JP2015012105A - Organic light-emitting element - Google Patents

Organic light-emitting element Download PDF

Info

Publication number
JP2015012105A
JP2015012105A JP2013135746A JP2013135746A JP2015012105A JP 2015012105 A JP2015012105 A JP 2015012105A JP 2013135746 A JP2013135746 A JP 2013135746A JP 2013135746 A JP2013135746 A JP 2013135746A JP 2015012105 A JP2015012105 A JP 2015012105A
Authority
JP
Japan
Prior art keywords
light emitting
organic light
emitting device
hole transport
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013135746A
Other languages
Japanese (ja)
Inventor
彰洋 佐野
Akihiro Sano
彰洋 佐野
重昭 舟生
Shigeaki Funyu
重昭 舟生
石塚 健一
Kenichi Ishitsuka
健一 石塚
直紀 浅野
Naoki Asano
直紀 浅野
李 燦
Akira Ri
燦 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2013135746A priority Critical patent/JP2015012105A/en
Publication of JP2015012105A publication Critical patent/JP2015012105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve curability and charge transport properties of a conductive resin of an organic light-emitting element.SOLUTION: The organic light-emitting element includes a hole transport layer between a positive electrode layer and a light-emitting layer. The hole transport layer is composed of a curable resin having counter anion and a cross-linked structure. Density of the counter anion in the hole transport layer is higher on the positive electrode side than on the light emitting layer side.

Description

本発明は、硬化樹脂を正孔輸送層として用いた有機発光素子に関する。   The present invention relates to an organic light emitting device using a cured resin as a hole transport layer.

有機発光素子は、厚さ数十nmの有機固体材料を積層した構造であり、薄型、軽量、フレキシブルな照明やディスプレイを提供する素子として注目されている。また、自発光であるため、高視野角が可能で、発光体自体の応答速度も高くので高速動画表示に適しているため、次世代のフラットパネルディスプレイやシートディスプレイとして期待されている。更に、大面積からの均一発光が可能であるため、次世代照明としても注目されている。   Organic light-emitting elements have a structure in which organic solid materials with a thickness of several tens of nanometers are stacked, and are attracting attention as elements that provide thin, light, and flexible lighting and displays. Further, since it is self-luminous, a high viewing angle is possible, and since the response speed of the illuminant itself is high, it is suitable for high-speed moving image display. Therefore, it is expected as a next-generation flat panel display or sheet display. Furthermore, since uniform light emission from a large area is possible, it has been attracting attention as next-generation illumination.

有機発光素子に使用する有機固体材料は、低分子系と高分子系に大別される。低分子系材料は、主として、真空蒸着法により素子を形成するのに向いている。一方、高分子系有機材料は、印刷法・インクジェット法の湿式プロセスに向いており、量産性、製造プロセスの低コスト化、大画面化の利点で、期待されている。   Organic solid materials used for organic light emitting devices are roughly classified into low molecular weight and high molecular weight materials. Low molecular weight materials are mainly suitable for forming elements by vacuum deposition. On the other hand, polymer organic materials are suitable for wet processes such as printing and ink jet processes, and are expected due to the advantages of mass productivity, cost reduction of manufacturing processes, and large screens.

真空蒸着法と塗布法のどちらのプロセスを用いる場合でも、有機発光素子は、電極から発光層まで電子と正孔をスムーズに注入し、高効率に発光させるための電子輸送層や正孔輸送層などの数種の有機物を積層した多層構造が有効である。また、発光層に注入される正孔と電子はどちらが過剰であっても輝度は向上せずに、正孔と電子の密度のバランスが取れていることが望ましいとされている。   Regardless of whether the vacuum deposition method or the coating method is used, the organic light-emitting device can smoothly inject electrons and holes from the electrode to the light-emitting layer to emit light with high efficiency. A multilayer structure in which several kinds of organic materials are laminated is effective. Further, it is desirable that the density of holes and electrons be balanced without increasing the luminance even if either of the holes and electrons injected into the light emitting layer is excessive.

上記課題を解決するため、有機発光素子の積層構造として、特許文献1では、陽極と発光層の間に異なる厚さ、移動度を有する複数の正孔輸送層を積層することで、高輝度化が可能としている。特許文献2では、エネルギーギャップの異なる正孔輸送層で量子井戸構造を形成することで、高輝度化と発光帯域の調整が可能としている。特許文献3では、アクセプターを含有する正孔輸送層とドナーを含有する電子輸送層からなる積層構造とし、母材に対するアクセプターやドナーのエネルギーレベルを適正化することで、輝度を向上可能としている。   In order to solve the above-mentioned problem, as a laminated structure of an organic light emitting device, Patent Document 1 increases the brightness by laminating a plurality of hole transport layers having different thicknesses and mobility between an anode and a light emitting layer. Is possible. In Patent Document 2, it is possible to increase the luminance and adjust the emission band by forming a quantum well structure with hole transport layers having different energy gaps. In Patent Document 3, it is possible to improve luminance by adopting a stacked structure including a hole transport layer containing an acceptor and an electron transport layer containing a donor, and by optimizing the energy level of the acceptor and the donor with respect to the base material.

一方、高分子型有機材料は湿式プロセスを用いて多層構造を形成すると、有機層を製膜する際に、既に製膜した層が溶ける問題がある。この対策として、高分子に硬化性の架橋基を付加した主剤を含む硬化性溶液を、湿式プロセスで塗布した後に、熱や光処理により、高分子を硬化させる方法がある。硬化した膜(硬化樹脂)は、溶媒に溶けにくい性質を持つので、湿式プロセスでの積層が容易になる。
上記のような、耐溶媒性の高い正孔輸送層として、特許文献4では、通常は、架橋反応を促進させるために硬化性溶液に添加する重合開始剤を、硬化樹脂とは別に設けた非硬化樹脂層に添加することで、耐容性を確保し、かつ、発光層に隣接する層から発光層への重合開始剤の拡散を極力おさえることで、素子の劣化を抑制できるとしている。
On the other hand, when a high molecular weight organic material forms a multilayer structure using a wet process, there is a problem that when the organic layer is formed, the already formed layer is melted. As a countermeasure against this, there is a method in which a polymer is cured by heat or light treatment after a curable solution containing a main agent having a curable crosslinking group added to the polymer is applied by a wet process. Since the cured film (cured resin) has a property of being hardly soluble in a solvent, lamination by a wet process becomes easy.
As a hole transport layer having high solvent resistance as described above, in Patent Document 4, a polymerization initiator that is usually added to a curable solution to promote a crosslinking reaction is provided separately from a cured resin. By adding to the cured resin layer, tolerance is ensured, and by suppressing diffusion of the polymerization initiator from the layer adjacent to the light emitting layer to the light emitting layer as much as possible, deterioration of the element can be suppressed.

特開2011−142365号公報JP 2011-142365 A 特開2004−031323号公報JP 2004-031323 A 特開2000−196140号公報JP 2000-196140 A 特開2008−227483号公報JP 2008-227483 A

硬化性重合体及びイオン重合開始剤の硬化前後の状態の概念図である。It is a conceptual diagram of the state before and behind hardening of a curable polymer and an ionic polymerization initiator. 有機発光素子の構造図である。1 is a structural diagram of an organic light emitting device. 有機発光素子のエネルギーダイアグラムである。It is an energy diagram of an organic light emitting element. 電荷(正孔及び電子)分布の計算結果例である。It is an example of a calculation result of electric charge (hole and electron) distribution. 正孔輸送層を3層用いた有機発光素子の構造図である。It is a structural view of an organic light emitting device using three hole transport layers.

上記のように、有機素子の積層構造や塗布プロセスにおける積層構造実現のための硬化樹脂の導入方法が開発されている。しかし、上記特許文献1−3に見られるような、移動度、エネルギーギャップ、エネルギーレベルの調節で、発光層に注入される電子と正孔のバランスを適正化し、高輝度化を達成するためには、発光色等の使用条件に合わせて、構成材料を全般的に改良する必要がある。上記特許文献4では、正孔輸送層として、重合開始剤を含む非硬化樹脂の上に、重合開始剤を含まない硬化樹脂を形成しているため、2層の正孔輸送層の積層のためには、お互いに溶解しない溶媒の組合せを選択する必要があり、かつ、硬化樹脂層は直接に重合開始剤を添加しなくても重合反応が促進される架橋基を選択する必要がある。   As described above, a method of introducing a cured resin for realizing a laminated structure of organic elements and a laminated structure in a coating process has been developed. However, in order to achieve high brightness by optimizing the balance between electrons and holes injected into the light emitting layer by adjusting the mobility, energy gap, and energy level as seen in Patent Documents 1-3 above. However, it is necessary to generally improve the constituent materials in accordance with the use conditions such as the emission color. In the above-mentioned Patent Document 4, a cured resin not containing a polymerization initiator is formed on a non-cured resin containing a polymerization initiator as a hole transport layer, so that two hole transport layers are laminated. Therefore, it is necessary to select a combination of solvents that do not dissolve in each other, and it is necessary to select a crosslinking group that promotes the polymerization reaction without adding a polymerization initiator directly to the cured resin layer.

本発明は、塗布プロセスを用いた有機発光素子の積層構造に関して、耐容性を確保し、かつ、発光層内に注入される正孔を構成材料を取り替えることなく、高輝度化が可能な有機発光素子を提供することを目的とする。   The present invention relates to a laminated structure of an organic light-emitting element using a coating process, and tolerates organic light-emitting that can increase the luminance without replacing constituent materials for holes injected into the light-emitting layer. An object is to provide an element.

上記課題を解決するため、本発明は、陽極と発光層の間に、正孔輸送層を有する有機発光素子において、正孔輸送層は、イオン重合開始剤を含む重合性硬化樹脂で構成され、前記イオン重合開始は、カチオンと対アニオンで構成され、前記正孔輸送層内の前記陽極側の前記対アニオンの濃度は、前記正孔輸送層内の前記発光層側の前記対アニオンの濃度よりも高いことを特徴とする。   In order to solve the above problems, the present invention provides an organic light emitting device having a hole transport layer between an anode and a light emitting layer, wherein the hole transport layer is composed of a polymerizable curable resin containing an ion polymerization initiator, The ion polymerization start is composed of a cation and a counter anion, and the concentration of the counter anion on the anode side in the hole transport layer is higher than the concentration of the counter anion on the light emitting layer side in the hole transport layer. It is also characterized by high.

本発明により、塗布プロセスで積層構造を形成する有機発光素子の耐容性と輝度の向上を両立できる。   According to the present invention, both the tolerability and the luminance of an organic light-emitting element that forms a laminated structure by a coating process can be achieved.

以下、本発明の好ましい実施形態について詳細に説明する。
<1.硬化樹脂を正孔輸送層とした有機発光素子>
本明細書において、「硬化性重合体」は、熱又は光のような硬化処理によって、重合体分子内に結合された架橋基の架橋反応を開始させて、分子間及び/又は分子内架橋を形成させることにより、硬化した樹脂(以下「硬化樹脂」と記載する)を形成することのできる重合体を意味する。
Hereinafter, preferred embodiments of the present invention will be described in detail.
<1. Organic Light-Emitting Device Using Cured Resin as Hole Transport Layer>
In the present specification, the “curable polymer” refers to an intermolecular and / or intramolecular cross-linking by initiating a cross-linking reaction of a cross-linking group bonded in a polymer molecule by a curing process such as heat or light. By forming, it means a polymer that can form a cured resin (hereinafter referred to as “cured resin”).

更に、「カチオン重合性のイオン重合開始剤」(以下、イオン重合開始剤と呼ぶ場合がある)は、プラスに荷電したカチオン分子とマイナスに荷電した対アニオン分子の組合せからなる。カチオン分子は、硬化処理によって活性化され、架橋基の架橋反応を促進する化合物である。対アニオン分子は、カチオン分子のプラス電荷を中性に保つために添加するもので、マイナスに荷電した状態が安定な分子である。   Furthermore, the “cationically polymerizable ionic polymerization initiator” (hereinafter sometimes referred to as an ionic polymerization initiator) comprises a combination of a positively charged cation molecule and a negatively charged counter anion molecule. The cationic molecule is a compound that is activated by a curing treatment and promotes a crosslinking reaction of a crosslinking group. The counter anion molecule is added in order to keep the positive charge of the cation molecule neutral, and the negatively charged state is a stable molecule.

図1に、硬化性重合体及びイオン重合開始剤を基板に塗布後、及び硬化処理後の状態の概念図を示す。図1の左側は、硬化性重合体及びイオン重合開始剤を基板に塗布後、硬化処理前の状態を示し、図1の右側は、硬化処理後の状態を示す。硬化性重合体10は、導電性の高分子主鎖11と架橋性の官能基側鎖12からなる。イオン重合開始剤は、対アニオン13とカチオン14から構成される。
硬化性重合体及びイオン重合開始剤に、熱又は光のような硬化処理などを施すことで、カチオン14が架橋性の官能基を活性化して、別の架橋性の官能基と結合が生じ、右図の架橋構造15、硬化樹脂が形成される。図1では、架橋性の官能基が回環して、重合する場合を記載したが、架橋基の結合は必ずしも回環重合によらなくてもよい。カチオン14は、硬化反応過程において、中性の安定分子となって、一部もしくはほとんどが加熱処理によって、溶媒と共に揮発すると考えられている。一方、対アニオン13は、硬化樹脂内に残存する。このように作成された硬化樹脂に別の層(例えば、発光層)を塗布しても、本硬化樹脂は溶けない。
In FIG. 1, the conceptual diagram of the state after apply | coating a curable polymer and an ion polymerization initiator to a board | substrate, and after a hardening process is shown. The left side of FIG. 1 shows a state before the curing process after the curable polymer and the ionic polymerization initiator are applied to the substrate, and the right side of FIG. 1 shows a state after the curing process. The curable polymer 10 includes a conductive polymer main chain 11 and a crosslinkable functional group side chain 12. The ionic polymerization initiator is composed of a counter anion 13 and a cation 14.
By applying a curing treatment such as heat or light to the curable polymer and the ionic polymerization initiator, the cation 14 activates a crosslinkable functional group, and a bond with another crosslinkable functional group occurs. The crosslinked structure 15 and the cured resin shown in the right figure are formed. In FIG. 1, the case where the crosslinkable functional group rotates and polymerizes is described. However, the bonding of the crosslinkable group does not necessarily need to be based on the circular polymerization. It is considered that the cation 14 becomes a neutral stable molecule in the curing reaction process, and a part or most of it is volatilized with the solvent by the heat treatment. On the other hand, the counter anion 13 remains in the cured resin. Even if another layer (for example, a light emitting layer) is applied to the cured resin thus prepared, the cured resin does not dissolve.

更に、以下で示す硬化性重合体10とイオン重合開始剤を組合せることによって、カチオン14が有していたプラス電荷は、導電性の高分子主鎖の正孔として導入される。通常の有機発光素子の有機層は絶縁性の樹脂であり、外部電圧によって、電極から正孔が注入される。これに対して、本樹脂では、電圧を印可していない状態でも、正孔が硬化樹脂中に予め導入されているので、低抵抗である。更に、イオン重合開始剤の濃度を高くすると、正孔密度が高くなり、上記硬化樹脂は低抵抗となる。   Furthermore, the positive charge which the cation 14 had is introduce | transduced as a hole of an electroconductive polymer principal chain by combining the curable polymer 10 shown below and an ionic polymerization initiator. The organic layer of a normal organic light emitting element is an insulating resin, and holes are injected from the electrode by an external voltage. In contrast, the present resin has low resistance because holes are introduced into the cured resin in advance even when no voltage is applied. Further, when the concentration of the ion polymerization initiator is increased, the hole density is increased and the cured resin has a low resistance.

本発明者らは、正孔輸送層を形成する硬化樹脂内に、対アニオンの濃度が発光層側よりも陽極側よりも高くなる傾斜させ、かつ傾斜度合いを制御することにより、溶媒耐性を保ったまま、発光層内に過剰に注入される正孔を抑制し、発光効率を向上できることを見出した。   The inventors of the present invention maintain the solvent resistance by causing the concentration of the counter anion to be higher in the curable resin forming the hole transport layer than in the light emitting layer than in the anode and controlling the degree of inclination. As it is, it was found that the holes injected excessively into the light emitting layer can be suppressed and the luminous efficiency can be improved.

図2は、対アニオンの濃度に関して、発光層側よりも陽極側の濃度を高くするための構成の一例である。図2は、有機発光素子の陽極22と発光層25の間に、2層の正孔輸送層(第1の正孔輸送層23、第2の正孔輸送層24)を設け、正孔輸送層はカチオン重合性のイオン重合開始剤の対アニオンを含む重合性硬化樹脂からなり、陽極と隣接する第1の重合性硬化樹脂からなる第1の正孔輸送層23と、発光層と隣接する第2の重合性硬化樹脂からなる第2の正孔輸送層24を有し、かつ、第1の正孔輸送層23の対アニオン濃度が、第2の正孔輸送層24の対アニオン濃度よりも高い有機発光素子の構成である。正孔輸送層は、対アニオン濃度が、発光層25側よりも陽極22側で高くなる分布を維持する限り、3層以上設けてもよく、陽極から発光層に向かって連続的に対アニオン濃度が低くなる形態をとっても構わない。また、発光層25と陰極27との間に電子輸送層を設けても構わない。なお、正孔輸送層は正孔注入層ともいう。
<2.イオン重合開始剤の濃度による有機発光素子の発光効率の変化>
図2に本発明の有機発光素子201の一形態を示す。ガラス基板21の上に、陽極(正極)22(例えば、透明電極である酸化インジウムスズ(ITO、Indium Tin Oxide))が積層される。陽極(負極)22と陰極27(例えばAl)の間に発光層25が挟まれている。陽極22と発光層25の間には、2層の正孔輸送層(第1の正孔輸送層23、第2の正孔輸送層24)が積層される。陰極27と発光層25の間に電子輸送層26が積層されることがより好ましい。本発明では、第1の正孔輸送層23と第2の正孔輸送層24に、正孔輸送性の硬化樹脂を用い、かつ、硬化樹脂にはイオン重合開始剤が添加されている。イオン重合開始剤濃度を、第1の正孔輸送層23>第2の正孔輸送層24とすることで、硬化後の正孔密度(及び対アニオン密度)が第1の正孔輸送層23>第2の正孔輸送層24となり、硬化樹脂による耐容性を確保し、かつ、高輝度化する。
FIG. 2 shows an example of a configuration for making the concentration on the anode side higher than that on the light emitting layer side with respect to the concentration of the counter anion. In FIG. 2, two hole transport layers (a first hole transport layer 23 and a second hole transport layer 24) are provided between the anode 22 and the light emitting layer 25 of the organic light emitting device to transport holes. The layer is made of a polymerizable curable resin containing a counter anion of a cationic polymerizable ionic polymerization initiator, and is adjacent to the first hole transport layer 23 made of the first polymerizable curable resin adjacent to the anode and the light emitting layer. The second hole transport layer 24 made of the second polymerizable curable resin is provided, and the counter anion concentration of the first hole transport layer 23 is higher than the counter anion concentration of the second hole transport layer 24. It is a structure of a high organic light emitting element. As long as the hole transport layer maintains a distribution in which the counter anion concentration is higher on the anode 22 side than on the light emitting layer 25 side, three or more layers may be provided, and the counter anion concentration continuously from the anode toward the light emitting layer. It does not matter even if it takes a form that becomes low. Further, an electron transport layer may be provided between the light emitting layer 25 and the cathode 27. Note that the hole transport layer is also referred to as a hole injection layer.
<2. Change in luminous efficiency of organic light-emitting device depending on the concentration of the ionic polymerization initiator
FIG. 2 shows an embodiment of the organic light emitting device 201 of the present invention. An anode (positive electrode) 22 (for example, indium tin oxide (ITO) which is a transparent electrode) is laminated on the glass substrate 21. A light emitting layer 25 is sandwiched between an anode (negative electrode) 22 and a cathode 27 (for example, Al). Between the anode 22 and the light emitting layer 25, two hole transport layers (a first hole transport layer 23 and a second hole transport layer 24) are laminated. More preferably, the electron transport layer 26 is laminated between the cathode 27 and the light emitting layer 25. In the present invention, a hole transportable curable resin is used for the first hole transport layer 23 and the second hole transport layer 24, and an ionic polymerization initiator is added to the cured resin. By setting the ion polymerization initiator concentration to be the first hole transport layer 23> the second hole transport layer 24, the hole density after curing (and the counter anion density) is the first hole transport layer 23. > The second hole transport layer 24 is obtained, and the tolerance by the cured resin is ensured and the luminance is increased.

陽極22は、例えば、ガラス基板21上に酸化インジウムスズ(ITO)をパターニングすることによって形成される。陰極27は、例えば、ITOガラス基板21の陽極22の上に、第1の正孔輸送層23、第2の正孔輸送層24、及び発光層25を順次形成させた後、発光層25の上にアルミニウム(Al)を蒸着させることによって形成される。本発明の有機発光素子201は、陽極22、第2の正孔輸送層24、発光層25及び陰極27を、ガラス基板21及び封止ガラス板で挟持した後、ガラス基板21と封止ガラス板とを、例えば光硬化性エポキシ樹脂のような硬化樹脂を用いて張り合わせることによって封止されることが好ましい。   The anode 22 is formed by patterning indium tin oxide (ITO) on the glass substrate 21, for example. For example, the cathode 27 is formed by sequentially forming a first hole transport layer 23, a second hole transport layer 24, and a light emitting layer 25 on the anode 22 of the ITO glass substrate 21. It is formed by depositing aluminum (Al) on top. In the organic light emitting device 201 of the present invention, the anode 22, the second hole transport layer 24, the light emitting layer 25 and the cathode 27 are sandwiched between the glass substrate 21 and the sealing glass plate, and then the glass substrate 21 and the sealing glass plate. Are preferably bonded together using a curable resin such as a photo-curable epoxy resin.

本発明の有機発光素子において、正孔輸送層は、前述の硬化樹脂を用いて製造される。正孔輸送層は、当該技術分野で慣用される手段を用いて製造することができる。例えば、ガラス基板21上にパターニングされた陽極22の上に、スピンコート法、印刷法、インクジェット法等の湿式プロセスによって硬化性重合体10とイオン重合開始剤を添加した有機溶媒からなる溶液を塗布した後、上記で説明した硬化処理により樹脂を形成させることによって製造すればよい。本発明は、2層以上の正孔輸送層を有し、陽極22と隣接する第1の正孔輸送層23と発光層25と隣接する第2の正孔輸送層24にて、イオン重合開始剤濃度を「第1の正孔輸送層23>第2の正孔輸送層24」とした有機発光素子構造を備え、硬化樹脂に特有の耐容性の確保と輝度の向上性に優れる。   In the organic light-emitting device of the present invention, the hole transport layer is manufactured using the above-described cured resin. A positive hole transport layer can be manufactured using the means conventionally used in the said technical field. For example, a solution made of an organic solvent to which the curable polymer 10 and an ionic polymerization initiator are added is applied on the anode 22 patterned on the glass substrate 21 by a wet process such as a spin coating method, a printing method, or an ink jet method. Then, it may be manufactured by forming a resin by the curing treatment described above. The present invention has two or more hole transport layers, and starts ion polymerization in the first hole transport layer 23 adjacent to the anode 22 and the second hole transport layer 24 adjacent to the light emitting layer 25. It has an organic light-emitting element structure in which the agent concentration is “first hole transport layer 23> second hole transport layer 24”, and is excellent in ensuring tolerance and improving luminance specific to the cured resin.

前述の硬化樹脂を用いて製造された正孔輸送層の表面に、例えば上記の湿式プロセスによって発光層25を積層させる場合、発光層25の重合体溶液に含まれる有機溶媒によって正孔輸送層が溶解することを抑制することができる。例えば、本発明の硬化性重合体によって形成される樹脂を用いて製造される正孔輸送層は、通常、残膜率が60〜100%の範囲であり、典型的には80〜99%の範囲である。上記の残膜率で表される有機溶媒耐性を有する樹脂は硬化性が高い。それ故、本発明の樹脂を正孔輸送層に用いることにより、湿式プロセスによる有機発光素子の生産性を向上させることが可能となる。   When the light emitting layer 25 is laminated on the surface of the hole transport layer manufactured using the above-described cured resin, for example, by the wet process described above, the hole transport layer is formed by the organic solvent contained in the polymer solution of the light emitting layer 25. It can suppress dissolving. For example, a hole transport layer produced using a resin formed from the curable polymer of the present invention usually has a remaining film ratio in the range of 60 to 100%, typically 80 to 99%. It is a range. The resin having organic solvent resistance expressed by the above remaining film ratio has high curability. Therefore, by using the resin of the present invention for the hole transport layer, it becomes possible to improve the productivity of the organic light emitting device by a wet process.

更に、硬化反応を進行さしめるためのイオン重合開始剤の添加濃度は、通常、0.01%〜50%の範囲であり、典型的には、0.1〜30%である。   Furthermore, the addition concentration of the ionic polymerization initiator for causing the curing reaction to proceed is usually in the range of 0.01% to 50%, typically 0.1 to 30%.

以下で説明するシミュレーションによって、イオン重合開始剤の濃度に基づき、発光層内の電子と正孔密度の分布が変化し、結果として、発光効率も変化することを示す。イオン重合開始剤の濃度に関して、「第1の正孔輸送層23>第2の正孔輸送層24」とすることで、「第1の正孔輸送層23内の正孔密度>第2の正孔輸送層24内の正孔密度」となる。以下のシミュレーションは、第1の正孔輸送層23と第2の正孔輸送層24内の正孔密度の変化が、発光層内に注入される電荷分布に影響し、結果として、輝度を変化せしめることを示すためのものであって、有機発光素子内での電荷の移動や発光過程の現象は以下で示す数式モデルで表される現象に限定されるものではない。   The simulation described below shows that the distribution of electron and hole densities in the light emitting layer changes based on the concentration of the ionic polymerization initiator, and as a result, the light emission efficiency also changes. With respect to the concentration of the ion polymerization initiator, by setting “first hole transport layer 23> second hole transport layer 24”, “hole density in first hole transport layer 23> second The hole density in the hole transport layer 24 ”. In the following simulation, the change in the hole density in the first hole transport layer 23 and the second hole transport layer 24 affects the charge distribution injected into the light emitting layer, resulting in a change in luminance. The phenomenon of charge movement and light emission process in the organic light emitting device is not limited to the phenomenon represented by the following mathematical model.

図3に検討した素子のダイアグラムを示す。HOMO(Highest Occupied Molecular Orbital (最高占有分子軌道))は、各層に正孔を注入するために必要なエネルギー、LUMO(Lowest Unoccupied Molecular Orbital(最低非占有分子軌道))は、電子を注入するために必要なエネルギーを表す。第1の正孔輸送層23、第2の正孔輸送層24及び発光層25には図中に示す典型的な数値を設定した。ITOには、陽極電位を設定し、ITOの中では、正孔濃度一定(1.0×1021個/cm3)とした。Alには、陰極電位を設定し、Alの中では、電子密度一定(1.8×1023個/cm3)とした。正孔輸送層に添加されるイオン重合開始剤は後術するイオン重合開始剤(式(7))として、濃度は、0、3、10wt%のいずれかとした。添加したイオン重合開始剤の有するプラス電荷が、正孔輸送層を形成する硬化樹脂で、完全に正孔として導入される仮定し、正孔密度0、1.9×1019、6.3×1018個/cm3とした。 FIG. 3 shows a diagram of the studied device. HOMO (Highest Occupied Molecular Orbital) is the energy required to inject holes into each layer, LUMO (Lowest Unoccupied Molecular Orbital) is used to inject electrons. Represents the required energy. For the first hole transport layer 23, the second hole transport layer 24, and the light emitting layer 25, typical numerical values shown in the figure were set. An anode potential was set for ITO, and the hole concentration was constant (1.0 × 10 21 holes / cm 3) in ITO. A cathode potential was set for Al, and the electron density was constant (1.8 × 10 23 particles / cm 3 ) in Al. The ion polymerization initiator added to the hole transport layer was an ion polymerization initiator (formula (7)) to be post-treated, and the concentration was 0, 3, or 10 wt%. Assuming that the positive charge of the added ion polymerization initiator is completely introduced as holes in the cured resin that forms the hole transport layer, the hole density is 0, 1.9 × 10 19 , 6.3 × 10 18 pieces / It was cm 3.

シミュレーションでは、移流拡散方程式(電子もしくは正孔の連続の方程式)、∂ρ/∂t=∇・{(μρE+D∇ρ)}−Gを用いて、素子内のキャリア密度ρ(電子密度ρeもしくは正孔密度ρeのいずれかを表す)の時間変化を定常状態となるまで計算した。上記数式の右辺の{}の第1項は移動度μ、電界Eによる電流密度、第2項は拡散電流密度を表し、空間のある領域(ここでは有限要素法の要素)に流入した電荷と流出した電荷の差が電荷密度の時間変化であることを示す。Gは、電子−正孔再結合確率(電子と正孔が発光により消滅する電子と正孔の密度)であり、再結合(発光)により消失した電荷の数である。ここでは、電子−正孔再結合確率Gのモデルとして、ランジュバン型の再結合モデルG=(eμ/ε)ρe・ρhを仮定した。ここで、eは素電荷、εは樹脂の誘電率である。電圧印可後に、時間の経過と共に電荷密度ρは変化するので、素子内の電界をラプラス方程式Δφ=ρtotal/ε、E=∇φ(ρtotalは、電子、正孔、アニオンの電荷の総和)で逐次更新した。また、各層の界面を電子又は正孔が通過するときのエネルギー障壁ΔE(正孔に対しては、隣接する層のHOMOエネルギーの差、電子に対しては、隣接する層のLUMOエネルギーの差)に関して、界面における移動度をμ・exp(-ΔE/kBT)を仮定した。kBはボルツマン定数、Tは温度(ここではT=300Kとした)である。障壁ΔEが大きいほど、界面での移動度が小さく、移動しにくい。 In the simulation, the advection diffusion equation (electron or hole continuity equation), ∂ρ / ∂t = ∇ · {(μρE + D∇ρ)} − G, is used to calculate the carrier density ρ (electron density ρ e or the time variation of the representative one of the hole density [rho e) was calculated until a steady state. The first term of {} on the right side of the above formula represents the mobility μ, the current density due to the electric field E, the second term represents the diffusion current density, and the charge flowing into a certain area (here, the element of the finite element method) The difference between the flowed out charges indicates that the charge density changes with time. G is an electron-hole recombination probability (the density of electrons and holes where electrons and holes disappear due to light emission), and is the number of charges lost due to recombination (light emission). Here, as a model of the electron-hole recombination probability G, a Langevin type recombination model G = (eμ / ε) ρ e · ρ h is assumed. Here, e is an elementary charge, and ε is a dielectric constant of the resin. Since the charge density ρ changes with the passage of time after voltage application, the Laplace equation Δφ = ρ total / ε, E = ∇φ (ρ total is the sum of charges of electrons, holes, and anions) Updated sequentially. Also, energy barrier ΔE when electrons or holes pass through the interface of each layer (for holes, difference in HOMO energy of adjacent layer, for electrons, difference in LUMO energy of adjacent layer) , The mobility at the interface was assumed to be μ · exp (−ΔE / k B T). k B is the Boltzmann constant and T is the temperature (T = 300K here). The larger the barrier ΔE, the smaller the mobility at the interface and the harder it is to move.

いずれの有機層(正孔輸送層及び発光層)においても、電子と正孔の移動度、拡散係数、誘電率は有機物の典型値として、同一の値(移動度=1.0×10-8[m2/V/sec]、拡散係数=5.0×10-6[m2/sec]、誘電率ε=4.0)を設定した。移動度は樹脂の種類や電子か正孔かによって数桁異なるが、ここでは、正孔注入層内に予め導入される正孔密度の違いに注目するため、同一値を用いた計算モデルにて、簡略化した。 In any organic layer (hole transport layer and light-emitting layer), the mobility, diffusion coefficient, and dielectric constant of electrons and holes are the same as typical values of organic matter (mobility = 1.0 × 10 -8 [m 2 / V / sec], diffusion coefficient = 5.0 × 10 −6 [m 2 / sec], dielectric constant ε = 4.0). The mobility differs by several orders of magnitude depending on the type of resin and whether it is an electron or a hole, but here we use a calculation model that uses the same value to focus on the difference in the hole density introduced into the hole injection layer in advance. Simplified.

図4に、陽極ITOと陰極Al間に5V印可時の電荷分布の計算結果を示す。図4(a)は、第1の正孔輸送層23、2のイオン重合開始剤濃度がいずれも10wt%の場合(10wt%/10wt%と記載)(「第1の正孔輸送層での添加量/第2の正孔輸送層での添加量」を示す。以下同様。)の正孔及び電子の分布である。太い実線は、発光層内での正孔密度×電子密度を表し、これは輝度分布に比例する。発光層内には、2.6×1017個/cm3程度の正孔が正孔輸送層から注入される。これに対して、陰極Alから注入される電子密度は、発光層と陰極の界面で2×1014個/cm3であり、発光層と正孔輸送層の界面に沿って急速に減衰する。これは、正孔が発光層に過剰に注入され、陰極から注入された電子は発光層と陰極の界面で再結合し、正孔輸送層まで到達しにくいためである。これに伴い、輝度分布は、発光層と陰極の界面で高く、発光層と正孔輸送層の界面に沿って急速に減衰する。 FIG. 4 shows the calculation result of the charge distribution when 5 V is applied between the anode ITO and the cathode Al. FIG. 4A shows the case where the concentration of the ionic polymerization initiator in the first hole transport layer 23 and 2 is 10 wt% (described as 10 wt% / 10 wt%) (“in the first hole transport layer "Addition amount / addition amount in the second hole transport layer", the same applies hereinafter)). A thick solid line represents hole density × electron density in the light emitting layer, which is proportional to the luminance distribution. In the light emitting layer, about 2.6 × 10 17 holes / cm 3 of holes are injected from the hole transport layer. On the other hand, the electron density injected from the cathode Al is 2 × 10 14 atoms / cm 3 at the interface between the light emitting layer and the cathode, and rapidly decays along the interface between the light emitting layer and the hole transport layer. This is because holes are excessively injected into the light emitting layer, and electrons injected from the cathode are recombined at the interface between the light emitting layer and the cathode and do not easily reach the hole transport layer. Along with this, the luminance distribution is high at the interface between the light emitting layer and the cathode and rapidly attenuates along the interface between the light emitting layer and the hole transport layer.

図4(b)は、第1の正孔輸送層23のイオン重合開始剤が10wt%、第2の正孔輸送層24のイオン重合開始剤が0wt%の場合(10wt%/0wt%)の正孔及び電子の分布である。発光層内の正孔密度は、0.8×1017個/cm3程度となり、表1(a)と比べて、30%まで小さくなる。これに対して、陰極Alから注入される電子密度は、発光層全体に渡って、1×1014個/cm3程度注入される。従って、輝度分布は、発光層内でほぼ一定であり、発光層全体で発光する。発光層全体で積分した輝度は、表1(a)を1.0とすると、(b)は0.8となり低下する。 FIG. 4B shows the case where the ion polymerization initiator of the first hole transport layer 23 is 10 wt% and the ion polymerization initiator of the second hole transport layer 24 is 0 wt% (10 wt% / 0 wt%). The distribution of holes and electrons. The hole density in the light emitting layer is about 0.8 × 10 17 holes / cm 3, which is smaller than 30% compared with Table 1 (a). On the other hand, the electron density injected from the cathode Al is injected at about 1 × 10 14 atoms / cm 3 over the entire light emitting layer. Therefore, the luminance distribution is almost constant in the light emitting layer, and light is emitted from the entire light emitting layer. The luminance integrated over the entire light emitting layer is reduced to (b) of 0.8 when Table 1 (a) is 1.0.

図4(c)は、第1の正孔輸送層23のイオン重合開始剤が10wt%、第2の正孔輸送層24のイオン重合開始剤が3wt%の場合(10wt%/3wt%)の正孔及び電子の分布である。発光層内の正孔密度は、2.0×1017個/cm3程度となり、表1(a)と比べて、75%が維持される。陰極Alから注入される電子密度は、発光層全体に渡って、1×1014〜1×1015個/cm3程度注入される。表1(a)と比較して、輝度分布は、発光層内で一定に近づき、発光層全体で発光する。発光層全体で積分した輝度は、表1(a)を1.0とすると、(b)は1.2まで向上する。 FIG. 4 (c) shows the case where the ion polymerization initiator of the first hole transport layer 23 is 10 wt% and the ion polymerization initiator of the second hole transport layer 24 is 3 wt% (10 wt% / 3 wt%). The distribution of holes and electrons. The hole density in the light emitting layer is about 2.0 × 10 17 holes / cm 3 , and 75% is maintained as compared with Table 1 (a). The electron density injected from the cathode Al is about 1 × 10 14 to 1 × 10 15 pieces / cm 3 over the entire light emitting layer. Compared to Table 1 (a), the luminance distribution approaches a constant value in the light emitting layer, and the entire light emitting layer emits light. The luminance integrated over the entire light emitting layer is improved to 1.2 when Table 1 (a) is 1.0.

以上から、イオン重合開始剤の添加濃度によって、正孔輸送層の正孔密度を「電極側>発光層側」とすることで、輝度を向上できることができることを示した。
<3.硬化性重合体の導電性の高分子主鎖>
本発明の硬化性重合体の導電性の高分子主鎖に含まれる正孔輸送性モノマは、有機発光素子の電荷輸送層又は発光層を形成する樹脂を製造するために使用される公知のモノマであればよい。正孔輸送性モノマは、隣接するモノマと2カ所以上で結合する。2カ所で結合する正孔輸送性モノマは、直鎖状、2カ所以上で結合する正孔輸送モノマは分岐状となる。前記電荷輸送性及び発光性モノマとしては、限定するものではないが、例えば、アリールアミン、スチルベン、ヒドラゾン、カルバゾール、アニリン、オキサゾール、オキサジアゾール、ベンゾオキサゾール、ベンゾオキサジアゾール、ベンゾキノン、キノリン、イソキノリン、キノキサリン、チオフェン、ベンゾチオフェン、チアジアゾール、ベンゾジアゾール、ベンゾチアジアゾール、トリアゾール、ペリレン、キナクリドン、ピラゾリン、アントラセン、ルブレン、クマリン、ナフタレン、ベンゼン、ビフェニル、ターフェニル、アントラセン、テトラセン、フルオレン、フェナントレン、ピレン、クリセン、ピリジン、ピラジン、アクリジン、フェナントロリン、フラン及びピロール、並びにこれらの誘導体を骨格として有する化合物を挙げることができる。
好ましくは、直鎖状及び分岐状共役モノマは、式(1)〜(3):
From the above, it was shown that the luminance can be improved by setting the hole density of the hole transport layer to “electrode side> light emitting layer side” depending on the addition concentration of the ion polymerization initiator.
<3. Conductive polymer main chain of curable polymer>
The hole transporting monomer contained in the conductive polymer main chain of the curable polymer of the present invention is a known monomer used to produce a resin that forms a charge transporting layer or a light emitting layer of an organic light emitting device. If it is. A hole-transporting monomer is bonded to two or more adjacent monomers. A hole transporting monomer bonded at two points is linear, and a hole transporting monomer bonded at two or more points is branched. Examples of the charge transporting and light emitting monomers include, but are not limited to, arylamine, stilbene, hydrazone, carbazole, aniline, oxazole, oxadiazole, benzoxazole, benzooxadiazole, benzoquinone, quinoline, and isoquinoline. Quinoxaline, thiophene, benzothiophene, thiadiazole, benzodiazole, benzothiadiazole, triazole, perylene, quinacridone, pyrazoline, anthracene, rubrene, coumarin, naphthalene, benzene, biphenyl, terphenyl, anthracene, tetracene, fluorene, phenanthrene, pyrene, Chrysene, pyridine, pyrazine, acridine, phenanthroline, furan and pyrrole, and compounds having these derivatives as skeletons It can be mentioned.
Preferably, the linear and branched conjugated monomers are of the formulas (1) to (3):

で表される骨格を有する化合物から選択される。
式中、
R1〜R7は、互いに独立して、水素、ハロゲン、シアノ、ニトロ、炭素数1〜22の直鎖状、分岐状又は環状のアルキル、炭素数2〜22の直鎖状、分岐状又は環状のアルケニル、炭素数2〜22の直鎖状、分岐状又は環状のアルキニル、炭素数6〜21のアリール、炭素数12〜20のヘテロアリール、炭素数7〜21のアラルキル及び炭素数13〜20のヘテロアリールアルキルからなる群より選択されることが好ましく、水素、ハロゲン、シアノ、ニトロ、炭素数1〜22の直鎖状、分岐状又は環状のアルキル、炭素数6〜21のアリール、炭素数12〜20のヘテロアリール及び炭素数7〜21のアラルキルからなる群より選択されることがより好ましく、水素、ハロゲン、炭素数1〜10の直鎖状、分岐状又は環状のアルキル及び炭素数6〜10のアリールからなる群より選択されることがさらに好ましく、水素、臭素、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル及びフェニルからなる群より選択されることが特に好ましい。
It is selected from compounds having a skeleton represented by:
Where
R1 to R7 are independently of each other hydrogen, halogen, cyano, nitro, linear, branched or cyclic alkyl having 1 to 22 carbon atoms, linear, branched or cyclic having 2 to 22 carbon atoms. Alkenyl, straight chain, branched or cyclic alkynyl having 2 to 22 carbon atoms, aryl having 6 to 21 carbon atoms, heteroaryl having 12 to 20 carbon atoms, aralkyl having 7 to 21 carbon atoms, and 13 to 20 carbon atoms It is preferably selected from the group consisting of heteroarylalkyl, hydrogen, halogen, cyano, nitro, linear, branched or cyclic alkyl having 1 to 22 carbon atoms, aryl having 6 to 21 carbon atoms, carbon number 12 More preferably, it is selected from the group consisting of ˜20 heteroaryl and C 7-21 aralkyl, hydrogen, halogen, C 1-10 linear, branched or cyclic alkyl and C 6— Further selected from the group consisting of 10 aryls It is particularly preferred that it is selected from the group consisting of hydrogen, bromine, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and phenyl.

上記の基は、非置換又は1若しくは複数のハロゲンで置換されていることが好ましく、非置換であることがより好ましい。   The above groups are preferably unsubstituted or substituted with one or more halogens, and more preferably unsubstituted.

m1及びm2は、互いに独立して、0〜5の整数であることが好ましく、0又は1であることがより好ましい。   m1 and m2 are each independently an integer of 0 to 5, and more preferably 0 or 1.

n1及びn2は、互いに独立して、0〜4の整数であることが好ましく、0又は1であることがより好ましい。   n1 and n2 are each independently preferably an integer of 0 to 4, more preferably 0 or 1.

本明細書において、「アラルキル」は、アルキルの水素原子の1個がアリールに置換された基を意味する。好適なアラルキルは、限定するものではないが、例えばベンジル、1-フェネチル及び2-フェネチル等を挙げることが出来る。   In the present specification, “aralkyl” means a group in which one of hydrogen atoms of alkyl is substituted with aryl. Suitable aralkyls include, but are not limited to, benzyl, 1-phenethyl, 2-phenethyl, and the like.

本明細書において、「アリールアルケニル」は、アルケニルの水素原子の1個が前記アリールに置換された基を意味する。好適なアリールアルケニルは、限定するものではないが、例えばスチリル等を挙げることが出来る。   In the present specification, “arylalkenyl” means a group in which one of the alkenyl hydrogen atoms is substituted with the aryl. Suitable arylalkenyl includes, but is not limited to, styryl.

本明細書において、「ヘテロアリール」は、アリールの1個以上の炭素原子が、それぞれ独立して窒素原子(N)、硫黄原子(S)及び酸素原子(O)から選択される複素原子に置換された基を意味する。例えば、「炭素数12〜20のヘテロアリール」及び「(環の)員数12〜20のヘテロアリール」は、少なくとも12個且つ多くても20個の炭素原子を含む芳香族基の1個以上の炭素原子が、それぞれ独立して上記の複素原子に置換された基を意味する。この場合において、N又はSによる置換は、それぞれN-オキシド又はSのオキシド若しくはジオキシドによる置換を包含する。好適なヘテロアリールは、限定するものではないが、例えばフラニル、チエニル、ピロリル、イミダゾリル、ピラゾリル、トリアゾリル、テトラゾリル、チアゾリル、オキサゾリル、イソオキサゾリル、オキサジアゾリル、チアジアゾリル、イソチアゾリル、ピリジル、ピリダジニル、ピラジニル、ピリミジニル、キノリニル、イソキノリニル及びインドリル等を挙げることが出来る。本明細書において、「ヘテロアリールアルキル」は、アルキルの水素原子の1個が前記ヘテロアリールに置換された基を意味する。本明細書において、「ハロゲン」は、フッ素、塩素、臭素又はヨウ素を意味する。   In the present specification, “heteroaryl” means that one or more carbon atoms of aryl are each independently substituted with a heteroatom selected from a nitrogen atom (N), a sulfur atom (S), and an oxygen atom (O). Means the group formed. For example, “heteroaryl having 12 to 20 carbon atoms” and “heteroaryl having 12 to 20 members (ring)” are one or more aromatic groups containing at least 12 and at most 20 carbon atoms. It means a group in which carbon atoms are independently substituted with the above heteroatoms. In this case, substitution with N or S includes substitution with N-oxide or S oxide or dioxide, respectively. Suitable heteroaryl include, but are not limited to, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, thiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, isothiazolyl, pyridyl, pyridazinyl, pyrazinyl, pyrimidinyl, quinolinyl, Examples thereof include isoquinolinyl and indolyl. In the present specification, “heteroarylalkyl” means a group in which one of the hydrogen atoms of alkyl is substituted with the heteroaryl. In the present specification, “halogen” means fluorine, chlorine, bromine or iodine.

特に好ましくは、電荷輸送性もしくは発光性モノマは、トリフェニルアミン、N-(4-ブチルフェニル)-N’,N’’-ジフェニルアミン、9,9-ジオクチル-9H-フルオレン、N-フェニル-9H-カルバゾール、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-[1,1’-ビフェニル]-4,4’-ジアミン及びN,N’-ビス(3-メチルフェニル)-N,N’-ビス(2-ナフチル)-[1,1’-ビフェニル]-4,4’-ジアミン、並びにこれらの誘導体を骨格として有する化合物から選択される。
<4.硬化性重合体の架橋性の官能基側鎖>
本発明の硬化性重合体の側鎖に含まれる「架橋性の官能基」は、カチオン重合によって、重合できる公知の官能基であれば良い。例えば、エポキシ基やオキセタン基に代表される環状エーテル基や公知の芳香族架橋基であればよく、これらを複数の組合せても良い。前記芳香族基の架橋基としては、限定するものではないが、例えば、チオフェン、スチレン、ピロール及びベンゾシクロブテンを骨格として有する基を挙げることができる。
Particularly preferably, the charge transporting or luminescent monomer is triphenylamine, N- (4-butylphenyl) -N ′, N ″ -diphenylamine, 9,9-dioctyl-9H-fluorene, N-phenyl-9H -Carbazole, N, N'-diphenyl-N, N'-bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine and N, N'-bis (3-methylphenyl) ) -N, N′-bis (2-naphthyl)-[1,1′-biphenyl] -4,4′-diamine, and compounds having these derivatives as a skeleton.
<4. Crosslinkable functional group side chain of curable polymer>
The “crosslinkable functional group” contained in the side chain of the curable polymer of the present invention may be any known functional group that can be polymerized by cationic polymerization. For example, a cyclic ether group typified by an epoxy group or an oxetane group or a known aromatic crosslinking group may be used, and a plurality of these may be combined. Examples of the crosslinking group of the aromatic group include, but are not limited to, a group having thiophene, styrene, pyrrole, and benzocyclobutene as a skeleton.

好ましくは、芳香族基の架橋基は、式(4)〜(6):   Preferably, the cross-linking group of the aromatic group has the formulas (4) to (6):

で表される骨格を有する基から選択される。環状エーテル環架橋基は硬化反応が進行しやすく、より低温で硬化処理可能である。芳香族系の架橋基を用いて硬化させた樹脂の移動度が高い傾向がある。
上記の骨格を有する電荷輸送性もしくは発光性モノマの主鎖と架橋性の官能基側鎖からなる硬化性重合体を用いて作成した樹脂は、結果として得られる樹脂の硬化性を向上させ、且つ電荷輸送能力を向上させることが可能となる。
It is selected from a group having a skeleton represented by: The cyclic ether ring crosslinking group easily undergoes a curing reaction and can be cured at a lower temperature. There is a tendency that the mobility of a resin cured using an aromatic crosslinking group is high.
A resin prepared using a curable polymer comprising a main chain of a charge transporting or luminescent monomer having the above skeleton and a crosslinkable functional group side chain improves the curability of the resulting resin, and The charge transport capability can be improved.

主鎖は、直鎖状及び分岐状のいずれであってもよく、直鎖状と分岐状のモノマの両方も用いる場合の構成比率は、硬化性重合体に付与すべき特性に応じて適宜設定すればよい。例えば、硬化性向上のためには、本発明の有機発光素子の正孔輸送層として用いる硬化性重合体は、直鎖状モノマよりも、分岐状モノマを多く含む形態が望ましい。導電性の向上のためには、直鎖状モノマを多く含む形態が望ましい。
<5.イオン重合開始剤>
本明細書において、「カチオン重合性のイオン重合開始剤」は、プラスに荷電したカチオン分子とマイナスに荷電した対アニオン分子の組合せからなる。カチオン分子は、硬化処理によって活性化され、架橋基の架橋反応を促進する化合物である。対アニオン分子は、カチオン分子のプラス電荷を中性に保つために添加するもので、マイナスに荷電した状態が安定な分子である。
The main chain may be either linear or branched, and the composition ratio when both linear and branched monomers are used is appropriately set according to the characteristics to be imparted to the curable polymer. do it. For example, in order to improve curability, the curable polymer used as the hole transport layer of the organic light-emitting device of the present invention is preferably in a form containing more branched monomers than linear monomers. In order to improve conductivity, a form containing a large amount of linear monomers is desirable.
<5. Ion polymerization initiator>
In the present specification, the “cationic polymerizable ion polymerization initiator” is composed of a combination of a positively charged cation molecule and a negatively charged counter anion molecule. The cationic molecule is a compound that is activated by a curing treatment and promotes a crosslinking reaction of a crosslinking group. The counter anion molecule is added in order to keep the positive charge of the cation molecule neutral, and the negatively charged state is a stable molecule.

例えば、カチオン分子としては、ヨードニウム塩、スルホニウム塩及びフェロセン誘導体を挙げることができる。上記のカチオンは、カチオン重合を開始させる反応性が高いことから好ましい。   For example, examples of the cationic molecule include iodonium salts, sulfonium salts, and ferrocene derivatives. The above cations are preferable because of high reactivity for initiating cationic polymerization.

特に好ましくは、カチオン重合性のイオン重合開始剤は、下記化学式(7)〜(9)で表される化合物から選択される。   Particularly preferably, the cationically polymerizable ion polymerization initiator is selected from compounds represented by the following chemical formulas (7) to (9).

X=Sb6、(C654B、CF3SO3、PF6、BF4、C49SO3、CH364SO3のうちのいずれか1種
11〜R15は、互いに独立して、水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数1〜22の直鎖状、分岐状又は環状のアルキル基、炭素数2〜22の直鎖状、分岐状又は環状のアルケニル基、炭素数2〜22の直鎖状、分岐状又は環状のアルキニル基、炭素数6〜21のアリール基、炭素数12〜20のヘテロアリール基、炭素数7〜21のアラルキル基及び炭素数13〜20のヘテロアリールアルキル基からなる群より選択されることが好ましく、水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数1〜22の直鎖状、分岐状又は環状のアルキル基、炭素数6〜21のアリール基、炭素数12〜20のヘテロアリール基及び炭素数7〜21のアラルキル基からなる群より選択されることが更に好ましく、水素原子であることが特に好ましい。
s1、s2、t1、t2及びt3は、互いに独立して、0〜5の整数であることが好ましい。
Xは、対アニオンであり、いずれもマイナスに荷電した状態が安定な分子である。
<6.硬化性重合体の製造>
本発明の架橋性重合体は、上記で説明した電荷輸送性もしくは発光性モノマの少なくともいずれか、及び架橋基を含むモノマを、当該技術分野で公知の方法によって重合させることにより、製造することができる。例えば、架橋基を含むモノマが芳香族そのものであるか、架橋基が芳香族基と結合したモノマであれば、全てのモノマが芳香環を有する。この場合、例えば、スズキカップリングを用いて、各モノマに含まれる芳香環同士をクロスカップリングさせて、該モノマを重合させることができる。スズキカップリングは、芳香族ボロン酸(boronic acid)誘導体と芳香族ハロゲン化物との間で、Pd触媒クロスカップリング反応(以下「鈴木反応」とも記載する)を起こさしめるものである。鈴木反応を用いて、電荷輸送性もしくは発光性モノマの少なくともいずれか、並びに架橋基と芳香族基が結合したモノマの芳香環同士を結合させることにより、該モノマを重合させて本発明の重合性塗布液に含まれる重合性架橋基を有する高分子組成物を製造することが可能となる。
X = Sb 6 , (C 6 F 5 ) 4 B, CF 3 SO 3 , PF 6 , BF 4 , C 4 F 9 SO 3 , CH 3 C 6 H 4 SO 3 , any one of R 11 to R 15 is independently of each other a hydrogen atom, a halogen atom, a cyano group, a nitro group, a linear, branched or cyclic alkyl group having 1 to 22 carbon atoms, a linear or branched chain having 2 to 22 carbon atoms. Or cyclic alkenyl group, linear or branched alkynyl group having 2 to 22 carbon atoms, aryl group having 6 to 21 carbon atoms, heteroaryl group having 12 to 20 carbon atoms, or 7 to 21 carbon atoms It is preferably selected from the group consisting of an aralkyl group and a heteroarylalkyl group having 13 to 20 carbon atoms, a hydrogen atom, a halogen atom, a cyano group, a nitro group, a straight chain, branched or cyclic group having 1 to 22 carbon atoms. Alkyl group, aryl group having 6 to 21 carbon atoms, and 12 to 2 carbon atoms More preferably, it is selected from the group consisting of 0 heteroaryl group and aralkyl group having 7 to 21 carbon atoms, particularly preferably a hydrogen atom.
It is preferable that s1, s2, t1, t2, and t3 are integers of 0 to 5 independently of each other.
X is a counter anion, both of which are negatively charged molecules that are stable.
<6. Production of curable polymer>
The crosslinkable polymer of the present invention can be produced by polymerizing at least one of the charge transporting or light emitting monomer described above and a monomer containing a crosslinking group by a method known in the art. it can. For example, if the monomer containing a crosslinking group is an aromatic itself or a monomer in which the crosslinking group is bonded to an aromatic group, all monomers have an aromatic ring. In this case, for example, the monomers can be polymerized by cross-coupling aromatic rings contained in each monomer using Suzuki coupling. Suzuki coupling causes a Pd-catalyzed cross-coupling reaction (hereinafter also referred to as “Suzuki reaction”) between an aromatic boronic acid derivative and an aromatic halide. Using the Suzuki reaction, the monomer is polymerized by bonding at least one of the charge transporting or light-emitting monomer and the aromatic rings of the monomer having a crosslinking group and an aromatic group bonded to each other. A polymer composition having a polymerizable crosslinking group contained in the coating solution can be produced.

鈴木反応は、通常、Pd(II)塩又はPd(0)錯体の形態の可溶性Pd化合物を触媒として必要とする。鈴木反応の基質となる芳香族化合物、すなわち上記で説明した架橋性モノマを基準として、0.01〜5モルパーセントのPd(Ph3P)4、3級ホスフィンリガンドとのPd(OAc)2錯体又はPdCl2(dppf)錯体をPd触媒として用いることが好ましい。鈴木反応はまた、塩基も必要とする。水性アルカリカーボネート又はバイカーボネートを用いることが好ましく、炭酸カリウムを用いることがより好ましい。溶媒は、N,N-ジメチルホルムアミド、トルエン、アニソール、ジメトキシエタン又はテトラヒドロフラン等を用いることが好ましく、トルエンを用いることがより好ましい。トルエンのような非極性溶媒を用いる場合、トリスカプリリルメチルアンモニウムクロリド(Aliquat(登録商標)336)のような相間移動触媒を用いて反応を促進することが好ましい。上記の条件で各架橋性モノマを重合させることにより、高収率で本発明の硬化性重合体を製造することが可能となる。
<7.塗布液の溶媒>
上記のような塗布方法は、通常、−20〜300℃の温度範囲、好ましくは10〜100℃、特に好ましくは15〜50℃で実施することができ、また、上記溶液に用いる溶媒としては、特に限定されないが、例えば、トルエン、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、キシレン、メシチレン、アニソール、アセトン、メチルエチルケトン、酢酸エチル、酢酸ブチル、エチルセロソルブアセテート等を挙げることができる。
<8.硬化性重合体とイオン開始剤によって形成される樹脂>
本発明の有機発光素子に用いる正孔輸送層の硬化樹脂は、硬化性重合体とイオン開始剤とを有機溶媒に溶かした溶液を基板に塗布後、硬化処理することにより、イオン開始剤に含まれるカチオン分子が架橋性の官能基側鎖を回環し、硬化性重合体に含まれる架橋基同士が高分子間及び/又は高分子内架橋を形成して硬化樹脂を得ることができる。本発明の重合性塗布液を用いて製造される樹脂は、前記高分子間及び/又は高分子内架橋が形成されることにより、網目構造で強固となり、別の層を塗布しても溶けない。更に、カチオンが有していたプラス電荷は、導電性の高分子主鎖の正孔として導入される。通常の有機発光素子の有機層は絶縁性の樹脂であり、外部電圧によって、電極から正孔が注入される。これに対して、本硬化樹脂では、電圧を印可していない状態でも、正孔が硬化樹脂中に予め導入されているので、低抵抗である。
The Suzuki reaction usually requires a soluble Pd compound in the form of a Pd (II) salt or Pd (0) complex as a catalyst. Aromatic compounds that are substrates for the Suzuki reaction, i.e., 0.01 to 5 mole percent Pd (Ph 3 P) 4 , Pd (OAc) 2 complex with a tertiary phosphine ligand or PdCl, based on the crosslinkable monomer described above 2 (dppf) complexes are preferably used as Pd catalysts. The Suzuki reaction also requires a base. Aqueous alkali carbonate or bicarbonate is preferably used, and potassium carbonate is more preferably used. As the solvent, N, N-dimethylformamide, toluene, anisole, dimethoxyethane, tetrahydrofuran or the like is preferably used, and toluene is more preferably used. When a nonpolar solvent such as toluene is used, it is preferred to promote the reaction using a phase transfer catalyst such as triscaprylylmethylammonium chloride (Aliquat® 336). By polymerizing each crosslinkable monomer under the above conditions, the curable polymer of the present invention can be produced in a high yield.
<7. Solvent of coating solution>
The coating method as described above can be usually carried out at a temperature range of -20 to 300 ° C, preferably 10 to 100 ° C, particularly preferably 15 to 50 ° C, and as a solvent used in the solution, Although not particularly limited, examples thereof include toluene, chloroform, methylene chloride, dichloroethane, tetrahydrofuran, xylene, mesitylene, anisole, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
<8. Resin formed by curable polymer and ion initiator>
The cured resin for the hole transport layer used in the organic light-emitting device of the present invention is included in the ion initiator by applying a solution obtained by dissolving a curable polymer and an ion initiator in an organic solvent to a substrate, followed by curing treatment. The cation molecule thus circulates the crosslinkable functional group side chain, and the crosslinkable groups contained in the curable polymer form interpolymer and / or intrapolymer crosslinks to obtain a cured resin. The resin produced by using the polymerizable coating solution of the present invention becomes strong in a network structure by forming the interpolymer and / or intrapolymer crosslinks, and does not dissolve even when another layer is applied. . Furthermore, the positive charges possessed by the cation are introduced as holes in the conductive polymer main chain. The organic layer of a normal organic light emitting element is an insulating resin, and holes are injected from the electrode by an external voltage. In contrast, the present cured resin has low resistance because holes are introduced into the cured resin in advance even when no voltage is applied.

本明細書において、「硬化処理」は、上記で説明した架橋基を反応させて、分子間及び/又は分子内架橋を形成させる処理を意味する。本発明の硬化性重合体に適用される硬化処理としては、例えば、加熱、並びに光、マイクロ波、放射線及び電子線等の照射を挙げることができる。加熱処理が好ましい。   In the present specification, the “curing treatment” means a treatment in which the crosslinking groups described above are reacted to form intermolecular and / or intramolecular crosslinking. Examples of the curing treatment applied to the curable polymer of the present invention include heating and irradiation with light, microwave, radiation, electron beam and the like. Heat treatment is preferred.

特に好ましくは、本発明の硬化性重合体と上記で説明した架橋開始剤とを混合した混合物を加熱処理することによって架橋基を反応させて、分子間及び/又は分子内架橋を形成させる。この場合、加熱処理の温度は、100〜250℃の範囲であることが好ましい。また、加熱処理の時間は、10〜180分の範囲であることが好ましい。   Particularly preferably, a mixture obtained by mixing the curable polymer of the present invention and the crosslinking initiator described above is subjected to a heat treatment to react the crosslinking groups to form intermolecular and / or intramolecular crosslinking. In this case, it is preferable that the temperature of heat processing is the range of 100-250 degreeC. Moreover, it is preferable that the time of heat processing is the range for 10 to 180 minutes.

本発明の発光素子に正孔輸送層として用いられる硬化樹脂によって形成される樹脂は、通常、仕事関数が4〜7eVの範囲であり、典型的には4.7〜5.8eVの範囲である。前記仕事関数は、本発明の硬化性重合体に含まれるモノマの構成比率を適宜設定することによって調整することが出来る。例えば、本発明の硬化樹脂の仕事関数が、有機発光素子に通常使用される発光層の仕事関数及び酸化インジウムスズ(ITO、Indium Tin Oxide)電極の仕事関数の中間の値となることが望ましい。   The resin formed by the cured resin used as the hole transport layer in the light emitting device of the present invention usually has a work function in the range of 4 to 7 eV, and typically in the range of 4.7 to 5.8 eV. . The work function can be adjusted by appropriately setting the constituent ratio of the monomer contained in the curable polymer of the present invention. For example, it is desirable that the work function of the cured resin of the present invention be an intermediate value between the work function of a light emitting layer usually used in an organic light emitting device and the work function of an indium tin oxide (ITO) electrode.

なお、本発明の発光素子の正孔輸送層として用いられる硬化樹脂の仕事関数は、限定するものではないが、例えば、理研計器製表面分析装置AC−1を用い、照射光量50nWの条件で、仕事関数を測定することができる。
<9.硬化樹脂の作成例>
[硬化重合体作成例1]
直鎖状トリフェニルアミンモノマ(式(10))、分岐状トリフェニルアミンモノマ(式(11))、オキセタン架橋モノマ(式(12))を、鈴木反応で重合して、硬化性重合体を合成した。架橋性の直鎖状トリフェニルアミンモノマ(式(10))及び分岐トリフェニルアミンモノマ(式(11))は、鈴木反応の反応点をそれぞれ2及び3個有しており、重合によって主鎖を形成する。架橋性のオキセタン架橋モノマ(式(12))は、いずれも鈴木反応の反応点を1個有しており、重合によって側鎖を形成する。架橋性のオキセタン架橋モノマ(式(12))は、フェニレン及びオキシメチレンの組み合わせからなる二価の架橋基に、1-エチルオキセタン-1-イル基が結合した構造を有するモノマである。
The work function of the cured resin used as the hole transport layer of the light emitting device of the present invention is not limited. For example, using a surface analyzer AC-1 manufactured by Riken Keiki, under the condition of an irradiation light amount of 50 nW, The work function can be measured.
<9. Example of making cured resin>
[Curing Polymer Production Example 1]
A linear triphenylamine monomer (formula (10)), a branched triphenylamine monomer (formula (11)), and an oxetane-crosslinked monomer (formula (12)) are polymerized by the Suzuki reaction to obtain a curable polymer. Synthesized. The crosslinkable linear triphenylamine monomer (formula (10)) and branched triphenylamine monomer (formula (11)) have 2 and 3 reaction points, respectively, of the Suzuki reaction, and the main chain is formed by polymerization. Form. Each of the crosslinkable oxetane crosslinked monomers (formula (12)) has one reaction point of the Suzuki reaction, and forms a side chain by polymerization. The crosslinkable oxetane crosslinked monomer (formula (12)) is a monomer having a structure in which a 1-ethyloxetane-1-yl group is bonded to a divalent crosslinking group composed of a combination of phenylene and oxymethylene.

丸底フラスコに、4,4’-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4’’-n-ブチルトリフェニルアミン(式(10))(0.4 mmol)、4,4’,4’’-トリブロモトリフェニルアミン(式(11))(1.0 mmol)、3-(4-ブロモフェノキシメチル)3-エチルオキセタン(式(12))(1.2 mmol)、テトラキストリフェニルホスフィンパラジウム(0.008 mmol)、2 M炭酸カリウム水溶液( 5.3 mmol)、Aliquat(登録商標)336(0.4 mmol)及びアニソール(4 ml)を入れ、窒素雰囲気下、90℃で2時間撹拌した。   In a round bottom flask, 4,4′-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4 ″ -n-butyltriphenylamine (formula (10 )) (0.4 mmol), 4,4 ′, 4 ″ -tribromotriphenylamine (formula (11)) (1.0 mmol), 3- (4-bromophenoxymethyl) 3-ethyloxetane (formula (12) ) (1.2 mmol), tetrakistriphenylphosphine palladium (0.008 mmol), 2 M aqueous potassium carbonate solution (5.3 mmol), Aliquat (registered trademark) 336 (0.4 mmol) and anisole (4 ml) were placed in a nitrogen atmosphere. Stir for 2 hours at ° C.

上記の方法で、架橋性直鎖状トリフェニルアミンモノマ(式(10)):架橋性分岐トリフェニルアミンモノマ(式(11)):架橋性オキセタン架橋モノマ(式(12))=20:50:40のモル比で合成したところ、分子量40 kDaの架橋基を有する高分子組成物Aを得た。分子量は、ゲル浸透クロマトグラフィーを用いて、ポリスチレン換算で測定したときの数平均で決定した。本硬化性重合体を硬化性重合体Aとする。
[硬化性重合体作成例2]
硬化重合体作成例1で説明した手順において、直鎖状トリフェニルアミンモノマ(式(10))を、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチル-9H-フルオレン(式(13))に変更した他は、上記と同様の手順で分子量が約40 kDaの架橋基を有する硬化性重合体Bを得た。
Crosslinkable linear triphenylamine monomer (Formula (10)): Crosslinkable branched triphenylamine monomer (Formula (11)): Crosslinkable oxetane crosslinked monomer (Formula (12)) = 20:50 The polymer composition A having a cross-linking group having a molecular weight of 40 kDa was obtained. The molecular weight was determined by the number average when measured in terms of polystyrene using gel permeation chromatography. This curable polymer is designated as curable polymer A.
[Creative Polymer Production Example 2]
In the procedure described in the cured polymer preparation example 1, a linear triphenylamine monomer (formula (10)) was converted to 2,7-bis (4,4,5,5-tetramethyl-1,3,2- A curable polymer B having a crosslinking group having a molecular weight of about 40 kDa was prepared in the same manner as above except that dioxaborolan-2-yl) -9,9-dioctyl-9H-fluorene (formula (13)) was changed. Obtained.

[硬化性重合体作成例3]
硬化重合体作成例1で説明した手順において、架橋性直鎖状トリフェニルアミンモノマ(式(10))を、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-N-フェニル-9H-カルバゾール(式(14))に変更した他は、上記と同様の手順で分子量が約40 kDaの架橋基を有する硬化性重合体Cを得た。
[Creative Polymer Production Example 3]
In the procedure described in the cured polymer production example 1, a crosslinkable linear triphenylamine monomer (formula (10)) is converted into 2,7-bis (4,4,5,5-tetramethyl-1,3, A curable polymer C having a crosslinking group having a molecular weight of about 40 kDa was prepared in the same manner as described above except that 2-dioxaborolan-2-yl) -N-phenyl-9H-carbazole (formula (14)) was changed. Obtained.

[硬化性重合体作成例4]
硬化重合体作成例1で説明した手順において、架橋性のオキセタン架橋モノマ(式(3))を以下の芳香族系架橋基(式(15)、式(16)、式(17))のいずれかに変更した他は、上記と同様の手順で分子量が約40 kDaの架橋基を有する硬化性重合体D、E、Fを得た。
[Creating Polymer Preparation Example 4]
In the procedure described in the preparation example 1 of the cured polymer, the crosslinkable oxetane crosslinked monomer (formula (3)) is replaced with any of the following aromatic crosslinkable groups (formula (15), formula (16), formula (17)). The curable polymers D, E, and F having a crosslinking group having a molecular weight of about 40 kDa were obtained by the same procedure as described above except that the above was changed.

[塗布液の調製]
上記硬化性重合体A、B、Cのいずれか(4.2mg)、式(7)で表される開始剤(式中、カチオンのR11、R12はHであり、s1、s2=1、対アニオンX=(C6F5)4B)を0.04、0.12、0.42mg(硬化性重合体に対して、それぞれz=1、3、10wt%に対応する)のいずれかの濃度(硬化性重合体Aのみ0wt%条件も実施)を1.2mlのトルエンに溶解させ、塗布液を作成した。本塗布液を塗布液A(z)、B(z)、C(z) とする。
[硬化性重合体を用いた樹脂の形成]
酸化インジウムスズ(ITO、Indium Tin Oxide)を、1.6 mm幅でガラス基板上にパターンニングした。このITOガラス基板上に、上記で調整した塗布液を300回転/分の条件でスピンコートした。その後、重合性塗布液をコートしたITOガラス基板を、硬化性重合体A、B、Cのいずれかを含む塗布液に対しては、ホットプレート上で180℃、硬化性重合体Dを含む塗布液に対しては、ホットプレート上で250℃、60分間加熱することで硬化処理して、硬化性重合体を加熱重合させて、樹脂を形成させた。樹脂をそれぞれ、硬化樹脂A(z)、B(z)、C(z)、D(z)とする。
[残膜率の評価]
残膜率の評価は、例えば以下の手順で実施することができる。ITOガラス基板の陽極の上に、本発明の硬化性重合体によって形成される樹脂を用いて正孔輸送層を作製する。正孔輸送層が形成されたITOガラス基板を、有機溶媒(例えばトルエン)に20〜250℃、10〜60秒間の条件で浸漬させる。その後、ITOガラス基板を有機溶媒中から取り出し、浸漬前後の薄膜の吸光度を測定した。吸光度の比より薄膜の残存率(残膜率)を求めた。吸光度は、膜厚に比例するので、吸光度の比(浸積あり/浸積なし)は、正孔輸送層の残膜率(浸積あり/浸積なし)に一致する。残膜率が高い程、有機溶媒耐性が高いと評価される。
[Preparation of coating solution]
Any of the above curable polymers A, B and C (4.2 mg), an initiator represented by the formula (7) (wherein R11 and R12 of the cation are H, s1, s2 = 1, counter anion) X = (C 6 F 5 ) 4 B) 0.04, 0.12, 0.42 mg (corresponding to z = 1, 3, 10 wt%, respectively for the curable polymer) (curable polymer) (A was also carried out under the condition of 0 wt% only in A) and dissolved in 1.2 ml of toluene to prepare a coating solution. This coating solution is defined as coating solutions A (z), B (z), and C (z).
[Formation of resin using curable polymer]
Indium tin oxide (ITO) was patterned on a glass substrate with a width of 1.6 mm. On the ITO glass substrate, the coating solution prepared above was spin-coated under the condition of 300 rpm. Then, the ITO glass substrate coated with the polymerizable coating solution is applied to the coating solution containing any of the curable polymers A, B, and C at 180 ° C. on the hot plate and containing the curable polymer D. The liquid was cured by heating on a hot plate at 250 ° C. for 60 minutes, and the curable polymer was polymerized by heating to form a resin. The resins are referred to as cured resins A (z), B (z), C (z), and D (z), respectively.
[Evaluation of remaining film ratio]
The evaluation of the remaining film rate can be performed, for example, by the following procedure. On the anode of the ITO glass substrate, a hole transport layer is produced using a resin formed of the curable polymer of the present invention. The ITO glass substrate on which the hole transport layer is formed is immersed in an organic solvent (for example, toluene) at 20 to 250 ° C. for 10 to 60 seconds. Thereafter, the ITO glass substrate was taken out from the organic solvent, and the absorbance of the thin film before and after immersion was measured. The residual ratio of the thin film (residual film ratio) was determined from the absorbance ratio. Since the absorbance is proportional to the film thickness, the ratio of absorbance (with / without immersion) corresponds to the remaining film ratio (with / without immersion) of the hole transport layer. It is evaluated that the higher the residual film ratio, the higher the organic solvent resistance.

硬化樹脂A(z)、B(z)、C(z)、D(z)の薄膜をガラス板ごとトルエン中でリンスし、リンス前後の薄膜の吸光度を測定し、リンス前後の吸光度の比より薄膜の残存率(残膜率)を求めた。いずれの樹脂薄膜も残膜率は90%以上で、十分な耐溶性を有している。
[仕事関数の評価]
光電子収量分光装置(理研計器製表面分析装置AC−1を用い、照射光量50nWとした)を用いて、硬化樹脂の仕事関数を決定した。硬化樹脂A(z)の仕事関数は5.0 eVであったのに対し、硬化樹脂B(z)及びC(z)の仕事関数は、それぞれ5.2及び5.3 eVだった。この結果から、硬化性重合体を合成する際に使用される電荷輸送性もしくは発光性モノマの種類を変更することにより、発光層及びITOの中間の仕事関数を有する樹脂を作成して、有機EL素子の作成に使用できると考えられる。硬化樹脂D(z)、E(z)、F(z)の仕事関数は、導電性高分子の形態が同一である硬化樹脂Aと同じ5.0 eVであった。
[ホールオンリー素子]
上記の方法で作成した正孔輸送層として用いる硬化樹脂単層の性能をホールオンリー素子で評価した。ホールオンリー素子は、硬化樹脂を陽極である酸化インジウムスズITOと陰極である金で挟んだ素子である。
Rinse a thin film of cured resin A (z), B (z), C (z), D (z) with toluene in toluene and measure the absorbance of the thin film before and after rinsing. From the ratio of absorbance before and after rinsing The remaining rate of the thin film (remaining film rate) was determined. All of the resin thin films have a remaining film ratio of 90% or more and have sufficient resistance to dissolution.
[Evaluation of work function]
The work function of the cured resin was determined using a photoelectron yield spectrometer (a surface analyzer AC-1 manufactured by Riken Keiki Co., Ltd., with an irradiation light amount of 50 nW). The work functions of the cured resins A (z) were 5.0 eV, whereas the work functions of the cured resins B (z) and C (z) were 5.2 and 5.3 eV, respectively. From this result, by changing the type of charge transporting or light emitting monomer used in the synthesis of the curable polymer, a resin having a work function intermediate between the light emitting layer and ITO was created, and the organic EL It can be used to create elements. The work functions of the cured resins D (z), E (z), and F (z) were 5.0 eV, which is the same as that of the cured resin A having the same conductive polymer form.
[Hall-only element]
The performance of the cured resin single layer used as the hole transport layer prepared by the above method was evaluated with a hole-only device. The hole-only element is an element in which a cured resin is sandwiched between indium tin oxide ITO as an anode and gold as a cathode.

ホールオンリー素子は以下の手順で作成する。硬化性重合体A、B、C(20mg)のトルエン(440μL)溶液に、前述のイオン重合開始剤0.2、0.6、2mg(硬化性重合体に対してz=1、3、10wt%)のトルエン(10μL)溶液を加えて塗布溶液を調整した。ITOを1.6mm幅にパターニングしたガラス基板上に、前記塗布溶液を2000/minでスピン塗布し、硬化性重合体A、B、Cのいずれかを含む塗布液に対しては、ホットプレート上で120℃、10分間加熱し、硬化樹脂A(z)、B(z)、C(z)を形成する。硬化性重合体D、E、Fを含む塗布液に対しては、ホットプレート上で200℃、10分間加熱し、硬化樹脂D(z)、E(z)、F(z)を形成する。次に得られたガラス基板を真空蒸着機中に移し、金(膜厚30nm)を蒸着した。   The hole-only device is created by the following procedure. In a toluene (440 μL) solution of the curable polymers A, B, and C (20 mg), 0.2, 0.6, and 2 mg of the above-described ion polymerization initiator (z = 1, 3, 10 wt with respect to the curable polymer). %) In toluene (10 μL) was added to prepare a coating solution. The coating solution is spin-coated at a rate of 2000 / min on a glass substrate on which ITO is patterned to a width of 1.6 mm, and the coating solution containing any of curable polymers A, B, and C is on a hot plate. At 120 ° C. for 10 minutes to form cured resins A (z), B (z), and C (z). The coating solution containing the curable polymers D, E, and F is heated on a hot plate at 200 ° C. for 10 minutes to form cured resins D (z), E (z), and F (z). Next, the obtained glass substrate was transferred into a vacuum evaporation machine, and gold (film thickness 30 nm) was evaporated.

金を蒸着後、大気開放することなく、乾燥窒素環境中に基板を移動し、0.7mmの無アルカリガラスに0.4mmのザグリを入れた封止ガラスとITO基板を、光硬化性エポキシ樹脂を用いて貼り合わせることにより封止を行い、ホールオンリー素子を作製した。   After depositing gold, the substrate is moved into a dry nitrogen environment without opening to the atmosphere, and the sealing glass and ITO substrate in which 0.4 mm of counterbore is put into 0.7 mm non-alkali glass are used as a photocurable epoxy resin. Sealing was performed by bonding together to produce a hole-only element.

硬化樹脂A(z)、B(z)、C(z)、D(z)、E(z)、F(z)を用いて形成したホールオンリー素子にて、印可電圧1V時の電流密度は、いずれの硬化樹脂においてもzが増加するとともに増加した。これは、イオン重合性開始剤の対アニオンの濃度が増加するほど、導入される正孔が増加することを示す。従って、例えば、2層の正孔輸送層を設けて、陽極に隣接する第1の正孔輸送層23と発光層に隣接する第2の正孔輸送層24とで、イオン重合開始剤に関して、「第1の正孔輸送層23>第2の正孔輸送層24」とすることで、本発明の効果を発現できる。   In a hole-only element formed using cured resin A (z), B (z), C (z), D (z), E (z), F (z), the current density at an applied voltage of 1 V is In any cured resin, z increased with increasing. This indicates that the number of introduced holes increases as the concentration of the counter anion of the ion polymerizable initiator increases. Therefore, for example, by providing two hole transport layers, with the first hole transport layer 23 adjacent to the anode and the second hole transport layer 24 adjacent to the light emitting layer, with respect to the ion polymerization initiator, By setting “first hole transport layer 23> second hole transport layer 24”, the effect of the present invention can be exhibited.

硬化樹脂A(z)の、[塗布液の調製]において、式(7)で表される開始剤のカチオン(式中、カチオンのR11、R12はHであり、s1、s2=1)と対アニオンX=SbF6、CF3SO3、PF6、BF4、C4F9SO3及びCH3C6H4SO3のいずれかを0.04、、0.12、0.42mg(硬化性重合体に対して、それぞれz=1、3、10wt%に対応する)添加した場合においても、印可電圧1V時の電流密度は、いずれの硬化樹脂においてもzが増加するとともに増加した。 In [Preparation of coating solution] of the cured resin A (z), the cation of the initiator represented by the formula (7) (wherein R11 and R12 of the cation are H, and s1, s2 = 1) Anion X = SbF 6 , CF 3 SO 3 , PF 6 , BF 4 , C 4 F 9 SO 3 and CH 3 C 6 H 4 SO 3 are 0.04, 0.12, 0.42 mg (based on the curable polymer) In addition, even when added (corresponding to z = 1, 3, 10 wt%, respectively), the current density at an applied voltage of 1 V increased as z increased in any cured resin.

硬化樹脂A(z)の、[塗布液の調製]において、式(7)(式中、カチオンのR11、R12はHであり、t1、t2、T3=1)又はXIIIで表される開始剤のカチオンと対アニオンX=(C6F5)4Bを0.04、、0.12、0.42mg(硬化性重合体に対して、それぞれz=1、3、10wt%に対応する)添加した場合においても、印可電圧1V時の電流密度は、いずれの硬化樹脂においてもzが増加するとともに増加した。 In the [preparation of coating solution] of the cured resin A (z), an initiator represented by the formula (7) (wherein R11 and R12 of the cation are H and t1, t2, T3 = 1) or XIII Even when 0.04, 0.12, or 0.42 mg of cation and counter anion X = (C 6 F 5 ) 4 B are added (corresponding to z = 1, 3, and 10 wt%, respectively, with respect to the curable polymer). The current density at an applied voltage of 1 V increased with increasing z in any cured resin.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
<実施例1:硬化樹脂Aを正孔輸送層として用いた有機発光素子A>
[正極及び正孔輸送層の作成]
上記の[硬化重合体作成例1]、[塗布液の調製]、[硬化性重合体を用いた樹脂の形成]で説明した方法を用いて、正極ITO基板上に、正孔輸送層として、硬化樹脂を形成する。ここでは、ITO基板上の第1の正孔輸送層23として、硬化樹脂A(イオン重合開始剤10wt%添加)、更に、第1の正孔輸送層23の上に、第2の正孔輸送層24として、硬化樹脂A(イオン重合開始剤3wt%添加)積層した。第1の正孔輸送層23、第2の正孔輸送層24の厚みはそれぞれ30nmとした。
[発光層材料の作成]
丸底フラスコに、4,4’-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4’’-n-ブチルトリフェニルアミン(1)(0.4 mmol)、4,4’-ジブロモトリフェニルアミン(2)(0.08 mmol)、4,7-ジブロモ-2,1,3-ベンゾチアジアゾール(0.32 mmol)、テトラキストリフェニルホスフィンパラジウム(0.004 mmol)、2 M炭酸カリウム水溶液(10.6 mmol)、Aliquat(登録商標)336(0.4 mmol)及びトルエン(7 ml)を入れ、窒素雰囲気下、80℃で48時間撹拌した。反応溶液をメタノール/水混合溶媒(9:1)に注ぎ、析出した重合体をろ別した。再沈殿を2回繰り返し行って精製し、黄色発光重合体Dを得た。
[発光層及び陰極Al形成]
ITO基板上に硬化樹脂(イオン重合開始剤10wt%添加)、硬化樹脂A(イオン重合開始剤3wt%添加)を積層した基板上に、黄色発光重合体Dをスピンコートし、発光層30nmを積層した。発光層の上に100 nmの膜厚のAl電極を蒸着させた。電極形成後、大気開放することなく、乾燥窒素環境中に基板を移動させた。ITO基板と、0.7 mmの無アルカリガラスに0.4 mmのザグリを入れた封止ガラスとを、光硬化性エポキシ樹脂を用いて貼り合わせることにより封止して、多層構造の有機発光素子を作製した。本有機発光素子を有機発光素子A(10wt%:3wt%)とする。
<比較例1:第1の正孔輸送層と第2の正孔輸送層のイオン重合開始剤が同一の有機発光素子>
実施例1で説明した手順において、正孔輸送層の硬化樹脂を作成する際の添加するイオン重合開始剤の濃度に関して、第1の正孔輸送層23、第2の正孔輸送層24ともに10wt%添加した以外は、同一の条件で、有機発光素子を作成した。この有機発光素子を有機発光素子A(10wt%/10wt%)とする。
<比較例2:第1の正孔輸送層にのみイオン重合開始剤を添加した有機発光素子>
実施例1で説明した手順において、正孔輸送層の硬化樹脂を作成する際の添加するイオン重合開始剤の濃度に関して、第1の正孔輸送層23に10wt%添加、第2の正孔輸送層24には添加しない条件とした以外は、同一の条件で、有機発光素子を作成した。第2の正孔輸送層24は、イオン重合開始剤を添加しなくても、硬化反応が進行し、残膜率が90%以上であることも確認した。この有機発光素子を有機発光素子A(10wt%/0wt%)とする。
<比較例3:第1よりも第2の正孔輸送層にイオン重合開始剤を多く添加した有機発光素子>
実施例1で説明した手順において、正孔輸送層の硬化樹脂を作成する際の添加するイオン重合開始剤の濃度に関して、第1の正孔輸送層23に3wt%、第2の正孔輸送層24に10wt%添加した以外は、同一の条件で、有機発光素子を作成した。この有機発光素子を有機発光素子A(3wt%/10wt%)とする。
<有機発光素子性能の評価>
実施例1並びに比較例1、2、3の有機発光素子の性能評価は、大気中、室温(25℃)において、1,000cd/m2の輝度を維持するための電圧を測定することによって行った。実施例1の有機発光素子A(10wt%/3wt%)の場合、6.0Vであったのに対して、比較例1の有機発光素子A(10wt%/10wt%)では6.5V、比較例2の有機発光素子A(10wt%/0wt%)では、7.0Vであった。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
<Example 1: Organic light emitting device A using cured resin A as a hole transport layer>
[Creation of positive electrode and hole transport layer]
Using the methods described in [Cure Polymer Preparation Example 1], [Preparation of Coating Solution], and [Formation of Resin Using Curable Polymer], as a hole transport layer on the positive electrode ITO substrate, A cured resin is formed. Here, as the first hole transport layer 23 on the ITO substrate, a cured resin A (added with 10 wt% of an ion polymerization initiator), and further, a second hole transport layer on the first hole transport layer 23. As a layer 24, a cured resin A (added with 3 wt% of an ion polymerization initiator) was laminated. The thicknesses of the first hole transport layer 23 and the second hole transport layer 24 were 30 nm, respectively.
[Creation of light emitting layer material]
In a round bottom flask, 4,4′-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4 ″ -n-butyltriphenylamine (1) ( 0.4 mmol), 4,4′-dibromotriphenylamine (2) (0.08 mmol), 4,7-dibromo-2,1,3-benzothiadiazole (0.32 mmol), tetrakistriphenylphosphine palladium (0.004 mmol), 2 M potassium carbonate aqueous solution (10.6 mmol), Aliquat (registered trademark) 336 (0.4 mmol) and toluene (7 ml) were added, and the mixture was stirred at 80 ° C. for 48 hours under a nitrogen atmosphere. The reaction solution was poured into a methanol / water mixed solvent (9: 1), and the precipitated polymer was separated by filtration. Purification was performed by repeating reprecipitation twice, and a yellow light-emitting polymer D was obtained.
[Light emitting layer and cathode Al formation]
A yellow light emitting polymer D is spin-coated on a substrate in which a cured resin (10 wt% of an ionic polymerization initiator) and a cured resin A (3 wt% of an ionic polymerization initiator) are laminated on an ITO substrate, and a light emitting layer of 30 nm is laminated. did. An Al electrode having a thickness of 100 nm was deposited on the light emitting layer. After electrode formation, the substrate was moved into a dry nitrogen environment without opening to the atmosphere. A multilayer glass organic light-emitting device was fabricated by sealing an ITO substrate and a sealing glass in which 0.4 mm counterbore was added to 0.7 mm alkali-free glass using a photo-curable epoxy resin. . This organic light emitting device is referred to as organic light emitting device A (10 wt%: 3 wt%).
<Comparative Example 1: Organic light-emitting device having the same ion polymerization initiator in the first hole transport layer and the second hole transport layer>
In the procedure described in Example 1, both the first hole transport layer 23 and the second hole transport layer 24 have a concentration of 10 wt.% With respect to the concentration of the ion polymerization initiator added when preparing the cured resin for the hole transport layer. An organic light-emitting device was produced under the same conditions except that% was added. This organic light emitting device is referred to as organic light emitting device A (10 wt% / 10 wt%).
<Comparative Example 2: Organic light-emitting device in which an ion polymerization initiator is added only to the first hole transport layer>
In the procedure described in Example 1, 10 wt% was added to the first hole transport layer 23 with respect to the concentration of the ion polymerization initiator to be added when the cured resin for the hole transport layer was prepared. An organic light emitting device was produced under the same conditions except that the layer 24 was not added. It was also confirmed that the second hole transport layer 24 proceeded with the curing reaction without adding an ionic polymerization initiator, and the remaining film ratio was 90% or more. This organic light emitting element is referred to as organic light emitting element A (10 wt% / 0 wt%).
<Comparative Example 3: Organic light-emitting device in which more ion polymerization initiator is added to the second hole transport layer than the first>
In the procedure described in Example 1, with respect to the concentration of the ion polymerization initiator to be added when preparing the cured resin for the hole transport layer, 3 wt% is added to the first hole transport layer 23, and the second hole transport layer is added. An organic light emitting device was fabricated under the same conditions except that 10 wt% was added to 24. This organic light emitting device is referred to as organic light emitting device A (3 wt% / 10 wt%).
<Evaluation of organic light emitting device performance>
The performance evaluation of the organic light-emitting elements of Example 1 and Comparative Examples 1, 2, and 3 was performed by measuring a voltage for maintaining a luminance of 1,000 cd / m 2 at room temperature (25 ° C.) in the atmosphere. The organic light emitting device A of Example 1 (10 wt% / 3 wt%) was 6.0 V, while the organic light emitting device A of Comparative Example 1 (10 wt% / 10 wt%) was 6.5 V, Comparative Example 2. In organic light emitting device A (10 wt% / 0 wt%), the voltage was 7.0 V.

これは、シミュレーションで示した傾向と一致する。更に、比較例3の有機発光素子A(3wt%/10wt%)では6.8Vであった。
以上から、イオン重合開始剤の添加濃度によって、正孔輸送層内の電極側の正孔密度が発光層側の正孔密度より大きくすることで、輝度を向上できることが示された。
<実施例2:硬化樹脂Dを正孔輸送層Dとして用いた有機発光素子2>
実施例1において、第1の正孔輸送層23、第2の正孔輸送層24を形成する硬化樹脂Aを硬化樹脂Dとした以外は、同一の条件で作成した有機発光素子を有機発光素子D(10wt%/3wt%)とした。
<比較例4:第1の正孔輸送層、第2の正孔輸送層のイオン重合開始剤が同一の有機発光素子>
実施例2の有機発光素子Dにおいて、正孔輸送層の硬化樹脂を作成する際の添加するイオン重合開始剤の濃度に関して、第1の正孔輸送層23、第2の正孔輸送層24ともに10wt%添加した以外は、同一の条件で、有機発光素子を作成した。この有機発光素子を有機発光素子D(10wt%/10wt%)とする。
<比較例5:第1の正孔輸送層にのみイオン重合開始剤を添加した有機発光素子>
実施例2で説明した手順において、正孔輸送層の硬化樹脂を作成する際の添加するイオン重合開始剤の濃度に関して、第1の正孔輸送層23に10wt%添加、第2の正孔輸送層24には添加しない条件とした以外は、同一の条件で、有機発光素子を作成した。第2の正孔輸送層24は、イオン重合開始剤を添加しなくても、硬化反応が進行し、残膜率が90%以上であることも確認した。この有機発光素子を有機発光素子D(10wt%/0wt%)とする。
<有機発光素子性能の評価2>
実施例2並びに比較例4、5の有機発光素子の性能評価は、大気中、室温(25℃)において、1,000cd/m2の輝度を維持するための電圧を測定することによって行った。
This is consistent with the trend shown in the simulation. Further, in the organic light emitting device A of Comparative Example 3 (3 wt% / 10 wt%), it was 6.8 V.
From the above, it was shown that the luminance can be improved by making the hole density on the electrode side in the hole transport layer larger than the hole density on the light emitting layer side, depending on the addition concentration of the ion polymerization initiator.
<Example 2: Organic light emitting device 2 using cured resin D as hole transport layer D>
In Example 1, an organic light-emitting element prepared under the same conditions was used except that the cured resin A forming the first hole transport layer 23 and the second hole transport layer 24 was a cured resin D. D (10 wt% / 3 wt%).
<Comparative Example 4: Organic light-emitting device having the same ion polymerization initiator in the first hole transport layer and the second hole transport layer>
In the organic light-emitting device D of Example 2, both the first hole transport layer 23 and the second hole transport layer 24 are related to the concentration of the ion polymerization initiator to be added when preparing the cured resin for the hole transport layer. An organic light emitting device was produced under the same conditions except that 10 wt% was added. This organic light emitting element is referred to as organic light emitting element D (10 wt% / 10 wt%).
<Comparative Example 5: Organic light-emitting device in which an ion polymerization initiator is added only to the first hole transport layer>
In the procedure described in Example 2, with respect to the concentration of the ion polymerization initiator to be added when preparing the cured resin of the hole transport layer, 10 wt% was added to the first hole transport layer 23, and the second hole transport was added. An organic light emitting device was produced under the same conditions except that the layer 24 was not added. It was also confirmed that the second hole transport layer 24 proceeded with the curing reaction without adding an ionic polymerization initiator, and the remaining film ratio was 90% or more. This organic light emitting element is referred to as organic light emitting element D (10 wt% / 0 wt%).
<Evaluation 2 of organic light emitting device performance>
The performance evaluation of the organic light-emitting devices of Example 2 and Comparative Examples 4 and 5 was performed by measuring a voltage for maintaining a luminance of 1,000 cd / m 2 in the atmosphere at room temperature (25 ° C.).

実施例2の有機発光素子D(10wt%/3wt%)の場合、5.7Vであったのに対して、比較例4の有機発光素子D(10wt%/10wt%)では6.2V、比較例5の有機発光素子D(10wt%/0wt%)では、6.8Vであった。   In the case of the organic light emitting device D of Example 2 (10 wt% / 3 wt%), it was 5.7 V, whereas in the case of the organic light emitting device D of Comparative Example 4 (10 wt% / 10 wt%), 6.2 V, Comparative Example 5 In the organic light emitting device D (10 wt% / 0 wt%), the voltage was 6.8V.

以上から、本素子においても、イオン重合開始剤の添加濃度によって、正孔輸送層の正孔密度を電極側>発光層側とすることで、輝度を向上できることができることが示された。
<実施例3:正孔輸送層を3層用いた有機発光素子>
図5に示す第3の正孔輸送層28を有する有機発光素子E(10wt%/5wt%/3wt%)を作成した。実施例1と同様に、硬化樹脂A(イオン重合開始剤10wt%添加)、更に、第1の正孔輸送層23の上に、第2の正孔輸送層24として、硬化樹脂A(イオン重合開始剤5wt%添加)を積層した。これに加えて本素子では、第2の正孔輸送層24の上に、第3の正孔輸送層28として、硬化樹脂A(イオン重合開始剤3wt%添加)を積層した。第1の正孔輸送層23、第2の正孔輸送層24、第2の正孔輸送層28の厚みはそれぞれ20nmとした。
<有機発光素子性能の評価3>
実施例3並びに比較例4、5の有機発光素子の性能評価は、大気中、室温(25℃)において、1,000cd/m2の輝度を維持するための電圧を測定することによって行った。
From the above, it was shown that the luminance can be improved also in this device by setting the hole density of the hole transport layer to the electrode side> the light emitting layer side by the addition concentration of the ion polymerization initiator.
<Example 3: Organic light-emitting device using three hole transport layers>
An organic light emitting device E (10 wt% / 5 wt% / 3 wt%) having the third hole transport layer 28 shown in FIG. 5 was prepared. In the same manner as in Example 1, the cured resin A (ion polymerization initiator added at 10 wt%), and the second hole transport layer 24 on the first hole transport layer 23 as the cured resin A (ion polymerization) The initiator was added at 5 wt%). In addition to this, in this element, a cured resin A (added with 3 wt% of an ion polymerization initiator) was laminated on the second hole transport layer 24 as the third hole transport layer 28. The thicknesses of the first hole transport layer 23, the second hole transport layer 24, and the second hole transport layer 28 were each 20 nm.
<Evaluation 3 of organic light emitting device performance>
The performance evaluation of the organic light-emitting devices of Example 3 and Comparative Examples 4 and 5 was performed by measuring a voltage for maintaining a luminance of 1,000 cd / m 2 at room temperature (25 ° C.) in the atmosphere.

実施例3の有機発光素子E(10wt%/5wt%/3wt%)の場合、5.8Vであり、実施例1の有機発光素子A(10wt%/3wt%)では6.0Vと比較して、より輝度を向上できることが示された。   In the case of the organic light emitting device E of Example 3 (10 wt% / 5 wt% / 3 wt%), it is 5.8 V, and in the organic light emitting device A of Example 1 (10 wt% / 3 wt%), it is more than 6.0 V. It was shown that the brightness can be improved.

10…硬化性重合体、11…導電性の高分子主鎖、12…架橋性の官能基側鎖、13…対アニオン、14…カチオン、15…架橋構造、21…ガラス基板、22…陽極、23…第1の正孔輸送層、24…第2の正孔輸送層、25…発光層、26…電子輸送層、27…陰極、28…第3の正孔輸送層、201…有機発光素子   DESCRIPTION OF SYMBOLS 10 ... Curing polymer, 11 ... Conductive polymer principal chain, 12 ... Crosslinkable functional group side chain, 13 ... Counter anion, 14 ... Cation, 15 ... Cross-linked structure, 21 ... Glass substrate, 22 ... Anode, DESCRIPTION OF SYMBOLS 23 ... 1st hole transport layer, 24 ... 2nd hole transport layer, 25 ... Light emitting layer, 26 ... Electron transport layer, 27 ... Cathode, 28 ... 3rd hole transport layer, 201 ... Organic light emitting element

Claims (10)

陽極と発光層の間に、正孔輸送層を有する有機発光素子において、
正孔輸送層は、対アニオン及び架橋構造を有する硬化樹脂で構成され、
前記正孔輸送層内の対アニオンの濃度は、前記発光層側よりも前記陽極側の方が高いことを特徴とする有機発光素子。
In the organic light emitting device having a hole transport layer between the anode and the light emitting layer,
The hole transport layer is composed of a cured resin having a counter anion and a crosslinked structure,
The organic light emitting device, wherein the concentration of counter anions in the hole transport layer is higher on the anode side than on the light emitting layer side.
請求項1に記載の有機発光素子において、
前記正孔輸送層内の正孔の濃度は、前記発光層側よりも前記陽極側の方が高いことを特徴とする有機発光素子。
The organic light emitting device according to claim 1,
The organic light emitting device, wherein the hole concentration in the hole transport layer is higher on the anode side than on the light emitting layer side.
請求項1または2に記載の有機発光素子において、
前記正孔輸送層は、陽極から発光層に向かって連続的に対アニオンの濃度が低くなることを特徴とする有機発光素子。
The organic light emitting device according to claim 1 or 2,
In the organic light emitting device, the hole transport layer has a counter anion concentration continuously decreasing from the anode toward the light emitting layer.
請求項1乃至3のいずれかに記載の有機発光素子において、
前記硬化樹脂は、硬化性重合体及びイオン重合開始剤に対する硬化処理で形成されたものであることを特徴とする有機発光素子。
The organic light emitting device according to any one of claims 1 to 3,
The organic light-emitting element, wherein the curable resin is formed by a curing treatment for a curable polymer and an ionic polymerization initiator.
請求項4に記載の有機発光素子において、
前記硬化性重合体は、正孔輸送性モノマを主鎖に有し、架橋性官能基を側鎖に有することを特徴とする有機発光素子。
The organic light emitting device according to claim 4,
The curable polymer has a hole transporting monomer in a main chain and a crosslinkable functional group in a side chain.
請求項4に記載の有機発光素子において、
前記正孔輸送性モノマは、以下の式(1)〜式(3)のいずれかで表される化合物であることを特徴とする有機発光素子。
(式中、
R1〜R7は、互いに独立して、水素、ハロゲン、シアノ、ニトロ、炭素数1〜22の直鎖状、分岐状又は環状のアルキル、炭素数2〜22の直鎖状、分岐状又は環状のアルケニル、炭素数2〜22の直鎖状、分岐状又は環状のアルキニル、炭素数6〜21のアリール、炭素数12〜20のヘテロアリール、炭素数7〜21のアラルキル及び炭素数13〜20のヘテロアリールアルキルからなる群より選択され(上記の基は、非置換又は1若しくは複数のハロゲンで置換されている)、
m1及びm2は、互いに独立して、0〜5の整数であり、
n1及びn2は、互いに独立して、0〜4の整数である)
The organic light emitting device according to claim 4,
The hole transporting monomer is a compound represented by any one of the following formulas (1) to (3).
(Where
R 1 to R 7 are independently of each other hydrogen, halogen, cyano, nitro, straight chain, branched or cyclic alkyl having 1 to 22 carbon atoms, straight chain, branched or branched carbon atoms having 2 to 22 carbon atoms. Cyclic alkenyl, linear, branched or cyclic alkynyl having 2 to 22 carbon atoms, aryl having 6 to 21 carbon atoms, heteroaryl having 12 to 20 carbon atoms, aralkyl having 7 to 21 carbon atoms, and 13 to 13 carbon atoms Selected from the group consisting of 20 heteroarylalkyl (the above groups are unsubstituted or substituted with one or more halogens);
m1 and m2 are each independently an integer of 0 to 5,
n1 and n2 are each independently an integer of 0 to 4)
請求項4に記載の有機発光素子において、
前記架橋性官能基は環状エーテル基であることを特徴とする有機発光素子。
The organic light emitting device according to claim 4,
The organic light-emitting device, wherein the crosslinkable functional group is a cyclic ether group.
請求項4に記載の有機発光素子において、
前記架橋性官能基は芳香族であることを特徴とする有機発光素子。
The organic light emitting device according to claim 4,
The organic light-emitting device, wherein the crosslinkable functional group is aromatic.
請求項8に記載の有機発光素子において、
前記芳香族が以下の式(4)〜式(6)のいずれかで表される化合物であることを特徴とする有機発光素子。
The organic light emitting device according to claim 8,
The organic light-emitting device, wherein the aromatic is a compound represented by any one of the following formulas (4) to (6).
請求項1乃至9に記載の有機発光素子において、
前記対アニオンが以下の式(7)〜式(9)のいずれかで表される化合物であることを特徴とする有機発光素子。
X=Sb6、(C654B、CF3SO3、PF6、BF4、C49SO3、CH364SO3のうちのいずれか1種
The organic light-emitting device according to claim 1,
The organic light-emitting device, wherein the counter anion is a compound represented by any of the following formulas (7) to (9).
X = Sb 6 , (C 6 F 5 ) 4 B, CF 3 SO 3 , PF 6 , BF 4 , C 4 F 9 SO 3 , CH 3 C 6 H 4 SO 3
JP2013135746A 2013-06-28 2013-06-28 Organic light-emitting element Pending JP2015012105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135746A JP2015012105A (en) 2013-06-28 2013-06-28 Organic light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135746A JP2015012105A (en) 2013-06-28 2013-06-28 Organic light-emitting element

Publications (1)

Publication Number Publication Date
JP2015012105A true JP2015012105A (en) 2015-01-19

Family

ID=52305026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135746A Pending JP2015012105A (en) 2013-06-28 2013-06-28 Organic light-emitting element

Country Status (1)

Country Link
JP (1) JP2015012105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160090703A (en) * 2015-01-22 2016-08-01 에스케이케미칼주식회사 Novel process for preparing polycarbonate ester having excellent transparency and high heat resistance
JP2016167570A (en) * 2015-03-10 2016-09-15 日立化成株式会社 Organic light-emitting element
WO2017134905A1 (en) * 2016-02-04 2017-08-10 日立化成株式会社 Organic light emission element
WO2018225640A1 (en) * 2017-06-06 2018-12-13 日立化成株式会社 Curable polymer, polymerization liquid, conductive film and organic light emitting element
JP7073789B2 (en) 2018-03-07 2022-05-24 昭和電工マテリアルズ株式会社 Methods for Controlling the Conductivity of Charge Transport Layers, Organic Electronics Devices, and Organic Electroluminescence Devices and Their Utilization

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313583A (en) * 2000-12-28 2002-10-25 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005537348A (en) * 2002-08-29 2005-12-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High resistance polyaniline blends for highly efficient pixelated polymer electroluminescent devices
JP2006233162A (en) * 2004-03-11 2006-09-07 Mitsubishi Chemicals Corp Composition for charge transport membrane and ionic compound, charge transport membrane and organic electroluminescent device each using the same, and method for producing the device and method for producing the membrane
US20080015269A1 (en) * 2006-04-17 2008-01-17 Bazan Guillermo C Hybrid polymer light-emitting devices
JP2008525609A (en) * 2004-12-29 2008-07-17 ケンブリッジ ディスプレイ テクノロジー リミテッド Conductive polymer composition in opto-electric device
JP2008270674A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Organic light emitting device
WO2010140553A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
WO2011040531A1 (en) * 2009-10-01 2011-04-07 日立化成工業株式会社 Material for organic electronics, organic electronic element, organic electroluminescent element, display element using organic electroluminescent element, illuminating device, and display device
WO2011132702A1 (en) * 2010-04-22 2011-10-27 日立化成工業株式会社 Organic electronic material, polymerization initiator and thermal polymerization initiator, ink composition, organic thin film and production method for same, organic electronic element, organic electroluminescent element, lighting device, display element, and display device
WO2012079956A1 (en) * 2010-12-13 2012-06-21 Osram Opto Semiconductors Gmbh Organic light-emitting component, and use of a copper complex in a charge transport layer
JP2012253067A (en) * 2011-05-31 2012-12-20 Hitachi Chem Co Ltd Electron receptive compound and method for producing the same, polymerization initiator including electron receptive compound, organic electronic material, organic thin film using them, organic electronic element, organic electroluminescent element, display element, luminaire and display device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313583A (en) * 2000-12-28 2002-10-25 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005537348A (en) * 2002-08-29 2005-12-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High resistance polyaniline blends for highly efficient pixelated polymer electroluminescent devices
JP2006233162A (en) * 2004-03-11 2006-09-07 Mitsubishi Chemicals Corp Composition for charge transport membrane and ionic compound, charge transport membrane and organic electroluminescent device each using the same, and method for producing the device and method for producing the membrane
JP2008525609A (en) * 2004-12-29 2008-07-17 ケンブリッジ ディスプレイ テクノロジー リミテッド Conductive polymer composition in opto-electric device
US20080015269A1 (en) * 2006-04-17 2008-01-17 Bazan Guillermo C Hybrid polymer light-emitting devices
JP2008270674A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Organic light emitting device
WO2010140553A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Organic electronic material, ink composition containing same, and organic thin film, organic electronic element, organic electroluminescent element, lighting device, and display device formed therewith
WO2011040531A1 (en) * 2009-10-01 2011-04-07 日立化成工業株式会社 Material for organic electronics, organic electronic element, organic electroluminescent element, display element using organic electroluminescent element, illuminating device, and display device
WO2011132702A1 (en) * 2010-04-22 2011-10-27 日立化成工業株式会社 Organic electronic material, polymerization initiator and thermal polymerization initiator, ink composition, organic thin film and production method for same, organic electronic element, organic electroluminescent element, lighting device, display element, and display device
WO2012079956A1 (en) * 2010-12-13 2012-06-21 Osram Opto Semiconductors Gmbh Organic light-emitting component, and use of a copper complex in a charge transport layer
JP2014504454A (en) * 2010-12-13 2014-02-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of copper complexes in organic light-emitting components and charge transport layers
JP2012253067A (en) * 2011-05-31 2012-12-20 Hitachi Chem Co Ltd Electron receptive compound and method for producing the same, polymerization initiator including electron receptive compound, organic electronic material, organic thin film using them, organic electronic element, organic electroluminescent element, display element, luminaire and display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160090703A (en) * 2015-01-22 2016-08-01 에스케이케미칼주식회사 Novel process for preparing polycarbonate ester having excellent transparency and high heat resistance
KR102342167B1 (en) 2015-01-22 2021-12-22 에스케이케미칼 주식회사 Novel process for preparing polycarbonate ester having excellent transparency and high heat resistance
JP2016167570A (en) * 2015-03-10 2016-09-15 日立化成株式会社 Organic light-emitting element
WO2017134905A1 (en) * 2016-02-04 2017-08-10 日立化成株式会社 Organic light emission element
JP2017139342A (en) * 2016-02-04 2017-08-10 日立化成株式会社 Organic light-emitting element
CN108886102A (en) * 2016-02-04 2018-11-23 日立化成株式会社 Organic illuminating element
EP3413368A4 (en) * 2016-02-04 2019-09-04 Hitachi Chemical Company, Ltd. Organic light emission element
WO2018225640A1 (en) * 2017-06-06 2018-12-13 日立化成株式会社 Curable polymer, polymerization liquid, conductive film and organic light emitting element
TWI675048B (en) * 2017-06-06 2019-10-21 日商日立化成股份有限公司 Curable polymer, polymerization liquid, conductive film, and organic light emitting device
CN110678495A (en) * 2017-06-06 2020-01-10 日立化成株式会社 Curable polymer, polymerization solution, conductive film, and organic light-emitting element
EP3636689A4 (en) * 2017-06-06 2021-03-10 Hitachi Chemical Company, Ltd. Curable polymer, polymerization liquid, conductive film and organic light emitting element
JP7073789B2 (en) 2018-03-07 2022-05-24 昭和電工マテリアルズ株式会社 Methods for Controlling the Conductivity of Charge Transport Layers, Organic Electronics Devices, and Organic Electroluminescence Devices and Their Utilization

Similar Documents

Publication Publication Date Title
JP6900425B2 (en) Organic thin film and organic thin film manufacturing method, organic electroluminescence element, display device, lighting device, organic thin film solar cell, thin film transistor, coating composition
JP6531796B2 (en) Method of manufacturing conductive thin film laminate
JP6015181B2 (en) Curable polymer, resin and organic EL device using the same
TWI485180B (en) A polymer compound, a mesh polymer compound obtained by crosslinking the polymer compound, a composition for an organic electroluminescence device, an organic electroluminescence device, an organic EL display, and an organic EL illumination
JP2015012105A (en) Organic light-emitting element
TW201618348A (en) Charge-transporting varnish
JP2009158535A (en) Organic light-emitting device, method of manufacturing the same, and display
TWI787355B (en) Charge-transporting compound, composition containing charge-transporting compound, organic electroluminescence device, organic electroluminescence display device, organic electroluminescence lighting
TW201823422A (en) Organic electronic material and use of same
JP2022025656A (en) Aromatic compound
TW201823423A (en) Organic electronic material, organic layer, organic electronic element, organic electroluminescent element, display element, illumination device, and display device
JP6015520B2 (en) Polymerizable coating liquid, resin and organic electroluminescent element formed using the same, and polymerizable coating liquid and method for producing organic electroluminescent element
JP2016167570A (en) Organic light-emitting element
TWI675048B (en) Curable polymer, polymerization liquid, conductive film, and organic light emitting device
Chiba et al. Lithium Phenolate Complexes with a Pyridine‐Containing Polymer for Solution‐Processable Electron Injection Layers in PLEDs
TW201840630A (en) Organic electronics material, ink composition, organic layer, organic electronics element, organic electroluminescence element, display element, illumination device, and display device
WO2017134905A1 (en) Organic light emission element
JP7409088B2 (en) Organic thin film manufacturing method, organic thin film and its use
WO2019167346A1 (en) Curable polymer, polymerization solution and resin, and organic light-emitting element manufactured using same
JP2015192133A (en) organic transistor
JP6891505B2 (en) Manufacturing method of organic electroluminescent device
JP6756143B2 (en) Organic Electronics Materials and Organic Electroluminescence Devices
TW201923031A (en) Charge-transport polymer and organic electronic element
TW201900717A (en) Fluorine-atom-containing polymer and use thereof
TW201840810A (en) Charge transport material and use of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829