JP2015037385A - Cultivation method of sweet potato - Google Patents

Cultivation method of sweet potato Download PDF

Info

Publication number
JP2015037385A
JP2015037385A JP2013169312A JP2013169312A JP2015037385A JP 2015037385 A JP2015037385 A JP 2015037385A JP 2013169312 A JP2013169312 A JP 2013169312A JP 2013169312 A JP2013169312 A JP 2013169312A JP 2015037385 A JP2015037385 A JP 2015037385A
Authority
JP
Japan
Prior art keywords
rootstock
seedling
collected
seedlings
sweet potato
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013169312A
Other languages
Japanese (ja)
Other versions
JP6241916B2 (en
Inventor
文彦 足立
Fumihiko Adachi
文彦 足立
和人 井藤
Kazuto Ito
和人 井藤
正行 門脇
Masayuki Kadowaki
正行 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2013169312A priority Critical patent/JP6241916B2/en
Publication of JP2015037385A publication Critical patent/JP2015037385A/en
Application granted granted Critical
Publication of JP6241916B2 publication Critical patent/JP6241916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cultivation method of a sweet potato which can utilize bacterial acting usefully during growth to secure a stable crop yield while a risk of infection with harmful bacteria can be reduced.SOLUTION: In a cultivation method of a sweet potato, a scion B1 collected from a seedling B for the scion and a rootstock A1 collected from a seedling A for the rootstock which is raised in an approximately aseptic condition compared with the seedling B for the scion are grafted. The grafted seedling C consisting of the rootstock A1 and the scion B1 is raised. When the rootstock A1 is collected from the seedling A for the root stock, the collection is performed so that a leaf 5 raised from a vine 6 to be cut or a vine 7 branched off from the vine 6 is left on the rootstock A1 side. The rootstock A1 is collected from the aseptic seedling raised in the aseptic condition.

Description

本発明は、サツマイモの栽培方法に関する。   The present invention relates to a method for cultivating sweet potatoes.

一般的には、育苗されてサツマイモ苗から切断されたカット苗(挿し穂)を圃場に挿苗し、サツマイモの栽培を行うが、カット苗が有害な菌又はウィルス(菌等)に犯されていると、収穫量が低下する。これを防止するため、無菌に近い環境下で育苗を行うサツマイモの栽培方法が公知になっている(例えば、特許文献1参照。)。   In general, cut seedlings (cutting heads) that have been bred and cut from sweet potato seedlings are planted in the field and cultivated sweet potatoes, but the cut seedlings are violated by harmful bacteria or viruses (fungi etc.) , Yield decreases. In order to prevent this, a sweet potato cultivation method for raising seedlings in an environment close to sterility is known (for example, see Patent Document 1).

特開平9−294495号公報JP-A-9-294495

上記文献のサツマイモの栽培方法では、菌等が含まれていない又は殆ど含まれていない状態(以下、「無菌状態」)の苗が定植される。
一方、生長過程で有用に作用する菌等も複数種類存在するが、上述した通り、苗は無菌状態であるため、この有用な菌等は、その大部分を土壌から供給する必要があり、生長度合が土壌状態に大きく依存することになる。
しかし、土壌に含まれる菌等の種類や量を所望の状態に設定することは非常に困難であるため、土壌状態によって収穫量が大きく変動し、サツマイモの収穫量を安定させることが難しい。
In the sweet potato cultivation method of the above-mentioned document, seedlings in a state in which fungi and the like are not included or are hardly included (hereinafter referred to as “sterile state”) are planted.
On the other hand, there are a plurality of types of fungi that are useful in the growth process, but as described above, since the seedlings are in a sterile state, it is necessary to supply most of these useful fungi from the soil. The degree depends greatly on the soil condition.
However, since it is very difficult to set the type and amount of bacteria and the like contained in the soil to a desired state, the yield varies greatly depending on the soil condition, and it is difficult to stabilize the yield of sweet potato.

本発明は、有害な菌等に犯されるリスクを低減させるとともに、生長の際に有用に作用する菌等を利用して安定した収穫量を確保可能なサツマイモの栽培方法を提供することを課題とする。   It is an object of the present invention to provide a method for cultivating sweet potatoes that can reduce the risk of being violated by harmful fungi and the like, and can secure a stable yield by using fungi that act usefully during growth. To do.

上記課題を解決するため、弟1に、穂木用の苗Bから採取される穂木B1と、前記穂木用の苗Bよりも無菌に近い状態で育苗された台木用の苗Aから採取される台木A1とを接木し、該接木された台木A1及び穂木B1からなる接木体Cを生長させることを特徴とする。   In order to solve the above-mentioned problem, the younger brother 1 is from the saplings B1 collected from the seedlings B for hogi and the seedlings A for rootstocks that have been bred in a condition closer to the sterility than the seedlings B for hogi. The grafted rootstock A1 is grafted, and a grafted body C composed of the grafted rootstock A1 and hogi B1 is grown.

弟2に、台木用の苗Aから台木A1を採取する際に、切断対象の蔓6から発生した葉5又は該蔓6から枝分れした蔓7が台木A1側に残るようにして、上記切断を行うことを特徴とする。   When the rootstock A1 is collected from the seedling A for rootstock, the younger brother 2 leaves the leaves 5 generated from the vine 6 to be cut or the vine 7 branched from the vine 6 on the rootstock A1 side. Then, the cutting is performed.

弟3に、前記台木A1を、無菌状態で育苗された無菌苗から採取することを特徴とする。   The younger brother 3 is characterized in that the rootstock A1 is collected from aseptic seedlings grown in aseptic conditions.

弟4に、前記台木A1を、無菌苗の一種であり且つ無菌培地で育成したメリクロン苗から採取することを特徴とする。   The younger brother 4 is characterized in that the rootstock A1 is collected from a Mericlon seedling which is a kind of aseptic seedling and grown in a sterile medium.

弟5に、前記穂木用の苗Bと前記台木用の苗Aとが互いに異なる品種であることを特徴とする。   The younger brother 5 is characterized in that the seedling B for hogi and the seedling A for rootstock are different varieties.

弟6に、前記接木体Cを生長させ、該接木体Cから伸びた蔓を穂木B1として採取し、該穂木B1を前記台木A1に接木して新たな接木体Cとすることを特徴とする。   The younger brother 6 grows the graft body C, collects the vine extending from the graft body C as a spike B1, and grafts the spike B1 to the rootstock A1 to form a new graft body C. Features.

本発明によれば、含まれる菌等の量が少ない又は無菌状態の台木に対して、該台木に接木される穂木を介して、有用な菌等を供給することが可能になるため、有害な菌等に犯されるリスクを低減させるとともに、生長の際に有用に作用する菌等を利用して安定した収穫量を確保することが可能になる。   According to the present invention, it is possible to supply useful fungi or the like to a rootstock in which the amount of fungi contained is small or aseptic, via a saf grafted to the rootstock. In addition to reducing the risk of being violated by harmful bacteria, it is possible to secure a stable yield by utilizing bacteria that act usefully during growth.

本発明を適用したサツマイモの栽培方法の説明図である。It is explanatory drawing of the cultivation method of the sweet potato which applied this invention. 本サツマイモの栽培方法の工程を示すフロー図である。It is a flowchart which shows the process of the cultivation method of this sweet potato. 水耕栽培における移植後71日の接木体の全乾物重である。It is the total dry weight of the graft body 71 days after transplantation in hydroponics. 水耕栽培における移植後71日の接木体の窒素含有量を示すグラフである。It is a graph which shows the nitrogen content of the graft body on the 71st after transplanting in hydroponics. 水耕栽培した接木体及び挿苗体の蔓先端茎葉の菌密度及び菌名を示す特定グラフである。It is a specific graph which shows the fungus density and fungus name of the vine tip stem and leaves of the graft body and the seedling body which were hydroponically cultivated. 継代検定の結果を示すグラフである。It is a graph which shows the result of a passage test. 土耕栽培における移植後108日の接木体の全乾物重である。It is the total dry weight of grafted body 108 days after transplanting in soil cultivation.

本願発明らは、鋭利検討の結果、無菌状態の苗から採取した台木に、有用な菌を保持する苗から採取した穂木を接木し、該穂木を介して台木側に有用な菌等を移動させることにより、互いに接木された台木及び穂木からなる接木体の生長が促進されることを見出し、これを本願発明に利用するものである。   As a result of the sharp examination, the present inventors grafted a safoli collected from seedlings holding useful fungi to rootstocks collected from aseptic seedlings, and useful fungi on the rootstock side through the saplings And the like are found to promote the growth of graft bodies composed of rootstocks and spikelets grafted to each other, and this is utilized in the present invention.

以下、図1及び図2に基づいて、本発明の実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本発明を適用したサツマイモの栽培方法の説明図であり、図2は、本サツマイモの栽培方法の工程を示すフロー図である。同図に示すサツマイモの栽培方法は、台木用の苗(台木用苗)Aを育てるとともに穂木用の苗(穂木用苗)Bを育てる育苗工程と、台木用苗Aから台木A1を採取するとともに、穂木用苗Bから穂木B1を採取する採取工程と、台木A1と穂木B1とを接木する接木工程と、該接木工程によって互いが接木された台木及び穂木からなる接木体Cを生長させる生長工程とを有している。   FIG. 1 is an explanatory diagram of a sweet potato cultivation method to which the present invention is applied, and FIG. 2 is a flowchart showing the steps of the sweet potato cultivation method. The cultivation method of the sweet potato shown in the figure is to grow a seedling for rootstock (seedling for rootstock) A and a seedling process for growing a seedling for hogi (seedling for hogi) B, and a seedling for seedling A for rootstock. The tree A1 is collected, the harvesting process for harvesting the saplings B1 from the saplings B for saplings, the grafting process for grafting the rootstock A1 and the saplings B1, and the rootstocks grafted to each other by the grafting process; And a growth process for growing a graft body C made of hogi.

ちなみに、生長させた接木体Cは、伸びた蔓の一部を切断してカット苗として利用してもよいし、或いは、そのまま生長させてサツマイモを収穫してもよい。   Incidentally, the grown graft body C may be used as a cut seedling by cutting a part of the extended vine, or may be grown as it is to harvest sweet potatoes.

上記育苗工程では、穂木用苗Bよりも無菌状態に近い環境下で育苗された苗を台木用苗Aとして用いる。具体的には、ウィルスフリーの無菌苗(以下、単に「無菌苗」)の一種であるメリクロン苗を、台木用苗Aとして用いる。ちなみに、メリクロン苗とは、無菌培地で育苗した無菌苗であり、この無菌培地として、培養液等を用いた液体培地である場合や、寒天等の固体培地である場合が想定される。   In the seedling-raising step, seedlings grown in an environment closer to aseptic conditions than the saplings for hogi B are used as rootstock seedlings A. Specifically, a Meliclone seedling, which is a kind of virus-free aseptic seedling (hereinafter simply referred to as “sterile seedling”), is used as the rootstock seedling A. Incidentally, the Meliclone seedling is a sterile seedling grown in a sterile medium. As this sterile medium, a liquid medium using a culture solution or a solid medium such as agar is assumed.

さらに具体的に台木用苗Aについて説明すると、まず、ポットに定植されたメリクロン苗を手元に入手し、しばらく育苗させた後、或いは直ちに、別のポット1に改めて定植する。この際、新たなポット1内の入れる土としては焼成された無菌状態の土2であるバーミキュライト又はパーライトを用い、この育苗中も無菌状態を保持する。   More specifically, the rootstock seedling A will be described. First, the Melklon seedling planted in the pot is obtained at hand, and after raising for a while, it is planted again in another pot 1 immediately. At this time, vermiculite or perlite, which is a baked aseptic soil 2, is used as the soil in the new pot 1, and the aseptic state is maintained even during the raising of the seedlings.

一方、穂木用苗Bとしては、通常状態(非無菌状態)で育苗された普通苗を用いる。普通苗は、菌が存在する状態で、育苗されるため、複数種類の有用な菌等が多くまれた状態になる。ただし、普通苗は、多くの菌を保持しているが、病原菌や有害なウィルスには感染していない健康な苗である。   On the other hand, as the seedling B for hogi, a normal seedling grown in a normal state (non-sterile state) is used. Since normal seedlings are nurtured in a state where bacteria are present, a plurality of types of useful bacteria and the like are abundant. However, normal seedlings are healthy seedlings that retain many fungi but are not infected with pathogenic bacteria or harmful viruses.

さらに具体的に穂木用苗Bについて説明すると、まず、ポットに定植された普通苗を手元に入手し、しばらく育苗させた後、或いは直ちに、別のポット3に改めて定植する。この際、新たなポット3内に入れる土4としては焼成された無菌状態の土であるバーミキュライト又はパーライトを用い、この育苗中に意図しない菌等が混入されることを防止する。   More specifically, the seedling B for hogi will be described. First, a normal seedling planted in a pot is obtained at hand, and after raising for a while, or immediately, it is planted again in another pot 3. At this time, vermiculite or perlite, which is a baked aseptic soil, is used as the soil 4 to be put into the new pot 3, and unintended fungi and the like are prevented from being mixed into the seedlings.

上記採取工程における台木用苗Aからの台木A1の採取では、最も太いメインの蔓(主蔓)6を切断対象として選択し、主蔓6を、根元側から2〜3節又は3〜4節(長さ5cm)程度の部分で垂直にカットし、ポット1を含む根元側部分を台木A1として用いる。この台木A1は、主蔓6の上記節から枝分れして葉5が生えた一又は複数(図示する例では節数と同数)の蔓(枝蔓)7又は主蔓6から直接発生した葉5の何れか一方若しくは両方が含まれた状態になる。   In collecting the rootstock A1 from the seedling A for rootstock in the above-described collecting step, the thickest main vine (main vine) 6 is selected as a cutting target, and the main vine 6 is selected from the root side to two to three sections or three Cut vertically at a section of about 4 nodes (5 cm in length), and use the root side portion including the pot 1 as the rootstock A1. This rootstock A1 is directly generated from one or more vines (branches) 7 or main vines 6 that are branched from the above-mentioned nodes of the main vines 6 and have leaves 5 (the number of nodes is the same as the number of nodes in the illustrated example). Either one or both of the leaves 5 are included.

そして、台木A1の主蔓6におけるカットされた先端部には、断面が軸心側を境に対称に分割されるように切込溝6aを切込形成する。   Then, a cut groove 6a is cut and formed in the cut end portion of the main vine 6 of the rootstock A1 so that the cross section is divided symmetrically about the axis side.

一方、採取工程における穂木用苗Bからの穂木B1の採取では、最も太いメインの蔓(主蔓)8を切断対象として選択し、主蔓8の先端側から2〜4節(長さ10cm)程度の部分を側面からみてV字状にカットし、この先端側部分を穂木B1として用いる。上記カット形状によって、穂木B1の主蔓8の基端部は、楔状をなす刺込部8aが形成される。   On the other hand, in the harvesting process, the thickest main vine (main vine) 8 is selected as a target for cutting, and 2 to 4 nodes (length) from the tip side of the main vine 8 are collected. A portion of about 10 cm) is cut into a V shape when viewed from the side, and this tip side portion is used as the hogi B1. By the cut shape, a wedge-shaped piercing portion 8a is formed at the base end portion of the main vine 8 of the hogi B1.

この穂木B1も、主蔓8の上記節から枝分れして葉10を生えた一又は複数(図示する例では節数と同数)の蔓(枝蔓)9又は主蔓8から直接発生した葉10何れか一方若しくは両方が含まれた状態になる。なお、通常、葉量(葉5,10の枚数又は各葉5,10の表面積を合算した総面積)は、台木A1よりも穂木B1が多くなるが、これを逆に設定し、穂木B1よりも台木A1の葉量を多く設定することもできる。   This hogi B1 was also directly generated from one or a plurality of vines (branches) 9 or main vines 8 that were branched from the above-mentioned nodes of main vines 8 and grew leaves 10 (the number of nodes in the illustrated example is the same as the number of nodes). Either one or both of the leaves 10 are included. Normally, the amount of leaves (the total number of leaves 5 and 10 or the total surface area of the leaves 5 and 10) is higher for the hogi B1 than for the rootstock A1, but this is set in reverse. The amount of leaves of the rootstock A1 can be set larger than that of the tree B1.

上記接木工程では、上記切込溝6aに刺込部8aを係合状態で挿入し、該係合部分の外周に接木用テープ11を巻付けて固定し、さらに、接木クリップ12によって、巻付けた接木用テープ11の外周(台木の先端部の外周側)を挟持することにより、切込溝6a内に刺込部8aを挟込ませて保持させ、これによって上記接木の作業を完了する。   In the grafting step, the piercing portion 8a is inserted into the cut groove 6a in an engaged state, and the grafting tape 11 is wound around and fixed to the outer periphery of the engaging portion. By sandwiching the outer periphery of the grafting tape 11 (the outer peripheral side of the tip of the rootstock), the insertion portion 8a is sandwiched and held in the cut groove 6a, thereby completing the above grafting operation. .

上記生長工程では、接木体Cを、水耕栽培又は土壌栽培によって生長させる。水耕栽培の場合には、上記台木A1のポット1を、そのまま用いることも可能であり、バーミキュライト又はパーライトからなる土2を用い、培養液を定期的に所定量供給して水耕栽培を行う。土壌栽培の場合には、ポット1に定植された接木体Cを、圃場や別のポットに移植する作業が必要になるが、この場合には、生長した接木体Cから採取したカット苗を、圃場や別のポットに定植させてもよい。そして、接木体Cが生長する過程で、穂木B1側から台木A1側に有効な菌等が移動し、生長が促進される。   In the growth process, the graft body C is grown by hydroponics or soil cultivation. In the case of hydroponics, the pot 1 of the rootstock A1 can be used as it is. The soil 2 made of vermiculite or pearlite is used, and a predetermined amount of the culture solution is periodically supplied for hydroponics. Do. In the case of soil cultivation, it is necessary to transplant the graft C planted in the pot 1 to a field or another pot. In this case, a cut seedling collected from the grown graft C It may be planted in a field or another pot. In the process of growing the graft body C, effective bacteria and the like move from the hogi B1 side to the rootstock A1 side, and the growth is promoted.

なお、図2に仮想線の矢印で示す通り、生長させた接木体Cから上記した手段と同一の手段により穂木B1を採取し、この穂木B1と前記台木A1とを接木して新たな接木体Cとしてもよい。さらに、この手順を繰返して、次々と代を受け継がせてもよい。以下、この代の受け継ぎを「継代」と呼ぶ。   In addition, as shown by the phantom line arrow in FIG. 2, the spike B1 is collected from the grown graft C by the same means as described above, and the spike B1 and the rootstock A1 are grafted and newly obtained. A good graft C may be used. Further, this procedure may be repeated to inherit the generations one after another. Hereinafter, this generation of inheritance is referred to as “passage”.

また、穂木B1は挿し穂の状態であるため、手元に入手した挿し穂の基端部に刺込部8aを形成し、そのまま穂木B1として用いてもよい。この場合、穂木B1の育苗工程の全て及び採取工程の一部が省略可能になる。   Moreover, since Hogi B1 is in the state of cutting ears, a piercing portion 8a may be formed at the proximal end portion of the cutting ear obtained at hand and used as it is as Hogi B1. In this case, it is possible to omit all of the seedling raising process of Hogi B1 and a part of the collecting process.

また、台木A1についても同様であり、無菌状態のポット苗を入手し、該ポット苗の先端側をカットして、ポットを含む根元側をそのまま台木A1として利用してもよい。この場合には、台木A1の育苗工程が全て省略される。   The same applies to the rootstock A1. A sterile pot seedling may be obtained, the tip end side of the pot seedling may be cut, and the root side including the pot may be used as the rootstock A1 as it is. In this case, all the seedling raising processes of the rootstock A1 are omitted.

以上のように構成されるサツマイモの栽培方法によれば、穂木B1の上記有用な菌が台木A1にも移り、効率的な生長を促すことが可能である。   According to the sweet potato cultivation method configured as described above, the above-mentioned useful fungi of Hogi B1 can also move to rootstock A1 and promote efficient growth.

また、台木A1及び穂木B1は、互いに異なる品種のサツマイモ苗から採取されるため、台木用苗A及び穂木用苗Bとして、互いに性質の異なる品種のサツマイモ苗を用いて、品質の高いサツマイモを多く収穫することが可能になる。例えば、糖度は高いが収穫量が少ない品種のサツマイモ苗から採取した台木A1と、収穫量が多い品種のサツマイモ苗から採取した穂木B1とを接木する等の組合せが考えられる。なお、同一品種のサツマイモ苗から台木A1及び穂木B1を採取してもよい。   Moreover, since rootstock A1 and panicle B1 are collected from sweet potato seedlings of different varieties, sweet potato seedlings of different qualities are used as rootstock seedling A and panicle seedling B. It becomes possible to harvest a lot of expensive sweet potatoes. For example, a combination of grafting rootstock A1 collected from a sweet potato seedling of a variety having a high sugar content but a small yield and a panicle B1 collected from a sweet potato seedling of a variety having a high yield is conceivable. In addition, you may extract rootstock A1 and hogi B1 from the sweet potato seedling of the same kind.

ちなみに、この生長促進効果のメカニズムについて説明すると、まず、生長に欠かせない重要な物質として窒素が存在する。そして、この窒素を固定させると、生長が促進されるが、この窒素固定に有用に作用する菌として窒素固定内生菌の存在する。窒素の固定について説明すると、窒素固定内生菌は、植物と共生し、常時空気中から窒素と取込み、この取込んだ窒素を該植物が利用可能な形態の窒素に変化させる。ここでは、この一連の現象を窒素固定と呼んでいる。   By the way, the mechanism of this growth promoting effect is explained. First, nitrogen exists as an important substance indispensable for growth. And when this nitrogen is fixed, the growth is promoted, but there is a nitrogen-fixing endobacterium as a fungus that effectively acts on this nitrogen fixation. Explaining the fixation of nitrogen, nitrogen-fixing endophytic bacteria coexist with plants, constantly take in nitrogen from the air, and change the taken-in nitrogen into a form of nitrogen that can be used by the plant. Here, this series of phenomena is called nitrogen fixation.

この窒素固定内生菌は、普通苗に多く含まれるものであるが、単体では、窒素を保持する機能を十分に発揮しないものが多く、別の菌と共存させた環境(共生環境)下で、初めて窒素保持機能を発揮するため、単離・培養した窒素固定内生菌を用いても、それ程高い効果を望むことができない場合が多い。   These nitrogen-fixing endophytic bacteria are abundantly contained in normal seedlings, but many of them alone do not sufficiently function to retain nitrogen, and in an environment where they coexist with other bacteria (symbiotic environment) Since the nitrogen retention function is exhibited for the first time, it is often impossible to achieve such a high effect even if an isolated and cultured nitrogen-fixing endobacterium is used.

すなわち、この窒素固定内生菌を活性化させるためには、この窒素固定内生菌を採取した苗の体内と同様の共生環境を再現させる必要があり、本願発明らは、この点に着目し、この共生環境の再現が、接木される穂木によって実現可能であることを見出した。   That is, in order to activate the nitrogen-fixing endobacterium, it is necessary to reproduce the same symbiotic environment as the body of the seedling from which the nitrogen-fixing endobacterium was collected. We found that this symbiotic environment can be reproduced by grafted Hogi.

具体的には、窒素固定内生菌を体内に含むことが確実視される健康な穂木B1の体内では、当上記共生環境が構築されているため、この穂木B1を無菌状態の台木A1に接木することにより、共生環境によって窒素を固定する機能が活性化した窒素固定内生菌を、そのままの状態で、台木A1側に移動させることが可能であり、これによって生長が促進される。   Specifically, since the symbiotic environment is constructed in the body of a healthy hogi B1 that is surely containing nitrogen-fixing endophytic bacteria, the hogi B1 is a sterile rootstock. By grafting on A1, it is possible to move the nitrogen-fixing endophytic fungus whose function of fixing nitrogen in the symbiotic environment is activated to the rootstock A1 side as it is, and this promotes growth. The

次に、上記サツマイモの栽培方法の優位性を確認する目的で、水耕栽培での実験を行ったので、その実験内容及び結果について説明する。   Next, an experiment in hydroponics was conducted for the purpose of confirming the superiority of the cultivation method of the sweet potato, and the contents and results of the experiment will be described.

まず、下記表に示す無菌苗及び普通苗を用意した。   First, aseptic seedlings and normal seedlings shown in the following table were prepared.

Figure 2015037385
Figure 2015037385

そして、高系14号の無菌苗を台木用苗Aとして用いる一方、高系14号、紅赤、べにはるかの3種類の無菌苗及び高系14号、紅赤、べにはるかの3種類の普通苗の計6種類の苗を穂木用苗Bとして用い、各種類の穂木用苗Bを、個別に専用で用意した台木用苗Aに接木した。   Then, while using high type 14 aseptic seedlings as rootstock seedling A, high type 14, assorted aseptic seeds of red, red and far, and high type 14, red and red, far far 3 A total of six types of normal seedlings were used as the seedlings B for the hogi, and each type of the seedling B for the hogi was grafted to the rootstock seedling A prepared individually.

各台木用苗A及び各穂木用苗Bは、完全展開葉10節を残して切取り且つ5葉を残した葉も切取って挿し穂状態とし、バーミキュライトを詰めたビニル製ポット1,3に挿苗した。そして、5〜6月の季節に20〜24日程度育苗し、その後、各組の台木用苗A及び穂木用苗Bで、接木作業を行った。   Each rootstock seedling A and each sapling seedling B were cut out leaving 10 fully expanded leaves, and the leaves leaving 5 leaves were cut out and put into a spiked state, and vinyl pots 1, 3 filled with vermiculite Inseed into. Then, seedlings were grown for about 20 to 24 days in the season of May to June, and then grafting work was performed with the seedling A for rootstock and the seedling B for hogi.

ポット1に定植された接木体Cは、6〜7月の季節に1ヶ月程度、日除けが施されたビニルトンネル内で生長させた。この際、乾燥を防止するため、午前6時と、午後0時の一日2回、各回5分間の自動潅水を行った。   The graft C planted in the pot 1 was grown in a vinyl tunnel that was shaded for about one month in the season from June to July. At this time, in order to prevent drying, automatic irrigation for 5 minutes was performed twice a day at 6:00 am and 0:00 pm.

続いて、生長させた各接木体Cからなる各ポット苗を、根鉢状になった根をトリミングし、バーミキュライトを詰めたザルに移植した。ザルは、プラスチック製のボックス内に収容されたネットであり、ザルは7cm程度底上げされ、その底面側には、供給用のフィルタが設けられている。   Subsequently, each pot seedling made of each grafted body C grown was trimmed from a root-bottomed root and transplanted to a monkey packed with vermiculite. The colander is a net housed in a plastic box, the colander is raised about 7 cm, and a supply filter is provided on the bottom side.

そして、下記表に示す準園試処方(大塚B)水耕液(培養液)によって、水耕栽培を行った。   And hydroponics were performed with the semi-garden trial formulation (Otsuka B) hydroponic solution (culture solution) shown in the following table.

Figure 2015037385
Figure 2015037385

また、培養液の濃度は、生長に合わせて、以下に示す表の通りに変化させた。   The concentration of the culture solution was changed as shown in the table below according to the growth.

Figure 2015037385
Figure 2015037385

そして、移植後の水耕栽培期間を70日程度(本例では、71日)とし、成長した各接木体Cについて、各種計測を行った。   And the hydroponics period after transplanting was set to about 70 days (in this example, 71 days), and various measurements were performed on each grown graft body C.

図3は、水耕栽培における移植後71日の接木体の全乾物重である。接木体Cの葉5,10、蔓6,7,8,9、根及び塊根を、80℃通風乾燥機内で48時間以上乾燥させて乾物とし、各接木体Cにおいて乾物の総重量を計測した。結果は、同図に示す通りであり、無菌苗から採取した台木A1に、普通苗から採取した穂木B1を接木した3種類のものは、該台木A1に、無菌苗から採取した穂木B1を接木した3種類のものに比べて、有意に重く、本発明の優位性を示す結果になった。ちなみに、図3の図中、「はるか」はべにはるかの略であり、「高系」は高系14号の略である。   FIG. 3 shows the total dry weight of the graft body 71 days after transplantation in hydroponics. The leaves 5,10, vines 6,7,8,9, roots and tuberous roots of the graft body C were dried in an air dryer at 80 ° C. for 48 hours or more to obtain dry matter, and the total weight of the dry matter in each graft body C was measured. . The results are as shown in the figure, and three types of rootstock A1 collected from sterile seedlings and grafted with spikelet B1 collected from ordinary seedlings are spiked into rootstock A1 from sterile seedlings. It was significantly heavier than the three types grafted with the tree B1, and showed the superiority of the present invention. Incidentally, in the figure of FIG. 3, “Haruka” is an abbreviation for far, and “High system” is an abbreviation for High system No. 14.

図4は、水耕栽培における移植後71日の接木体の窒素含有量を示すグラフである。まず、上記乾物を、微粉砕し、窒素分析装置によって窒素の含有量を計測するとともに、ザル内のバーミキュライトを採取し、105℃通風乾燥機内で、48時間以上乾燥させて窒素分析装置によって窒素の含有量を計測した。   FIG. 4 is a graph showing the nitrogen content of the grafted body 71 days after transplantation in hydroponics. First, the dry matter is finely pulverized, and the nitrogen content is measured by a nitrogen analyzer, and vermiculite in the monkey is collected and dried in a ventilation dryer at 105 ° C. for 48 hours or more. The content was measured.

続いて、与えた培養液と残った培養液の硝酸態窒素をイオン電極でモニタし、これとアンモニア態窒素、全窒素をそれぞれ窒素分析装置によって測定し、窒素の収支を求めるとともに、植物の15N濃度を利用する重窒素自然存在比法により空気由来の窒素利用率を求めた。   Subsequently, nitrate nitrogen in the given culture solution and the remaining culture solution is monitored with an ion electrode, and ammonia nitrogen and total nitrogen are each measured by a nitrogen analyzer to determine the nitrogen balance, and the plant's 15N The nitrogen utilization rate derived from air was calculated by the natural abundance ratio method using heavy nitrogen.

結果は、図4に示す通りであり、無菌苗から採取した台木A1に、普通苗から採取した穂木B1を接木した3種類のものは、該台木A1に、無菌苗から採取した穂木B1を接木した3種類のものに比べて、空気由来の窒素利用率や、窒素全体の含有量が高く、穂木B1から台木A1に移動した窒素固定内生菌が有用に作用している状態が確認された。特に、空気由来の窒素利用率で、有意な差が見出された。ちなみに、図4の図中、「はるか」はべにはるかの略であり、「高系」は高系14号の略である。   The results are as shown in FIG. 4. Three types of rootstocks A1 collected from sterile seedlings and grafted with spikelets B1 collected from ordinary seedlings are spiked into rootstocks A1 from sterile seedlings. Compared to three types of grafted tree B1, the nitrogen utilization rate derived from air and the total nitrogen content are high, and nitrogen-fixing endophytic bacteria that have moved from Hogi B1 to rootstock A1 are useful. The state is confirmed. In particular, a significant difference was found in the nitrogen utilization rate derived from air. Incidentally, in the figure of FIG. 4, “Haruka” is an abbreviation for far, and “High system” is an abbreviation for High system No. 14.

図5は、水耕栽培した接木体及び挿苗体の蔓先端茎葉の菌密度及び菌名を示す特定グラフである。上記の通りに71日間水耕栽培した6種類の接木体Cと、穂木B1を採取する3種類の普通苗とについて、蔓先端茎葉に対して、菌を分離して、その菌名及び菌密度を調べた。   FIG. 5 is a specific graph showing the fungus density and the fungus name of the vine tip stems and leaves of hydroponic-cultivated grafts and seedlings. About 6 types of grafted body C which was hydroponically cultivated for 71 days as described above, and 3 types of normal seedlings from which panicle B1 was collected, the fungus was separated from the vine tip and leaves, and the fungus name and fungus The density was examined.

その結果は、同図に示す通りであり、菌が分離されたものが、紅赤の挿し穂状態の普通苗及びこれと同一品種の普通苗から採取された穂木B1を接木した接木体Cであった。また、後述する継代検定において、紅赤のサツマイモ品種について、良好な結果が示されている結果と一致している。ちなみに、図5中、「はるか」はべにはるかの略であり、「高系」は高系14号の略である。   The result is as shown in the figure, and the one from which the fungus has been separated is grafted body C grafted with red and red cuttings of normal seedlings and ears B1 collected from normal seedlings of the same varieties. Met. Moreover, in the passage test mentioned later, it is in agreement with the result in which the favorable result was shown about the red sweet potato variety. Incidentally, in FIG. 5, “Haruka” is an abbreviation for far and “High” is an abbreviation for High 14.

なお、菌が分離されないものについては、菌が存在していないということではなく、数が少ないか、或いは分離されない菌が普通苗及び接木体Cに存在しているものと推測される。なお、これらの菌は、窒素固定内生菌か、或いはそれに関連する菌である。   In addition, about the thing from which a microbe is not isolate | separated, it is not that the microbe does not exist but it is estimated that the number is small or the microbe which is not isolate | separated exists in the normal seedling and the graft body C. These bacteria are nitrogen-fixing endophytic bacteria or bacteria related thereto.

図6は、継代検定の結果を示すグラフである。各種類の接木体Cについて継代させ、新たな接木体Cを、上述と同様の手法により、生長させ、移植後44日で、乾物の増加した重量を測定した。   FIG. 6 is a graph showing the results of the passage test. Each type of graft body C was subcultured, and a new graft body C was grown by the same method as described above, and the increased weight of dry matter was measured 44 days after transplantation.

その結果は、同図に示す通りであり、無菌苗から採取した台木A1に、普通苗から採取した穂木B1を接木した3種類の接木体Cから採取した穂木B1を、さらに、無菌苗から採取した台木A1に接木して、新たな接木体Cとしたものは、無菌苗から採取した台木A1に、無菌苗から採取した穂木B1を接木した3種類の接木体Cから採取した穂木B1を、さらに、無菌苗から採取した台木A1に接木して、新たな接木体Cとしたものよりも、乾物の増加重量が有意に重く、窒素固定内生菌の有用性が継代しても保持されることが確認された。ちなみに、図6の図中、「はるか」はべにはるかの略であり、「高系」は高系14号の略である。   The result is as shown in the figure, and the panicle B1 collected from three types of grafts C1 obtained by grafting the spikelet B1 collected from the normal seedling to the rootstock A1 collected from the sterile seedling is further aseptic. A new graft body C obtained by grafting a rootstock A1 collected from a seedling is obtained from three types of graft bodies C obtained by grafting a rootstock B1 collected from a sterile seedling to a rootstock A1 collected from a sterile seedling. The collected hogi B1 is further grafted to a rootstock A1 collected from aseptic seedlings to obtain a new graft C. The increase in dry matter is significantly heavier, and the usefulness of nitrogen-fixing endophytic bacteria Was confirmed to be retained even after passage. Incidentally, in the drawing of FIG. 6, “Haruka” is an abbreviation for far, and “High system” is an abbreviation for High system No. 14.

次に、上記サツマイモの栽培方法の優位性を確認する目的で、土耕栽培での実験を行ったので、その実験内容及び結果について説明する。   Next, an experiment in soil cultivation was performed for the purpose of confirming the superiority of the cultivation method of the sweet potato, and the contents and results of the experiment will be described.

まず、下記表に示す無菌苗及び普通苗を用意した。   First, aseptic seedlings and normal seedlings shown in the following table were prepared.

Figure 2015037385
Figure 2015037385

そして、高系14号の普通苗を台木用苗Aとして用い、上述と同様の手法により、接木体Cを作り、この接木体Cを土耕栽培した。   And using the normal seedling of the high system No. 14 as the seedling A for rootstock A, the graft body C was made by the method similar to the above, and this graft body C was cultivated in soil.

土耕栽培における移植後108日の接木体の全乾物重である。同図に示す通り、各種類の接木体の乾物の総重量は、無菌苗から採取した穂木B1と、普通苗から採取した穂木Bとの間で、有意な差は無かった。ちなみに、同図の「高」は高系14号の略であり、「黄」は黄金千貫の略であり、「は」はべにはるかの略であり、「東」はべにあずまの略であり、「赤」は紅赤の略である。同図に示す結果は、台木A1を採取する苗としては、無菌苗の方が、普通苗よりも望ましいことを示すものである。   It is the total dry weight of grafted body 108 days after transplanting in soil cultivation. As shown in the figure, the total weight of the dry matter of each type of grafted body was not significantly different between the spike B1 collected from the sterile seedling and the spike B B collected from the normal seedling. By the way, “High” in the figure is an abbreviation for High System No. 14, “Yellow” is an abbreviation for Golden Senju, “Ha” is a much more abbreviation, and “East” is an abbreviation for Azuma. "Red" is an abbreviation for red and red. The results shown in the figure indicate that aseptic seedlings are more desirable than ordinary seedlings as seedlings for collecting rootstock A1.

5 葉
6 主蔓(蔓)
7 枝蔓(蔓)
10 葉
A 台木用苗(台木用の苗)
A1 台木
B 穂木用苗(穂木用の苗)
B1 穂木
C 接木体
5 Leaves 6 Main vine
7 Branch vine
10 Leaf A Rootstock Seedling (Rootstock Seedling)
A1 Rootstock B Hogi Seedling (Hogi Seedling)
B1 Hogi C graft body

本願発明らは、鋭検討の結果、無菌状態の苗から採取した台木に、有用な菌を保持する苗から採取した穂木を接木し、該穂木を介して台木側に有用な菌等を移動させることにより、互いに接木された台木及び穂木からなる接木体の生長が促進されることを見出し、これを本願発明に利用するものである。 The present invention found, as a result of acute meaning study, the rootstock taken from a sterile seedling, grafted a scion taken from seedlings to retain useful bacteria, useful in the stock side through the該穂tree It has been found that the growth of graft bodies composed of rootstocks and spikelets grafted with each other is promoted by moving the fungus and the like, and this is utilized in the present invention.

Claims (6)

穂木用の苗(B)から採取される穂木(B1)と、前記穂木用の苗(B)よりも無菌に近い状態で育苗された台木用の苗(A)から採取される台木(A1)とを接木し、該接木された台木(A1)及び穂木(B1)からなる接木体(C)を生長させるサツマイモの栽培方法。   Haruki (B1) collected from the seedling for hogi (B) and the seedling for rootstock (A) grown in a condition closer to asepticity than the seedling for hogi (B) A sweet potato cultivation method for grafting a rootstock (A1) and growing a graft body (C) composed of the grafted rootstock (A1) and hogi (B1). 台木用の苗(A)から台木(A1)を採取する際に、切断対象の蔓(6)から発生した葉(5)又は該蔓(6)から枝分れした蔓(7)が台木(A1)側に残るようにして、上記切断を行う請求項1に記載のサツマイモの栽培方法。   When the rootstock (A1) is collected from the rootstock seedling (A), the leaves (5) generated from the vine (6) to be cut or the vine (7) branched from the vine (6) The cultivation method of the sweet potato of Claim 1 which performs the said cutting | disconnection so that it may remain on the rootstock (A1) side. 前記台木(A1)を、無菌状態で育苗された無菌苗から採取する請求項1又は2の何れかに記載のサツマイモの栽培方法。   The cultivation method of the sweet potato in any one of Claim 1 or 2 which extract | collects the said rootstock (A1) from the aseptic seedling grown in aseptic condition. 前記台木(A1)を、無菌苗の一種であり且つ無菌培地で育成したメリクロン苗から採取する請求項3に記載のサツマイモの栽培方法。   The cultivation method of the sweet potato of Claim 3 which extract | collects the said rootstock (A1) from the meliclon seedling which was 1 type of aseptic seedlings, and was grown on the aseptic culture medium. 前記穂木用の苗(B)と前記台木用の苗(A)とが互いに異なる品種である請求項1乃至4の何れかに記載のサツマイモの栽培方法。   The method for cultivating sweet potatoes according to any one of claims 1 to 4, wherein the seedlings for hogi (B) and the seedlings for rootstock (A) are different varieties. 前記接木体(C)を生長させ、該接木体(C)から伸びた蔓を穂木(B1)として採取し、該穂木(B1)を前記台木(A1)に接木して新たな接木体(C)とする請求項1乃至5の何れかに記載のサツマイモの栽培方法。   The graft body (C) is grown, the vines extending from the graft body (C) are collected as spikelets (B1), and the graft (B1) is grafted to the rootstock (A1) to form a new graft The cultivation method of the sweet potato according to any one of claims 1 to 5, wherein the body (C) is used.
JP2013169312A 2013-08-18 2013-08-18 Sweet potato cultivation method Expired - Fee Related JP6241916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013169312A JP6241916B2 (en) 2013-08-18 2013-08-18 Sweet potato cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169312A JP6241916B2 (en) 2013-08-18 2013-08-18 Sweet potato cultivation method

Publications (2)

Publication Number Publication Date
JP2015037385A true JP2015037385A (en) 2015-02-26
JP6241916B2 JP6241916B2 (en) 2017-12-06

Family

ID=52630976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169312A Expired - Fee Related JP6241916B2 (en) 2013-08-18 2013-08-18 Sweet potato cultivation method

Country Status (1)

Country Link
JP (1) JP6241916B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052564A (en) * 2015-08-05 2015-11-18 浙江农林大学 Composite seedling method for cutting and grafting hard branches of carya illinoensis k. koch in corresponding period
CN105359784A (en) * 2015-11-05 2016-03-02 和县利民蔬菜种植专业合作社 Method for high-yield planting of sweet potatoes
JP2018528760A (en) * 2015-07-13 2018-10-04 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
CN113632651A (en) * 2021-08-16 2021-11-12 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) Method for breeding edible sweet potato variety
US11479516B2 (en) 2015-10-05 2022-10-25 Massachusetts Institute Of Technology Nitrogen fixation using refactored NIF clusters
US11565979B2 (en) 2017-01-12 2023-01-31 Pivot Bio, Inc. Methods and compositions for improving plant traits
US11946162B2 (en) 2012-11-01 2024-04-02 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495016B1 (en) * 1967-03-27 1974-02-05
JPS5255927A (en) * 1975-10-24 1977-05-07 Masu Yabuki Method of leaf cutting cultivation for sweet potato
JPH01187032A (en) * 1988-01-22 1989-07-26 Komatsu Ltd Grafting
JPH0335739A (en) * 1989-07-03 1991-02-15 Nippon Mining Co Ltd Method for inducing seedling anlage of useful plant and method for proliferating young seedling from same induced seedling base at large amount
US5096481A (en) * 1990-08-30 1992-03-17 University Of Florida Sheared roots as a VA-mycorrhizal inoculum and methods for enhancing plant growth
JPH0595731A (en) * 1990-03-05 1993-04-20 Zenkoku Nogyo Kyodo Kumiai Rengokai Method for grafting seedling
JPH09294495A (en) * 1996-04-30 1997-11-18 Taiyo Kogyo Kk Proliferation of germ-free sweet potato seedling
JPH10323124A (en) * 1997-05-26 1998-12-08 Nippon Derumonte Kk Grafted nursery plant of vegetable
JP2000308427A (en) * 1999-04-27 2000-11-07 Nisshinbo Ind Inc Production of sweet potato plantlet
JP2001231354A (en) * 2000-02-25 2001-08-28 Toyota Motor Corp Method for cultivating sweet potato
JP2001340020A (en) * 2000-06-01 2001-12-11 Nippon Del Monte Corp Pimiento's two-kind laterally multi-branched seedling
JP2002142563A (en) * 2000-11-07 2002-05-21 Nippon Nouken:Kk Method for plant cultivation
JP2007161586A (en) * 2005-12-09 2007-06-28 Sakurano Boeki Kk Extracted solution of fuscoporia obliqua, method for producing extracted solution of fuscoporia obliqua, method for using extracted solution of fuscoporia obliqua in paddy field, method for using extracted solution of fuscoporia obliqua for fruit, vegetable or ornamental flowering plant and method for using extracted solution of fuscoporia obliqua for phalaenopsis

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495016B1 (en) * 1967-03-27 1974-02-05
JPS5255927A (en) * 1975-10-24 1977-05-07 Masu Yabuki Method of leaf cutting cultivation for sweet potato
JPH01187032A (en) * 1988-01-22 1989-07-26 Komatsu Ltd Grafting
JPH0335739A (en) * 1989-07-03 1991-02-15 Nippon Mining Co Ltd Method for inducing seedling anlage of useful plant and method for proliferating young seedling from same induced seedling base at large amount
JPH0595731A (en) * 1990-03-05 1993-04-20 Zenkoku Nogyo Kyodo Kumiai Rengokai Method for grafting seedling
US5096481A (en) * 1990-08-30 1992-03-17 University Of Florida Sheared roots as a VA-mycorrhizal inoculum and methods for enhancing plant growth
JPH09294495A (en) * 1996-04-30 1997-11-18 Taiyo Kogyo Kk Proliferation of germ-free sweet potato seedling
JPH10323124A (en) * 1997-05-26 1998-12-08 Nippon Derumonte Kk Grafted nursery plant of vegetable
JP2000308427A (en) * 1999-04-27 2000-11-07 Nisshinbo Ind Inc Production of sweet potato plantlet
JP2001231354A (en) * 2000-02-25 2001-08-28 Toyota Motor Corp Method for cultivating sweet potato
JP2001340020A (en) * 2000-06-01 2001-12-11 Nippon Del Monte Corp Pimiento's two-kind laterally multi-branched seedling
JP2002142563A (en) * 2000-11-07 2002-05-21 Nippon Nouken:Kk Method for plant cultivation
JP2007161586A (en) * 2005-12-09 2007-06-28 Sakurano Boeki Kk Extracted solution of fuscoporia obliqua, method for producing extracted solution of fuscoporia obliqua, method for using extracted solution of fuscoporia obliqua in paddy field, method for using extracted solution of fuscoporia obliqua for fruit, vegetable or ornamental flowering plant and method for using extracted solution of fuscoporia obliqua for phalaenopsis

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946162B2 (en) 2012-11-01 2024-04-02 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
JP7277055B2 (en) 2015-07-13 2023-05-18 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
JP2018528760A (en) * 2015-07-13 2018-10-04 ピボット バイオ, インコーポレイテッド Methods and compositions for improving plant traits
US10919814B2 (en) 2015-07-13 2021-02-16 Pivot Bio, Inc. Methods and compositions for improving plant traits
US10934226B2 (en) 2015-07-13 2021-03-02 Pivot Bio, Inc. Methods and compositions for improving plant traits
JP2021045141A (en) * 2015-07-13 2021-03-25 ピボット バイオ, インコーポレイテッド Method and composition for improving plant trait
US11739032B2 (en) 2015-07-13 2023-08-29 Pivot Bio, Inc. Methods and compositions for improving plant traits
CN105052564A (en) * 2015-08-05 2015-11-18 浙江农林大学 Composite seedling method for cutting and grafting hard branches of carya illinoensis k. koch in corresponding period
US11479516B2 (en) 2015-10-05 2022-10-25 Massachusetts Institute Of Technology Nitrogen fixation using refactored NIF clusters
CN105359784A (en) * 2015-11-05 2016-03-02 和县利民蔬菜种植专业合作社 Method for high-yield planting of sweet potatoes
US11565979B2 (en) 2017-01-12 2023-01-31 Pivot Bio, Inc. Methods and compositions for improving plant traits
US11993778B2 (en) 2017-10-25 2024-05-28 Pivot Bio, Inc. Methods and compositions for improving engineered microbes that fix nitrogen
CN113632651A (en) * 2021-08-16 2021-11-12 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) Method for breeding edible sweet potato variety

Also Published As

Publication number Publication date
JP6241916B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6241916B2 (en) Sweet potato cultivation method
CN104737828B (en) Chinese chestnut branch embedding grafting method
CN103703974A (en) Method for cultivating sweet potatoes
CN104025913A (en) Method for improving capacity of descendants of Capsella bursa-pastoris to remedy cadmium-contaminated orchid soil by grafting
CN108307823B (en) Method for performing cutting propagation by using blueberry tissue culture seedlings
CN108184529B (en) A kind of cultural method improving dish mulberry tree burgeen yield and quality
JP2014030368A (en) Novel tomato multi-branched grafted seedling and creation method of the same
CN112586346B (en) Tree eggplant, and cultivation method, rapid propagation method and application thereof
Arin et al. Effect of low-tunnel, mulch and pruning on the yield and earliness of tomato in unheated glasshouse
KR101555985B1 (en) Method for vegetative propagation of Populus species using micro-cutting
CN103250572A (en) Method for breeding high-yield fast-growing seedlings of high-odor phoenix single-clump tea
JP3774865B2 (en) Cultivation and production of sugarcane seedlings
CN109121771B (en) Rapid cuttage breeding method for ulmus davidiana hard branches
JP2000135025A (en) Transplantation and culture of higher part-branched stem seedling of cane
CN109526432B (en) Sweet cherry seedling raising and garden building method in high-altitude cold areas
KR101003032B1 (en) The pinus densiflora grafting way that used a planting container
CN101341833B (en) Different-root continuous cultivation method for lianas vegetable
KR20140122911A (en) Grafting method for rootstock multistage
Mauromicale et al. Planning of globe artichoke plantlets production in nursery
CN106613689B (en) Method for rapidly breeding paeonia suffruticosa
Subedi et al. Research notes on vegetative propagation of Chiuri (Diploknema butyracea (Roxb.) HJ Lam)
KR102597761B1 (en) Method of mass propagation of Maesa japonica
CN115606593B (en) Calotropis gigantea cutting nutrient and cutting method
CN101313651A (en) Parental stock reimplantation cultivation method for plant strain
CN101341848B (en) Direct-seeding continuous cultivation method for lianas vegetables in greenhouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6241916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees