JP2015025825A - Light source device, and wavelength conversion method - Google Patents

Light source device, and wavelength conversion method Download PDF

Info

Publication number
JP2015025825A
JP2015025825A JP2011248395A JP2011248395A JP2015025825A JP 2015025825 A JP2015025825 A JP 2015025825A JP 2011248395 A JP2011248395 A JP 2011248395A JP 2011248395 A JP2011248395 A JP 2011248395A JP 2015025825 A JP2015025825 A JP 2015025825A
Authority
JP
Japan
Prior art keywords
output
light
light source
temperature control
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011248395A
Other languages
Japanese (ja)
Inventor
登士和 久保
Toshikazu Kubo
登士和 久保
大登 正敬
Masanori Oto
正敬 大登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011248395A priority Critical patent/JP2015025825A/en
Priority to PCT/JP2012/005205 priority patent/WO2013073080A1/en
Priority to TW101142029A priority patent/TW201326935A/en
Publication of JP2015025825A publication Critical patent/JP2015025825A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time which lasts till a polarization inversion structure is set to a desired temperature.SOLUTION: A ferroelectric crystal 20 comprises a light input unit, a light output unit, and a polarization inversion structure 22. The polarization inversion structure 22 is provided between the light input unit and the light output unit. An output light source 10 makes output light incident on the input unit of the ferroelectric crystal. The output light is subjected to wavelength conversion by the polarization inversion structure 22 of the ferroelectric crystal 20. A temperature control light source 30 irradiates the polarization inversion structure 22 of the ferroelectric crystal 20 with temperature control light. The temperature control light has a wavelength absorbed into the ferroelectric crystal 20. A control unit 32 controls the output of the temperature control light source 30.

Description

本発明は、分極反転構造を有する導波路を備えた光源装置及び波長変換方法に関する。   The present invention relates to a light source device including a waveguide having a domain-inverted structure and a wavelength conversion method.

近年、擬似位相整合を用いて波長変換を行う技術が開発されている。擬似位相整合は、強誘電体結晶に分極反転構造を周期的に形成した素子を用いて行われる。   In recent years, techniques for performing wavelength conversion using quasi-phase matching have been developed. Quasi-phase matching is performed using an element in which a polarization inversion structure is periodically formed in a ferroelectric crystal.

一方、擬似位相整合を用いた波長変換の効率を高くするためには、分極反転構造部分の温度を制御する必要がある。例えば特許文献1には、分極反転構造を有する導波路に薄膜ヒータを設けることが記載されている。また特許文献2には、分極反転構造を有する導波路に沿って、複数の温度制御用素子を設けることが記載されている。温度調節用素子としては、ペルチェ素子が用いられている。   On the other hand, in order to increase the efficiency of wavelength conversion using quasi phase matching, it is necessary to control the temperature of the domain-inverted structure. For example, Patent Document 1 describes that a thin film heater is provided in a waveguide having a domain-inverted structure. Patent Document 2 describes providing a plurality of temperature control elements along a waveguide having a domain-inverted structure. As the temperature adjusting element, a Peltier element is used.

特開平5−53163号公報Japanese Patent Laid-Open No. 5-53163 特開2005−202334号公報JP 2005-202334 A

ヒータやペルチェ素子は時定数が長い。このため、ヒータやペルチェ素子を用いて分極反転構造の温度制御を行った場合、分極反転構造を所望の温度にするまでに時間を要してしまう。   Heaters and Peltier elements have long time constants. For this reason, when temperature control of a polarization inversion structure is performed using a heater or a Peltier element, it takes time to bring the polarization inversion structure to a desired temperature.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、分極反転構造を所望の温度にするまでの時間が短い光源装置及び波長変換方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light source device and a wavelength conversion method that take a short time to bring the domain-inverted structure to a desired temperature.

本発明に係る光源装置は、強誘電体結晶、出力光入射部、温度制御光照射部、及び制御部を有している。強誘電体結晶は、光の入力部、光の出力部、及び分極反転構造を有する。分極反転構造は、入力部と出力部の間に設けられている。出力光入射部は、強誘電体結晶の入力部に出力光を入射する。出力光は、強誘電体結晶の分極反転構造によって波長変換される。温度制御光照射部は、強誘電体結晶の分極反転構造に温度制御光を照射する。温度制御光は、強誘電体結晶に吸収される波長を有している。制御部は、温度制御光の出力を制御する。   The light source device according to the present invention includes a ferroelectric crystal, an output light incident part, a temperature control light irradiation part, and a control part. The ferroelectric crystal has a light input portion, a light output portion, and a polarization inversion structure. The polarization inversion structure is provided between the input unit and the output unit. The output light incident part makes the output light incident on the input part of the ferroelectric crystal. The output light is wavelength-converted by the polarization inversion structure of the ferroelectric crystal. The temperature control light irradiation unit irradiates the polarization control structure of the ferroelectric crystal with temperature control light. The temperature control light has a wavelength that is absorbed by the ferroelectric crystal. The control unit controls the output of the temperature control light.

本発明に係る波長変換方法は、強誘電体結晶の光の入力部及び出力部の間に設けられた分極反転構造に、強誘電体結晶に吸収される波長の光である温度制御光を照射する。これにより、分極反転構造の温度が制御される。そして強誘電体結晶の入力部に、分極反転構造によって波長変換される出力光を入射することで、強誘電体結晶の出力部から、分極反転構造によって波長変換された出力光を出力させる。   The wavelength conversion method according to the present invention irradiates the polarization inversion structure provided between the light input portion and the output portion of the ferroelectric crystal with temperature control light that is light having a wavelength absorbed by the ferroelectric crystal. To do. Thereby, the temperature of the domain-inverted structure is controlled. Then, the output light wavelength-converted by the polarization inversion structure is incident on the input portion of the ferroelectric crystal, so that the output light wavelength-converted by the polarization inversion structure is output from the output portion of the ferroelectric crystal.

本発明によれば、分極反転構造を所望の温度にするまでの時間を短くすることができる。   According to the present invention, the time required to bring the domain-inverted structure to a desired temperature can be shortened.

第1の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 1st Embodiment. 第2の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 2nd Embodiment. 第3の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 3rd Embodiment. 第4の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 4th Embodiment. 図4の変形例に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on the modification of FIG. 第5の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 5th Embodiment. 第6の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 6th Embodiment. 第7の実施形態に係る光源装置の構成を示す図である。It is a figure which shows the structure of the light source device which concerns on 7th Embodiment.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る光源装置の構成を示す図である。この光源装置は、強誘電体結晶20、出力光源10、温度制御光源30、及び制御部32を備えている。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a light source device according to the first embodiment. The light source device includes a ferroelectric crystal 20, an output light source 10, a temperature control light source 30, and a control unit 32.

強誘電体結晶20は、例えばMgを添加したLiNbOであるが、これに限定されない。強誘電体結晶20は、光の入力部及び出力部を有している。本図に示す例では、強誘電体結晶20には導波路21が形成されている。導波路21の構造は限定されない。導波路21は、例えばリッジ構造であっても良いし、埋め込み形であってもよい。そして導波路21の一端が光の入力部になっており、他端が光の出力部になっている。分極反転構造22は、導波路21に設けられている。分極反転構造22の分極反転の周期は、出力光源10が出力する光の波長に基づいて定められている。 The ferroelectric crystal 20 is, for example, LiNbO 3 to which Mg is added, but is not limited thereto. The ferroelectric crystal 20 has a light input part and an output part. In the example shown in this figure, a waveguide 21 is formed in the ferroelectric crystal 20. The structure of the waveguide 21 is not limited. The waveguide 21 may have a ridge structure, for example, or may be a buried type. One end of the waveguide 21 serves as a light input portion, and the other end serves as a light output portion. The polarization inversion structure 22 is provided in the waveguide 21. The period of polarization reversal of the polarization reversal structure 22 is determined based on the wavelength of light output from the output light source 10.

出力光源10は、光ファイバ40を介して導波路21の入力側端部に結合している。出力光源10は、導波路21に、出力光を入射する。この出力光は、導波路21の分極反転構造22によって波長変換される波長を有している。すなわち出力光源10の出力光は、導波路21の分極反転構造22で波長変換された後、導波路21の出力側端部から出射される。   The output light source 10 is coupled to the input side end of the waveguide 21 through the optical fiber 40. The output light source 10 makes output light incident on the waveguide 21. This output light has a wavelength that is wavelength-converted by the polarization inversion structure 22 of the waveguide 21. That is, the output light of the output light source 10 is wavelength-converted by the polarization inversion structure 22 of the waveguide 21 and then emitted from the output side end of the waveguide 21.

温度制御光源30は、導波路21の分極反転構造22に、温度制御光を照射する。温度制御光は、強誘電体結晶20に吸収される波長を有する。温度制御光は、強誘電体結晶20における吸収率が10%以上90%以下の範囲であるのが好ましい。温度制御光の波長は、例えば強誘電体結晶20の短波長側の吸収領域の吸収端よりも短いか、又は、強誘電体結晶20の長波長側の吸収領域の吸収端よりも長い。例えば強誘電体結晶20がMgを添加したLiNbOである場合、温度制御光の波長は、例えば300nm以下、又は4.5μm以上である。 The temperature control light source 30 irradiates the polarization inversion structure 22 of the waveguide 21 with temperature control light. The temperature control light has a wavelength that is absorbed by the ferroelectric crystal 20. The temperature control light preferably has an absorptance in the ferroelectric crystal 20 in the range of 10% to 90%. The wavelength of the temperature control light is, for example, shorter than the absorption edge of the absorption region on the short wavelength side of the ferroelectric crystal 20 or longer than the absorption edge of the absorption region on the long wavelength side of the ferroelectric crystal 20. For example, when the ferroelectric crystal 20 is LiNbO 3 to which Mg is added, the wavelength of the temperature control light is, for example, 300 nm or less, or 4.5 μm or more.

本図に示す例では、温度制御光源30は、導波路21の入力側端部に温度制御光を入射している。具体的には、温度制御光源30は、光ファイバ42に温度制御光を出力する。光ファイバ42は、合波部50(例えばカプラ)を介して光ファイバ40に繋がっている。このため光ファイバ42に入射した温度制御光は、合波部50及び光ファイバ40を介して、導波路21の入力側端部に入力される。   In the example shown in this figure, the temperature control light source 30 has temperature control light incident on the input side end of the waveguide 21. Specifically, the temperature control light source 30 outputs temperature control light to the optical fiber 42. The optical fiber 42 is connected to the optical fiber 40 via a multiplexing unit 50 (for example, a coupler). Therefore, the temperature control light incident on the optical fiber 42 is input to the input side end portion of the waveguide 21 through the multiplexing unit 50 and the optical fiber 40.

なお、強誘電体結晶20に導波路を形成せず、強誘電体結晶20をバルクのまま使用しても良い。また温度制御光源30は、発光する光の波長が固定されていても良いし、可変であっても良い。また本図に示す例では、温度制御光源30を一つのみ設けている。ただし、互いに異なる波長の光を発光する複数の温度制御光源30を設けても良い。   Note that the ferroelectric crystal 20 may be used as a bulk without forming a waveguide in the ferroelectric crystal 20. The temperature control light source 30 may be fixed or variable in wavelength of light to be emitted. In the example shown in this figure, only one temperature control light source 30 is provided. However, a plurality of temperature control light sources 30 that emit light having different wavelengths may be provided.

また、出力光源10と強誘電体結晶20の間の光路は光ファイバ40ではなく、レンズやミラーによって形成されていても良い。同様に、温度制御光源30と強誘電体結晶20の間の光路は光ファイバ42ではなく、レンズやミラーによって形成されていても良い。   Further, the optical path between the output light source 10 and the ferroelectric crystal 20 may be formed by a lens or a mirror instead of the optical fiber 40. Similarly, the optical path between the temperature control light source 30 and the ferroelectric crystal 20 may be formed not by the optical fiber 42 but by a lens or a mirror.

制御部32は、温度制御光源30の出力を制御する。   The control unit 32 controls the output of the temperature control light source 30.

次に、本実施形態の作用及び効果について説明する。本実施形態において、温度制御光源30は、分極反転構造22に温度制御光を照射する。温度制御光は、強誘電体結晶20に吸収される波長を有している。このため、温度制御光源30の出力を制御することにより、分極反転構造22の温度を制御することができる。温度制御光源30の出力の制御性は高い。従って、ヒータやペルチェ素子のみで温度調節を行う場合と比較して、分極反転構造22が所望の温度になるまでの時間は短くなる。   Next, the operation and effect of this embodiment will be described. In the present embodiment, the temperature control light source 30 irradiates the polarization inversion structure 22 with temperature control light. The temperature control light has a wavelength that is absorbed by the ferroelectric crystal 20. For this reason, the temperature of the polarization inversion structure 22 can be controlled by controlling the output of the temperature control light source 30. The controllability of the output of the temperature control light source 30 is high. Therefore, the time until the polarization inversion structure 22 reaches a desired temperature is shorter than in the case where the temperature is adjusted only by the heater or the Peltier element.

また本実施形態では、温度調節光を導波路21の入力側端部から入射している。従って、分極反転構造22を局所的に加熱することができる。従って、分極反転構造22が所望の温度になるまでの時間は、さらに短くなる。   In this embodiment, the temperature adjustment light is incident from the input side end of the waveguide 21. Therefore, the domain-inverted structure 22 can be locally heated. Therefore, the time until the domain-inverted structure 22 reaches a desired temperature is further shortened.

(第2の実施形態)
図2は、第2の実施形態に係る光源装置の構成を示す図である。この光源装置は、光ファイバ42が直接強誘電体結晶20に接続している点を除いて、第1の実施形態に係る光源装置と同様の構成である。
本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
(Second Embodiment)
FIG. 2 is a diagram illustrating a configuration of the light source device according to the second embodiment. This light source device has the same configuration as that of the light source device according to the first embodiment except that the optical fiber 42 is directly connected to the ferroelectric crystal 20.
Also according to this embodiment, the same effect as that of the first embodiment can be obtained.

(第3の実施形態)
図3は、第3の実施形態に係る光源装置の構成を示す図である。この光源装置は、温度制御光源30が温度制御光を分極反転構造22の側部に照射する点を除いて、第1の実施形態に係る光源装置と同様の構成である。
本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
(Third embodiment)
FIG. 3 is a diagram illustrating a configuration of a light source device according to the third embodiment. This light source device has the same configuration as that of the light source device according to the first embodiment, except that the temperature control light source 30 irradiates the side portion of the domain-inverted structure 22 with temperature control light.
Also according to this embodiment, the same effect as that of the first embodiment can be obtained.

(第4の実施形態)
図4は、第4の実施形態に係る光源装置の構成を示す図である。この光源装置は、出力検出部34を有している点を除いて、第1〜第3の実施形態のいずれかに示した光源装置と同様の構成である。本図は、第1の実施形態と同様の場合を示している。
(Fourth embodiment)
FIG. 4 is a diagram illustrating a configuration of a light source device according to the fourth embodiment. This light source device has the same configuration as the light source device shown in any one of the first to third embodiments except that the light source device has an output detection unit 34. This figure shows a case similar to that of the first embodiment.

出力検出部34は、導波路21の出力側端部から出力される出力光の強度を検出する。出力検出部34による検出結果は、制御部32に送信される。制御部32は、出力検出部34から受信した検出結果に基づいて、温度制御光源30の出力を制御する。具体的には、制御部32は、出力検出部34が検出した強度が最大となるように、温度制御光源30の出力を制御する。   The output detector 34 detects the intensity of the output light output from the output side end of the waveguide 21. The detection result by the output detection unit 34 is transmitted to the control unit 32. The control unit 32 controls the output of the temperature control light source 30 based on the detection result received from the output detection unit 34. Specifically, the control unit 32 controls the output of the temperature control light source 30 so that the intensity detected by the output detection unit 34 is maximized.

なお図5に示すように、分岐部52を用いることで強誘電体結晶20から出力された出力光の一部を分岐し、出力検出部34に入射するようにしてもよい。このようにすると、出力検出部34が強誘電体結晶20の出力に与える影響を少なくすることができる。   As shown in FIG. 5, a part of the output light output from the ferroelectric crystal 20 may be branched by using the branching part 52 and incident on the output detection part 34. In this way, the influence of the output detector 34 on the output of the ferroelectric crystal 20 can be reduced.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、制御部32は、出力検出部34から受信した検出結果に基づいて、温度制御光源30の出力を制御する。従って、分極反転構造22の温度制御を容易に行うことができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the control unit 32 controls the output of the temperature control light source 30 based on the detection result received from the output detection unit 34. Therefore, the temperature control of the domain-inverted structure 22 can be easily performed.

(第5の実施形態)
図6は、第5の実施形態に係る光源装置の構成を示す図である。この光源装置は、温度検出部36を有している点を除いて、第1〜第3の実施形態のいずれかに示した光源装置と同様の構成である。本図は、第1の実施形態と同様の場合を示している。
(Fifth embodiment)
FIG. 6 is a diagram illustrating a configuration of a light source device according to the fifth embodiment. This light source device has the same configuration as the light source device shown in any of the first to third embodiments, except that the temperature detection unit 36 is provided. This figure shows a case similar to that of the first embodiment.

温度検出部36は、分極反転構造22の温度を検出する。温度検出部36による検出結果は、制御部32に送信される。制御部32は、温度検出部36から受信した検出結果に基づいて、温度制御光源30の出力を制御する。具体的には、制御部32は、温度検出部36が検出した温度が予め定められた値となるように、温度制御光源30の出力を制御する。   The temperature detection unit 36 detects the temperature of the domain-inverted structure 22. The detection result by the temperature detection unit 36 is transmitted to the control unit 32. The control unit 32 controls the output of the temperature control light source 30 based on the detection result received from the temperature detection unit 36. Specifically, the control unit 32 controls the output of the temperature control light source 30 so that the temperature detected by the temperature detection unit 36 becomes a predetermined value.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、制御部32は、温度検出部36から受信した検出結果に基づいて、温度制御光源30の出力を制御する。従って、分極反転構造22の温度制御を容易に行うことができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, the control unit 32 controls the output of the temperature control light source 30 based on the detection result received from the temperature detection unit 36. Therefore, the temperature control of the domain-inverted structure 22 can be easily performed.

(第6の実施形態)
図7は、第6の実施形態に係る光源装置の構成を示す図である。この光源装置は、温度調節素子24を有している点を除いて、第1〜第5の実施形態のいずれかに示した光源装置と同様の構成である。本図は、第1の実施形態と同様の場合を示している。
(Sixth embodiment)
FIG. 7 is a diagram illustrating a configuration of a light source device according to the sixth embodiment. This light source device has the same configuration as that of the light source device shown in any of the first to fifth embodiments, except that the temperature adjusting element 24 is provided. This figure shows a case similar to that of the first embodiment.

温度調節素子24は、強誘電体結晶20のうち導波路21の近傍に取り付けられており、発熱及び吸熱の少なくとも一方を行う。温度調節素子24は、例えばヒータ又はペルチェ素子である。温度調節素子24は、制御部32によって制御される。   The temperature adjustment element 24 is attached to the vicinity of the waveguide 21 in the ferroelectric crystal 20 and performs at least one of heat generation and heat absorption. The temperature adjustment element 24 is, for example, a heater or a Peltier element. The temperature adjustment element 24 is controlled by the control unit 32.

制御部32は、温度調節素子24をメインの温度調節機構として使用し、温度制御光源30をサブの温度調節機構として用いる。具体的には、温度調節素子24を用いてある程度分極反転構造22の温度を制御しておき、温度制御光源30を用いて分極反転構造22の温度の微調整を行う。このため、温度調節素子24の稼働時間は、温度制御光源30の稼働時間よりも長くなる。   The control unit 32 uses the temperature adjustment element 24 as a main temperature adjustment mechanism, and uses the temperature control light source 30 as a sub temperature adjustment mechanism. Specifically, the temperature of the polarization inversion structure 22 is controlled to some extent using the temperature adjusting element 24, and the temperature of the polarization inversion structure 22 is finely adjusted using the temperature control light source 30. For this reason, the operating time of the temperature control element 24 is longer than the operating time of the temperature control light source 30.

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また温度調節素子24をメインの温度調節機構として使用しているため、分極反転構造22の温度制御範囲が広くなる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, since the temperature adjusting element 24 is used as a main temperature adjusting mechanism, the temperature control range of the domain-inverted structure 22 is widened.

(第7の実施形態)
図8は、第7の実施形態に係る光源装置の構成を示す図である。この光源装置は、以下の点を除いて第1〜第6の実施形態のいずれかと同様である。本図は、第6の実施形態と同様の場合を示している。
(Seventh embodiment)
FIG. 8 is a diagram illustrating a configuration of a light source device according to the seventh embodiment. This light source device is the same as any one of the first to sixth embodiments except for the following points. This figure shows a case similar to that of the sixth embodiment.

まず、強誘電体結晶20には、複数の導波路21が設けられている。複数の導波路21は、いずれも分極反転構造22を有している。   First, the ferroelectric crystal 20 is provided with a plurality of waveguides 21. Each of the plurality of waveguides 21 has a domain-inverted structure 22.

そして出力光源10、温度調節素子24、温度制御光源30、光ファイバ40,42、及び合波部50は、複数の導波路21それぞれに対して設けられている。制御部32は、複数の温度調節素子24及び温度制御光源30を制御している。なお、図8に示す例では、複数の導波路21に対して温度制御光源30を一つずつ設けているが、複数の導波路21に対して、一つの温度制御光源30を用いてもよい。   The output light source 10, the temperature adjustment element 24, the temperature control light source 30, the optical fibers 40 and 42, and the multiplexing unit 50 are provided for each of the plurality of waveguides 21. The control unit 32 controls the plurality of temperature adjusting elements 24 and the temperature control light source 30. In the example shown in FIG. 8, one temperature control light source 30 is provided for each of the plurality of waveguides 21, but one temperature control light source 30 may be used for the plurality of waveguides 21. .

本実施形態によっても、第1の実施形態と同様の効果を得ることができる。また、温度制御光源30を制御することにより、複数の導波路21の温度を局所的に制御することができる。従って、複数の導波路21が同一の強誘電体結晶20に形成されていても、導波路21の温度を個別に精度よく制御することができる。   Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, by controlling the temperature control light source 30, the temperatures of the plurality of waveguides 21 can be controlled locally. Therefore, even if the plurality of waveguides 21 are formed in the same ferroelectric crystal 20, the temperature of the waveguides 21 can be individually controlled with high accuracy.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

10 出力光源
20 強誘電体結晶
21 導波路
22 分極反転構造
24 温度調節素子
30 温度制御光源
32 制御部
34 出力検出部
36 温度検出部
40 光ファイバ
42 光ファイバ
50 合波部
52 分岐部
DESCRIPTION OF SYMBOLS 10 Output light source 20 Ferroelectric crystal 21 Waveguide 22 Polarization inversion structure 24 Temperature control element 30 Temperature control light source 32 Control part 34 Output detection part 36 Temperature detection part 40 Optical fiber 42 Optical fiber 50 Multiplexing part 52 Branch part

Claims (8)

光の入力部、前記光の出力部、及び前記入力部と前記出力部の間に設けられた分極反転構造を有する強誘電体結晶と、
前記入力部に、前記分極反転構造によって波長変換される出力光を入射する出力光入射部と、
前記分極反転構造に、前記強誘電体結晶に吸収される波長の光である温度制御光を照射する温度制御光照射部と、
前記温度制御光の出力を制御する制御部と、
を備える光源装置。
A ferroelectric crystal having a light input portion, the light output portion, and a domain-inverted structure provided between the input portion and the output portion;
An output light incident part for entering the output light wavelength-converted by the polarization inversion structure into the input part;
A temperature control light irradiation unit that irradiates the polarization inversion structure with temperature control light that is light having a wavelength absorbed by the ferroelectric crystal;
A control unit for controlling the output of the temperature control light;
A light source device comprising:
請求項1に記載の光源装置において、
前記温度制御光照射部は、前記入力部に前記温度制御光を入射する光源装置。
The light source device according to claim 1,
The temperature control light irradiation unit is a light source device that makes the temperature control light incident on the input unit.
請求項1又は2に記載の光源装置において、
前記分極反転構造に設けられ、発熱及び吸熱の少なくとも一方を行う温度調節素子を備える光源装置。
The light source device according to claim 1 or 2,
A light source device comprising a temperature adjusting element provided in the domain-inverted structure and performing at least one of heat generation and heat absorption.
請求項3に記載の光源装置において、
前記制御部は、前記温度調節素子の出力を制御し、
前記温度調節素子の稼働時間は、前記温度制御光照射部の稼働時間よりも長い光源装置。
The light source device according to claim 3.
The control unit controls the output of the temperature adjustment element,
The operating time of the temperature control element is a light source device longer than the operating time of the temperature control light irradiation unit.
請求項1〜4のいずれか一項に記載の光源装置において、
前記出力部から出力される前記出力光の強度を検出する出力検出部を備え、
前記制御部は、前記出力検出部の検出結果に基づいて、前記温度制御光の強度を制御する光源装置。
In the light source device according to any one of claims 1 to 4,
An output detection unit for detecting the intensity of the output light output from the output unit;
The control unit is a light source device that controls the intensity of the temperature control light based on a detection result of the output detection unit.
請求項1〜4のいずれか一項に記載の光源装置において、
前記分極反転構造の温度を検出する温度検出部を備え、
前記制御部は、前記温度検出部の検出結果に基づいて、前記温度制御光の強度を制御する光源装置。
In the light source device according to any one of claims 1 to 4,
A temperature detection unit for detecting the temperature of the domain-inverted structure;
The control unit is a light source device that controls the intensity of the temperature control light based on a detection result of the temperature detection unit.
請求項1〜6のいずれか一項に記載の光源装置において、
前記強誘電体結晶は、複数の導波路を備え、
前記複数の導波路は、それぞれ前記入力部及び前記出力部を有しており、
前記出力光入射部及び前記温度制御光照射部は、前記複数の導波路それぞれに対して設けられている光源装置。
In the light source device according to any one of claims 1 to 6,
The ferroelectric crystal includes a plurality of waveguides,
Each of the plurality of waveguides has the input unit and the output unit,
The output light incident part and the temperature control light irradiating part are provided for each of the plurality of waveguides.
強誘電体結晶の光の入力部及び出力部の間に設けられた分極反転構造に、前記強誘電体結晶に吸収される波長の光である温度制御光を照射することで前記分極反転構造の温度を制御し、
前記入力部に、前記分極反転構造によって波長変換される出力光を入射することで、前記出力部から、前記分極反転構造によって波長変換された前記出力光を出力させる、波長変換方法。
The polarization inversion structure provided between the light input portion and the output portion of the ferroelectric crystal is irradiated with temperature control light that is light having a wavelength that is absorbed by the ferroelectric crystal. Control the temperature,
The wavelength conversion method of causing the output light wavelength-converted by the polarization inversion structure to be output from the output section by causing the output light to be wavelength-converted by the polarization inversion structure to enter the input section.
JP2011248395A 2011-11-14 2011-11-14 Light source device, and wavelength conversion method Pending JP2015025825A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011248395A JP2015025825A (en) 2011-11-14 2011-11-14 Light source device, and wavelength conversion method
PCT/JP2012/005205 WO2013073080A1 (en) 2011-11-14 2012-08-20 Light source device and wavelength conversion method
TW101142029A TW201326935A (en) 2011-11-14 2012-11-12 Light source device and wavelength conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248395A JP2015025825A (en) 2011-11-14 2011-11-14 Light source device, and wavelength conversion method

Publications (1)

Publication Number Publication Date
JP2015025825A true JP2015025825A (en) 2015-02-05

Family

ID=48429185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248395A Pending JP2015025825A (en) 2011-11-14 2011-11-14 Light source device, and wavelength conversion method

Country Status (3)

Country Link
JP (1) JP2015025825A (en)
TW (1) TW201326935A (en)
WO (1) WO2013073080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157858A1 (en) * 2021-01-20 2022-07-28 日本電信電話株式会社 Wavelength conversion apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109226A (en) * 1990-08-30 1992-04-10 Hitachi Metals Ltd Wavelength converting element
JPH0876160A (en) * 1994-09-06 1996-03-22 Oki Electric Ind Co Ltd Wavelength conversion device and its production
WO2008050802A1 (en) * 2006-10-27 2008-05-02 Panasonic Corporation Short wavelength light source and laser image forming device
US20100103088A1 (en) * 2007-01-29 2010-04-29 Toshifumi Yokoyama Solid-state laser apparatus, display apparatus and wavelength converting element
JP2009122252A (en) * 2007-11-13 2009-06-04 Seiko Epson Corp Multi-wavelength light source device
JP2010217250A (en) * 2009-03-13 2010-09-30 Seiko Epson Corp Wavelength conversion device, light source device, and projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157858A1 (en) * 2021-01-20 2022-07-28 日本電信電話株式会社 Wavelength conversion apparatus
JP7473850B2 (en) 2021-01-20 2024-04-24 日本電信電話株式会社 Wavelength conversion device

Also Published As

Publication number Publication date
WO2013073080A1 (en) 2013-05-23
TW201326935A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
Ribeiro et al. Demonstration of a 4× 4-port universal linear circuit
KR102090454B1 (en) Laser device, and exposure device and inspection device equipped with said laser device
JP2011039231A (en) Electromagnetic wave oscillation device
Topley et al. Locally erasable couplers for optical device testing in silicon on insulator
JP2007233039A (en) Wavelength converting device, computer program and computer-readable recording medium
JP6016124B2 (en) Pulse laser apparatus, exposure apparatus and inspection apparatus
Hope et al. Quantitative analysis of TM lateral leakage in foundry fabricated silicon rib waveguides
WO2013069179A1 (en) Light source device and wavelength conversion method
JP2013156448A (en) Laser device, exposure device and inspection device
JP2015025825A (en) Light source device, and wavelength conversion method
WO2007055110A1 (en) Method for having laser light source in standby status
WO2015025808A1 (en) Method for securing fiber, fiber-securing-structure body secured to fiber holding member, laser device provided with said fiber-securing-structure body, exposure device, and inspection device
US20140002890A1 (en) Efficient frequency conversion
JP2011158869A (en) Wavelength conversion device
JP5605688B2 (en) Wavelength conversion optical system and laser apparatus
JP2014033044A (en) Double clad fiber, laser apparatus equipped with the same, exposure apparatus, and inspection apparatus
JP2015180903A (en) Laser device, and exposure device and inspection device comprising the laser device
JP2015087729A (en) Wavelength conversion laser device
JP6102432B2 (en) Light modulator
WO2023037560A1 (en) Wavelength converter and method for controlling same
JP2015187636A (en) Optical module
WO2023084621A1 (en) Wavelength conversion device
Kazama et al. Phase sensitive amplification using monolithically integrated PPLN waveguide circuit
JP2013007931A (en) Laser device, exposure device and inspecting device
JP2013044764A (en) Laser device, method for suppressing photorefractive effect of quasi-phase-matching wavelength conversion optical element, exposure device, and inspection device