JP2015019637A - Method for analyzing cells for survivin, and method for analyzing cancer utilizing it, and method for screening drug efficacy - Google Patents

Method for analyzing cells for survivin, and method for analyzing cancer utilizing it, and method for screening drug efficacy Download PDF

Info

Publication number
JP2015019637A
JP2015019637A JP2013151928A JP2013151928A JP2015019637A JP 2015019637 A JP2015019637 A JP 2015019637A JP 2013151928 A JP2013151928 A JP 2013151928A JP 2013151928 A JP2013151928 A JP 2013151928A JP 2015019637 A JP2015019637 A JP 2015019637A
Authority
JP
Japan
Prior art keywords
observation
measurement
survivin
cell
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151928A
Other languages
Japanese (ja)
Other versions
JP6223037B2 (en
Inventor
竜太郎 秋吉
Ryutaro Akiyoshi
竜太郎 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2013151928A priority Critical patent/JP6223037B2/en
Publication of JP2015019637A publication Critical patent/JP2015019637A/en
Application granted granted Critical
Publication of JP6223037B2 publication Critical patent/JP6223037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing cells for the intracellular dynamics of survivin protein, and survivin promoter activity.SOLUTION: A method for analyzing cells comprises (1) preparing a first vector comprising a survivin promoter and a gene encoding photoprotein, and a second vector that is an expression vector comprising a promoter, a survivin gene, and a gene encoding fluorescence protein; (2) introducing the first vector and the second vector into a cell; (3) exposing the cell of the (2) to a drug; (4) observing the bright field, measuring the fluorescence intensity, and measuring the luminescence intensity, respectively at at least two points in time within duration over before and after the cell is exposed to the drug; and (5) obtaining information about the cell from the result of the (4).

Description

本発明は、サバイビンタンパク質の発現に関して細胞を解析する方法に関する。   The present invention relates to a method for analyzing cells for expression of survivin protein.

サバイビン(Survivin)タンパク質は、アポトーシスの抑制と細胞分裂の調整機能を有するタンパク質である。サバイビンタンパク質は、正常組織ではほとんど観察されないが、胎児の組織や多くの癌において高発現することが知られている。また、サバイビンの局在部位を特定することにより、癌の転移率や予後を評価することも提案されている。   Survivin protein is a protein having a function of suppressing apoptosis and regulating cell division. Survivin protein is hardly observed in normal tissues, but is known to be highly expressed in fetal tissues and many cancers. It has also been proposed to evaluate the metastasis rate and prognosis of cancer by specifying the localized site of survivin.

このような事情から、サバイビンは癌治療のターゲットとして注目されており、サバイビンの発現抑制剤の創製が開始されている。   Under such circumstances, survivin is attracting attention as a target for cancer treatment, and the creation of survivin expression inhibitors has been started.

Chiou, S. K., Jones, M. K. and Tarnawaski, A. S(2003). Med. Sci. Monit. 9,125−129Chiou, S .; K. Jones, M .; K. and Tarnawaski, A. et al. S (2003). Med. Sci. Monitor. 9,125-129 Li F., Ambrosini G., Chu EY, et al., Nature 1998;396:580−584Li F.R. , Ambrosini G. , Chu EY, et al. , Nature 1998; 396: 580-584. Tanaka K, et al., Clin Cancer Res 2000;6:127−134Tanaka K, et al. , Clin Cancer Res 2000; 6: 127-134. Lehner R, et al., Appl Immunohistochem Mol Morphol 2002;10:134−138Lehner R, et al. , Appl Immunohistomol Mol Morpol 2002; 10: 134-138.

上記の状況に鑑みて、癌の基礎研究やサバイビンをターゲットとする薬効スクリーニングにおいては、サバイビンの細胞内動態とプロモーター活性を検出することが有用であると考える。   In view of the above situation, it is considered useful to detect the intracellular dynamics and promoter activity of survivin in basic cancer research and drug screening targeting survivin.

本願発明の課題は、サバイビンタンパク質の細胞内動態とサバイビンプロモーター活性について、細胞解析を行う方法を提供することである。より詳しくは、サバイビンタンパク質の細胞内動態とサバイビンプロモーター活性とを同時に、例えば、1つの組織および/または1つの細胞において同時に、観察する方法を提供することである。   The subject of this invention is providing the method of performing a cell analysis about the intracellular dynamics and survivin promoter activity of survivin protein. More specifically, it is to provide a method for observing the intracellular kinetics and survivin promoter activity of survivin protein simultaneously, for example, simultaneously in one tissue and / or one cell.

上記の課題を解決するために、本発明は、細胞解析方法を提供する。細胞解析方法は、細胞解析方法は、(1)サバイビンプロモーターと、発光タンパク質をコードする遺伝子とを含む第1のベクター、およびプロモーターと、サバイビン遺伝子と、蛍光タンパク質をコードする遺伝子とを含む発現ベクターである第2のベクターとを準備すること、(2)細胞に前記第1のベクターと第2のベクターとを導入すること、(3)(2)の前記細胞を薬剤に曝すこと、(4)前記細胞が、前記薬剤に曝される前後に亘る期間内の少なくとも2つの時点で、明視野の観察、蛍光強度の測定および発光強度の測定をそれぞれ行うこと、(5)(4)の結果から、前記細胞に関する情報を得ることを含む。   In order to solve the above problems, the present invention provides a cell analysis method. The cell analysis method includes (1) a first vector including a survivin promoter and a gene encoding a photoprotein, and an expression vector including a promoter, a survivin gene, and a gene encoding a fluorescent protein. (2) introducing the first vector and the second vector into a cell, (3) exposing the cell of (2) to a drug, (4) ) The bright field observation, the fluorescence intensity measurement, and the luminescence intensity measurement are performed at at least two time points within the period before and after the cell is exposed to the drug, respectively, and the results of (5) and (4) Obtaining information on the cell from

本発明により、サバイビンタンパク質の細胞内動態とサバイビンプロモーター活性について、細胞解析を行う方法が提供される。それにより、サバイビンタンパク質の細胞内動態とサバイビンプロモーター活性とを同時に、例えば、1つの組織および/または1つの細胞において同時に観察することが可能となる。   INDUSTRIAL APPLICABILITY According to the present invention, there is provided a method for performing cell analysis on intracellular kinetics and survivin promoter activity of survivin protein. Thereby, the intracellular kinetics of survivin protein and the survivin promoter activity can be simultaneously observed, for example, in one tissue and / or one cell.

実施の形態1に係るベクターを示す図。FIG. 3 shows a vector according to Embodiment 1. 実施の形態2に係る観察システムの構成を示す模式図。FIG. 4 is a schematic diagram illustrating a configuration of an observation system according to a second embodiment. 実施の形態2に係る観察システムを示すブロック図。FIG. 4 is a block diagram showing an observation system according to Embodiment 2. 実施の形態2に係る処理手順を示すフローチャート。9 is a flowchart showing a processing procedure according to the second embodiment. 実施の形態3に係る顕微鏡装置の構成を示す模式図。FIG. 6 is a schematic diagram illustrating a configuration of a microscope apparatus according to a third embodiment. 実施の形態3に係る処理手順を示すフローチャート。10 is a flowchart showing a processing procedure according to the third embodiment. 実施の形態4に係る顕微鏡装置の構成を示す模式図。FIG. 6 is a schematic diagram illustrating a configuration of a microscope apparatus according to a fourth embodiment. D−ルシフェリンの励起スペクトル(Ex)と蛍光スペクトル(Em)を示すグラフ。The graph which shows the excitation spectrum (Ex) and fluorescence spectrum (Em) of D-luciferin. 例1における薬剤刺激前のHeLa細胞の位相差観察像を示す図。The figure which shows the phase-difference observation image of the HeLa cell before the chemical | medical agent stimulation in Example 1. FIG. 例1における薬剤刺激前のHeLa細胞の蛍光観察像を示す図。The figure which shows the fluorescence observation image of the HeLa cell before chemical | medical agent stimulation in Example 1. FIG. 例1における薬剤刺激前のHeLa細胞の発光観察像を示す図。The figure which shows the light emission observation image of the HeLa cell before chemical | medical agent stimulation in Example 1. FIG. 例1のタイムラプス観察における各撮像のタイミングを示す模式図。FIG. 4 is a schematic diagram illustrating timings of image capturing in time-lapse observation of Example 1. 例1における薬剤刺激後30分経過時点のHeLa細胞の位相差観察像を示す図。The figure which shows the phase-difference observation image of the HeLa cell at the time of 30-minute progress after the chemical | medical agent stimulation in Example 1. FIG. 例1における薬剤刺激後30分経過時点のHeLa細胞の蛍光観察像を示す図。The figure which shows the fluorescence observation image of the HeLa cell 30 minutes after the chemical | medical agent stimulation in Example 1. 例1における薬剤刺激後30分経過時点のHeLa細胞の発光観察像を示す図。The figure which shows the light emission observation image of the HeLa cell at the time of 30-minute progress after the chemical | medical agent stimulation in Example 1. FIG. 図10および図14に示された指定されたROIにおける発光強度の計時変化を示すグラフ。The graph which shows the time change of the emitted light intensity in the designated ROI shown by FIG. 10 and FIG.

以下、本発明の実施の形態1について、詳細に説明する。実施の形態1は、細胞におけるサバイビン遺伝子の発現量とその分布、サバイビンプロモーター活性の程度および形態に関する情報を得る方法に係る。   Hereinafter, Embodiment 1 of the present invention will be described in detail. The first embodiment relates to a method for obtaining information on the expression level and distribution of survivin genes in cells, the degree of survivin promoter activity, and morphology.

対象におけるサバイビン遺伝子の発現は、対象が特定の状態、例えば、癌であるときに高い。また、サバイビンタンパク質の分布は、それが存在する組織や細胞の状態に応じて変化する。   The expression of the survivin gene in the subject is high when the subject is in a particular condition, such as cancer. In addition, the distribution of survivin protein varies depending on the state of the tissue or cell in which it exists.

従って、サバイビン遺伝子の発現の程度とサバイビンタンパク質の分布との情報から、特定の細胞または組織がどのような状態にあるのか、特定の細胞にあるのか否かを判定することが可能である。1つの実施形態は、この原理を利用するサバイビンについての細胞解析方法である。   Therefore, it is possible to determine what state a specific cell or tissue is in, or whether it is in a specific cell, from information on the degree of survivin gene expression and the distribution of survivin protein. One embodiment is a cell analysis method for survivin that utilizes this principle.

例えば、特定の試料、例えば、組織または細胞において、例えば、サバイビン遺伝子が高発現している場合に、その試料が癌化した試料、即ち、癌組織または癌細胞であると判定することが可能である。更なる1つの実施形態は、この原理を利用する癌の解析方法である。   For example, when a survivin gene is highly expressed in a specific sample, for example, a tissue or a cell, it can be determined that the sample is a cancerous sample, that is, a cancer tissue or a cancer cell. is there. A further embodiment is a cancer analysis method that utilizes this principle.

或いは、癌細胞を被検物質に曝す前後で、サバイビン遺伝子の発現とサバイビンタンパク質の分布がどのように変化するのかを指標として、被検物質が特定の作用、例えば、抗癌作用を有するか否かを評価することが可能である。もう1つの実施形態は、この原理を利用する薬効スクリーニング方法である。   Alternatively, whether or not the test substance has a specific action, for example, an anticancer action, using as an index how the survivin gene expression and survivin protein distribution change before and after the cancer cell is exposed to the test substance. It is possible to evaluate. Another embodiment is a drug efficacy screening method that utilizes this principle.

ベクターを利用して、サバイビン遺伝子の発現とサバイビンタンパク質の分布の情報を得ることが可能である。   By using vectors, it is possible to obtain information on survivin gene expression and survivin protein distribution.

細胞解析方法は、次の工程を含んでよい;
(1)サバイビンプロモーターと、その下流に機能的に連結された発光タンパク質をコードする遺伝子とを含む第1のベクター、およびプロモーターと、その下流に機能的に連結されたサバイビン遺伝子と、その下流に機能的に連結された蛍光タンパク質をコードする遺伝子とを含む発現ベクターである第2のベクターとを準備すること、
(2)採取および/または培養された細胞に前記第1のベクターと第2のベクターとを導入すること、
(3)(2)の前記細胞を薬剤に曝すこと、
(4)前記細胞が、前記薬剤に曝される前後に亘る期間内の少なくとも2つの時点で、明視野の観察、蛍光強度の測定および発光強度の測定をそれぞれ行うこと、および
(5)(4)の結果から、前記細胞に関する情報を得ること。
The cell analysis method may comprise the following steps;
(1) A first vector comprising a survivin promoter and a gene encoding a photoprotein operably linked downstream thereof, a promoter, a survivin gene operably linked downstream thereof, and a downstream thereof Providing a second vector that is an expression vector comprising a gene encoding a functionally linked fluorescent protein;
(2) introducing the first vector and the second vector into the collected and / or cultured cells;
(3) exposing the cell of (2) to a drug;
(4) Observing the bright field, measuring the fluorescence intensity, and measuring the emission intensity at at least two time points within the period before and after the cell is exposed to the drug, and (5) (4 ) To obtain information on the cells from the results.

実施形態において使用されるベクターは、第1のベクターと第2のベクターが使用される。第1のベクターと第2のベクターについて、図1(1)および(2)を参照しながら説明する。   As the vector used in the embodiment, a first vector and a second vector are used. The first vector and the second vector will be described with reference to FIGS. 1 (1) and (2).

図1(1)に示される第1のベクター1は、サバイビン遺伝子のプロモーター活性の程度を測定するためのベクターである。第1のベクター1は、サバイビンプロモーター2と、その下流に機能的に連結された第1のレポーター遺伝子3とを含む。ここで、「機能的に連結された」とは、サバイビンプロモーター2の制御下において、レポーター遺伝子3が正常に発現されるように、サバイビンプロモーター2の下流に第1のレポーター遺伝子3が結合されていることをいう。   The first vector 1 shown in FIG. 1 (1) is a vector for measuring the degree of survivin gene promoter activity. The first vector 1 includes a survivin promoter 2 and a first reporter gene 3 operably linked downstream thereof. Here, “operably linked” means that the first reporter gene 3 is bound downstream of the survivin promoter 2 so that the reporter gene 3 is normally expressed under the control of the survivin promoter 2. It means being.

サバイビンプロモーター2は、それ自身公知の何れのサバイビンプロモーターであってよく、好ましくは、使用される試料に依存して選択された種類のサバイビンプロモーターであってよい。例えば、ヒトの細胞および組織について解析を行う場合では、ヒト由来のサバイビンプロモーターを使用することが好ましい。ヒトサバイビンプロモーターの配列を表1に配列番号1として示す。

Figure 2015019637
The survivin promoter 2 may be any survivin promoter known per se, and preferably a survivin promoter of a type selected depending on the sample used. For example, when analyzing human cells and tissues, it is preferable to use a human survivin promoter. The sequence of the human survivin promoter is shown in Table 1 as SEQ ID NO: 1.
Figure 2015019637

サバイビンプロモーターとして使用される配列番号1で示されるヒトサバイビンプロモーターは、サバイビンプロモーターとしての機能を維持している限り、1個〜数個の塩基が欠失、置換および/または付与されていてもよい。他の公知のサバイビンプロモーターについても、同様に何れか公知のプロモーター配列について、それ独自のサバイビンプロモーター活性が維持されている限り、1個〜数個の塩基の欠失、置換および/または付与がなされていてもよい。   The human survivin promoter represented by SEQ ID NO: 1 used as the survivin promoter may have one to several bases deleted, substituted and / or added as long as the function as the survivin promoter is maintained. . Similarly to any other known survivin promoter, one to several bases may be deleted, substituted and / or added as long as any known promoter sequence maintains its own survivin promoter activity. It may be.

第1のレポーター遺伝子3は、何れか公知の発光タンパク質をコードする遺伝子であってよい。第1のレポーター遺伝子3の例は、ルシフェラーゼ(例えば、ホタルルシフェラーゼ遺伝子、Renillaルシフェラーゼ遺伝子、エクオリン遺伝子、オベリン遺伝子、コメツキムシルシフェラーゼ遺伝子、ヒオドシエビルシフェラーゼ遺伝子)および蛍光タンパク質遺伝子(例えば、BFP遺伝子、CFP遺伝子、GFP遺伝子、YFP遺伝子、RFP遺伝子)などであってよく、好ましくはルシフェラーゼである。   The first reporter gene 3 may be a gene encoding any known photoprotein. Examples of the first reporter gene 3 include luciferases (for example, firefly luciferase gene, Renilla luciferase gene, aequorin gene, oberin gene, click beetle luciferase gene, hyodosievir luciferase gene) and fluorescent protein genes (for example, BFP gene, CFP gene) GFP gene, YFP gene, RFP gene), etc., preferably luciferase.

第1のベクターは、更に、neo遺伝子、β−gal遺伝子、cat遺伝子、およびhyg遺伝子などの更なる遺伝子を含んでもよい。また更に、第1のレポーター遺伝子3の下流にポリAなどの転写終結遺伝子を含んでもよい。第1のベクターとして、発光タンパク質をコードする遺伝子を含む市販のベクターを利用してもよい。例えば、そのような市販のベクターの発光タンパク質をコードする遺伝子の上流にサバイビンプロモーターを組み込めばよい。そのような組み込みは、例えば、制限酵素による切断と、リガーゼによる連結などの遺伝子工学的手法を利用してよい。或いは、遺伝子工学的手法により、サバイビンプロモーター2と、その下流に機能的に連結された第1のレポーター遺伝子3とを含む配列からなるポリヌクレオチドから第1のベクターを製造してもよい。第1のベクターの製造は、それ自身公知の技術を利用して行ってよい。   The first vector may further comprise additional genes such as the neo gene, β-gal gene, cat gene, and hyg gene. Furthermore, a transcription termination gene such as poly A may be included downstream of the first reporter gene 3. A commercially available vector containing a gene encoding a photoprotein may be used as the first vector. For example, a survivin promoter may be incorporated upstream of the gene encoding the photoprotein of such a commercially available vector. For such integration, for example, genetic engineering techniques such as restriction enzyme digestion and ligase ligation may be used. Alternatively, the first vector may be produced from a polynucleotide comprising a sequence including the survivin promoter 2 and the first reporter gene 3 operably linked downstream thereof by genetic engineering techniques. The first vector may be produced using a technique known per se.

第1のベクターは、プラスミドベクターであっても、ウイルスベクターであってもよいが、プラスミドベクターが好ましい。   The first vector may be a plasmid vector or a viral vector, but a plasmid vector is preferred.

図1(2)に示される第2のベクター4は、発現ベクターであり、サバイビンタンパク質の分布を示すためのベクターである。第2のベクター4は、強力なプロモーターと、その下流に機能的に連結されたサバイビン遺伝子と、その下流に機能的に連結された第2のレポータータンパク質をコードする遺伝子とを含む。ここで、「機能的に連結された」とは、目的とする遺伝子が目的とする機能、即ち、サバイビン遺伝子を発現すること、または第2のレポータータンパク質を発現することができるように結合していることをいう。   The second vector 4 shown in FIG. 1 (2) is an expression vector, which is a vector for showing the distribution of survivin protein. The second vector 4 includes a strong promoter, a survivin gene operably linked downstream thereof, and a gene encoding a second reporter protein operably linked downstream thereof. Here, “operably linked” means that the target gene is bound so that the target function can be expressed, that is, the survivin gene can be expressed, or the second reporter protein can be expressed. It means being.

強力なプロモーターは、その下流に連結された遺伝子が強制的に読まれるように制御するプロモーターである。強力なプロモーターは、一般的に発現ベクターにおいて使用されるそれ自身公知のプロモーターであればよい。強力なプロモーターの例は、サイトメガロウイルスプロモーター、Simian vacuolating virus 40(SV40)プロモーターおよびrespiratory syncytial virus(RSV)プロモーターであればよい。   A strong promoter is a promoter that controls to force reading of a gene linked downstream thereof. A strong promoter may be any promoter known per se generally used in expression vectors. Examples of strong promoters may be the cytomegalovirus promoter, the Simian vacuating virus 40 (SV40) promoter, and the respiratory synchronous viral (RSV) promoter.

サバイビン遺伝子は、それ自身公知の何れかのサバイビン遺伝子であればよく、例えば、ヒト、チンパンジー、マーモセット、ゼノパス、ゼブラフィッシュ、ショウジョウバエ、線虫およびマウスのサバイビン遺伝子であればよい。好ましくは、使用される試料に依存して選択された種類のサバイビン遺伝子であってよい。例えば、ヒトの細胞および組織について解析を行う場合では、ヒト由来のサバイビン遺伝子を使用することが好ましい。ヒトサバイビン遺伝子の配列を表2に配列番号2として示す。

Figure 2015019637
The survivin gene may be any survivin gene known per se, for example, human, chimpanzee, marmoset, xenopus, zebrafish, Drosophila, nematode and mouse survivin genes. Preferably, it may be a survivin gene of a type selected depending on the sample used. For example, when analyzing human cells and tissues, it is preferable to use a human survivin gene. The sequence of the human survivin gene is shown in Table 2 as SEQ ID NO: 2.
Figure 2015019637

サバイビン遺伝子として使用される配列番号2で示されるヒトサバイビン遺伝子は、サバイビン遺伝子としての機能、および発現されるサバイビンタンパク質としての活性が維持している限り、1個〜数個の塩基が欠失、置換および/または付与されていてもよい。他の公知のサバイビン遺伝子についても、同様に何れか公知の配列について、それ独自のサバイビン遺伝子としての機能、および発現されるサバイビンタンパク質としての活性が維持している限り、1個〜数個の塩基の欠失、置換および/または付与がなされていてもよい。   The human survivin gene represented by SEQ ID NO: 2 used as the survivin gene has one to several bases deleted as long as the function as the survivin gene and the activity as the survivin protein to be expressed are maintained. It may be substituted and / or added. Similarly for any other known survivin gene, one to several bases may be used as long as the function as its own survivin gene and the activity as the expressed survivin protein are maintained for any known sequence. May be deleted, substituted and / or added.

第2のレポータータンパク質をコードする遺伝子は、蛍光タンパク質をコードする遺伝子であればよく、好ましくは、第1のレポータータンパク質として使用する発光タンパク質、並びに発光タンパク質の基質などの発光関連物質から蛍光を生じる可能性のある励起および蛍光スペクトルよりも、長波長側に励起波長を有する蛍光タンパク質が好ましい。具体的には、例えば、第1のレポータータンパク質としてルシフェラーゼを用いる場合、その基質としてルシフェリンが使用される。ルシフェリンは、それ自体が、短波長によって蛍光を発する。従って、ルシフェリンから蛍光が生じることのない波長の蛍光タンパク質を第2のレポータータンパク質を選択することが望ましい。好ましい蛍光タンパク質の例は、黄色蛍光タンパク質(YFP)、Enhanced yellow fluorescent protein(EYFP)、赤色蛍光タンパク質(RFP)、Venus、PhiYFP、YsYello、mBanana、KusabiraOrange、mOrange、DsRed、AsRed、mCherry、HcRed、mPlumおよびmStrawberryなどであってよい。好ましい蛍光タンパク質をコードする遺伝子の配列の1例として、EYFPの配列を表3に示す。

Figure 2015019637
The gene encoding the second reporter protein may be a gene encoding a fluorescent protein, and preferably emits fluorescence from a luminescent protein used as the first reporter protein and a luminescence-related substance such as a substrate of the luminescent protein. Fluorescent proteins with an excitation wavelength on the longer wavelength side are preferred over possible excitation and fluorescence spectra. Specifically, for example, when luciferase is used as the first reporter protein, luciferin is used as the substrate. Luciferin itself fluoresces by a short wavelength. Therefore, it is desirable to select the second reporter protein as a fluorescent protein having a wavelength that does not cause fluorescence from luciferin. Examples of preferred fluorescent proteins are yellow fluorescent protein (YFP), enhanced yellow fluorescent protein (EYFP), red fluorescent protein (RFP), Venus, PhiYFP, YsYello, mBana, KusbiraOrange, mOrm, Hsr, C And mStrawberry. As an example of the sequence of a gene encoding a preferred fluorescent protein, the sequence of EYFP is shown in Table 3.
Figure 2015019637

第2のベクターは、更に、neo遺伝子、β−gal遺伝子、cat遺伝子、およびhyg遺伝子などの更なる遺伝子を含んでもよい。また更に、第2のベクターは、第2のレポーター遺伝子の下流にポリAなどの転写終結遺伝子を含んでもよい。第2のベクターとして、強力なプロモーターおよび/または蛍光タンパク質をコードする遺伝子を含む市販のベクターを利用してもよい。例えば、そのような市販のベクターにおいて、強力なプロモーターの下流であり、且つ蛍光タンパク質をコードする遺伝子の上流に対して、サバイビン遺伝子を組み込めばよい。そのような組み込みは、例えば、制限酵素による切断と、リガーゼによる連結などの遺伝子工学的手法を利用してよい。或いは、遺伝子工学的手法により、強力なプロモーターと、その下流に機能的に連結されたサバイビン遺伝子と、その下流に機能的に連結された第2のレポータータンパク質をコードする遺伝子とを含む配列からなるポリヌクレオチドから第2のベクターを製造してもよい。第2のベクターの製造は、それ自身公知の技術を利用して行ってもよい。   The second vector may further comprise additional genes such as the neo gene, β-gal gene, cat gene, and hyg gene. Furthermore, the second vector may contain a transcription termination gene such as poly A downstream of the second reporter gene. A commercially available vector containing a strong promoter and / or a gene encoding a fluorescent protein may be used as the second vector. For example, in such a commercially available vector, a survivin gene may be incorporated downstream of a strong promoter and upstream of a gene encoding a fluorescent protein. For such integration, for example, genetic engineering techniques such as restriction enzyme digestion and ligase ligation may be used. Alternatively, it comprises a sequence comprising a strong promoter, a survivin gene operably linked downstream thereof, and a gene encoding a second reporter protein operably linked downstream thereof by genetic engineering techniques. A second vector may be produced from the polynucleotide. The second vector may be produced using a technique known per se.

第2のベクターは、プラスミドベクターであっても、ウイルスベクターであってもよいが、プラスミドベクターが好ましい。   The second vector may be a plasmid vector or a viral vector, but a plasmid vector is preferred.

第1のベクターと第2のベクターとの試料への導入は、例えば、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、エレクトロポレーション法およびマイクロインジェクション法などにより行えばよい。   Introduction of the first vector and the second vector into the sample may be performed, for example, by the calcium phosphate method, lipofection method, DEAE dextran method, electroporation method, and microinjection method.

試料に導入された第1のベクターと第2のベクターは、互いに独立して機能する。第1のベクターは、試料中の環境に依存したサバイビンプロモーターの活性に従って、第1のレポータータンパク質を発現する。第2のベクターは、強いプロモーターにより強制的にサバイビンと蛍光タンパク質との融合タンパク質を発現する。発現された融合タンパク質は、試料中の環境に依存して試料において分布する。   The first vector and the second vector introduced into the sample function independently of each other. The first vector expresses the first reporter protein according to the activity of the survivin promoter depending on the environment in the sample. The second vector forcibly expresses the fusion protein of survivin and fluorescent protein by a strong promoter. The expressed fusion protein is distributed in the sample depending on the environment in the sample.

「試料」は、細胞および/または組織であってよい。組織は、生体から採取された組織であってよく、生体から採取され、培養された組織であってもよく、生体から採取または採取および培養された組織から切り出された切片であってもよい。細胞は、生体から採取された細胞であっても、生体から採取され、単離された細胞であっても、培養された細胞であっても、生体から採取された後に培養された細胞であっても、継代培養された細胞であってもよい。細胞は、生体から採取された組織を酵素より消化することにより準備してもよい。また試料は生物個体、胚、卵であってもよい。   A “sample” may be a cell and / or tissue. The tissue may be a tissue collected from a living body, a tissue collected from a living body and cultured, or a section cut from a tissue collected or collected from a living body and cultured. A cell may be a cell collected from a living body, a cell collected and isolated from a living body, a cultured cell, or a cell cultured after being collected from a living body. Alternatively, it may be a subcultured cell. The cell may be prepared by digesting a tissue collected from a living body with an enzyme. The sample may be an individual organism, an embryo, or an egg.

試料に対して第1のベクターと第2のベクターを導入した後に、試料に含まれる特定の細胞について、その形態を明視野で観察し、且つ第1のベクターに基づく発光シグナルと、第2のベクターに基づく蛍光シグナルとを順次測定する。この際に、これらの形態観察と発光および蛍光シグナルの測定は、試料に含まれる特定の細胞について行う。このような形態観察と、発光および蛍光シグナルの測定は、共通する興味領域(Region of Interest、ROI)を指定することにより、同じ対象、例えば、同じ細胞について明視野観察、発光シグナルの測定および蛍光シグナルの測定を行える観察装置または観察システムを利用して行うことが可能である。そのような観察装置および観察システムにより撮像された画像について、明視野観察、発光強度の測定および蛍光強度の測定を行ってもよい。   After introducing the first vector and the second vector into the sample, the morphology of specific cells contained in the sample is observed in a bright field, and the luminescent signal based on the first vector, The fluorescence signal based on the vector is measured sequentially. At this time, the morphological observation and the measurement of luminescence and fluorescence signals are performed on specific cells contained in the sample. Such morphological observation and measurement of luminescence and fluorescence signal can be performed by specifying a common region of interest (Region of Interest, ROI), thereby allowing bright field observation, measurement of luminescence signal and fluorescence of the same cell. It is possible to use an observation apparatus or an observation system that can measure a signal. Bright field observation, emission intensity measurement, and fluorescence intensity measurement may be performed on an image captured by such an observation apparatus and observation system.

そのような観察システムの1例として、実施の形態2について図2〜図4を参照して説明する。なお、この実施形態により本発明が限定されるものではない。   As an example of such an observation system, a second embodiment will be described with reference to FIGS. In addition, this invention is not limited by this embodiment.

図2に示すように、発現量測定装置1000は、細胞1020と、細胞1020を収納した容器1030(具体的にはシャーレ、スライドガラス、マイクロプレート、ゲル支持体、微粒子担体など)と、容器1030を配置するステージ1040と、発光画像撮像ユニット1060と、蛍光画像撮像ユニット1080と、情報通信端末1100と、で構成されている。また、発現量測定装置1000において、発光画像撮像ユニット1060に含まれる対物レンズ1060aと蛍光画像撮像ユニット1080に含まれる対物レンズ1080aとは、図示の如く、細胞1020、容器1030およびステージ1040を挟んで上下の対向する位置に配置される。なお、発光画像撮像ユニット1060および蛍光画像撮像ユニット1080の配置を入れ替えてもよい。   As shown in FIG. 2, the expression level measuring apparatus 1000 includes a cell 1020, a container 1030 containing the cell 1020 (specifically, a petri dish, a slide glass, a microplate, a gel support, a fine particle carrier, etc.), and a container 1030. , A light emitting image capturing unit 1060, a fluorescence image capturing unit 1080, and an information communication terminal 1100. In the expression level measuring apparatus 1000, the objective lens 1060a included in the luminescent image capturing unit 1060 and the objective lens 1080a included in the fluorescent image capturing unit 1080 are sandwiched between a cell 1020, a container 1030, and a stage 1040 as illustrated. It arrange | positions in the upper and lower opposing position. Note that the arrangement of the luminescent image capturing unit 1060 and the fluorescence image capturing unit 1080 may be interchanged.

細胞1020は、サバイビンプロモーターと組み合わせて発光タンパク質(具体的には例えばルシフェラーゼ)を発現する発光関連遺伝子、サバイビン遺伝子と組み合わせて蛍光タンパク質(具体的には例えばYFP)を発現する蛍光関連遺伝子を導入した生きたものである。ここで、本明細書において発光とは、生物発光および化学発光を含む概念である。   The cell 1020 was introduced with a luminescence-related gene that expresses a photoprotein (specifically, for example, luciferase) in combination with a survivin promoter, and a fluorescence-related gene that expresses a fluorescent protein (specifically, for example, YFP) in combination with a survivin gene. It is alive. Here, in this specification, the light emission is a concept including bioluminescence and chemiluminescence.

なお、細胞1020は、発光関連遺伝子と蛍光関連遺伝子とを融合した融合遺伝子を導入した生きたものでもよい。具体的には、細胞1020は、発光関連遺伝子と蛍光関連遺伝子とを融合したベクターを導入した生きたものでもよい。換言すると、細胞1020に対し解析対象であるサバイビンプロモーターまたはサバイビン遺伝子とそれぞれ組み合わせた発光関連遺伝子または蛍光関連遺伝子との組を複数導入してもよい。これにより、細胞1020に導入したサバイビンプロモーター活性とサバイビン遺伝子発現量を一緒に測定し、さらにそれらに加えて、細胞の形態を明視野で観察する。即ち、蛍光でサバイビン遺伝子の発現量を測定し、発光でサバイビンプロモーターの活性の程度を測定し、明視野で細胞の形態を観察する。具体的には、細胞1020は、第1のベクターを導入すると共に、第2のベクターを導入した生きたものでもよい。   Note that the cell 1020 may be a living cell into which a fusion gene obtained by fusing a luminescence-related gene and a fluorescence-related gene is introduced. Specifically, the cell 1020 may be a living one into which a vector in which a luminescence-related gene and a fluorescence-related gene are fused is introduced. In other words, a plurality of sets of luminescence-related genes or fluorescence-related genes combined with the survivin promoter or survivin gene to be analyzed may be introduced into the cell 1020. Thereby, the survivin promoter activity and survivin gene expression level introduced into the cell 1020 are measured together, and in addition to these, the cell morphology is observed in a bright field. That is, the expression level of survivin gene is measured by fluorescence, the degree of survivin promoter activity is measured by luminescence, and the morphology of cells is observed in a bright field. Specifically, the cell 1020 may be a living one into which the first vector is introduced and the second vector is introduced.

発光画像撮像ユニット1060は、具体的には正立型の発光顕微鏡であり、細胞1020の発光画像を撮像する。発光画像撮像ユニット1060は、図示の如く、対物レンズ1060aと、ダイクロイックミラー1060bと、CCDカメラ1060cと、で構成されている。対物レンズ1060aは、具体的には、(開口数/倍率)2の値が0.01以上のものである。ダイクロイックミラー1060bは、細胞1020から発せられた発光を色別に分離し、2色の発光を用いて発光強度を色別に測定する場合に用いる。CCDカメラ1060cは、対物レンズ1060aを介して当該CCDカメラ1060cのチップ面に投影された細胞1020の発光画像および明視野画像を撮る。また、CCDカメラ1060cは、情報通信端末1100と有線または無線で通信可能に接続される。ここで、細胞1020が撮像範囲中に複数存在する場合、CCDカメラ1060cは、撮像範囲中に含まれる複数の細胞1020の発光画像および明視野画像を撮像してもよい。なお、図2では、ダイクロイックミラー1060bで分離した2つの発光に対応する発光画像を2台のCCDカメラ1060cで別々に撮像する場合の一例を示しており、1つの発光を用いる場合には、発光画像撮像ユニット1060は、対物レンズ1060aおよび1台のCCDカメラ1060cで構成されてもよい。 The luminescence image capturing unit 1060 is specifically an upright luminescence microscope and captures a luminescence image of the cell 1020. As shown in the figure, the luminescent image capturing unit 1060 includes an objective lens 1060a, a dichroic mirror 1060b, and a CCD camera 1060c. Specifically, the objective lens 1060a has a value of (numerical aperture / magnification) 2 of 0.01 or more. The dichroic mirror 1060b is used when light emitted from the cell 1020 is separated by color and the light emission intensity is measured by color using two colors of light emission. The CCD camera 1060c takes a light emission image and a bright field image of the cell 1020 projected onto the chip surface of the CCD camera 1060c via the objective lens 1060a. Further, the CCD camera 1060c is connected to the information communication terminal 1100 so as to be communicable by wire or wirelessly. Here, when there are a plurality of cells 1020 in the imaging range, the CCD camera 1060c may capture a light-emitting image and a bright-field image of the plurality of cells 1020 included in the imaging range. Note that FIG. 2 shows an example in which two CCD cameras 1060c separately capture light emission images corresponding to two light emissions separated by the dichroic mirror 1060b. The image capturing unit 1060 may include an objective lens 1060a and one CCD camera 1060c.

蛍光画像撮像ユニット1080は、具体的には倒立型の蛍光顕微鏡であり、細胞1020の蛍光画像を撮像する。蛍光画像撮像ユニット1080は、図示の如く、対物レンズ1080aと、ダイクロイックミラー1080bと、キセノンランプ1080cと、CCDカメラ1080dと、で構成されている。CCDカメラ1080dは、対物レンズ1080aを介して当該CCDカメラ1080dのチップ面に投影された細胞1020の蛍光画像および明視野画像を撮る。また、CCDカメラ1080dは、情報通信端末1100と有線または無線で通信可能に接続される。ここで、細胞1020が撮像範囲中に複数存在する場合、CCDカメラ1080dは、撮像範囲中に含まれる複数の細胞1020の蛍光画像および明視野画像を撮像してもよい。ダイクロイックミラー1080bは、細胞102からの蛍光を透過するとともに、キセノンランプ1080cから照射された励起光が細胞1020へ照射されるように励起光の方向を変える。キセノンランプ1080cは励起光を照射する。   The fluorescence image capturing unit 1080 is specifically an inverted fluorescence microscope, and captures a fluorescence image of the cell 1020. As shown in the figure, the fluorescence image capturing unit 1080 includes an objective lens 1080a, a dichroic mirror 1080b, a xenon lamp 1080c, and a CCD camera 1080d. The CCD camera 1080d takes a fluorescent image and a bright field image of the cell 1020 projected onto the chip surface of the CCD camera 1080d via the objective lens 1080a. Further, the CCD camera 1080d is connected to the information communication terminal 1100 so as to be able to communicate with each other by wire or wirelessly. Here, when there are a plurality of cells 1020 in the imaging range, the CCD camera 1080d may capture fluorescent images and bright-field images of the plurality of cells 1020 included in the imaging range. The dichroic mirror 1080b transmits the fluorescence from the cell 102 and changes the direction of the excitation light so that the excitation light emitted from the xenon lamp 1080c is emitted to the cell 1020. The xenon lamp 1080c emits excitation light.

ここで、発光画像撮像ユニット1060および蛍光画像撮像ユニット1080は、具体的には、それぞれ倒立型の発光顕微鏡および倒立型の蛍光顕微鏡でもよく、ステージ1040は回転するものでもよい。   Here, specifically, the luminescence image capturing unit 1060 and the fluorescence image capturing unit 1080 may be an inverted luminescence microscope and an inverted fluorescence microscope, respectively, and the stage 1040 may be rotated.

情報通信端末1100は、具体的にはパーソナルコンピュータである。そして、情報通信端末1100は、図3に示すように、大別して、制御部1120と、システムの時刻を計時するクロック発生部1140と、記憶部1160と、通信インターフェース部1180と、入出力インターフェース部1200と、入力部1220と、出力部1240と、で構成されており、これら各部はバスを介して接続されている。   The information communication terminal 1100 is specifically a personal computer. As shown in FIG. 3, the information communication terminal 1100 is roughly divided into a control unit 1120, a clock generation unit 1140 that measures the system time, a storage unit 1160, a communication interface unit 1180, and an input / output interface unit. The configuration includes 1200, an input unit 1220, and an output unit 1240, and these units are connected via a bus.

記憶部1160は、ストレージ手段であり、具体的には、RAMやROMなどのメモリ装置、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスクなどを用いることができる。そして、記憶部1160は制御部1120の各部の処理により得られたデータなどを記憶する。   The storage unit 1160 is a storage unit. Specifically, a memory device such as a RAM or a ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used. The storage unit 1160 stores data obtained by processing of each unit of the control unit 1120.

通信インターフェース部1180は、情報通信端末1100と、CCDカメラ1060cおよびCCDカメラ1080dと、の間における通信を媒介する。すなわち、通信インターフェース部1180は他の端末と有線または無線の通信回線を介してデータを通信する機能を有する。   The communication interface unit 1180 mediates communication between the information communication terminal 1100 and the CCD camera 1060c and the CCD camera 1080d. That is, the communication interface unit 1180 has a function of communicating data with other terminals via a wired or wireless communication line.

入出力インターフェース部1200は、入力部1220や出力部1240に接続する。ここで、出力部1240には、モニター(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下で、出力部1240をモニターとして記載する場合がある)。また、入力部1220には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニターを用いることができる。   The input / output interface unit 1200 is connected to the input unit 1220 and the output unit 1240. Here, in addition to a monitor (including a home TV), a speaker or a printer can be used as the output unit 1240 (hereinafter, the output unit 1240 may be described as a monitor). In addition to the keyboard, mouse, and microphone, the input unit 1220 can be a monitor that realizes a pointing device function in cooperation with the mouse.

制御部1120は、OS(Operating System)などの制御プログラムや各種の処理手順などを規定したプログラムや所要データを格納するための内部メモリを有し、これらのプログラムに基づいて種々の処理を実行する。そして、制御部1020は、大別して、蛍光画像撮像指示部1120aと、発光画像撮像指示部1120bと、蛍光画像取得部1120cと、発光画像取得部1120dと、判定部1120eと、蛍光測定部1120fと、発光測定部1120gと、選択部1120h、発現量測定部1120iと、明視野画像撮像指示部1120jと、明視野画像取得部1120kと、形態同定部1120lで構成されている。   The control unit 1120 has an internal memory for storing control programs such as an OS (Operating System), programs that define various processing procedures, and necessary data, and executes various processes based on these programs. . The control unit 1020 is roughly divided into a fluorescence image capturing instruction unit 1120a, a luminescent image capturing instruction unit 1120b, a fluorescence image acquiring unit 1120c, a luminescent image acquiring unit 1120d, a determining unit 1120e, and a fluorescence measuring unit 1120f. , A luminescence measuring unit 1120g, a selecting unit 1120h, an expression level measuring unit 1120i, a bright field image capturing instruction unit 1120j, a bright field image acquiring unit 1120k, and a form identifying unit 1120l.

蛍光画像撮像指示部1120aは、通信インターフェース部1160を介して、CCDカメラ1080dへ蛍光画像の撮像を指示する。発光画像撮像指示部1120bは、通信インターフェース部1160を介して、CCDカメラ1060cへ発光画像の撮像を指示する。蛍光画像取得部1120cは、CCDカメラ1080dで撮像した蛍光画像を、通信インターフェース部1160を介して取得する。発光画像取得部1120dは、CCDカメラ1060cで撮像した発光画像を、通信インターフェース部1160を介して取得する。明視野画像指示部1120jは、通信インターフェース部1160を介して、CCDカメラ1060cおよび/またはCCDカメラ1080dへの明視野画像の撮像を指示する。明視野画像取得部1120kは、CCDカメラ1060cおよび/またはCCDカメラ1080dで撮像した明視野画像を通信インターフェース部1160を介して取得する。同一視野内の1つの細胞、または複数の細胞、または互いに異なる細胞を、予め設定された時間および間隔に応じたタイミングで撮像したタイムラプス映像または1画像上に同時に画像再生することにより、時間軸に沿った動画(またはコマ送り)ないし1画像表示をしてもよい。   The fluorescent image capturing instruction unit 1120a instructs the CCD camera 1080d to capture a fluorescent image via the communication interface unit 1160. The luminescent image capturing instruction unit 1120b instructs the CCD camera 1060c to capture a luminescent image via the communication interface unit 1160. The fluorescence image acquisition unit 1120c acquires the fluorescence image captured by the CCD camera 1080d via the communication interface unit 1160. The luminescent image acquisition unit 1120d acquires the luminescent image captured by the CCD camera 1060c via the communication interface unit 1160. The bright field image instruction unit 1120j instructs the CCD camera 1060c and / or the CCD camera 1080d to capture a bright field image via the communication interface unit 1160. The bright field image acquisition unit 1120k acquires a bright field image captured by the CCD camera 1060c and / or the CCD camera 1080d via the communication interface unit 1160. By reproducing simultaneously one time-lapse video or one image of one cell in the same visual field, a plurality of cells, or cells different from each other at a timing according to a preset time and interval, the time axis A moving image (or frame advance) or single image display may be displayed.

判定部1120eは、蛍光画像および/または発光画像に基づいて、各遺伝子が導入されているか否かを細胞1020ごとに判定する。蛍光測定部1120fは、CCDカメラ1080dで撮像した蛍光画像に基づいて、各細胞1020から発せられた蛍光の蛍光強度をそれぞれ測定する。発光測定部1120gは、CCDカメラ1060cで撮像した発光画像に基づいて、各細胞1020から発せられた発光強度をそれぞれ測定する。   The determination unit 1120e determines for each cell 1020 whether or not each gene has been introduced based on the fluorescence image and / or the luminescence image. The fluorescence measurement unit 1120f measures the fluorescence intensity of the fluorescence emitted from each cell 1020 based on the fluorescence image captured by the CCD camera 1080d. The luminescence measurement unit 1120g measures the luminescence intensity emitted from each cell 1020 based on the luminescence image captured by the CCD camera 1060c.

形態同定部1120hは、明視野画像取得部1120kで得られた明視野画像に含まれる1つの細胞または複数の細胞のそれぞれについて、予め設定した特徴点、即ち、細胞の輪郭の形状、核の輪郭の形状を判定し、それに基づいて、予め設定された特定の特徴点を有すると同定する。形態同定部1120hの同定の結果に基づいて、選択部1120hは、経時的に測定すべき細胞を選択する。ここで、特徴点の判定は、1つの細胞または複数の細胞について、複数の時間点で測定された特徴点の変化の有無により行われてもよい。即ち、特徴点の同定は、少なくとも2つの時間点において、細胞の輪郭および/または核の輪郭に変化があるか否かを判定することにより行われてもよい。   The shape identification unit 1120h is configured to set feature points that are set in advance for each of one cell or a plurality of cells included in the bright field image obtained by the bright field image acquisition unit 1120k, that is, the contour shape of the cell and the contour of the nucleus. Is determined, and based on this shape, it is identified as having a specific feature point set in advance. Based on the identification result of the shape identification unit 1120h, the selection unit 1120h selects cells to be measured over time. Here, the determination of feature points may be performed based on the presence or absence of changes in feature points measured at a plurality of time points for one cell or a plurality of cells. That is, the identification of feature points may be performed by determining whether there is a change in the cell outline and / or the nucleus outline at least at two time points.

発現量測定部1120jは、選択部1120iで選択した細胞1020を対象として、蛍光測定部1120fで測定した蛍光強度に基づいて解析対象のサバイビン遺伝子の発現量を測定し、発光測定部1120gで測定した発光強度に基づいて解析対象のサバイビンプロモーター活性の程度を測定する。なお、発現量測定部1120jは、複数の細胞1020または選択部1120iで選択した細胞1020を対象として、蛍光測定部1120fで測定した蛍光強度に基づいて解析対象のサバイビン遺伝子の発現量を測定すると共に、CCDカメラ1080dで撮像した蛍光画像に基づいて解析対象の遺伝子の細胞1020内における発現部位を同定してもよい。   The expression level measurement unit 1120j measures the expression level of the survivin gene to be analyzed based on the fluorescence intensity measured by the fluorescence measurement unit 1120f for the cell 1020 selected by the selection unit 1120i, and measures it by the luminescence measurement unit 1120g. The degree of survivin promoter activity to be analyzed is measured based on the luminescence intensity. The expression level measurement unit 1120j measures the expression level of the survivin gene to be analyzed based on the fluorescence intensity measured by the fluorescence measurement unit 1120f for the cells 1020 selected by the plurality of cells 1020 or the selection unit 1120i. Alternatively, the expression site in the cell 1020 of the gene to be analyzed may be identified based on the fluorescence image captured by the CCD camera 1080d.

以上の構成において、発現量測定装置1000で行われる処理の一例を、図4を参照して説明する。なお、以下では、第1のベクターおよび第2のベクターを複数の細胞1020に導入し、導入した複数の細胞1020のうち特定の細胞1020を対象として、発光画像における発光強度でサバイビンプロモーター活性の程度を経時的に測定し、蛍光画像における蛍光強度および分布でサバイビンタンパク質の分布を経時的に測定し、且つ明視野画像における観察により形態を同定する場合の処理の1例について説明する。   An example of processing performed by the expression level measuring apparatus 1000 in the above configuration will be described with reference to FIG. In the following description, the first vector and the second vector are introduced into a plurality of cells 1020, and the degree of survivin promoter activity at the luminescence intensity in the luminescence image targeting a specific cell 1020 among the introduced plurality of cells 1020. Is described over time, the distribution of survivin protein is measured over time with the fluorescence intensity and distribution in the fluorescence image, and an example of processing for identifying the morphology by observation in the bright field image will be described.

まず、情報通信端末1100は、蛍光画像撮像指示部1120aの処理で通信インターフェース部1160を介してCCDカメラ1080dへ蛍光画像の撮像を指示し、発光画像撮像指示部1120bの処理で通信インターフェース部1160を介してCCDカメラ1060cへ発光画像の撮像を指示し、明視野画像撮像指示部1120jの処理で通信インターフェース部1160を介してCCDカメラ1080dへ明視野画像の撮像を指示する(ステップSB−1)。つぎに、CCDカメラ1080dは、撮像範囲中に存在する複数の細胞1020の蛍光画像を撮像し(ステップSB−2)、当該蛍光画像を情報通信端末1100へ送信する(ステップSB−3)。一方、CCDカメラ1060cは、撮像範囲中に存在する複数の細胞1020の発光画像を撮像し(ステップSB−4)、当該発光画像を情報通信端末1100へ送信する(ステップSB−5)。更に、CCDカメラ1080dまたはCCDカメラ1060cは、撮像範囲中に存在する複数の細胞1020の明視野画像を撮像し(ステップSB−6)、当該明視野画像を情報通信端末1100へ送信する(ステップSB−7)。なお、蛍光画像の撮像指示および発光画像の撮像指示および明視野画像の撮像指示は、異なる時刻または時間間隔で行ってもよい。例えば、サバイビンプロモーターの活性の程度を測定するために用いる発光画像の撮像、サバイビン遺伝子の発現量を測定するために用いる蛍光画像の撮像、および細胞の形態を同定するための明視野画像の撮像は、それぞれ数秒おき、数分おきまたは数時間おきに行ってもよい。また、励起光は蛍光画像を撮像する時のみ細胞1020へ照射する。   First, the information communication terminal 1100 instructs the CCD camera 1080d to capture a fluorescent image through the communication interface unit 1160 by the processing of the fluorescent image capturing instruction unit 1120a, and the communication interface unit 1160 through the processing of the luminescent image capturing instruction unit 1120b. Through the communication interface unit 1160 in the process of the bright field image capturing instruction unit 1120j (step SB-1). Next, the CCD camera 1080d captures a fluorescence image of the plurality of cells 1020 existing in the imaging range (step SB-2), and transmits the fluorescence image to the information communication terminal 1100 (step SB-3). On the other hand, the CCD camera 1060c captures a light emission image of a plurality of cells 1020 existing in the imaging range (step SB-4), and transmits the light emission image to the information communication terminal 1100 (step SB-5). Further, the CCD camera 1080d or the CCD camera 1060c captures a bright field image of a plurality of cells 1020 existing in the imaging range (step SB-6), and transmits the bright field image to the information communication terminal 1100 (step SB). -7). Note that the fluorescent image capturing instruction, the luminescent image capturing instruction, and the bright field image capturing instruction may be performed at different times or time intervals. For example, imaging of luminescent images used to measure the degree of survivin promoter activity, imaging of fluorescent images used to measure the expression level of survivin gene, and imaging of bright-field images to identify cell morphology May be performed every few seconds, every few minutes, or every few hours. Further, the excitation light is applied to the cell 1020 only when a fluorescent image is captured.

つぎに、情報通信端末1100は、(a)蛍光画像取得部1120cの処理で通信インターフェース部1160を介して蛍光画像を取得し、(b)発光画像取得部1120dの処理で通信インターフェース部1160を介して発光画像を取得し、(c)明視野画像取得部1120kの処理で通信インターフェース部1160を介して明視野画像を取得し、(d)制御部1120の処理でクロック発生部1140から時刻を取得し、(e)取得した蛍光画像と発光画像と明視野画像と時刻とを対応付けて記憶部1160の所定の記憶領域に記憶する(ステップSB−8)。   Next, the information communication terminal 1100 acquires (a) a fluorescent image through the communication interface unit 1160 through the processing of the fluorescent image acquisition unit 1120c, and (b) through the communication interface unit 1160 through the processing of the light emission image acquisition unit 1120d. (C) The bright field image is acquired via the communication interface unit 1160 by the processing of the bright field image acquisition unit 1120k, and (d) the time is acquired from the clock generation unit 1140 by the processing of the control unit 1120. (E) The acquired fluorescence image, light emission image, bright field image, and time are associated with each other and stored in a predetermined storage area of the storage unit 1160 (step SB-8).

つぎに、情報通信端末1100は、判定部1120eの処理で、蛍光画像および/または発光画像に基づいて、ベクターが導入されているか否かを細胞1020ごとに判定する(ステップSB−9)。つぎに、ベクターが導入されている細胞1020が少なくとも1つ存在した場合(ステップSB−10:Yes)、情報通信端末1100は、蛍光測定部1120fの処理で蛍光画像に基づいて各細胞1020から発せられた蛍光の蛍光強度をそれぞれ測定すると共に、発光測定部1120gの処理で発光画像に基づいて各細胞1020から発せられた発光の発光強度をそれぞれ測定する(ステップSB−11)。   Next, the information communication terminal 1100 determines, for each cell 1020, whether or not a vector has been introduced based on the fluorescence image and / or the luminescence image by the processing of the determination unit 1120e (step SB-9). Next, when there is at least one cell 1020 into which a vector is introduced (step SB-10: Yes), the information communication terminal 1100 emits from each cell 1020 based on the fluorescence image by the processing of the fluorescence measurement unit 1120f. The fluorescence intensity of each fluorescence obtained is measured, and the emission intensity of the emission emitted from each cell 1020 is measured based on the emission image by the process of the emission measurement unit 1120g (step SB-11).

つぎに、情報通信端末1100は、形態同定部1120lの処理で、明視野画像に基づいて、形態に関する特徴点を細胞1020ごとに判定することで、細胞の形態を細胞1020ごとに同定する(ステップSB−12)。なお、蛍光関連遺伝子を含む第2のベクターを細胞1020に導入し、それにより得られた蛍光強度に基づいて細胞形態の特徴点を細胞1020ごとに判定することで、細胞の形態を細胞1020ごとに同定してもよい。また、形態の特徴点の判定は、所定の部位、具体的には核、細胞膜、細胞質などの明視野画像および/または蛍光画像における時間点での位置データについて、明視野画像および/または蛍光画像と時刻とを対応付けて記憶部1160の所定の記憶領域に記憶し、更なる時間点での対応する位置データと比較することにより行ってもよい。   Next, the information communication terminal 1100 identifies the feature of the cell for each cell 1020 based on the bright-field image, and identifies the morphology of the cell for each cell 1020 by the processing of the morphology identification unit 1120l (step 1012). SB-12). In addition, the second vector containing the fluorescence-related gene is introduced into the cell 1020, and the feature point of the cell morphology is determined for each cell 1020 based on the fluorescence intensity obtained thereby, so that the cell morphology is determined for each cell 1020. May be identified. Further, the feature point of the form is determined by determining the bright field image and / or the fluorescence image with respect to the position data at a predetermined site, specifically, the bright field image and / or fluorescence image of the nucleus, cell membrane, cytoplasm, etc. And time may be associated with each other and stored in a predetermined storage area of the storage unit 1160 and compared with corresponding position data at a further time point.

つぎに、情報通信端末1100は、選択部1120hの処理で、ステップSB−12で形態が同定された細胞1020の中から測定対象の細胞1020を選択する(ステップSB−13)。つぎに、情報通信端末1100は、発現量測定部1120jの処理で、ステップSB−13で選択した細胞1020を対象として、蛍光強度に基づいて解析対象の遺伝子の発現量を測定すると共に、蛍光画像に基づいて解析対象のサバイビン遺伝子の細胞1020内における発現部位を同定する(ステップSB−14)。なお、ステップSB−12において蛍光強度または蛍光画像を用いる場合、ステップSB−14では、蛍光強度に基づいて解析対象のサバイビン遺伝子の発現量を測定し、発光強度に基づいてサバイビンプロモーターの活性の程度を測定してもよい。   Next, the information communication terminal 1100 selects the cell 1020 to be measured from the cells 1020 whose form has been identified in Step SB-12 by the processing of the selection unit 1120h (Step SB-13). Next, the information communication terminal 1100 measures the expression level of the gene to be analyzed based on the fluorescence intensity for the cell 1020 selected in step SB-13 by the processing of the expression level measurement unit 1120j, and also displays the fluorescence image. Based on the above, the expression site in the cell 1020 of the survivin gene to be analyzed is identified (step SB-14). In addition, when using fluorescence intensity or a fluorescence image in step SB-12, in step SB-14, the expression level of the survivin gene to be analyzed is measured based on the fluorescence intensity, and the degree of survivin promoter activity based on the emission intensity May be measured.

そして、情報通信端末1100は、制御部1120の処理で、上述したステップSB−1〜ステップSB−14までの処理を例えば予め設定した時間間隔で所定の回数繰り返し実行し、所定の回数終了した場合(ステップSB−15:Yes)には処理を終了する。   Then, the information communication terminal 1100 repeatedly performs the above-described processing from step SB-1 to step SB-14 by a predetermined number of times, for example, at a preset time interval in the processing of the control unit 1120, and ends the predetermined number of times. In (Step SB-15: Yes), the process ends.

ここで、発光画像、蛍光画像および明視野画像の撮像および取得だけを繰り返し実行し、解析の時点で、発光強度の測定、蛍光強度の測定、蛍光の分布、形態の同定、細胞1020の選択、発現量の測定、活性の程度の測定を行ってもよい。つまり、解析に必要な元データである発光画像、蛍光画像および明視野画像だけをまとめて取得し、その後、解析の時点で、発光強度の測定、蛍光強度の測定、蛍光の分布、形態の同定、細胞1020の選択、発現量の測定、活性の程度の測定を行ってもよい。具体的には、発光画像、蛍光画像および明視野の取得後に、解析の時点で、細胞1020の選択、発現量の測定、発現されたサバイビン遺伝子の分布の測定、形態の同定を行ってもよい。また、発光画像、蛍光画像および明視野画像の取得を行った後、解析の時点で、形態の同定、細胞1020の選択を行ってもよい。また、発光画像、蛍光画像および明視野画像の取得後に、解析の時点で、細胞1020の選択を行ってもよい。   Here, only the capturing and acquisition of the luminescent image, the fluorescent image and the bright field image are repeatedly performed, and at the time of analysis, the measurement of the luminescence intensity, the measurement of the fluorescence intensity, the distribution of the fluorescence, the identification of the form, the selection of the cell 1020, You may measure the expression level and the degree of activity. In other words, only the luminescent image, fluorescent image, and bright-field image, which are the original data necessary for analysis, are acquired together, and at the time of analysis, emission intensity measurement, fluorescence intensity measurement, fluorescence distribution, and morphology identification Alternatively, cell 1020 selection, expression level measurement, and activity level measurement may be performed. Specifically, after obtaining a luminescent image, a fluorescent image, and a bright field, at the time of analysis, selection of cells 1020, measurement of expression level, measurement of distribution of expressed survivin gene, and identification of morphology may be performed. . In addition, after obtaining a luminescent image, a fluorescent image, and a bright field image, at the time of analysis, identification of the morphology and selection of the cell 1020 may be performed. Alternatively, the cells 1020 may be selected at the time of analysis after obtaining the luminescent image, fluorescent image, and bright field image.

また、蛍光画像を取得した後、測定対象の細胞1020を選択し、そして発光画像を取得してもよい。   Moreover, after acquiring a fluorescence image, the cell 1020 to be measured may be selected, and a luminescence image may be acquired.

以上、詳細に説明したように、発現量測定装置1000によれば、発光関連遺伝子と蛍光関連遺伝子と解析対象のサバイビン遺伝子とサバイビンプロモーターを導入した生きた細胞1020を対象として、細胞1020から発せられた発光の発光強度を測定し、細胞1020から発せられた蛍光の蛍光強度を測定し、測定した発光強度または測定した蛍光強度に基づいて解析対象の遺伝子の発現量を測定する、測定した細胞の形態の同定にあたって、細胞は、発光関連遺伝子、蛍光関連遺伝子および解析対象のサバイビン遺伝子およびサバイビンプロモーターを同定された細胞を用いて行う。このような方法により、1つの細胞について、サバイビン遺伝子の発現量および発現の分布の状態、サバイビンプロモーターの活性の程度、並びに形態情報を簡便且つ正確に得ることが可能であり、また、得られた複数の情報に基づいて、総合的に細胞解析を行うことが可能となる。   As described above in detail, according to the expression level measuring apparatus 1000, the luminescence-related gene, the fluorescence-related gene, the survivin gene to be analyzed, and the living cell 1020 introduced with the survivin promoter are emitted from the cell 1020. Measuring the emission intensity of the emitted light, measuring the fluorescence intensity of the fluorescence emitted from the cell 1020, and measuring the expression level of the gene to be analyzed based on the measured emission intensity or the measured fluorescence intensity. In the identification of the morphology, the cells are used using cells in which the luminescence-related gene, the fluorescence-related gene, the survivin gene to be analyzed, and the survivin promoter are identified. By such a method, the expression level and distribution of expression of survivin gene, the degree of survivin promoter activity, and morphological information can be obtained easily and accurately for one cell. Based on a plurality of information, it becomes possible to perform cell analysis comprehensively.

また、発現量測定装置1000によれば、細胞1020が撮像範囲中に複数存在する場合、複数の細胞1020の蛍光画像を撮像し、複数の細胞1020の発光画像を撮像し、撮像した発光画像に基づいて、各細胞1020から発せられた発光の発光強度をそれぞれ測定し、撮像した蛍光画像に基づいて、各細胞1020から発せられた蛍光の蛍光強度をそれぞれ測定し、更に各細胞1020の形態を明視野画像に基づいて特徴点として測定し、測定した発光強度および/または測定した蛍光強度および/または形態に関する特徴点の情報に基づいて、解析対象のサバイビン遺伝子の発現量、サバイビンプロモーターの活性の程度、形態同定若しくは形態の変化を細胞1020ごとに測定し、細胞1020ごとに細胞解析を行う。これにより、複数の細胞1020を対象として、解析対象のサバイビン遺伝子の発現量、サバイビンプロモーター活性の程度および形態同定若しくは形態変化の同定を細胞1020ごとに測定若しくは評価することができる。   Further, according to the expression level measuring apparatus 1000, when there are a plurality of cells 1020 in the imaging range, a fluorescence image of the plurality of cells 1020 is captured, a luminescence image of the plurality of cells 1020 is captured, and the captured luminescence image is displayed. Based on the fluorescence intensity emitted from each cell 1020, the fluorescence intensity emitted from each cell 1020 is measured based on the captured fluorescence image, and the form of each cell 1020 is further determined. Measured as feature points based on bright-field images, and based on information on the measured emission intensity and / or feature points related to the measured fluorescence intensity and / or morphology, the expression level of the survivin gene to be analyzed, the activity of the survivin promoter The degree, morphological identification, or morphological change is measured for each cell 1020 and cell analysis is performed for each cell 1020. As a result, for a plurality of cells 1020, the expression level of the survivin gene to be analyzed, the degree of survivin promoter activity, and morphological identification or morphological change identification can be measured or evaluated for each cell 1020.

また、発現量測定装置1000によれば、発現量の測定において、選択された細胞1020を対象として、測定した蛍光強度に基づいて解析対象のサバイビン遺伝子の発現量を測定すると共に、撮像した蛍光画像に基づいて解析対象のサバイビン遺伝子の細胞1020内における発現部位を同定し、且つ発光画像に基づいてサバイビンプロモーターの活性の程度を測定しながら、更に、明視野画像に基づいて細胞形態の判定および/または細胞形態の変化を、それぞれ時間軸に沿って細胞ごとに測定することが可能である。これにより、解析対象のサバイビン遺伝子とサバイビンプロモーター活性の程度および細胞形態の状態および/または変化を評価することができるだけでなく、サバイビン遺伝子の細胞1020内における発現部位を得ることができる。   Further, according to the expression level measuring apparatus 1000, in the measurement of the expression level, the expression level of the survivin gene to be analyzed is measured based on the measured fluorescence intensity for the selected cell 1020, and the captured fluorescence image is captured. Based on the above, the expression site in the cell 1020 of the survivin gene to be analyzed is identified, and the degree of the survivin promoter activity is measured based on the luminescence image. Alternatively, changes in cell morphology can be measured for each cell along the time axis. Thereby, not only can the survivin gene to be analyzed and the degree of survivin promoter activity and the state and / or change of the cell morphology be evaluated, but also the survivin gene expression site in the cell 1020 can be obtained.

また、発現量測定装置1000を利用すれば、具体的には、抗がん剤およびそのリード化合物の評価を行うことができる。特に、抗がん剤がサバイビン遺伝子の発現および/または発現部位、並びにサバイビンプロモーター活性の程度、並びに細胞の形態に影響を与えるか否か、或いは、どの程度の影響を与えることが可能であるかを判定および/またはモニターすることが可能であり、更に、そのリード化合物がサバイビン遺伝子の転写活性に影響を与えるかどうかを同時にモニターすることができる。また、発現量測定装置1000を利用すれば、具体的には、サバイビン遺伝子について、発光測定によるサバイビンププロモーター活性の程度および明視野による細胞1020の形態の状態および/または変化をモニターしながら、蛍光検出にて発現時期・局在性を同定することで、被検物質の有用性を総合的に評価することができる。   Moreover, if the expression level measuring apparatus 1000 is used, specifically, an anticancer agent and its lead compound can be evaluated. In particular, whether or how much can anticancer drugs affect the expression and / or expression site of survivin gene and the degree of survivin promoter activity and cell morphology Can be determined and / or monitored, and whether the lead compound affects the transcriptional activity of the survivin gene can be monitored simultaneously. In addition, when the expression level measuring apparatus 1000 is used, specifically, for the survivin gene, while monitoring the degree of survivinb promoter activity by the luminescence measurement and the state and / or change of the morphology of the cell 1020 by the bright field, fluorescence is monitored. By identifying the expression time and localization by detection, the usefulness of the test substance can be comprehensively evaluated.

以下、添付図面を参照して、本発明にかかる測定装置としての顕微鏡ユニットおよび顕微鏡装置の好適な実施の形態3を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。   Hereinafter, a preferred embodiment 3 of a microscope unit and a microscope apparatus as a measuring apparatus according to the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

まず、本発明の実施の形態3にかかる顕微鏡装置について説明する。図5は、この実施の形態3にかかる顕微鏡装置の構成を示す模式図である。図5に示すように、この実施の形態にかかる顕微鏡装置100aは、蛍光観察を行う蛍光顕微鏡ユニット101と、生物発光観察を行う生物発光観察ユニット102aと、発光標識および蛍光標識が付与された標本Sを保持する保持手段としての保持部7と、各顕微鏡ユニット101,102aによって撮像した標本Sの標本像などを表示するモニター209と、顕微鏡装置100aの全体の処理および動作を制御する制御装置PC201と、を備える。蛍光顕微鏡ユニット101と生物発光顕微鏡ユニット102aとは、互いに隣接して配置される。   First, a microscope apparatus according to a third embodiment of the present invention will be described. FIG. 5 is a schematic diagram showing the configuration of the microscope apparatus according to the third embodiment. As shown in FIG. 5, a microscope apparatus 100a according to this embodiment includes a fluorescence microscope unit 101 that performs fluorescence observation, a bioluminescence observation unit 102a that performs bioluminescence observation, and a specimen provided with a luminescence label and a fluorescence label. A holding unit 7 as holding means for holding S, a monitor 209 for displaying a specimen image of the specimen S imaged by each microscope unit 101, 102a, and a control device PC201 for controlling the overall processing and operation of the microscope apparatus 100a And comprising. The fluorescence microscope unit 101 and the bioluminescence microscope unit 102a are disposed adjacent to each other.

蛍光顕微鏡ユニット101は、蛍光対物レンズとしての対物レンズ201および蛍光結像レンズとしての結像レンズ202を有する高倍率の蛍光結像光学系と、この蛍光結像光学系によって結像される標本Sの標本像である蛍光標本像を撮像する蛍光撮像手段としての撮像装置203と、標本Sを励起する励起光を発する励起光源204と、励起光源204からの励起光を集光するレンズ205と、蛍光ユニットとしての蛍光キューブ206と、を備える。   The fluorescence microscope unit 101 includes a high-magnification fluorescence imaging optical system having an objective lens 201 as a fluorescence objective lens and an imaging lens 202 as a fluorescence imaging lens, and a specimen S imaged by the fluorescence imaging optical system. An imaging device 203 serving as a fluorescence imaging unit that captures a fluorescent specimen image that is a specimen image of the specimen, an excitation light source 204 that emits excitation light that excites the specimen S, a lens 205 that collects excitation light from the excitation light source 204, and And a fluorescent cube 206 as a fluorescent unit.

対物レンズ201は、標本側に大きなNAを有し、標本Sに付与された蛍光標識の各点から発せられる蛍光をほぼ平行光束に変換する。結像レンズ202は、対物レンズ201によってほぼ平行光束に変換された蛍光を集光して標本Sの標本像である蛍光標本像を結像する。蛍光結像光学系は、蛍光標本像を40倍以上の高倍率で結像する。撮像装置203は、CCD、CMOSなどの固体撮像素子を有し、この固体撮像素子の撮像面上に結像される蛍光標本像を撮像し、画像データを生成して制御装置PC201に出力する。   The objective lens 201 has a large NA on the specimen side, and converts the fluorescence emitted from each point of the fluorescent label applied to the specimen S into a substantially parallel light beam. The imaging lens 202 collects the fluorescence converted into a substantially parallel light beam by the objective lens 201 and forms a fluorescent specimen image that is a specimen image of the specimen S. The fluorescence imaging optical system forms a fluorescence sample image at a high magnification of 40 times or more. The imaging device 203 includes a solid-state imaging device such as a CCD or CMOS, captures a fluorescent specimen image formed on the imaging surface of the solid-state imaging device, generates image data, and outputs the image data to the control device PC201.

蛍光キューブ206は、標本Sを励起するための励起光を選択的に透過させる励起光透過フィルターとしての励起フィルター206aと、この励起光によって励起された標本Sから発せられる蛍光を選択的に透過させる蛍光透過フィルターとしての吸収フィルター206bと、励起光を反射して蛍光を透過させるダイクロイックミラー206cとを一体に備える。励起フィルター206aは、励起光源204から発せられる各種波長の光の中から所定の波長域の励起光を抽出するバンドパスフィルターであり、吸収フィルター206bは、所定のカットオフ波長を有するロングウェーブパスフィルターである。なお、吸収フィルター206bは、所定の波長範囲の蛍光を抽出するバンドパスフィルターでもよい。バンドパスフィルターは、標本Sから発せられる生物発光と蛍光の波長が近い場合に有効である。   The fluorescent cube 206 selectively transmits an excitation filter 206a as an excitation light transmission filter that selectively transmits excitation light for exciting the specimen S and fluorescence emitted from the specimen S excited by the excitation light. An absorption filter 206b as a fluorescence transmission filter and a dichroic mirror 206c that reflects excitation light and transmits fluorescence are integrally provided. The excitation filter 206a is a bandpass filter that extracts excitation light in a predetermined wavelength region from light of various wavelengths emitted from the excitation light source 204, and the absorption filter 206b is a long wavepass filter having a predetermined cutoff wavelength. It is. The absorption filter 206b may be a band pass filter that extracts fluorescence in a predetermined wavelength range. The band pass filter is effective when the wavelengths of bioluminescence and fluorescence emitted from the specimen S are close.

励起光源204は、水銀ランプ、キセノンランプ、レーザーなどによって実現され、励起光照射手段としての励起光源4およびレンズ205は、励起光源204からの励起光を、励起光フィルター206aを介し、ダイクロイックミラー206cによって反射させ標本Sに照射する。なお、励起光源204は、制御装置PC201からの指示をもとに点灯および消灯を行う。   The excitation light source 204 is realized by a mercury lamp, a xenon lamp, a laser, or the like, and the excitation light source 4 and the lens 205 as excitation light irradiation means pass the excitation light from the excitation light source 204 through the excitation light filter 206a and the dichroic mirror 206c. The sample S is reflected by and irradiated onto the specimen S. The excitation light source 204 is turned on and off based on instructions from the control device PC201.

生物発光顕微鏡ユニット102aは、生物発光対物レンズとしての対物レンズ211および生物発光結像レンズとしての結像レンズ212を有する低倍率の生物発光結像光学系と、この生物発光結像光学系によって結像される標本Sの標本像である生物発光標本像を撮像する生物発光撮像手段としての撮像装置213と、を備える。   The bioluminescence microscope unit 102a is connected to a low-magnification bioluminescence imaging optical system having an objective lens 211 as a bioluminescence objective lens and an imaging lens 212 as a bioluminescence imaging lens, and the bioluminescence imaging optical system. An imaging device 213 as bioluminescence imaging means for imaging a bioluminescence specimen image that is a specimen image of the specimen S to be imaged.

対物レンズ211は、標本側に大きなNAを有し、標本Sに付与された発光標識の各点から自己発光によって発せられる生物発光をほぼ平行光束に変換する。結像レンズ212は、対物レンズ211によってほぼ平行光束に変換された生物発光を集光して標本Sの標本像である生物発光標本像を結像する。生物発光結像光学系は、蛍光結像光学系の結像倍率よりも低い結像倍率で生物発光標本像を結像する。このとき、生物発光結像光学系は、標本側のNAをNAo、結像倍率をβとして、(NAo/β)2≧0.01を満足することが望ましい。 The objective lens 211 has a large NA on the specimen side, and converts bioluminescence emitted by self-luminescence from each point of the luminescent label given to the specimen S into a substantially parallel light beam. The imaging lens 212 collects the bioluminescence converted into a substantially parallel light beam by the objective lens 211 and forms a bioluminescence specimen image that is a specimen image of the specimen S. The bioluminescence imaging optical system forms a bioluminescence specimen image with an imaging magnification lower than the imaging magnification of the fluorescence imaging optical system. At this time, the bioluminescence imaging optical system preferably satisfies (NAo / β) 2 ≧ 0.01, where NA on the specimen side is NAo and the imaging magnification is β.

撮像装置213は、CCD、CMOSなどの固体撮像素子を有し、この固体撮像素子の撮像面上に結像される生物発光標本像を撮像し、画像データを生成して制御装置PC201に出力する。なお、撮像装置213が有する固体撮像素子は、高感度のモノクロームCCDであって0℃程度の冷却CCDを用いるとよい。   The imaging device 213 includes a solid-state imaging device such as a CCD or a CMOS, captures a bioluminescent specimen image formed on the imaging surface of the solid-state imaging device, generates image data, and outputs the image data to the control device PC201. . Note that a solid-state imaging device included in the imaging device 213 is a high-sensitivity monochrome CCD, and a cooled CCD of about 0 ° C. may be used.

保持部207は、標本Sを直接載置するプレパラート、スライドガラス、マイクロプレート、ゲル支持体、微粒子担体、インキュベーターなどの保持部材207aと、この保持部材207aとともに標本Sを2次元的に移動させる可動ステージ207bとを有する。可動ステージ207bは、制御装置PC201からの指示をもとに、ステージ駆動部208によって駆動される。   The holding unit 207 is a movable member that moves the sample S two-dimensionally together with a holding member 207a such as a slide, a slide glass, a microplate, a gel support, a fine particle carrier, and an incubator on which the sample S is directly placed. Stage 207b. The movable stage 207b is driven by the stage drive unit 208 based on an instruction from the control device PC201.

制御装置PC201は、CPUを備えたコンピュータなどの処理装置によって実現され、撮像装置203,213、励起光源204、ステージ駆動部208およびモニター209を電気的に接続し、これらの各構成部位の動作を制御する。制御装置PC201は、特に、撮像切換制御手段として、撮像装置213によって撮像される生物発光標本像の像特性をもとに、生物発光顕微鏡ユニット102aによる生物発光標本像の撮像と、蛍光顕微鏡ユニット101による蛍光標本像の撮像とを切り換える撮像切換処理の制御を行う。   The control device PC201 is realized by a processing device such as a computer equipped with a CPU, and electrically connects the imaging devices 203 and 213, the excitation light source 204, the stage drive unit 208, and the monitor 209, and performs operations of these components. Control. In particular, the control apparatus PC201, as an imaging switching control unit, captures a bioluminescent specimen image by the bioluminescent microscope unit 102a based on the image characteristics of the bioluminescent specimen image captured by the imaging apparatus 213, and the fluorescence microscope unit 101. The imaging switching process for switching between imaging of the fluorescent specimen image by the control is performed.

ここで、制御装置PC201が制御する撮像切換処理について説明する。図6は、撮像切換処理の処理手順を示すフローチャートである。図6に示すように、制御装置PC201は、可動ステージ207bによって生物発光結像光学系の視野内に移動された標本Sの生物発光標本像を撮像装置213によって撮像する(ステップS101)。この撮像結果をもとに、制御装置PC201は、生物発光標本像の像特性としての像強度があらかじめ設定したしきい値より大きい領域が生物発光標本像内にあるか否かを判断する(ステップS103)。像強度がしきい値より大きい領域がないと判断された場合(ステップS103:No)、制御装置PC201は、ステップS101からの処理を繰り返す。   Here, the imaging switching process controlled by the control device PC201 will be described. FIG. 6 is a flowchart illustrating a processing procedure of the imaging switching process. As shown in FIG. 6, the control device PC201 images the bioluminescence sample image of the sample S that has been moved into the field of view of the bioluminescence imaging optical system by the movable stage 207b by the imaging device 213 (step S101). Based on the imaging result, the control device PC201 determines whether or not there is a region in the bioluminescent specimen image where the image intensity as the image characteristic of the bioluminescent specimen image is larger than a preset threshold value (step). S103). When it is determined that there is no region where the image intensity is greater than the threshold value (step S103: No), the control device PC201 repeats the processing from step S101.

一方、像強度がしきい値より大きい領域があると判断された場合(ステップS103:Yes)、制御装置PC201は、ステップS101で撮像した生物発光標本像を記録し(ステップS105)、可動ステージ207bによって蛍光結像光学系の視野内に標本Sを移動する(ステップS107)。そして、制御装置PC201は、生物発光標本像の像強度がしきい値より大きい領域に対応する蛍光標本像を撮像装置203によって撮像して記録し(ステップS109)、撮像切換処理を終了する。なお、標本Sの経過観察を行う場合、制御装置PC201は、ステップS109の後、可動ステージ207bによって標本Sを再び生物発光結像光学系の視野内に移動し、ステップS101からの処理を繰り返すように制御するとよい。また、ステップS109での撮像は、タイムラプス撮像または1画像の撮像のどちらでもよい。また、同一視野内の異なる細胞を、予め設定されたタイミングで撮像したタイムラプス映像または1画像上に同時に画像再生することにより、時間軸に沿った動画(またはコマ送り)ないし1画像表示をしてもよい。   On the other hand, if it is determined that there is a region where the image intensity is greater than the threshold (step S103: Yes), the control device PC201 records the bioluminescent specimen image captured in step S101 (step S105), and the movable stage 207b. The sample S is moved within the field of view of the fluorescence imaging optical system (step S107). Then, the control device PC201 captures and records the fluorescent specimen image corresponding to the region where the image intensity of the bioluminescent specimen image is larger than the threshold value (step S109), and ends the imaging switching process. When performing the follow-up of the sample S, the control device PC201 moves the sample S again into the field of view of the bioluminescence imaging optical system by the movable stage 207b after step S109, and repeats the processing from step S101. It is good to control. Further, the imaging in step S109 may be either time-lapse imaging or single image imaging. Also, different cells within the same field of view can be displayed simultaneously on a time-lapse video or one image captured at a preset timing, thereby displaying a moving image (or frame advance) or one image along the time axis. Also good.

制御装置PC201は、ステップS105およびS109では、撮像した生物発光標本像および蛍光標本像を自装置内に備えるRAMなどの記憶部に記憶する。また、制御装置PC201は、ステップS101およびS109では、撮像した生物発光標本像および蛍光標本像をモニター209に逐次表示するようにしてもよい。さらに、制御装置PC201は、ステップS101〜S105の間、すなわち、生物発光顕微鏡ユニット102によって標本Sの生物発光観察を行っている間、励起光源204を消灯し、ステップS109で標本Sの蛍光観察を行う場合、励起光源204を点灯するように制御を行うとよい。あるいは、励起光源204から蛍光ユニッ20ト6までの光路上にシャッターなどの遮光装置を設け、制御装置PC201は、未照射手段として、励起光源204を点灯および消灯する替わりに、遮光装置を開閉することによって励起光の照射を制御するようにしてもよい。   In steps S105 and S109, the control device PC201 stores the captured bioluminescence sample image and fluorescence sample image in a storage unit such as a RAM provided in the own device. Further, the control device PC201 may sequentially display the captured bioluminescent specimen image and fluorescent specimen image on the monitor 209 in steps S101 and S109. Further, the control device PC201 turns off the excitation light source 204 during steps S101 to S105, that is, while performing bioluminescence observation of the sample S by the bioluminescence microscope unit 102, and performs fluorescence observation of the sample S in step S109. When performing, it is good to control so that the excitation light source 204 may be turned on. Alternatively, a light shielding device such as a shutter is provided on the optical path from the excitation light source 204 to the fluorescent unit 20, and the control device PC 201 opens and closes the light shielding device as an unirradiated means instead of turning on and off the excitation light source 204. The irradiation of excitation light may be controlled accordingly.

なお、制御装置PC201は、ステップS103では、生物発光標本像内の部分的な領域の像強度をもとに蛍光観察への切り換えを判断するようにしたが、生物発光標本像の全体の像強度をもとに切り換えを判断するようにしてもよい。また、制御装置PC201は、これらの像強度を、たとえば、所定時点から現時点までの累積の像強度として取得してもよく、あるいは現時点の瞬間的な像強度として取得してもよい。なお、生物発光標本像の全体の像強度を取得する場合には、撮像装置213に替えてフォトマルチプライヤーなどの高感度の受光素子を用いてもよい。   In step S103, the control device PC201 determines to switch to fluorescence observation based on the image intensity of a partial area in the bioluminescent specimen image. However, the entire image intensity of the bioluminescent specimen image is determined. The switching may be determined based on the above. Further, the control device PC201 may acquire these image intensities as, for example, cumulative image intensities from a predetermined time point to the present time, or may acquire them as an instantaneous image intensity at the present time. In addition, when acquiring the whole image intensity | strength of a bioluminescent sample image, it may replace with the imaging device 213, and may use highly sensitive light receiving elements, such as a photomultiplier.

以上説明したように、この実施の形態3にかかる顕微鏡装置によれば、蛍光観察用の蛍光顕微鏡ユニット101と生物発光観察用の生物発光顕微鏡ユニット102aとを隣接して備えるとともに、蛍光結像光学系および生物発光結像光学系の各視野内に標本Sを移動させる可動ステージ207bとを備えるため、適宜に蛍光観察と生物発光観察とを切り換えることができ、また、生物発光標本像の像特性としての像強度に応じて、生物発光観察から蛍光観察へ即時に切り換えることができる。   As described above, according to the microscope apparatus according to the third embodiment, the fluorescence microscope unit 101 for fluorescence observation and the bioluminescence microscope unit 102a for bioluminescence observation are provided adjacent to each other, and the fluorescence imaging optics is provided. System and the movable stage 207b for moving the specimen S within each field of view of the bioluminescence imaging optical system, it is possible to appropriately switch between the fluorescence observation and the bioluminescence observation, and the image characteristics of the bioluminescence specimen image Depending on the image intensity, it is possible to immediately switch from bioluminescence observation to fluorescence observation.

なお、生物発光結像光学系は、対物レンズ211および結像レンズ212によって標本像を結像する無限遠補正光学系として説明したが、対物レンズのみによって標本像を結像する有限補正光学系としてもよい。   The bioluminescence imaging optical system has been described as an infinite correction optical system that forms a sample image with the objective lens 211 and the imaging lens 212, but as a finite correction optical system that forms a sample image with only the objective lens. Also good.

また、上述した撮像切換処理では、生物発光標本像の像強度などの像特性をもとに生物発光観察から蛍光観察に切り換えるようにしたが、蛍光観察で標本Sに照射する励起光強度や標本Sから発光される蛍光強度が弱く、励起光および蛍光によって標本Sに与えるダメージが小さい場合などには、蛍光標本像の像強度などの像特性をもとに蛍光観察から生物発光観察に切り換えるようにしてもよい。   In the imaging switching process described above, the bioluminescence observation is switched to the fluorescence observation based on the image characteristics such as the image intensity of the bioluminescence specimen image. However, the excitation light intensity and the specimen irradiated to the specimen S in the fluorescence observation are changed. When the fluorescence intensity emitted from S is weak and the damage to the specimen S due to excitation light and fluorescence is small, the fluorescence observation should be switched to the bioluminescence observation based on image characteristics such as the image intensity of the fluorescence specimen image. It may be.

図7は、実施の形態4にかかる顕微鏡装置の構成を示す模式図である。図7に示すように、この実施の形態4にかかる顕微鏡装置600は、実施の形態3にかかる顕微鏡装置100aに加えて、透過照明を行う照明手段としての透過照明ユニット103aと、この透過照明ユニット103aが有するシャッター243等を駆動させる照明駆動部246と、制御装置PC201に替わる制御装置PC206と、を備える。その他の構成は、実施の形態3と同じであり、同一の構成部分には同一符号を付している。   FIG. 7 is a schematic diagram illustrating a configuration of a microscope apparatus according to the fourth embodiment. As shown in FIG. 7, in addition to the microscope apparatus 100a according to the third embodiment, a microscope apparatus 600 according to the fourth embodiment includes a transmissive illumination unit 103a as an illuminating unit that performs transmitted illumination, and the transmissive illumination unit. The illumination drive part 246 which drives the shutter 243 etc. which 103a has, and control apparatus PC206 replaced with control apparatus PC201 are provided. Other configurations are the same as those of the third embodiment, and the same components are denoted by the same reference numerals.

透過照明ユニット103aは、透過照明用の白色光を発するハロゲンランプ等の白色光源244と、白色光の照射および未照射を切り換えるシャッター243と、白色光源244からの白色光を標本S上に集光させる照明レンズ系245とを備え、標本Sに対して、蛍光顕微鏡ユニット101と反対側に配置されている。照明レンズ系245は、コレクタレンズ245aおよびコンデンサーレンズ245bを有し、標本Sに対してクリティカル照明を行う。なお、照明レンズ系245は、標本Sに対してケーラー照明を行うようにしてもよい。   The transmitted illumination unit 103a condenses the white light on the sample S, a white light source 244 such as a halogen lamp that emits white light for transmitted illumination, a shutter 243 that switches between irradiation and non-irradiation of white light, and the white light source 244. And an illumination lens system 245 that is arranged on the opposite side of the specimen S from the fluorescence microscope unit 101. The illumination lens system 245 includes a collector lens 245a and a condenser lens 245b, and performs critical illumination on the specimen S. Note that the illumination lens system 245 may perform Koehler illumination on the specimen S.

照明駆動部246は、制御装置PC206からの指示をもとに、シャッター243および蛍光照明ユニット104aを駆動する。ここで、蛍光照明ユニット104aは、筐体226によって一体に保持された励起光源204、レンズ205および蛍光キューブ206を有する。照明駆動部246は、シャッター243を開閉して標本Sに対する白色光の照射および未照射を切り換えるとともに、蛍光キューブ206を対物レンズ201と結像レンズ202との間の光路上に挿脱するように蛍光照明ユニット104aを移動させる。   The illumination drive unit 246 drives the shutter 243 and the fluorescent illumination unit 104a based on an instruction from the control device PC206. Here, the fluorescent lighting unit 104 a includes an excitation light source 204, a lens 205, and a fluorescent cube 206 that are integrally held by a housing 226. The illumination driving unit 246 opens and closes the shutter 243 to switch between irradiation and non-irradiation of the white light on the specimen S, and inserts and removes the fluorescent cube 206 on the optical path between the objective lens 201 and the imaging lens 202. The fluorescent lighting unit 104a is moved.

制御装置PC206は、制御装置PC201と同様に撮像装置203,213、励起光源204およびステージ駆動部8の動作を制御するのに加えて、照明駆動部246の動作を制御する。制御装置PC206は、蛍光観察から透過照明による観察に切り換える場合、蛍光キューブ206を対物レンズ201と結像レンズ202との間から取り除くように蛍光照明ユニット104aを移動させ、励起光源204を消灯し、シャッター243を開いて透過照明させる。透過照明による観察から蛍光観察に切り換える場合、制御装置PC206は、シャッター243を閉じ、蛍光キューブ206が対物レンズ201と結像レンズ202との間に配置されるように蛍光照明ユニット104aを移動させ、励起光源204を点灯する。   The control device PC 206 controls the operation of the illumination drive unit 246 in addition to controlling the operations of the imaging devices 203 and 213, the excitation light source 204 and the stage drive unit 8 in the same manner as the control device PC 201. When switching from fluorescence observation to observation by transmitted illumination, the control device PC206 moves the fluorescence illumination unit 104a so as to remove the fluorescence cube 206 from between the objective lens 201 and the imaging lens 202, turns off the excitation light source 204, The shutter 243 is opened to transmit illumination. When switching from observation with transmitted illumination to fluorescence observation, the control device PC206 closes the shutter 243, moves the fluorescent illumination unit 104a so that the fluorescent cube 206 is disposed between the objective lens 201 and the imaging lens 202, and The excitation light source 204 is turned on.

また、生物発光観察から透過照明による観察に切り換える場合、制御装置PC206は、蛍光観察から透過照明による観察に切り換える場合の制御に加えて、ステージ駆動部208によって可動ステージ207bを駆動し、標本Sを蛍光結像光学系の視野内に移動させる制御を行う。なお、制御装置PC206は、シャッター243を開閉する替わりに、白色光源244を点灯および消灯するようにしてもよい。   In addition, when switching from bioluminescence observation to observation by transmitted illumination, the control device PC206 drives the movable stage 207b by the stage drive unit 208 in addition to the control when switching from fluorescence observation to observation by transmitted illumination. Control to move within the field of view of the fluorescence imaging optical system is performed. Note that the control device PC 206 may turn on and off the white light source 244 instead of opening and closing the shutter 243.

なお、透過照明ユニット103aは、明視野観察用の照明を行うように示したが、明視野観察用に限らず、暗視野観察用、微分干渉観察用または位相差観察用の照明を行うようにしてもよい。また、これらの各種観察用の照明を切り換え可能に備えてもよい。なお、微分干渉観察用の照明を行う場合、透過照明ユニット103aは、コンデンサーレンズ245bの光源側に偏光子および偏光分離プリズムを備え、蛍光結像光学系には、対物レンズ1の瞳側に偏光合成プリズムおよび検光子を配設するとよい。また、位相差観察用の照明を行う場合、透過照明ユニット103aは、コンデンサーレンズ245bの光源側にリングスリットを備え、蛍光結像光学系には、対物レンズ201の略瞳位置に位相板を配設するか、対物レンズ201を位相板を有する対物レンズに切り換えるようにするとよい。さらに、暗視野観察用の照明を行う場合、透過照明ユニット103aは、コンデンサーレンズ245bの光源側にリングスリット等を備えるようにするとよい。   Although the transmission illumination unit 103a is shown to perform illumination for bright field observation, the transmission illumination unit 103a is not limited to illumination for bright field observation, and illumination for dark field observation, differential interference observation, or phase difference observation is performed. May be. Further, these various illuminations for observation may be provided so as to be switchable. When performing illumination for differential interference observation, the transmission illumination unit 103a includes a polarizer and a polarization separation prism on the light source side of the condenser lens 245b, and polarization is applied to the pupil side of the objective lens 1 in the fluorescence imaging optical system. A synthesis prism and an analyzer may be provided. In addition, when performing illumination for phase difference observation, the transmission illumination unit 103a includes a ring slit on the light source side of the condenser lens 245b, and a phase plate is disposed at a substantially pupil position of the objective lens 201 in the fluorescence imaging optical system. The objective lens 201 may be switched to an objective lens having a phase plate. Furthermore, when performing illumination for dark field observation, the transmission illumination unit 103a is preferably provided with a ring slit or the like on the light source side of the condenser lens 245b.

また、透過照明ユニット103aは、高倍率で透過照明による観察を行うために蛍光結像光学系に対応させて配置するように示したが、低倍率で観察を行えるように生物発光結像光学系に対応させて配置してもよい。あるいは、これらの結像光学系の両方に対応させて配置してもよく、各結像光学系に対して適宜配置を切り換えられるようにしてもよい。   Further, although the transmission illumination unit 103a is shown to be arranged corresponding to the fluorescence imaging optical system in order to perform observation with transmission illumination at a high magnification, the bioluminescence imaging optical system is capable of observation at a low magnification. You may arrange | position corresponding to. Alternatively, it may be arranged corresponding to both of these imaging optical systems, or the arrangement may be switched as appropriate for each imaging optical system.

ところで、顕微鏡装置600では、顕微鏡装置100aの構成に透過照明ユニット103a、照明駆動部246をさらに備えるように示したが、これに限定されず、たとえば、顕微鏡装置の各構成に、透過照明ユニット103aと、照明駆動部246もしくは照明駆動部247とをさらに備えるようにしてもよい。   By the way, in the microscope apparatus 600, the configuration of the microscope apparatus 100a is further provided with the transmission illumination unit 103a and the illumination driving unit 246. However, the present invention is not limited thereto, and for example, each configuration of the microscope apparatus includes the transmission illumination unit 103a. Further, the illumination driving unit 246 or the illumination driving unit 247 may be further provided.

例えば、顕微鏡装置200の構成には、透過照明ユニット103a、照明駆動部246がさらに備えられていてもよい。その場合、例えば、制御装置PC7は、制御装置PC2と同様に撮像装置203,213、励起光源204、回転駆動装置214およびステージ駆動部218を制御するとともに、制御装置PC206と同様に照明駆動部246によって透過照明ユニット103aおよび蛍光照明ユニット104aを制御する。   For example, the configuration of the microscope apparatus 200 may further include a transmission illumination unit 103a and an illumination driving unit 246. In this case, for example, the control device PC7 controls the imaging devices 203 and 213, the excitation light source 204, the rotation drive device 214, and the stage drive unit 218 similarly to the control device PC2, and the illumination drive unit 246 similarly to the control device PC206. To control the transmission illumination unit 103a and the fluorescence illumination unit 104a.

すなわち、制御装置PC209は、蛍光観察または生物発光観察から透過照明による観察に切り換える場合、ミラー234および蛍光キューブ206を対物レンズ201と結像レンズ202との間から取り除くように蛍光照明ユニット105を移動させ、シャッター233を閉じて励起光を未照射とし、シャッター243を開いて透過照明させる。透過照明による観察から蛍光観察または生物発光に切り換える場合、制御装置PC209は、シャッター243を閉じ、蛍光キューブ206またはミラー234が対物レンズ201と結像レンズ202との間に配置されるように蛍光照明ユニット105またはミラー234を移動させる。蛍光観察を行う場合には、さらにシャッター233を開いて標本Sに蛍光を照射させる。   That is, the control device PC209 moves the fluorescent illumination unit 105 so as to remove the mirror 234 and the fluorescent cube 206 from between the objective lens 201 and the imaging lens 202 when switching from fluorescence observation or bioluminescence observation to observation by transmitted illumination. Then, the shutter 233 is closed so that the excitation light is not irradiated, and the shutter 243 is opened to transmit illumination. When switching from observation with transmitted illumination to fluorescence observation or bioluminescence, the control device PC209 closes the shutter 243, and the fluorescent illumination so that the fluorescent cube 206 or the mirror 234 is disposed between the objective lens 201 and the imaging lens 202. The unit 105 or the mirror 234 is moved. When performing fluorescence observation, the shutter 233 is further opened to irradiate the specimen S with fluorescence.

このように、この実施の形態4にかかる顕微鏡装置600によれば、蛍光結像光学系および生物発光結像光学系の少なくとも一方に対応し、標本Sに対して透過照明を行う透過照明ユニットを備えるようにしているため、蛍光観察および生物発光観察ばかりでなく各種の透過照明による観察を行うことができ、標本Sを多角的に観察することができる。   As described above, according to the microscope apparatus 600 according to the fourth embodiment, the transmission illumination unit corresponding to at least one of the fluorescence imaging optical system and the bioluminescence imaging optical system and performing the transmission illumination on the specimen S is provided. Since it is provided, not only fluorescence observation and bioluminescence observation, but also observation by various transmitted illuminations can be performed, and the specimen S can be observed from various angles.

なお、上述した顕微鏡装置100a,600は、それぞれ正立型の顕微鏡装置として示したが、倒立型の顕微鏡装置としてもよい。また、上述した顕微鏡装置は、例えば、各種反応(例えば薬物刺激や光照射など)の検査や治療などに好適に用いることができる。   Although the above-described microscope apparatuses 100a and 600 are shown as upright microscope apparatuses, they may be inverted microscope apparatuses. Further, the above-described microscope apparatus can be suitably used for, for example, examination and treatment of various reactions (for example, drug stimulation and light irradiation).

以上、実施の形態について詳細に説明したが、本発明において、発光とは、化学反応により光を発生し得ることをいい、特に生物発光および化学発光を好適な例として含む用語である。これに対し、蛍光とは励起光により光を発生し得ることをいう。ここで、生物発光による光エネルギーにより励起されるBRET(生物発光共鳴エネルギー転移)は、基質溶液との化学反応が支配的要因であるので、本発明では発光に含めるものである。サンプルから発生する光は、特に生きた細胞に危害が少ない約400nm〜約900nmの間の波長を持つ電磁放射線をいう。発光するサンプルの撮像は、極めて低レベルの光(通常は単一光子事象)を検出し、画像の構築が可能になるまで光子放射を積分できる光検出器の使用を必要とする。そのような高感度光検出器の例には、単一光子事象を増幅した後、検出系に固有の背景ノイズに対して単一光子を検出できるカメラまたはカメラ群で、例えばCCDのような撮像素子群を具備するCCDカメラを例示できる。一般に、高感度を得るために、CCDカメラを液体窒素などで冷却する場合がある。高い開口数(NA)とくに、開口数(NA)/投影倍率(β)の2乗で表される光学的条件が0.01以上である対物レンズを用いる場合には、冷却温度をマイナス5℃〜マイナス20℃、好ましくはマイナス5℃〜常温でも画像化できると本発明者らによって確認された。さらに、検討を進めた結果、上記光学的条件(NA/β)の2乗が0.071以上である場合に、5分以内、場合によっては1分程度で視認可能で且つ解析可能な細胞画像を提供できることを突き止めた。一般に生きたサンプルは形状ないし発光部位の変化の為に、30分を越える撮像時間では鮮明な発光画像を得ることは困難な場合が多い。従って、本発明では、短時間、特に30分以内、好ましくは1分〜10分の間で1つの発光画像を取得し、撮像時間が速い蛍光測定との連携に有利な方法と装置を提供する。   As described above, the embodiment has been described in detail. In the present invention, “luminescence” means that light can be generated by a chemical reaction, and is a term that particularly includes bioluminescence and chemiluminescence as suitable examples. On the other hand, fluorescence means that light can be generated by excitation light. Here, BRET (bioluminescence resonance energy transfer) excited by light energy by bioluminescence is included in light emission in the present invention because a chemical reaction with a substrate solution is a dominant factor. Light generated from a sample refers to electromagnetic radiation having a wavelength between about 400 nm and about 900 nm, which is particularly harmless to living cells. Imaging of the emitting sample requires the use of a photodetector that can detect very low levels of light (usually a single photon event) and integrate the photon emission until an image can be constructed. Examples of such sensitive photodetectors include a camera or group of cameras that can detect single photons against background noise inherent in the detection system after amplifying single photon events, such as imaging such as a CCD. A CCD camera having an element group can be exemplified. In general, in order to obtain high sensitivity, the CCD camera may be cooled with liquid nitrogen or the like. High numerical aperture (NA) In particular, when using an objective lens whose optical condition expressed by the square of numerical aperture (NA) / projection magnification (β) is 0.01 or more, the cooling temperature is minus 5 ° C. It has been confirmed by the present inventors that imaging can be carried out at -20 ° C, preferably -5 ° C to room temperature. Further, as a result of further investigation, when the square of the above optical condition (NA / β) is 0.071 or more, the cell image that can be visually recognized and analyzed within 5 minutes, and in some cases about 1 minute. I found out that I can offer you. In general, a live sample is often difficult to obtain a clear luminescent image in an imaging time exceeding 30 minutes due to a change in shape or luminescent site. Therefore, the present invention provides a method and apparatus advantageous in cooperation with fluorescence measurement, in which one luminescent image is acquired in a short time, particularly within 30 minutes, preferably from 1 minute to 10 minutes, and imaging time is fast. .

例えば関連する態様として、選択した生物適合成分の分布および/または局在に対するある処置の効果を記録するために、蛍光シグナルの局在および/または発光シグナルの強度を経時的に追跡したい場合は、光子放射の測定または撮像を選択した時間間隔で反復することにより、一連の画像を構築することができる。間隔は数分程度の短いものであってもよいし、数日または数週間程度に長いものであってもよい。発光画像または蛍光(または透過光)発光の重ね合せ画像は、画面表示、印刷された紙、グラフィック加工されたイメージ等の様々な形式で表現できる。   For example, as a related aspect, if you want to track the localization of the fluorescent signal and / or the intensity of the luminescent signal over time to record the effect of a treatment on the distribution and / or localization of the selected biocompatible component, By repeating photon emission measurement or imaging at selected time intervals, a series of images can be constructed. The interval may be as short as a few minutes or as long as a few days or weeks. The luminescent image or the superimposed image of fluorescent (or transmitted light) luminescence can be expressed in various forms such as screen display, printed paper, and graphic processed image.

他の関連する態様として、本発明は、発光性タンパク質をコードする遺伝子を誘導性プロモーターの制御下に含む構築物でトランスジェニックまたはキメラにした動物におけるプロモーター誘導事象の存在を検出した後にプロモーター誘導事象の活性度をモニタリングする方法を包含する。プロモーター誘導事象には、そのプロモーターを直接活性化する物質の投与、内因性プロモーター活性化因子の産生を刺激する物質の投与(例えばRNAウイルス感染によるインターフェロン産生の剌激)、内因性プロモーター活性化因子の産生をもたらす状態に置くこと(例えば熱ショックまたはストレス)などがある。   In another related aspect, the present invention relates to promoter induction events after detecting the presence of a promoter induction event in an animal transgenic or chimeric with a construct comprising a gene encoding a luminescent protein under the control of an inducible promoter. Includes methods of monitoring activity. For the promoter induction event, administration of a substance that directly activates the promoter, administration of a substance that stimulates production of an endogenous promoter activator (for example, stimulation of interferon production due to RNA virus infection), endogenous promoter activator For example, heat shock or stress.

またもう1つの態様として、本発明は、病原体による感染の重篤化を抑制するのに有効な治療用化合物を同定する方法をも包含する。この方法では、病原体と蛍光成分と発光成分の複合体を対照動物と実験動物、若しくはそれらの培養された組織(ないし細胞)に投与し、その実験動物を治療用化合物候補で処置する。そして、上述の方法によって測定対象であるサンプル内の蛍光シグナルの局在を確認した後に、局内が確認されたサンプルのみから発光シグナル(生物発光または化学発光)、並びに明視野画像を連続的に測定する。こうすることによって、その化合物の治療上の有効性をモニタリングできる。   In yet another aspect, the present invention also encompasses a method for identifying therapeutic compounds that are effective in reducing the severity of infection by a pathogen. In this method, a complex of a pathogen, a fluorescent component, and a luminescent component is administered to a control animal and an experimental animal, or their cultured tissues (or cells), and the experimental animal is treated with a therapeutic compound candidate. Then, after confirming the localization of the fluorescence signal in the sample to be measured by the above method, the luminescence signal (bioluminescence or chemiluminescence) and the bright field image are continuously measured only from the sample confirmed in the station. To do. In this way, the therapeutic efficacy of the compound can be monitored.

さらなる別な態様として、本発明は、様々な不透明度を持つ媒質を通して局在化したサンプルを蛍光シグナルによって選んだ後で、局在が確認されたサンプルのみから連続的に発光測定する方法を包含する。この方法では、発光シグナルを、その媒質を透過した光子を積分して画像を作成することもできるが、局在が確認されたサンプルのみを媒質(例えば、臓器組織)から外科的に取り出して、取り出したサンプルを適宜の培養環境下で発光測定するように方法の改良を行なうことができる。限定された外科手術(例えばバイオプシー)は、元となる生物(例えば、哺乳類、とくにヒト)への身体的負担を最小限にし、必要なサンプルのみを安定した検査環境下に移して、種々の見込み有る薬剤に対する応答、治療後の経過管理、予防医学的試験を長期に実行できるという利点を有する。   As yet another aspect, the present invention includes a method of continuously measuring luminescence only from a sample whose localization has been confirmed after selecting a sample localized through a medium having various opacity by a fluorescence signal. To do. In this method, it is possible to create an image by integrating the photon signal transmitted through the medium with the luminescence signal, but only a sample whose localization has been confirmed is surgically removed from the medium (eg, organ tissue), The method can be improved so that the sample taken out can be measured for luminescence in an appropriate culture environment. Limited surgery (eg, biopsy) minimizes the physical burden on the original organism (eg, mammals, especially humans) and moves only the necessary samples to a stable laboratory environment, with various possibilities It has the advantage of long-term response to certain drugs, progress management after treatment, and preventive medical testing.

或いは、そのような観察装置または観察システムは、例えば、特開2009−148255および国際公開WO2006−106882に開示されている手段を使用してもよく、例えば、LUMINOVIEW LV200(オリンパス社製)などの明視野、蛍光観察および発光観察を行うことが可能な観察システムを使用してもよく、或いは、公知の何れかの観察装置または観察システムを使用してもよい。そのような観察装置は、位相差観察が可能であることが好ましい。   Alternatively, such an observation apparatus or observation system may use, for example, the means disclosed in JP2009-148255A and International Publication WO2006-106882, for example, a light such as LUMINOVIEW LV200 (manufactured by Olympus). An observation system capable of performing visual field, fluorescence observation and emission observation may be used, or any known observation apparatus or observation system may be used. Such an observation apparatus is preferably capable of phase difference observation.

明視野での観察、発光シグナルの測定および蛍光シグナルの測定は、何れの順番で行われてもよく、例えば、明視野での観察、発光シグナルの測定および蛍光シグナルの測定の順番であっても、発光シグナルの測定、蛍光シグナルの測定および明視野での観察の順番であって、発光シグナルの測定、明視野での観察および蛍光シグナルの測定の順番であっても、他の任意の順番であってもよい。また、同じ観察または測定を連続して複数回行ってもよい。   Observation in the bright field, measurement of the emission signal and measurement of the fluorescence signal may be performed in any order, for example, in the order of observation in the bright field, measurement of the emission signal and measurement of the fluorescence signal. Luminescence signal measurement, fluorescence signal measurement and bright field observation order, even luminescence signal measurement, bright field observation and fluorescence signal measurement order, in any other order There may be. Moreover, you may perform the same observation or measurement in multiple times continuously.

明視野での観察は、例えば、1msec〜1000msec、好ましくは、10msec〜200msecの露出であってよい。蛍光シグナルの測定は、例えば、100msec〜10sec、好ましくは100msec〜1secの露出であってよい。発光シグナルの測定は、例えば、1sec〜60min、好ましくは1sec〜10minの露出であってもよい。   The observation in the bright field may be, for example, an exposure of 1 msec to 1000 msec, preferably 10 msec to 200 msec. The measurement of the fluorescence signal may be, for example, an exposure of 100 msec to 10 sec, preferably 100 msec to 1 sec. The measurement of the luminescence signal may be, for example, an exposure of 1 sec to 60 min, preferably 1 sec to 10 min.

明視野での観察、蛍光および発光シグナルの測定の後に、試料を薬剤に曝す。この薬剤による試料中の細胞の形態変化、サバイビンプロモーター活性の程度の変化およびサバイビンタンパク質の分布の変化を観察する。この観察は、経時的に行うことが好ましい。   Following bright field observation, measurement of fluorescence and luminescence signals, the sample is exposed to the drug. Observe the change in cell morphology, the degree of survivin promoter activity and the survivin protein distribution due to this drug. This observation is preferably performed over time.

蛍光シグナルの測定は、例えば、蛍光強度および/または蛍光量を測定することにより行われてよい。発光シグナルの測定は、例えば、発光強度および/または発光量を測定することにより行われてよい。   The measurement of the fluorescence signal may be performed, for example, by measuring the fluorescence intensity and / or the fluorescence amount. The measurement of the luminescence signal may be performed, for example, by measuring the luminescence intensity and / or the luminescence amount.

試料の薬剤への暴露前の時点で得られた観察の結果と、暴露後の特定の時点で得られた観察の結果とを比較することにより、薬剤により生じる試料における変化を観察することが可能である。   You can observe changes in the sample caused by the drug by comparing the observations obtained before the exposure of the sample to the drug with the observations obtained at a specific time after exposure. It is.

細胞解析を行う際の薬剤の例は、スタウロスポリン、マイトマイシン、シスプラチン、アクチノマイシンD、5−フルオロウラシル、パクリタキセル、エトポシド、イマチニブおよびYM−155であるが、これに限定されるものではなく、実施者が所望に応じて薬剤を選択してよい。   Examples of drugs for performing cell analysis are staurosporine, mitomycin, cisplatin, actinomycin D, 5-fluorouracil, paclitaxel, etoposide, imatinib and YM-155, but are not limited thereto. A person may select a drug as desired.

また、既に既知の薬剤を用いて、対象から採取された細胞について解析を行うことにより、その細胞の特性を判定することが可能である。例えば、特定の抗癌剤を薬剤として使用することにより、当該抗癌剤が対象の癌に有効であるか、否かを判定されてもよい。   Moreover, it is possible to determine the characteristic of the cell by analyzing about the cell extract | collected from the object using an already known chemical | medical agent. For example, by using a specific anticancer agent as a drug, it may be determined whether or not the anticancer agent is effective for the target cancer.

或いは、例えば、特定の薬剤が、試料である癌細胞に対して有効であるか否かを判定することにより、試料の由来する対象における癌の転移率および/または予後を判定してもよい。このような癌の転移率および/または予後を判定することにより、癌を解析してもよい。   Alternatively, for example, the metastasis rate and / or prognosis of cancer in the subject from which the sample is derived may be determined by determining whether a specific drug is effective against the cancer cells that are the sample. Cancer may be analyzed by determining such cancer metastasis rate and / or prognosis.

また、試料として特定の状態であることが既知の細胞株を使用してもよい。例えば、癌細胞株を用いて、上記の細胞解析方法を行うことにより、被検物質の抗癌作用についてスクリーニングすることが可能である。そのようなスクリーニング方法は、前述の細胞解析方法において使用される試薬に代えて、被検物質を用いればよい。   A cell line known to be in a specific state may be used as a sample. For example, by performing the above cell analysis method using a cancer cell line, it is possible to screen for the anticancer activity of the test substance. In such a screening method, a test substance may be used instead of the reagent used in the aforementioned cell analysis method.

例えば、被検物質の抗癌作用をスクリーニングするために使用される細胞の例は、HeLa細胞、Ca Ski細胞、TC−1細胞およびHT1080細胞などであってよいが、これらに限定されるものではない。   For example, examples of cells used for screening the anticancer effect of a test substance may include HeLa cells, Ca Ski cells, TC-1 cells, and HT1080 cells, but are not limited thereto. Absent.

実施形態によれば、形態変化、サバイビンタンパク質の局在化の状態およびサバイビンプロモーター活性の程度に関する情報を1つの細胞について得ることが可能である。それらの情報に基づいて細胞解析を行うことにより、総合的に細胞を解析することが可能となる。また、それらの情報に基づいて薬効を評価することにより、総合的に被検物質の薬効をスクリーニングすることが可能となる。   According to embodiments, information regarding morphological changes, the state of survivin protein localization and the extent of survivin promoter activity can be obtained for a single cell. By performing cell analysis based on such information, it becomes possible to analyze cells comprehensively. Further, by evaluating the drug efficacy based on the information, it is possible to comprehensively screen the drug efficacy of the test substance.

[例]
例1
[HeLa細胞におけるサバイビンタンパク質の動態の蛍光イメージングおよび発光イメージングを用いたサバイビンプロモーター活性の検出]
例1では、2つのベクターを用いて蛍光イメージングと発光イメージングを行った。第1のベクターは、サバイビンプロモーター制御下でルシフェラーゼを発現するベクターを使用した。第2のベクターは、サバイビンとEnhanced yellow fluorescent protein (EYFP)の融合タンパク質を発現するベクターを使用した。これらのベクターを1つの細胞にトランスフェクトした。その後、同一の生細胞におけるサバイビンタンパク質の細胞内動態とサバイビンプロモーター活性を長時間に渡って追跡した。
[Example]
Example 1
[Detection of Survivin Promoter Activity Using Fluorescence Imaging and Luminescence Imaging of Survivin Protein Dynamics in HeLa Cells]
In Example 1, fluorescence imaging and luminescence imaging were performed using two vectors. As the first vector, a vector expressing luciferase under the control of the survivin promoter was used. As the second vector, a vector expressing a fusion protein of survivin and Enhanced yellow fluorescein protein (EYFP) was used. These vectors were transfected into one cell. Thereafter, the intracellular dynamics of survivin protein and survivin promoter activity in the same living cells were followed over a long period of time.

例1における実験の手順について、以下に説明する。pcDNA3.1(+) (Invitrogen社製)のMCSにBamHI, NheIでサバイビンタンパク質をコードする遺伝子(配列番号2)を、NheI , EcoRIでEYFP遺伝子(配列番号3)を挿入し、サバイビン−EYFPの融合タンパク質発現ベクター(Suv−EYFP)を作製した。   The procedure of the experiment in Example 1 will be described below. The gene (SEQ ID NO: 2) encoding survivin protein with BamHI and NheI and the EYFP gene (SEQ ID NO: 3) with NheI and EcoRI were inserted into the MCS of pcDNA3.1 (+) (manufactured by Invitrogen), and survivin-EYFP A fusion protein expression vector (Suv-EYFP) was prepared.

例1ではサバイビンタンパク質の動態を検出するためのタグとして、YFPを用いた。ルシフェリン−ルシフェラーゼ反応の発光基質であるD−ルシフェリンの励起および蛍光スペクトルを示す図8から分かるように、YFP励起より短波長の励起波長を有する蛍光蛋白質をタグとして使用した場合、蛍光観察に際してD−ルシフェリンが励起され、D−ルシフェリン由来の蛍光がバックグラウンドノイズとして検出される可能性がある。従って、D−ルシフェリンより長波長側に励起波長を有する蛍光蛋白質(YFP, RFPなど)が蛍光と発光の同時イメージングに好適であると考えた。   In Example 1, YFP was used as a tag for detecting the dynamics of survivin protein. As can be seen from FIG. 8 showing the excitation and fluorescence spectrum of D-luciferin which is the luminescent substrate of the luciferin-luciferase reaction, when a fluorescent protein having an excitation wavelength shorter than YFP excitation is used as a tag, D- Luciferin is excited, and fluorescence derived from D-luciferin may be detected as background noise. Therefore, it was considered that fluorescent proteins (YFP, RFP, etc.) having an excitation wavelength longer than D-luciferin are suitable for simultaneous imaging of fluorescence and luminescence.

サバイビンプロモーターの活性をモニターするレポーターとして、サバイビンプロモーター領域(配列番号1)をpGL4.14(luc2/Hygro)(Promega社製)のMCSにBglII, HindIIIで挿入し、サバイビンプロモーター::luc2発現ベクター(pSuv::luc2)を作製した。   As a reporter for monitoring the activity of the survivin promoter, the survivin promoter region (SEQ ID NO: 1) was inserted into the MCS of pGL4.14 (luc2 / Hygro) (Promega) with BglII and HindIII, and the survivin promoter :: luc2 expression vector ( pSuv :: luc2) was prepared.

φ35mm−ガラスボトムディッシュに播いたHeLa細胞に、FuGene試薬(Promega社製)を使用してSuv−EYFPおよびpSuv::luc2ベクターを導入した。24時間培養した後、10%のFBSを含むD−MEM培地に培地を交換し、最終濃度500μMでD−ルシフェリン(Promega社製)を加えて1時間静置した。ディッシュをLUMINOVIEW LV200(オリンパス社製)にセットした後、明視野画像、蛍光画像および発光画像の撮影を行った。撮像中のHeLa細胞は5% CO雰囲気下のインキュベーター内に静置され、観察時の対物レンズの倍率は100倍、CCDカメラはImagEM(浜松ホトニクス社製)、Binningは1x1、露出時間は200msec(明視野観察)、1sec(蛍光観察)、9分(発光観察)であった。明視野像は位相差観察法で取得した。蛍光観察時の励起フィルターはBP490−500HQ、分光フィルターはBP515−560HQを使用した。発光観察時に分光フィルターは使用しなかった。観察の結果得られた薬剤刺激前の位相差画像、蛍光画像および発光画像をそれぞれ図9、図10および図11に示す。図9では、刺激前では、HeLa細胞が楕円形の細胞膜とその中に含まれる核を有していることが明確に観察された。また、焦点の合っていない細胞については、その表面に反射している光により円形として示されていた。図10に示すように、刺激前の蛍光画像では、細胞質内に均一に広がって分布する蛍光シグナルが観察され、細胞の輪郭がはっきりとしており、核は黒く示されていた。図11に示すように、細胞の内部は全体的に、細胞内以外の部分に比べて明るく示されていた。図12に示される細胞内部は、焦点のあった細胞のある部分以外に比べて、全体的に均一にぼんやりと明るく示された。 The Suv-EYFP and pSuv :: luc2 vectors were introduced into HeLa cells seeded on a φ35 mm-glass bottom dish using FuGene reagent (Promega). After culturing for 24 hours, the medium was replaced with D-MEM medium containing 10% FBS, D-luciferin (manufactured by Promega) was added at a final concentration of 500 μM, and the mixture was allowed to stand for 1 hour. After the dish was set on LUMINOVIEW LV200 (Olympus), bright field images, fluorescent images, and luminescent images were taken. The HeLa cells being imaged are placed in an incubator under a 5% CO 2 atmosphere, the magnification of the objective lens during observation is 100 times, the CCD camera is ImagEM (manufactured by Hamamatsu Photonics), Binning is 1 × 1, and the exposure time is 200 msec. (Bright field observation) 1 sec (fluorescence observation), 9 minutes (luminescence observation). Bright field images were acquired by phase contrast observation. BP490-500HQ was used as an excitation filter during fluorescence observation, and BP515-560HQ was used as a spectral filter. A spectral filter was not used during emission observation. The phase difference image, the fluorescence image, and the luminescence image before drug stimulation obtained as a result of the observation are shown in FIGS. 9, 10 and 11, respectively. In FIG. 9, it was clearly observed that the HeLa cells had an elliptical cell membrane and a nucleus contained therein before stimulation. The out-of-focus cell was shown as a circle by the light reflected on its surface. As shown in FIG. 10, in the fluorescence image before stimulation, a fluorescence signal that was uniformly spread and distributed in the cytoplasm was observed, the cell outline was clear, and the nucleus was shown in black. As shown in FIG. 11, the inside of the cell was generally shown brighter than the part other than the inside of the cell. The inside of the cell shown in FIG. 12 was shown to be uniformly and faintly bright as a whole, as compared to a portion other than a portion where the focused cell was present.

薬剤刺激後の画像取得を行った後、明視野画像、蛍光画像および発光画像のタイムラプス撮影を行った。タイプラプス撮影は、アポトーシスを誘発する薬剤であるスタウロスポリン(Staurosporin、STS)を最終濃度1uMで添加した後に開始した。1uM STS添加後のHeLa細胞を5% CO雰囲気下のインキュベーター内に静置して観察を行った。タイムラプス観察時の対物レンズの倍率は100倍、CCDカメラはImagEM(浜松ホトニクス社製)、Binningは1x1、露出時間は200msec(明視野観察)、1sec(蛍光観察)、9分(発光観察)、インターバル時間は10分、総撮像時間は10時間であった。明視野像は位相差観察法で取得した。タイムラプス観察時の蛍光観察時の励起フィルターはBP490−500HQ、分光フィルターはBP515−560HQを使用した。発光観察時に分光フィルターは使用しなかった。このような明視野撮像、蛍光撮像および発光撮像についてのタイムラプス観察時の撮像のタイミングを模式的に図12に示す。タイムラプス観察の結果得られた薬剤刺激後の位相差画像、蛍光画像および発光画像をそれぞれ図13、図14および図15に示す。図13に示すように、STS刺激後の細胞では、核が収縮し、細胞膜からのブレブと思われる突起が多く観察された。図14に示すように、細胞の輪郭はぼんやりとし、核および骨格にまでからも蛍光シグナルが観察された。また、図14に示すように、刺激後の細胞内の明るさは、刺激前に比較してより明るくなった。 After image acquisition after drug stimulation, time-lapse imaging of bright field images, fluorescent images, and luminescent images was performed. Type lapse photography was started after addition of staurosporine (STS), an agent that induces apoptosis, at a final concentration of 1 uM. The HeLa cells after addition of 1 uM STS were allowed to stand in an incubator under a 5% CO 2 atmosphere for observation. The magnification of the objective lens during time-lapse observation is 100 times, the CCD camera is ImagEM (manufactured by Hamamatsu Photonics), Binning is 1 × 1, exposure time is 200 msec (bright field observation), 1 sec (fluorescence observation), 9 minutes (luminescence observation), The interval time was 10 minutes and the total imaging time was 10 hours. Bright field images were acquired by phase contrast observation. BP490-500HQ was used as an excitation filter during fluorescence observation during time-lapse observation, and BP515-560HQ was used as a spectral filter. A spectral filter was not used during emission observation. FIG. 12 schematically shows the imaging timing at the time-lapse observation for such bright field imaging, fluorescence imaging, and luminescence imaging. FIG. 13, FIG. 14, and FIG. 15 show the phase difference image, fluorescence image, and luminescence image after drug stimulation obtained as a result of time lapse observation, respectively. As shown in FIG. 13, in the cells after STS stimulation, the nuclei contracted, and many protrusions that appeared to be blebs from the cell membrane were observed. As shown in FIG. 14, the outline of the cell was dim, and a fluorescent signal was observed even from the nucleus and skeleton. Moreover, as shown in FIG. 14, the brightness in the cell after stimulation became brighter than before stimulation.

得られた発光画像に対して興味領域(Region of Interest、ROI)を指定した(図11および図15)。指定したROIの発光強度をタイムラプス観察の結果得られた各々の発光画像に基づいて測定し、その発光強度の計時変化をグラフで表示した(図16)。   A region of interest (ROI) was designated for the obtained luminescent image (FIGS. 11 and 15). The emission intensity of the designated ROI was measured based on each emission image obtained as a result of time-lapse observation, and the change in the emission intensity over time was displayed in a graph (FIG. 16).

図9および図13に示すように、薬剤刺激後にHeLa細胞の急速な収縮が観察された。図10に示すように、薬剤刺激前にはHeLa細胞においてサバイビンタンパク質は細胞質に局在しており、核内にはほとんど存在していないことが示されている。しかしながら、図14に示すように、薬剤刺激後にはサバイビンタンパク質の局在が変化し、細胞質以外の部分にもサバイビンタンパク質が移行した。図11および図15に示すように、薬剤刺激後30分でサバイビンプロモーター活性が急激に上昇する様子が観察された。図16のグラフから、サバイビンプロモーター活性の上昇は、薬剤刺激後30分経過時点と1時間20分経過時点でピークを迎え、その後急速に減衰していることが分かった。これらの結果から、薬剤STSは、HeLa細胞の収縮、細胞内サバイビンタンパク質の非局在化およびサバイビンプロモーター活性の一時的な上昇作用を有することが示唆された。   As shown in FIGS. 9 and 13, rapid contraction of HeLa cells was observed after drug stimulation. As shown in FIG. 10, it is shown that survivin protein is localized in the cytoplasm in HeLa cells before drug stimulation, and hardly exists in the nucleus. However, as shown in FIG. 14, the localization of survivin protein changed after drug stimulation, and survivin protein was transferred to parts other than the cytoplasm. As shown in FIGS. 11 and 15, it was observed that the survivin promoter activity rapidly increased 30 minutes after drug stimulation. From the graph of FIG. 16, it was found that the increase in survivin promoter activity peaked at 30 minutes after drug stimulation and at 1 hour 20 minutes, and then rapidly decayed. From these results, it was suggested that the drug STS has the effect of contracting HeLa cells, delocalizing intracellular survivin protein, and temporarily increasing survivin promoter activity.

以上の実験結果より、LUMINOVIEWを用いた明視野、蛍光および発光イメージングを行うことで、同一細胞における形態変化とサバイビンタンパク質の局在とサバイビンプロモーター活性を経時的かつ定量的に捉えることができた。その結果、薬剤が細胞に及ぼす作用の詳細な解析が可能であることが示された。サバイビンはアポトーシスの抑制と細胞分裂の調整機能を有するタンパク質であり、正常組織ではほとんど観察されず、胎児の組織と多くのヒト癌において高発現することが報告されている。また、サバイビンが核と細胞質のいずれに局在するかで、癌の予後評価が異なることが知られている。これらの報告からサバイビンタンパク質の発現量とその局在部位は癌マーカー並びに癌の予後マーカーとして有望であると考えられている。サバイビンプロモーター活性と局在部位をシングルセルレベルで検出可能である本手法は、サバイビンをターゲットとした被検物質の薬効スクリーニングや癌の予後評価において特に有用であると考えられる。   From the above experimental results, bright field, fluorescence, and luminescence imaging using LUMINOVVIEW were performed, and morphological changes, localization of survivin protein, and survivin promoter activity in the same cell could be captured over time and quantitatively. As a result, it was shown that detailed analysis of the effect of drugs on cells is possible. Survivin is a protein having a function of suppressing apoptosis and regulating cell division, and is rarely observed in normal tissues, and has been reported to be highly expressed in fetal tissues and many human cancers. It is also known that the prognostic evaluation of cancer differs depending on whether survivin is localized in the nucleus or cytoplasm. From these reports, the expression level of survivin protein and its localization site are considered promising as cancer markers and prognostic markers for cancer. This method, which can detect survivin promoter activity and localization site at the single cell level, is considered to be particularly useful in the screening of drug efficacy for survivin and the prognostic evaluation of cancer.

Claims (17)

(1)サバイビンプロモーターと、その下流に機能的に連結された発光タンパク質をコードする遺伝子とを含む第1のベクター、およびプロモーターと、その下流に機能的に連結されたサバイビン遺伝子と、その下流に機能的に連結された蛍光タンパク質をコードする遺伝子とを含む発現ベクターである第2のベクターとを準備すること、
(2)採取および/または培養された細胞に前記第1のベクターと第2のベクターとを導入すること、
(3)(2)の前記細胞を試薬に曝すこと、
(4)前記細胞が、前記試薬に曝される前および後のそれぞれ少なくとも1つの時点で、明視野の観察、蛍光強度の測定および発光強度の測定をそれぞれ行うこと、および
(5)(4)の結果から、前記細胞に関する情報を得ること、
を含むサバイビンについての細胞解析方法。
(1) A first vector comprising a survivin promoter and a gene encoding a photoprotein operably linked downstream thereof, a promoter, a survivin gene operably linked downstream thereof, and a downstream thereof Providing a second vector that is an expression vector comprising a gene encoding a functionally linked fluorescent protein;
(2) introducing the first vector and the second vector into the collected and / or cultured cells;
(3) exposing the cell of (2) to a reagent;
(4) performing bright field observation, fluorescence intensity measurement, and luminescence intensity measurement at each of at least one time point before and after the cell is exposed to the reagent; and (5) (4) Obtaining information on the cells from the results of
Cell analysis method for survivin including
前記明視野の観察、前記蛍光強度の測定および前記発光強度の測定が、それぞれ経時的に行われる請求項1に記載の方法。   The method according to claim 1, wherein the observation of the bright field, the measurement of the fluorescence intensity, and the measurement of the emission intensity are each performed over time. 前記明視野の観察と、前記蛍光強度の測定と、前記発光強度の測定とを、予め定められた順番で繰り返して行う請求項1または2に記載の方法。   The method according to claim 1, wherein the bright field observation, the fluorescence intensity measurement, and the emission intensity measurement are repeatedly performed in a predetermined order. 前記明視野の観察と、前記蛍光強度の測定と、前記発光強度の測定とが、共通する特定の興味領域について行われる請求項1〜3の何れか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the observation of the bright field, the measurement of the fluorescence intensity, and the measurement of the emission intensity are performed for a common specific region of interest. 前記特定の興味領域が、1つの細胞を含む領域である請求項4に記載の方法。   The method according to claim 4, wherein the specific region of interest is a region including one cell. 前記評価が、前記明視野の観察により得られた情報から、前記細胞の形態変化を判定すること、前記蛍光強度の測定により得られた結果から、サバイビンタンパク質の局在部位を特定すること、および前記発光強度の測定により得られた結果からサバイビンプロモーター活性の程度を判断することに基づいて行われる請求項1〜5の何れか1項に記載の方法。   The evaluation is to determine the morphological change of the cells from the information obtained by observation of the bright field, to identify the localization site of survivin protein from the results obtained by the measurement of the fluorescence intensity, and The method according to any one of claims 1 to 5, wherein the method is carried out based on judging the degree of survivin promoter activity from the result obtained by measuring the luminescence intensity. 前記明視野の観察が、位相差観察である請求項1〜6の何れか1項に記載の方法。   The method according to claim 1, wherein the bright field observation is phase difference observation. 前記明視野の観察、前記蛍光強度の測定および前記発光強度の測定が、それぞれ撮影手段により撮像され、形成された画像を用いて行われる請求項1〜7の何れか1項に記載の方法。   The method according to any one of claims 1 to 7, wherein the observation of the bright field, the measurement of the fluorescence intensity, and the measurement of the emission intensity are each performed using images formed by imaging means and formed. 前記試薬として抗癌剤を使用して、請求項1〜8の何れか1項に記載の方法を行い、それにより得られた結果に基づいて、前記細胞が由来する対象における癌の転移率および/または予後を評価することを含む癌の解析方法。   The method according to any one of claims 1 to 8, wherein an anticancer agent is used as the reagent, and based on the results obtained thereby, the cancer metastasis rate in the subject from which the cells are derived and / or A method for analyzing cancer, comprising evaluating prognosis. (1)サバイビンプロモーターと、その下流に機能的に連結された発光タンパク質をコードする遺伝子とを含む第1のベクター、およびプロモーターと、その下流に機能的に連結されたサバイビン遺伝子と、その下流に機能的に連結された蛍光タンパク質をコードする遺伝子とを含む発現ベクターである第2のベクターとを準備すること、
(2)採取および/または培養された細胞に前記第1のベクターと第2のベクターとを導入すること、
(3)(2)の前記細胞を被検物質に曝すこと、
(4)前記細胞が、前記被検物質に曝される前および後のそれぞれ少なくとも1つの時点で、明視野の観察、蛍光強度の測定および発光強度の測定をそれぞれ行うこと、および
(5)(4)の結果から、被検物質の効果を評価すること、
を含む被検物質の薬効をスクリーニングする方法。
(1) A first vector comprising a survivin promoter and a gene encoding a photoprotein operably linked downstream thereof, a promoter, a survivin gene operably linked downstream thereof, and a downstream thereof Providing a second vector that is an expression vector comprising a gene encoding a functionally linked fluorescent protein;
(2) introducing the first vector and the second vector into the collected and / or cultured cells;
(3) exposing the cell of (2) to a test substance;
(4) performing observation of bright field, measurement of fluorescence intensity, and measurement of emission intensity at each of at least one time point before and after the cell is exposed to the test substance, and (5) ( 4) evaluate the effect of the test substance from the result of
For screening the efficacy of a test substance comprising
前記明視野の観察、前記蛍光強度の測定および前記発光強度の測定が、それぞれ経時的に行われる請求項10に記載の方法。   The method according to claim 10, wherein observation of the bright field, measurement of the fluorescence intensity, and measurement of the emission intensity are each performed over time. 前記明視野の観察と、前記蛍光強度の測定と、前記発光強度の測定とを、予め定められた順番で繰り返して行う請求項10または11に記載の方法。   The method according to claim 10 or 11, wherein the bright field observation, the fluorescence intensity measurement, and the emission intensity measurement are repeatedly performed in a predetermined order. 前記明視野の観察と、前記蛍光強度の測定と、前記発光強度の測定とが、共通する特定の興味領域について行われる請求項10〜12の何れか1項に記載の方法。   The method according to any one of claims 10 to 12, wherein the observation of the bright field, the measurement of the fluorescence intensity, and the measurement of the emission intensity are performed for a specific region of interest in common. 前記特定の興味領域が、1つの細胞を含む領域である請求項13に記載の方法。   The method according to claim 13, wherein the specific region of interest is a region including one cell. 前記評価が、前記明視野の観察により得られた情報から、前記細胞の形態変化を判定すること、前記蛍光強度の測定により得られた結果から、サバイビンタンパク質の局在部位を特定すること、および前記発光強度の測定により得られた結果からサバイビンプロモーター活性の程度を判断することに基づいて行われる請求項10〜14の何れか1項に記載の方法。   The evaluation is to determine the morphological change of the cells from the information obtained by observation of the bright field, to identify the localization site of survivin protein from the results obtained by the measurement of the fluorescence intensity, and The method according to any one of claims 10 to 14, which is performed based on determining the degree of survivin promoter activity from the result obtained by the measurement of the luminescence intensity. 前記明視野の観察が、位相差観察である請求項10〜15の何れか1項に記載の方法。   The method according to claim 10, wherein the bright field observation is phase difference observation. 前記明視野の観察、前記蛍光強度の測定および前記発光強度の測定が、それぞれ撮影手段により撮像され、形成された画像を用いて行われる請求項10〜16の何れか1項に記載の方法。   The method according to any one of claims 10 to 16, wherein the observation of the bright field, the measurement of the fluorescence intensity, and the measurement of the emission intensity are each performed by using images formed by imaging means.
JP2013151928A 2013-07-22 2013-07-22 Survivin cell analysis method, and cancer analysis method and drug efficacy screening method using the same Active JP6223037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151928A JP6223037B2 (en) 2013-07-22 2013-07-22 Survivin cell analysis method, and cancer analysis method and drug efficacy screening method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151928A JP6223037B2 (en) 2013-07-22 2013-07-22 Survivin cell analysis method, and cancer analysis method and drug efficacy screening method using the same

Publications (2)

Publication Number Publication Date
JP2015019637A true JP2015019637A (en) 2015-02-02
JP6223037B2 JP6223037B2 (en) 2017-11-01

Family

ID=52484665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151928A Active JP6223037B2 (en) 2013-07-22 2013-07-22 Survivin cell analysis method, and cancer analysis method and drug efficacy screening method using the same

Country Status (1)

Country Link
JP (1) JP6223037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189236A1 (en) * 2022-03-30 2023-10-05 株式会社Screenホールディングス Imaging method, and imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073201A2 (en) * 2006-11-10 2008-06-19 Health Research Inc. Compositions and methods for identifying agents that alter expression of survivin
JP2009513150A (en) * 2005-10-28 2009-04-02 ジーイー・ヘルスケア・ユーケイ・リミテッド Signaling assays and cell lines
JP2010046067A (en) * 2002-04-10 2010-03-04 Regents Of The Univ Of California Monomeric and dimeric fluorescent protein variant, and method for making the same
JP2011196867A (en) * 2010-03-19 2011-10-06 Olympus Corp Microscope system, display method of observation image, and program
JP2012183071A (en) * 1999-10-14 2012-09-27 Clontech Lab Inc Anthozoa-derived chromophore/fluorophore and method for using the same
JP2013503648A (en) * 2009-09-09 2013-02-04 ゼネラル・エレクトリック・カンパニイ Compositions and methods for imaging stem cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183071A (en) * 1999-10-14 2012-09-27 Clontech Lab Inc Anthozoa-derived chromophore/fluorophore and method for using the same
JP2010046067A (en) * 2002-04-10 2010-03-04 Regents Of The Univ Of California Monomeric and dimeric fluorescent protein variant, and method for making the same
JP2009513150A (en) * 2005-10-28 2009-04-02 ジーイー・ヘルスケア・ユーケイ・リミテッド Signaling assays and cell lines
WO2008073201A2 (en) * 2006-11-10 2008-06-19 Health Research Inc. Compositions and methods for identifying agents that alter expression of survivin
JP2013503648A (en) * 2009-09-09 2013-02-04 ゼネラル・エレクトリック・カンパニイ Compositions and methods for imaging stem cells
JP2011196867A (en) * 2010-03-19 2011-10-06 Olympus Corp Microscope system, display method of observation image, and program

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CLINICA CHIMICA ACTA, vol. 414, JPN6017009089, 2012, pages 41 - 43, ISSN: 0003519534 *
THE JOURNAL OF CELL BIOLOGY, vol. 140, no. 3, JPN6017009090, 1998, pages 485 - 498, ISSN: 0003519535 *
県立広島大学人間文化学部紀要, vol. 1, JPN6017009088, 2006, pages 47 - 60, ISSN: 0003519533 *
肺癌, vol. 49, no. 1, JPN6017009087, 2009, pages 12 - 16, ISSN: 0003519532 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189236A1 (en) * 2022-03-30 2023-10-05 株式会社Screenホールディングス Imaging method, and imaging device

Also Published As

Publication number Publication date
JP6223037B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5914561B2 (en) Measuring apparatus and cell analysis method
JP5726956B2 (en) Method and apparatus for analyzing faint light sample
EP1967886A1 (en) Device and method for capturing image of a sample originating from organism
US7671345B2 (en) Method of analysing a sample and apparatus therefor
JP5318413B2 (en) Method and apparatus for analyzing a sample
JP5424528B2 (en) Method and apparatus for analyzing faint light sample
JP5800462B2 (en) Optical signal analysis method
JP6223037B2 (en) Survivin cell analysis method, and cancer analysis method and drug efficacy screening method using the same
JP2007155558A (en) Feeble light analysis method
JP2014176363A (en) Method for analyzing photoresponse of photoreceptors
JP6313978B2 (en) Display method
JP5124216B2 (en) Optical signal observation method and optical signal observation system
JP2007155557A (en) Feeble light analysis method
Benoit Fluorescence imaging of Drosophila melanogaster tracheal system: investigating the morphology of LUBEL mutant flies
JP2010220531A (en) Method for observing light emission and system for observing light emission
WO2016189628A1 (en) Luminescence measurement method
JP5302063B2 (en) Microscope imaging device capable of taking images of weak light and high intensity light
JP2007085927A (en) Method of imaging biological information, method and device for imaging interaction in vivo, program for executing device, software, analytical method, and reagent kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R151 Written notification of patent or utility model registration

Ref document number: 6223037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250