationship between the lock-in drive and the output reduction of the element will be clarified in further studies.

図3は、点滅式短周期振幅駆動(最小)302の最小点灯電流値310を、点灯式振幅計測304で、「1V」下げ、基準駆動電流値311を、「0.5V」下げた。今後の実験で最適値を見つける予定である。 In FIG. 3, the minimum lighting current value 310 of the blinking short cycle amplitude driving (minimum) 302 is decreased by “1 V” and the reference driving current value 311 is decreased by “0.5 V” in the lighting type amplitude measurement 304. We plan to find the optimum value in future experiments.

点滅式短周期振幅駆動(最大)301は、点滅時間≒250mS、振幅時の放射出力強度≒0.19415μW/cm2、点灯時間≒0.25S/2(点滅周波数≒48〜52Hz)とする。正弦波形で電流値を変化させ光強度を振幅させる。 The blinking short cycle amplitude drive (maximum) 301 is set to blink time≈250 mS, radiation output intensity at amplitude≈0.19415 μW / cm 2, lighting time≈0.25 S / 2 (flash frequency≈48 to 52 Hz). The current value is changed with a sine waveform to amplify the light intensity.

点滅式短周期振幅駆動(最小)302は、点滅時間≒220mS、振幅時の放
射出力強度≒0.19238μW/cm2、点灯時間≒0.22S/2(点滅周
波数≒55〜60Hz)とする。正弦波形で電流値を変化させ光強度を振幅さ
せる。
The blinking short cycle amplitude drive (minimum) 302 is set to blink time≈220 mS, radiation output intensity at amplitude≈0.19238 μW / cm 2, lighting time≈0.22 S / 2 (flashing frequency≈55 to 60 Hz). The current value is changed with a sine waveform to amplify the light intensity.

定電流駆動(1)305は、点灯時間≒5mS、ロックイン駆動303の駆動
時間≒10mS(周波数≒1KHz)とする。
The constant current drive (1) 305 has a lighting time ≈ 5 mS and a drive time of the lock-in drive 303 ≈ 10 mS (frequency ≈ 1 KHz).

消灯(1)306は、消灯時間≒8mSとする。 The extinguishing time (1) 306 is set to the extinguishing time≈8 mS.

定電流駆動(2)307の駆動時間≒5mSとする。 Driving time of constant current driving (2) 307 is set to approximately 5 mS.

点灯式振幅計測304は、点灯時間≒10mS(周波数≒1KHz)とす。
最大点灯電流値309≒9.707642mA(放射出力強度≒0.19415μW/cm2)とする。最小点灯電流値310≒9.61914mA(放射出力強度≒0.19238μW/cm2)とする。
The lighting type amplitude measurement 304 is lighting time≈10 mS (frequency≈1 KHz).
The maximum lighting current value is 309≈9.770742 mA (radiant output intensity≈0.19415 μW / cm 2). The minimum lighting current value is 310≈9.61914 mA (radiant output intensity≈0.19238 μW / cm 2).

消灯(2)308は、消灯時間≒500mSとする。 The extinguishing time (2) 308 is set so that the extinguishing time is approximately 500 ms.

図4は、本発明を実施する発光素子201を用いて255〜285nmの波長(ピーク波長265nm)を放射して放射出力強度を計測したグラフである。紫外線の放射出力強度は地方独立行政法人東京都立産業技術研究センターの分光器で測定した。(仕様 プリズムグレーティング方式 測定波長 200nm〜2500nm 分光計器(株)製 型番 US−25ART)で計測した。縦軸が放射出力強度の値、横軸が発光素子102から発する波長を表している。ピーク波長265nm(DOWAエレクトロニクス(株)製)で基準駆動電流値1mA(401)、5mA(402)、9mA(403)に対する放射出力強度が、0.001(μW/cm2・265nm)、0.075(μW/cm2・265nm)、0.18(μW/cm2・265nm)を読み取る事が出来る。   FIG. 4 is a graph in which the radiation output intensity is measured by radiating a wavelength of 255 to 285 nm (peak wavelength: 265 nm) using the light emitting element 201 embodying the present invention. Ultraviolet radiation output intensity was measured with a spectroscope at the Tokyo Metropolitan Industrial Technology Research Center. (Specification Prism grating method Measurement wavelength 200 nm to 2500 nm Spectrometer Co., Ltd. Model No. US-25ART) The vertical axis represents the radiation output intensity value, and the horizontal axis represents the wavelength emitted from the light emitting element 102. Radiant output intensity with respect to a reference drive current value of 1 mA (401), 5 mA (402), and 9 mA (403) at a peak wavelength of 265 nm (manufactured by DOWA Electronics Co., Ltd.) is 0.001 (μW / cm 2 · 265 nm), 0.075 (ΜW / cm 2 · 265 nm) and 0.18 (μW / cm 2 · 265 nm) can be read.

図6は、点灯式振幅計測(304)に、一例として正弦波を使用した場合の減衰を表したグラフである。縦軸が強度センサの電圧値、横軸が時間となっている。オゾンに光が照射され減衰した状態を表している。グラフの上から、オゾン濃度が、0ppm(601)、0.1ppm(602)、0.2ppm(603)、0.3ppm(604)である。例えば、オゾン有りの時の正弦波の半値全幅(full width at half maximum,FWHM)部の電圧値と、オゾン無し(ゼロガス状態)の正弦波の半値全幅部の電圧値の減衰値を調べる事で濃度が計測できる。オゾン濃度が0ppm(601)の半値全幅部の電圧値が2.5V、オゾン濃度が0.2ppm(603)の半値全幅部の電圧値が1Vになる。正弦波の計測は、オゾン濃度が0ppm(601)の半値全幅部の横軸の時間とオゾン濃度が0.2ppm(603)の半値全幅部の時間の値が違い、オゾン濃度が、0ppmと0.2ppmで、計測時間が違ってくる。正弦波の利用で計測時間を一致させるには、正弦波の頂点のみの利用になり、頂点の一点計測は、計測精度の信頼性が落ちてしまう。本発明の計測は、矩形波を採用しているので、減衰時の時間軸のズレが発生しない。 FIG. 6 is a graph showing attenuation when a sine wave is used as an example for the lighting type amplitude measurement (304). The vertical axis represents the voltage value of the intensity sensor, and the horizontal axis represents time. This represents a state where ozone is irradiated with light and attenuated. From the top of the graph, the ozone concentrations are 0 ppm (601), 0.1 ppm (602), 0.2 ppm (603), and 0.3 ppm (604). For example, by checking the voltage value of the full width at half maximum (FWHM) of the sine wave when ozone is present and the attenuation value of the voltage value of the full width at half maximum of the sine wave without ozone (zero gas state) Concentration can be measured. The voltage value of the full width at half maximum with an ozone concentration of 0 ppm (601) is 2.5 V, and the voltage value of the full width at half maximum with an ozone concentration of 0.2 ppm (603) is 1 V. In the measurement of the sine wave, the time of the horizontal axis of the full width at half maximum with an ozone concentration of 0 ppm (601) is different from the time of the full width at half maximum of an ozone concentration of 0.2 ppm (603), and the ozone concentration is 0 ppm and 0. The measurement time is different at 2ppm. In order to make the measurement times coincide with each other by using a sine wave, only the vertex of the sine wave is used, and the single point measurement of the vertex decreases the reliability of the measurement accuracy. Since the measurement of the present invention employs a rectangular wave, there is no time axis deviation at the time of attenuation.

図8は、測定セル105内をゼロガス状態にして、本発明による時間経過に伴う出力低下の状態を表したものである。縦軸が強度センサ103の電圧値を表している。横軸が経過時間である。本発明による出力安定化手段801によるゼロガス状態での時間経過にともなう強度センサ103の電圧値の低下(出力低下)が全くない事が分かる。一方、定電流での連続点灯802は、点灯後約40分で強度センサ103の電圧値が47.2%低下する事が分かる。(1.8Vから0.85Vに出力が下がる。) FIG. 8 shows a state in which the output of the measurement cell 105 is reduced with the passage of time according to the present invention when the inside of the measurement cell 105 is in a zero gas state. The vertical axis represents the voltage value of the intensity sensor 103. The horizontal axis is the elapsed time. It can be seen that there is no decrease in the voltage value (output decrease) of the intensity sensor 103 with the passage of time in the zero gas state by the output stabilization means 801 according to the present invention. On the other hand, in the continuous lighting 802 with a constant current, it can be seen that the voltage value of the intensity sensor 103 decreases by 47.2% about 40 minutes after the lighting. (Output drops from 1.8V to 0.85V.)

図1の構成は、溶液中(液相)のオゾン濃度測定装置にも適用できる。   The configuration of FIG. 1 can also be applied to an ozone concentration measuring device in solution (liquid phase).

1 チョッパ発信方式による紫外線吸収式オゾン濃度計
101 発光素子ボックス
102 平行レンズ取り付機構
103 強度センサ
104 増幅器
105 測定セル
106 電磁弁
107 真空ポンプ
108 試料ガス入口
109 流量計
110 平行レンズ
111 排ガス出口
112 照射方向
113 インターフェイス
114 マイクロコンピュータ
115 表示器
116 フォーカス調整ガイド
117 紫外線拘束管機構
118 発光素子機構
119 フォーカス調整溝
120 フォーカス固定ネジ
121 紫外線前後調整方向
200 指向性調整機構
201 発光素子
202 光学フィルタ
203 調整機構取り付ベース
204 左右回転ピン
205 固定台
206 上下調整ガイド
207 上下回転ピン
208 紫外線上下調整方向
209 紫外線左右調整方向
210 左右固定ピン
211 上下固定ピン
212 フォーカス調整固定穴
301 点滅式短周期振幅駆動(最大)
302 点滅式短周期振幅駆動(最小)
303 ロックイン駆動
304 点灯式振幅計測
305 定電流駆動(1)
306 消灯(1)
307 定電流駆動(2)
308 消灯(2)
309 最大点灯電流値
310 最小点灯電流値
311 基準駆動電流値
401 基準駆動電流値1mA
402 基準駆動電流値5mA
403 基準駆動電流値9mA
601 0ppm
602 0.1ppm
603 0.2ppm
604 0.3ppm
801 出力安定化手段
802 連続点灯
DESCRIPTION OF SYMBOLS 1 UV absorption type ozone concentration meter 101 by chopper transmission method Light emitting element box 102 Parallel lens mounting mechanism 103 Intensity sensor 104 Amplifier 105 Measurement cell 106 Electromagnetic valve 107 Vacuum pump 108 Sample gas inlet 109 Flow meter 110 Parallel lens 111 Exhaust gas outlet 112 Irradiation Direction 113 Interface 114 Microcomputer 115 Display 116 Focus adjustment guide 117 Ultraviolet constraining tube mechanism 118 Light emitting element mechanism 119 Focus adjustment groove 120 Focus fixing screw 121 Ultraviolet front and rear adjustment direction 200 Directivity adjustment mechanism 201 Light emitting element 202 Optical filter 203 Adjustment mechanism removal Attached base 204 Left / right rotation pin 205 Fixing base 206 Up / down adjustment guide 207 Up / down rotation pin 208 UV up / down adjustment direction 209 UV left / right adjustment direction 210 Pin 211 vertical fixing pin 212 focus adjustment fixing hole 301 flashing type short period amplitude drive (maximum)
302 Flashing short period amplitude drive (minimum)
303 Lock-in drive 304 Lighting type amplitude measurement 305 Constant current drive (1)
306 Off (1)
307 Constant current drive (2)
308 OFF (2)
309 Maximum lighting current value 310 Minimum lighting current value 311 Reference drive current value 401 Reference drive current value 1 mA
402 Reference drive current value 5 mA
403 Reference drive current value 9 mA
601 0ppm
602 0.1ppm
603 0.2ppm
604 0.3ppm
801 Output stabilization means 802 Continuous lighting

Claims (7)

200nm〜320nmの波長域を含む紫外線を発光する固体発光素子を光源とするオゾン濃度測定装置であって、
前記固体発光素子に電流を印加して一定の紫外線放射出力値を得られる上限電流値と下限電流値の間を振幅させながらオゾン濃度を測定するチョッピング駆動計測手段と、
直前のオゾン濃度測定において記録した前記紫外線放射出力値が変動した場合に前記一定の紫外線放射出力値となるように前記上限電流値と前記下限電流値を補正する出力維持補正手段と、
を有することを特徴とするオゾン濃度測定装置。
An ozone concentration measuring apparatus using a solid light-emitting element that emits ultraviolet light including a wavelength region of 200 nm to 320 nm as a light source,
Chopping drive measuring means for measuring the ozone concentration while amplifying between the upper limit current value and the lower limit current value by applying a current to the solid state light emitting element to obtain a constant ultraviolet radiation output value;
Output maintaining correction means for correcting the upper limit current value and the lower limit current value so as to be the constant ultraviolet radiation output value when the ultraviolet radiation output value recorded in the previous ozone concentration measurement fluctuates;
An ozone concentration measuring apparatus characterized by comprising:
前記チョッピング駆動計測手段は、前記固体発光素子からの紫外線を消灯せずに、前記上限電流値を上方頂点、前記下限電流値を下方頂点とする矩形波状に放射させ、前記上方頂点と前記下方頂点を測定点とすることを特徴とする請求項1に記載のオゾン濃度測定装置。   The chopping drive measurement means radiates the upper limit current value and the lower apex without emitting the ultraviolet rays from the solid state light emitting element so that the upper limit current value is radiated in a rectangular wave shape having the upper limit current value and the lower limit current value being the lower apex. The ozone concentration measuring device according to claim 1, wherein 前記紫外線放射出力値は、オゾンゼロ状態の測定セルに前記固体発光素子から放射した紫外線を受光したときの強度センサから得た電圧値である請求項1又は2に記載のオゾン濃度測定装置。   3. The ozone concentration measuring apparatus according to claim 1, wherein the ultraviolet radiation output value is a voltage value obtained from an intensity sensor when ultraviolet light radiated from the solid state light emitting device is received by a measurement cell in a zero ozone state. 前記出力維持補正手段において、前記上限電流値と前記下限電流値を補正する補正電流値は、前記紫外線放射出力値の変動値に応じて予め用意されたリストから抽出する請求項1乃至3のいずれか1項に記載のオゾン濃度測定装置。   4. The output maintaining correction means, wherein the correction current value for correcting the upper limit current value and the lower limit current value is extracted from a list prepared in advance according to a fluctuation value of the ultraviolet radiation output value. The ozone concentration measuring apparatus according to claim 1. 前記出力維持補正手段において、前記前回紫外線放射出力値の増減状態に応じて前記補正電流値を加減し、連続計測の1回毎に前記一定の紫外線放射出力値に近づける請求項1乃至4のいずれか1項に記載のオゾン濃度測定装置。   5. The output maintaining correction unit adjusts the correction current value according to an increase / decrease state of the previous ultraviolet radiation output value, and approaches the constant ultraviolet radiation output value for each continuous measurement. The ozone concentration measuring apparatus according to claim 1. 前記チョッピング駆動計測手段の実行に先立ち、該チョッピング駆動計測手段の実行時間より短い時間の間、前記固体発光素子を消灯し、その後、該消灯時間より短い時間の間、前記上限電流値と前記下限電流値の中間の電流値を印加して前記固体発光素子をアイドリング駆動させる請求項1乃至5のいずれか1項に記載のオゾン濃度測定装置。   Prior to the execution of the chopping drive measuring means, the solid-state light emitting element is turned off for a time shorter than the execution time of the chopping drive measuring means, and then the upper limit current value and the lower limit for a time shorter than the turn-off time. The ozone concentration measuring apparatus according to any one of claims 1 to 5, wherein an idling drive of the solid state light emitting element is performed by applying an intermediate current value. 前記出力維持補正手段の実行の後、前記固体発光素子からの紫外線が、
補正された前記上限電流値と電流値ゼロ値の間を周期的に振幅して放射される上限振幅エージング駆動と、
次いで補正された前記下限電流値と電流値ゼロ値の間を周期的に振幅して放射される下限振幅エージング駆動と、
を実行する請求項1乃至6のいずれか1項に記載のオゾン濃度測定装置。
After execution of the output maintaining correction means, ultraviolet rays from the solid state light emitting element are
An upper limit amplitude aging drive that is radiated with periodic amplitude between the corrected upper limit current value and the current value zero value;
Next, a lower limit amplitude aging drive that is radiated with periodic amplitude between the corrected lower limit current value and the current value zero value,
The ozone concentration measuring device according to any one of claims 1 to 6, wherein:
JP2013192629A 2013-09-18 2013-09-18 Ozone concentration measuring device Active JP6205656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192629A JP6205656B2 (en) 2013-09-18 2013-09-18 Ozone concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192629A JP6205656B2 (en) 2013-09-18 2013-09-18 Ozone concentration measuring device

Publications (2)

Publication Number Publication Date
JP2015059784A true JP2015059784A (en) 2015-03-30
JP6205656B2 JP6205656B2 (en) 2017-10-04

Family

ID=52817438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192629A Active JP6205656B2 (en) 2013-09-18 2013-09-18 Ozone concentration measuring device

Country Status (1)

Country Link
JP (1) JP6205656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049190A (en) * 2015-09-03 2017-03-09 東亜ディーケーケー株式会社 Measurement device using uv light source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941730B (en) * 2017-11-16 2021-02-05 广东盈峰科技有限公司 Method and device for measuring concentration of ozone in atmosphere

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005826A (en) * 2000-06-20 2002-01-09 Kobe Steel Ltd Optical absorption-type ozone concentration meter
JP2004085407A (en) * 2002-08-28 2004-03-18 Meidensha Corp Ozone gas concentration measurement method and apparatus for the same
US20050160791A1 (en) * 2004-01-20 2005-07-28 Andy Kung Ultraviolet photoacoustic ozone detection
JP2008249411A (en) * 2007-03-29 2008-10-16 Dkk Toa Corp Light source module for measuring device, and measuring device
JP2011094970A (en) * 2009-10-27 2011-05-12 Hikari Dento Kogyosho:Kk Device of measuring ozon concentration
JP2012013573A (en) * 2010-07-01 2012-01-19 Ibaraki Univ Ozone concentration meter and ozone concentration monitoring kit with the ozone concentration meter
JP2012173273A (en) * 2011-02-24 2012-09-10 Hikari Dento Kogyosho:Kk Ozone concentration measurement device
JP2013088371A (en) * 2011-10-21 2013-05-13 Hikari Dento Kogyosho:Kk Ozone concentration measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005826A (en) * 2000-06-20 2002-01-09 Kobe Steel Ltd Optical absorption-type ozone concentration meter
JP2004085407A (en) * 2002-08-28 2004-03-18 Meidensha Corp Ozone gas concentration measurement method and apparatus for the same
US20050160791A1 (en) * 2004-01-20 2005-07-28 Andy Kung Ultraviolet photoacoustic ozone detection
JP2008249411A (en) * 2007-03-29 2008-10-16 Dkk Toa Corp Light source module for measuring device, and measuring device
JP2011094970A (en) * 2009-10-27 2011-05-12 Hikari Dento Kogyosho:Kk Device of measuring ozon concentration
JP2012013573A (en) * 2010-07-01 2012-01-19 Ibaraki Univ Ozone concentration meter and ozone concentration monitoring kit with the ozone concentration meter
JP2012173273A (en) * 2011-02-24 2012-09-10 Hikari Dento Kogyosho:Kk Ozone concentration measurement device
JP2013088371A (en) * 2011-10-21 2013-05-13 Hikari Dento Kogyosho:Kk Ozone concentration measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049190A (en) * 2015-09-03 2017-03-09 東亜ディーケーケー株式会社 Measurement device using uv light source

Also Published As

Publication number Publication date
JP6205656B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP2020052428A (en) Device and method for correcting aberrations in light-sustained plasma cells
JP2013519211A (en) Laser-driven light source
JP2007534967A (en) System and method for extending the useful life of an optical sensor
JP4853823B2 (en) Light intensity monitor and light source device using the same
JP2005512288A5 (en)
US20160313245A1 (en) Light intensity detector and detection method
JP6413759B2 (en) Optical analyzer
JP6205656B2 (en) Ozone concentration measuring device
US20150189714A1 (en) Sensors with LED Light Sources
KR20190077535A (en) Method and apparatus for controlling exposure dose of a light source
JP5239000B2 (en) Ozone concentration measuring device
JP2017053680A (en) Gas analyzer
JP6500474B2 (en) Optical analyzer
JP2006313164A (en) Gas sensor apparatus and gas measuring method
JP2015021828A (en) Gas sensor
KR20160089967A (en) Chlorophyll sensor probe
JP2006300706A (en) Life decision method for ultraviolet light source, ultraviolet light source device, and ultraviolet irradiation device
US20160266032A1 (en) Photometer with led light source
US10502623B2 (en) Line-narrowed KrF excimer laser apparatus
JP6820747B2 (en) Calibration of photoelectromagnetic sensor in laser light source
JP6608514B2 (en) Optical density measuring device and control method of optical density measuring device
JP2010251387A (en) Solar simulator
JP2006269596A (en) Flash lamp light emitting device
JP2016070687A (en) Concentration measurement device
KR101571859B1 (en) Apparatus and method of analying element concentration using atomic absorption spectrophotometry

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170815

R150 Certificate of patent or registration of utility model

Ref document number: 6205656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350