JP2015010911A - Airborne survey method and device - Google Patents

Airborne survey method and device Download PDF

Info

Publication number
JP2015010911A
JP2015010911A JP2013135813A JP2013135813A JP2015010911A JP 2015010911 A JP2015010911 A JP 2015010911A JP 2013135813 A JP2013135813 A JP 2013135813A JP 2013135813 A JP2013135813 A JP 2013135813A JP 2015010911 A JP2015010911 A JP 2015010911A
Authority
JP
Japan
Prior art keywords
surveying
aerial
survey
camera
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013135813A
Other languages
Japanese (ja)
Other versions
JP6058483B2 (en
Inventor
文昭 上半
Fumiaki Johan
文昭 上半
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2013135813A priority Critical patent/JP6058483B2/en
Publication of JP2015010911A publication Critical patent/JP2015010911A/en
Application granted granted Critical
Publication of JP6058483B2 publication Critical patent/JP6058483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an airborne survey method allowing a three-dimensional shape corresponding to the size of each of various objects and the distance to an object to be acquired only with an airborne survey device, without setting a leveling rod and reference point to a survey object, by using a parallel stereoscopic camera instead of the leveling rod.SOLUTION: In the airborne survey method, a stereoscopic camera 3, a monocular camera 6 for survey having an angle and azimuth meter 7, and an injector of reflective paint are attached to a model aircraft via a vibration-proof mechanism, a survey object is photographed, a survey object of any size is surveyed at a required accuracy by applying an image correlation method to the photographed image without manually setting a leveling rod to the survey object, and an image is pasted without manually setting a reference point to the survey object.

Description

本発明は、斜面などの自然物、大型構造物の3次元形状の空撮による測量方法および装置に関するものである。   The present invention relates to a surveying method and apparatus using aerial photography of a three-dimensional shape of a natural object such as a slope or a large structure.

(1)従来、測量作業は距離や角度を計測する測量機器を用いて行われてきたが、近年、レーザー計測技術や写真測量技術を用いて測量対象の3次元形状データを取得する手法が用いられるようになった。
(2)写真を用いた3次元形状データの取得では、対象物を視差をもって撮影した2枚以上の画像を用いたステレオ画像相関法により、写真上の点の位置座標を求める。
(1) Conventionally, surveying work has been performed using a surveying instrument that measures distance and angle, but in recent years, a method of acquiring three-dimensional shape data of a survey target using laser measurement technology or photogrammetry technology has been used. It came to be able to.
(2) In the acquisition of three-dimensional shape data using a photograph, the position coordinates of a point on the photograph are obtained by a stereo image correlation method using two or more images obtained by photographing the object with parallax.

(3)2枚の写真を用いる場合を例にとると、測量分野で用いられる手法は、測量用単眼カメラで撮影位置をずらして2回にわけて撮影した2枚の写真を用いる手法、2台のカメラを位置が変わらないよう平行に配置したステレオカメラで同時撮影した2枚の写真を用いる手法がある。
(4)前者は、一般的なカメラでの撮影が可能なことおよび測量対象の大きさなどに応じてカメラとカメラの間の距離を自由に設定して撮影精度を調整することができる利点がある。
(3) Taking the case of using two photographs as an example, the technique used in the surveying field is a technique using two photographs taken in two different positions by shifting the photographing position with a monocular camera for surveying. There is a method of using two photographs taken simultaneously by a stereo camera in which two cameras are arranged in parallel so that the position does not change.
(4) The former has the advantage that it is possible to shoot with a general camera and adjust the shooting accuracy by freely setting the distance between the cameras according to the size of the survey target. is there.

(5)後者は、2台のカメラの位置関係が既知であるため2枚の写真の相関を求めやすいことおよび測定対象に標尺などを設置することなく、対象の大きさを求められることなどのメリットがある。
(6)前者は、地形測量など広大な自然物や大型の構造物に適用される場合が多く、後者は、室内実験での寸法計測などやや小さな対象の測量に用いられる場合が多い。
(5) In the latter case, since the positional relationship between the two cameras is known, it is easy to obtain the correlation between the two photos, and the size of the object can be obtained without installing a scale or the like on the measurement object. There are benefits.
(6) The former is often applied to vast natural objects such as topographical surveys and large structures, and the latter is often used for surveying of small objects such as dimensional measurements in laboratory experiments.

なお、本願発明者らは、既に、レーザードップラー振動計を用いた非接触振動測定技術を開発している(下記特許文献1〜3参照)。
また、本願発明者らは、既に、対象物に反射ターゲットを形成することができるラジオコントロール航空機も提案している(下記特許文献4参照)。
The inventors of the present application have already developed a non-contact vibration measurement technique using a laser Doppler vibrometer (see Patent Documents 1 to 3 below).
The inventors of the present application have also proposed a radio control aircraft that can form a reflective target on an object (see Patent Document 4 below).

特許4001806号公報Japanese Patent No. 4001806 特開2004−184377号公報JP 2004-184377 A 特開2008−281422号公報JP 2008-281422 A 特開2012−40975号公報JP 2012-40975 A

しかしながら、上記した単眼カメラでの測量では、2度に分けて撮影する際のカメラの正確な位置関係の取得が難しいことから、写真中に大きさが既知の標尺を写りこませないと測定対象の大きさを正しく評価することができないという課題がある。高所など危険個所への標尺設置は作業の安全性、効率性の妨げになる。
一方、ステレオカメラでの測量では、カメラとカメラの間隔(基線長)が固定されるためステレオカメラ毎に撮影距離の制約があり、特に奥行き方向の測量精度は撮影距離に依存する。大きな対象を遠距離から撮影して評価するためにはステレオカメラに長い基線長を与える必要があり、撮影装置が大掛かりになるという課題がある。
However, in the above surveying with a monocular camera, it is difficult to obtain the exact positional relationship of the camera when shooting in two steps. There is a problem that it is impossible to correctly evaluate the size of. Installation of a staff at a dangerous place such as a high place hinders the safety and efficiency of work.
On the other hand, in surveying with a stereo camera, the distance (baseline length) between the cameras is fixed, so there are restrictions on the shooting distance for each stereo camera. In particular, the measurement accuracy in the depth direction depends on the shooting distance. In order to photograph and evaluate a large object from a long distance, it is necessary to give a long baseline length to the stereo camera, and there is a problem that the photographing apparatus becomes large.

また、写真測量では、撮影時のカメラの向きが不確定の場合、写真中に水平または鉛直な対象、方位の分かる対象が写りこんでいないと、測定対象の鉛直、水平方向の傾きを検出できないという課題がある。
更に、空撮による写真測量では、カメラが航空機の振動の影響を受け、画像に乱れが生じて測量精度が低下する場合がある。特に、小型の模型航空機を用いる場合、カメラの基線長が長く、ステレオカメラの寸法および重量の増加により模型航空機への搭載が困難になるという課題がある。
In photogrammetry, if the orientation of the camera at the time of shooting is indeterminate, the vertical or horizontal tilt of the measurement target cannot be detected unless a horizontal or vertical target or a target whose orientation is known is reflected in the photo. There is a problem.
Furthermore, in photogrammetry by aerial photography, the camera may be affected by aircraft vibrations, and the image may be disturbed, resulting in a decrease in survey accuracy. In particular, when a small model aircraft is used, there is a problem that the base line length of the camera is long and mounting on the model aircraft becomes difficult due to an increase in the size and weight of the stereo camera.

また、写真測量では、測定対象の表面の凹凸などによりカメラの死角となる位置を測量することはできない。測量対象の形状をより詳細に求める場合、死角ができないよう複数の方向から撮影して求めた3次元形状データを貼り合わせることによって測量対象の形状を復元する。カメラの撮影範囲より広い領域の測量を行う場合も同様にデータの貼り合わせを行う。この張り合わせを正確に行うためには、画像データ上の対応点を正確に求める必要があるため、現状は測量対象上に位置が明確な基準点(球形や円形のターゲット)を設置して写真に写りこませる場合が多く、それらの設置や測量などの作業が発生している。   Further, in photogrammetry, it is not possible to measure the position that becomes the blind spot of the camera due to the unevenness of the surface of the measurement object. When the shape of the survey target is obtained in more detail, the shape of the survey target is restored by pasting together the three-dimensional shape data obtained by photographing from a plurality of directions so that a blind spot cannot be formed. Data are similarly pasted when surveying a region wider than the shooting range of the camera. In order to accurately perform this pasting, it is necessary to accurately determine the corresponding points on the image data. At present, a reference point (spherical or circular target) with a clear position is set on the survey target and displayed in the photograph. There are many cases where they are captured, and work such as installation and surveying has occurred.

本発明では、上記問題点に鑑みて、平行ステレオカメラを標尺代わりに利用することにより、測量対象に標尺や基準点を設置することなく、空撮測量装置のみで、様々な対象物の大きさ、対象物との距離に応じた3次元形状の取得を可能にした空撮測量方法を提供する。すなわち、模型航空機に、防振機構を介してステレオカメラと角度および方位計を取り付けた測量用単眼カメラ、反射塗料の噴射装置を取り付けた装置を用いて測量対象の写真を撮影し、撮影画像に画像相関法を適用することにより、測量対象に標尺を人が設置することなく、任意の大きさの測量対象を必要とする精度で測量し、測量対象に人が基準点を設置することなく画像の貼り合わせも簡単に実施できる空撮測量方法および装置を提供する。   In the present invention, in view of the above problems, by using a parallel stereo camera instead of a measuring scale, various sizes of objects can be obtained with only an aerial surveying instrument without installing a measuring scale or a reference point on the surveying target. An aerial surveying method that enables acquisition of a three-dimensional shape according to the distance from an object is provided. That is, using a model aircraft, a surveying monocular camera equipped with a stereo camera and an angle and compass through a vibration isolation mechanism, and a device equipped with a reflective paint spraying device, a photo of the surveyed object is taken, and the photographed image is displayed. By applying the image correlation method, a person does not install a scale on a survey target, and surveys with a precision that requires a survey target of any size, and a person does not set a reference point on the survey target. Provided is an aerial surveying method and apparatus that can easily carry out bonding.

本発明は、上記目的を達成するために、
〔1〕空撮測量方法において、模型航空機に防振機構を介してステレオカメラと角度および方位計を取り付けた測量用単眼カメラと、反射塗料の噴射装置を取り付け、測量対象の写真を撮影し、撮影画像に画像相関法を適用することにより、測量対象に標尺を人が設置することなく、任意の大きさの測量対象を必要とする精度で測量し、測量対象に人が基準点を設置することなく画像の貼り合わせを行うようにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the aerial surveying method, the model aircraft is mounted with a surveying monocular camera with a stereo camera and an angle and direction meter attached via an anti-vibration mechanism, and a reflection paint spraying device, and a photo of the surveying object is taken. By applying the image correlation method to the captured image, a person does not install a scale on the survey target, but surveys with the accuracy required for a survey target of any size, and a person sets a reference point on the survey target. The present invention is characterized in that the images are pasted together.

〔2〕上記〔1〕記載の空撮測量方法において、前記ステレオカメラにより測量対象の特徴点間距離計測を行うことを特徴とする。
〔3〕上記〔1〕記載の空撮測量方法において、前記測量用単眼カメラによりカメラ撮影時の測量用単眼カメラの傾斜および方位情報を測量用単眼カメラに取り付けた傾斜および方位計により同時に記録することを特徴とする。
[2] The aerial surveying method according to [1], wherein the distance between feature points to be surveyed is measured by the stereo camera.
[3] In the aerial surveying method according to [1] above, the tilt and orientation information of the surveying monocular camera at the time of photographing by the surveying monocular camera is simultaneously recorded by the tilt and orientation meter attached to the surveying monocular camera. It is characterized by that.

〔4〕上記〔1〕記載の空撮測量方法において、3次元形状データの貼り合わせが必要な場合は、模型航空機を測量対象に近づけて、再帰反射塗料噴射機で測量対象に基準点を設けることを特徴とする。
〔5〕上記〔4〕記載の空撮測量方法において、1撮影写真あたり、写真のオーバーラップ予定部分に最低3箇所のスポットを写り込むように基準点を設けることを特徴とする。
[4] In the aerial surveying method described in [1] above, when the three-dimensional shape data needs to be pasted together, the model aircraft is brought close to the survey target and a reference point is set on the survey target with the retroreflective paint sprayer. It is characterized by that.
[5] In the aerial surveying method described in [4] above, a reference point is provided so that at least three spots are reflected on a portion of the photograph that is to be overlapped for each photographed photograph.

〔6〕上記〔4〕記載の空撮測量方法において、測量対象を撮影する際に、画像相関解析に用いる2枚の画像のオーバーラップ箇所に最低3箇所のスポットを写り込むよう配慮し、フラッシュ撮影することを特徴とする。
〔7〕空撮測量装置において、模型航空機に防振機構を介してステレオカメラと角度および方位計を取り付けた単眼カメラと、再帰反射塗料の噴射装置と、操縦用無線送受信機と、撮影用無線送受信機とを具備する空撮測量用航空機と、この空撮測量用航空機との無線通信を行う空撮測量用航空機の操縦部と、この空撮測量用航空機の無線通信を行う撮影および噴射情報制御部とを具備することを特徴とする。
[6] In the aerial surveying method described in [4] above, when photographing a survey target, a flash is taken into consideration so that at least three spots are reflected in the overlap of two images used for image correlation analysis. It is characterized by shooting.
[7] In an aerial surveying device, a monocular camera in which a stereo camera and an angle and direction meter are attached to a model aircraft via a vibration isolation mechanism, a retroreflective paint spraying device, a steering radio transceiver, and a radio for imaging An aerial surveying aircraft equipped with a transceiver, an aerial surveying aircraft control unit that performs radio communication with the aerial surveying aircraft, and imaging and injection information that performs radio communication with the aerial surveying aircraft And a control unit.

〔8〕上記〔7〕記載の空撮測量装置において、前記空撮測量用航空機の操縦のためのGPS、IMU、及び距離計を備えることを特徴とする。
〔9〕上記〔7〕記載の空撮測量装置において、前記撮影および噴射情報制御部には、撮影および噴射情報無線送受信機と、この撮影および噴射情報無線送受信機の制御装置と、記録装置と、表示装置と、入力装置と、前記記録装置に接続される3次元形状データ解析部とを具備することを特徴とする。
[8] The aerial surveying device according to the above [7], comprising a GPS, an IMU, and a distance meter for operating the aerial surveying aircraft.
[9] In the aerial surveying instrument according to [7], the imaging and ejection information control unit includes an imaging and ejection information wireless transceiver, a control device for the imaging and ejection information wireless transceiver, and a recording device. A display device, an input device, and a three-dimensional shape data analysis unit connected to the recording device.

〔10〕上記〔9〕記載の空撮測量装置において、前記3次元形状データ解析部に記憶装置と演算装置と入力装置と表示装置を具備することを特徴とする。   [10] The aerial surveying instrument according to [9], wherein the three-dimensional shape data analysis unit includes a storage device, an arithmetic device, an input device, and a display device.

本発明によれば、次のような効果を奏することができる。
平行ステレオカメラを標尺代わりに利用することにより、測量対象に標尺や基準点を設置することなく、空撮測量装置のみで、様々な対象物の大きさ、対象物との距離に応じた3次元形状の取得が可能になる。特に、人の立ち入りが困難な急斜面の測量や広大なエリアの測量を簡単に実施することができる。また、カメラの傾斜を直接計測することにより、航空機機体に取り付けたGPSやIMUを参考にするよりも誤差なく正確な撮影情報を得ることができる。
According to the present invention, the following effects can be achieved.
By using a parallel stereo camera instead of a measuring scale, there is no need to install a measuring scale or reference point on the surveying object, and only with an aerial surveying instrument, three-dimensional depending on the size of various objects and the distance to the object. The shape can be acquired. In particular, it is possible to easily carry out surveys of steep slopes and large areas where it is difficult for people to enter. In addition, by directly measuring the tilt of the camera, it is possible to obtain accurate shooting information without error as compared to GPS or IMU attached to the aircraft body.

本発明の空撮測量方法を示す模式図である。It is a schematic diagram which shows the aerial surveying method of this invention. 本発明の実施例を示す空撮測量装置のブロック図である。1 is a block diagram of an aerial surveying apparatus showing an embodiment of the present invention. 本発明の実施例を示す平行ステレオカメラによる特徴点間距離の計測を示す模式図である。It is a schematic diagram which shows the measurement of the distance between the feature points by the parallel stereo camera which shows the Example of this invention. 本発明の実施例を示す測量用カメラ(単眼カメラまたはステレオカメラの1台のカメラ)による測量対象の撮影の模式図である。It is a schematic diagram of imaging | photography of the survey object by the survey camera (one camera of a monocular camera or a stereo camera) which shows the Example of this invention. 本発明の実施例を示す再帰反射塗料を用いた測量対象への基準点の遠隔設置を示す模式図である。It is a schematic diagram which shows the remote installation of the reference point to the surveying object using the retroreflection paint which shows the Example of this invention. 平行ステレオカメラの撮影画像からの位置座標の算定方法の説明図である。It is explanatory drawing of the calculation method of the position coordinate from the picked-up image of a parallel stereo camera. 測量用単眼カメラで位置を変えて撮影した撮影画像からの位置座標の算定方法の説明図である。It is explanatory drawing of the calculation method of the position coordinate from the picked-up image image | photographed by changing the position with the monocular camera for surveying. 本発明の実施例を示す測量対象の大きさと傾きの決定方法の説明図である。It is explanatory drawing of the determination method of the magnitude | size and inclination of a surveying object which shows the Example of this invention. 本発明の実施例を示す再帰反射塗料スポットとその図心位置の探索を示す模式図である。It is a schematic diagram which shows the search of the retroreflection paint spot which shows the Example of this invention, and its centroid position. 本発明の実施例を示す基準点を利用した形状データの重ね合わせの説明図である。It is explanatory drawing of the superimposition of the shape data using the reference point which shows the Example of this invention. 本発明の実施例を示す防振化した平行ステレオカメラを示す図である。It is a figure which shows the vibration-proof parallel stereo camera which shows the Example of this invention. 本発明の実施例を示す撮影システムの模式図である。It is a schematic diagram of the imaging | photography system which shows the Example of this invention. 本発明の実施例を示す測量作業実施状況を示す図面代用写真である。It is a drawing substitute photograph which shows the surveying work implementation status which shows the Example of this invention. 本発明の実施例を示す得られた形状データ、色情報を持った3次元点群を2次元表示した図面代用写真である。FIG. 3 is a drawing-substituting photograph in which a three-dimensional point group having obtained shape data and color information is two-dimensionally displayed, showing an embodiment of the present invention.

本発明の空撮測量方法は、模型航空機に防振機構を介してステレオカメラと角度および方位計を取り付けた測量用単眼カメラと、反射塗料の噴射装置を取り付け、測量対象の写真を撮影し、撮影画像に画像相関法を適用することにより、測量対象に標尺を人が設置することなく、任意の大きさの測量対象を必要とする精度で測量し、測量対象に人が基準点を設置することなく画像の貼り合わせを行うようにした。   In the aerial surveying method of the present invention, a monocular camera for surveying in which a stereo camera and an angle and direction meter are attached to a model aircraft via an anti-vibration mechanism, a reflection paint spraying device is attached, and a photograph of the surveying object is taken, By applying the image correlation method to the captured image, a person does not install a scale on the survey target, but surveys with the accuracy required for a survey target of any size, and a person sets a reference point on the survey target. The images were pasted together without any problems.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の空撮測量方法を示す模式図である。
この図において、図1(a)に示すように、模型航空機1には防振装置2を介して測量対象の特徴点間距離計測用ステレオカメラ3と、測量用単眼カメラ6と、傾斜および方位計7と、衝突回避用距離計8とを備え、これらから得られた情報は、撮影および通信制御用PC4を介してTCP/IP通信により地上局9で受信するようにしている。なお、5は反射塗料スポッターである。また、図1(b)は図面代用のステレオ画像例である。図1(c)はステレオ画像相関法データ解析システムの模式図であり、図1(d)に3次元点群データを示す図面代用写真が示されている。なお、ステレオ画像相関法データ解析システムについては、詳細に詳述する(図6参照)。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic diagram showing an aerial surveying method according to the present invention.
In this figure, as shown in FIG. 1A, a model aircraft 1 includes a stereo camera 3 for measuring a distance between feature points to be surveyed, a monocular camera 6 for surveying, an inclination and an orientation via a vibration isolator 2. A total 7 and a collision avoidance distance meter 8 are provided, and information obtained therefrom is received by the ground station 9 by TCP / IP communication via the imaging and communication control PC 4. Reference numeral 5 denotes a reflective paint spotter. FIG. 1B is an example of a stereo image instead of a drawing. FIG. 1C is a schematic diagram of a stereo image correlation method data analysis system. FIG. 1D shows a drawing substitute photograph showing three-dimensional point cloud data. The stereo image correlation method data analysis system will be described in detail (see FIG. 6).

図2は本発明の実施例を示す空撮測量装置のブロック図である。
この図において、11は空撮測量装置、12は模型航空機、13はGPS、14はIMU、15は衝突回避用距離計、16は操縦用無線送受信装置、17は測量対象の特徴点間距離計測用ステレオカメラ、18は傾斜および方位計、19は測量用単眼カメラ、20は再帰反射塗料噴射機、21は制御装置、22は記録装置、23は撮影用無線送受信装置、24は航空機操縦部、25は操縦情報無線送受信機、26は制御装置、27は入力装置、28は撮影および噴射情報制御部、29は撮影および噴射情報無線送受信機、30は制御装置、31は記録装置、32は表示装置、33は入力装置、34は3次元形状データ解析部、35は記録装置、36は演算装置、37は入力装置、38は表示装置である。
FIG. 2 is a block diagram of an aerial surveying apparatus showing an embodiment of the present invention.
In this figure, 11 is an aerial surveying device, 12 is a model aircraft, 13 is GPS, 14 is an IMU, 15 is a collision avoidance distance meter, 16 is a radio transmission / reception device for steering, and 17 is a distance measurement between feature points to be surveyed. Stereo camera, 18 tilt and direction meter, 19 monocular camera for surveying, 20 retroreflective paint sprayer, 21 control device, 22 recording device, 23 radio transmitter / receiver for photographing, 24 aircraft control unit, 25 is a control information radio transceiver, 26 is a control device, 27 is an input device, 28 is an imaging and ejection information control unit, 29 is an imaging and ejection information wireless transceiver, 30 is a control device, 31 is a recording device, and 32 is a display. 33, an input device, 34, a three-dimensional shape data analysis unit, 35, a recording device, 36, an arithmetic device, 37, an input device, and 38, a display device.

基線長の長くない測量対象の特徴点間距離計測用平行ステレオカメラ17、傾斜および方位計18を具備した高解像度の測量用単眼カメラ19、再帰反射塗料噴射機20(上記特許文献4参照)を伴った模型航空機を用いて次の手順で測量対象の撮影を行う(図3参照)。なお、平行ステレオカメラ17を構成するカメラのうち1台を、上記の測量用単眼カメラとして使用しても構わない。   A parallel stereo camera 17 for measuring the distance between feature points of a survey target whose base line length is not long, a high-resolution survey monocular camera 19 equipped with an inclination and an azimuth meter 18, and a retroreflective paint sprayer 20 (see Patent Document 4). Using the accompanying model aircraft, the survey object is photographed in the following procedure (see FIG. 3). One of the cameras constituting the parallel stereo camera 17 may be used as the monocular camera for surveying.

図3は本発明の実施例を示す平行ステレオカメラによる特徴点間距離の計測を示す模式図である。
図4は本発明の実施例を示す測量用カメラ(単眼カメラまたはステレオカメラの1台のカメラ)による測量対象の撮影の模式図である。
図5は本発明の実施例を示す再帰反射塗料を用いた測量対象への基準点の遠隔設置を示す模式図である。
FIG. 3 is a schematic diagram showing the measurement of the distance between feature points by the parallel stereo camera according to the embodiment of the present invention.
FIG. 4 is a schematic diagram of photographing of a surveying object by a surveying camera (monocular camera or one stereo camera) according to an embodiment of the present invention.
FIG. 5 is a schematic diagram showing remote installation of a reference point on a surveying object using a retroreflective coating material according to an embodiment of the present invention.

以下、空撮測量方法について説明する。
(1)図3に示すように、模型航空機41を測量対象40に接近させ、平行ステレオカメラ42による測量精度を確保できる撮影距離から、測量対象40上の2点以上の特徴点(色、形状などの特異性があり写真画像上で位置を特定可能な点)を含む測量対象40の一部を複数方向から数回撮影する。
Hereinafter, the aerial surveying method will be described.
(1) As shown in FIG. 3, two or more feature points (color, shape) on the survey target 40 from the shooting distance that allows the model aircraft 41 to approach the survey target 40 and to ensure the survey accuracy by the parallel stereo camera 42. A part of the surveying object 40 including a point having a peculiarity such as a position that can be specified on a photographic image is taken several times from a plurality of directions.

(2)図4に示すように、模型航空機41を移動させ、測量対象40の全体が写る距離から測量用単眼カメラ42Aで測量対象40を撮影する。
(3)図4に示すように、必要とする測量精度を考慮して、1回目の撮影位置から模型航空機41を移動させ、2回目の撮影を実施する。
(4)カメラ撮影時のカメラの傾斜および方位情報をカメラに取り付けた傾斜および方位計18で同時に記録する。
(2) As shown in FIG. 4, the model aircraft 41 is moved, and the survey target 40 is photographed by the surveying monocular camera 42 </ b> A from the distance at which the entire survey target 40 is captured.
(3) As shown in FIG. 4, the model aircraft 41 is moved from the first shooting position in consideration of the required survey accuracy, and the second shooting is performed.
(4) The tilt and azimuth information of the camera at the time of camera shooting is simultaneously recorded by the tilt and azimuth meter 18 attached to the camera.

(5)図5に示すように、3次元形状データの貼り合わせが必要な場合は、模型航空機41を測量対象40に近づけて、再帰反射塗料噴射機43で再帰反射塗料44による測量対象40に基準点を設ける。1撮影写真あたり、写真のオーバーラップ予定部分に最低3箇所のスポットが写り込むよう基準点を設ける。
(6)測量対象40を撮影する際に、画像相関解析に用いる2枚の画像のオーバーラップ箇所に最低3箇所のスポットが写り込むよう配慮し、フラッシュ撮影する。
(5) As shown in FIG. 5, when the three-dimensional shape data needs to be pasted, the model aircraft 41 is brought close to the survey target 40, and the retroreflective paint sprayer 43 changes the survey target 40 to the survey target 40. Set a reference point. A reference point is provided so that at least three spots appear in the overlapped portion of the photograph per photograph.
(6) When photographing the surveying object 40, the flash photographing is taken in consideration that at least three spots are reflected in the overlapping portion of the two images used for the image correlation analysis.

(7)測量対象40に明瞭な特徴点が存在しない場合には、ステップ(5)の再帰反射塗料44による基準点を特徴点として活用しても良い。
次に、画像相関解析方法について説明する。
図6は平行ステレオカメラの撮影画像からの位置座標の算定方法の説明図である。
図7は測量用単眼カメラで位置を変えて撮影した撮影画像からの位置座標の算定方法の説明図である。
(7) When there is no clear feature point in the survey target 40, the reference point by the retroreflective coating 44 in step (5) may be used as the feature point.
Next, an image correlation analysis method will be described.
FIG. 6 is an explanatory diagram of a method for calculating position coordinates from a captured image of a parallel stereo camera.
FIG. 7 is an explanatory diagram of a method for calculating position coordinates from captured images obtained by changing the position with a monocular camera for surveying.

図6に示すように、平行ステレオカメラの撮影画像から位置座標の算定を行う。ここで、51は左カメラ、52は右カメラ、53は左画像、54は右画像、55は左画像上の位置Pl (u,v)、56は右画像上の位置Pr (u′,v′)、57は位置座標P(X,Y,Z)であり、X=bu/(u−u′),Y=bv/(u−u′)、Z=bf/(u−u′)、ここで、bは基線長、fは焦点距離である。 As shown in FIG. 6, the position coordinates are calculated from the captured image of the parallel stereo camera. Here, 51 is a left camera, 52 is a right camera, 53 is a left image, 54 is a right image, 55 is a position P l (u, v) on the left image, and 56 is a position P r (u ′ on the right image). , V ′), 57 are position coordinates P (X, Y, Z), X = bu / (u−u ′), Y = bv / (u−u ′), Z = bf / (u−u). ′) Where b is the baseline length and f is the focal length.

(1)図6に示すように、ステレオカメラの撮影結果から画面上の特長点間の距離を算出する(最低3方向からの測量結果の平均値を用いることとする)。図6に示す2枚の写真に写った点の位置座標を求めることができる。2台のカメラの位置関係が明確であるため、撮影画像から測量対象40の寸法を求めることができる。
(2)図7に示すように、測量用単眼カメラで位置を変えて撮影した撮影画像からの位置座標の算定を行う。図7に示すように、61は左側の1回目撮影位置、62は1回目画像、63は1回目画像62上の位置Pl (u,v)、65は右側の2回目撮影位置、66は2回目画像、67は2回目画像上の位置Pr (u,v)である。ここで、fは焦点距離である。
(1) As shown in FIG. 6, the distance between feature points on the screen is calculated from the photographing result of the stereo camera (an average value of survey results from at least three directions is used). The position coordinates of the points shown in the two photographs shown in FIG. 6 can be obtained. Since the positional relationship between the two cameras is clear, the dimension of the surveying object 40 can be obtained from the captured image.
(2) As shown in FIG. 7, the position coordinates are calculated from the captured images taken by changing the position with the monocular camera for surveying. As shown in FIG. 7, 61 is the first shooting position on the left side, 62 is the first image, 63 is the position P 1 (u, v) on the first image 62, 65 is the second shooting position on the right side, and 66 is The second image 67 is a position P r (u, v) on the second image. Here, f is a focal length.

上記位置関係に基づいて、2枚の写真に写った点の位置座標を求める。ただし、2回の撮影時のカメラの位置関係(距離と向き)が不明の場合は、解析で求める必要のある未知数に対して必要な数の方程式を得るための既知関係の数が不足する。そこで、2枚の写真から明らかに同一点とみなせる点を人為的に複数選択し、その2点が同一座標であることを利用して不足する方程式を補うことによって、測量対象の形状データを得る手法が一般に用いられている。   Based on the positional relationship, the position coordinates of the points appearing in the two photos are obtained. However, when the positional relationship (distance and orientation) of the camera at the time of the two shootings is unknown, the number of known relationships for obtaining the necessary number of equations for the unknowns that need to be obtained by analysis is insufficient. Therefore, the shape data to be surveyed is obtained by artificially selecting a plurality of points that can be clearly regarded as the same point from the two photographs, and making up for the insufficient equation by utilizing the two points having the same coordinates. Techniques are commonly used.

上記図6および図7に示す撮影写真から、測量対象の3次元形状データを求める。
図8は本発明の実施例を示す測量対象の大きさと傾きの決定方法の説明図であり、図8(a)は測量用単眼カメラで測量した大きさ、傾きおよび方位情報の不足した測量対象の形状を示す図、図8(b)は平行ステレオカメラによる特徴点間距離を用いた測量対象の大きさの決定を示す図、図8(c)は測量用単眼カメラに取り付けた傾斜および方位計の情報を用いた測量対象の傾きの決定を示す図である。
From the photographed photographs shown in FIGS. 6 and 7, the three-dimensional shape data to be surveyed is obtained.
FIG. 8 is an explanatory diagram of a method for determining the size and inclination of a survey target according to an embodiment of the present invention, and FIG. 8 (a) is a survey target lacking in the size, tilt, and azimuth information measured by a monocular camera for surveying. FIG. 8B is a diagram showing determination of the size of a survey target using the distance between feature points by a parallel stereo camera, and FIG. 8C is an inclination and orientation attached to the monocular camera for surveying. It is a figure which shows determination of the inclination of the survey object using the information of a meter.

これらの図において、71は測量対象、72は特徴点、73は平行ステレオカメラで測量した特徴点間距離、74は測量対象の傾斜の補正、75は測量対象の方位の補正を示している。
図9は本発明の実施例を示す再帰反射塗料スポットとその図心位置の探索を示す模式図である。
In these figures, 71 is a survey target, 72 is a feature point, 73 is a distance between feature points surveyed by a parallel stereo camera, 74 is a correction of the tilt of the survey target, and 75 is a correction of the orientation of the survey target.
FIG. 9 is a schematic diagram showing a search for retroreflective paint spots and their centroid positions according to an embodiment of the present invention.

この図において、80は測量対象、81は測量対象80の画素、82は再帰反射塗料スポット、この再帰反射塗料スポット82は、再帰反射塗料の付着箇所をフラッシュ撮影することにより周辺に比べて極めて高い輝度を有する。高輝度画像の左右および上下端を探索して、図心にあたる画素を基準点83とする。
図10は本発明の実施例を示す基準点を利用した形状データの重ね合わせの説明図であり、図10(a)は大きさや死角の影響で分割撮影が必要となる測量対象を示す図、図10(b)はその基準点設置(黒点)を示す図、図10(c)は分割撮影された写真からの各形状の算出を示す図、図10(d)は基準点の座標を目印として形状データをオーバーラップさせ、全体形状を復元した図である。
In this figure, 80 is a surveying object, 81 is a pixel of the surveying object 80, 82 is a retroreflective paint spot, and this retroreflective paint spot 82 is extremely higher than the surroundings by flash photography of the location where the retroreflective paint is attached. Has brightness. The left and right and upper and lower ends of the high luminance image are searched, and the pixel corresponding to the centroid is set as the reference point 83.
FIG. 10 is an explanatory diagram of superposition of shape data using a reference point showing an embodiment of the present invention, and FIG. 10 (a) is a diagram showing a survey target that needs to be divided and photographed due to the influence of size and blind spot, FIG. 10B is a diagram showing the setting of the reference point (black point), FIG. 10C is a diagram showing the calculation of each shape from the divided photograph, and FIG. 10D is a mark of the coordinates of the reference point. The shape data is overlapped as shown in FIG.

これらの図において、91は測量対象、91−1〜91−4は分割撮影された測量対象、92は特徴点である。
次に、重ね合わせ方法について説明する。
(1)図9に示すように、反射塗料スポット82の重心位置を計算して基準点83とし、写真上の対応する画素81を決定する。
(2)2つの3次元点群データに共通して存在する基準点83の位置データを目印として3次元形状データ(3次元の点群)を重ね合わせる(図10)。オーバーラップ箇所の座標は、一方のデータを代表して用いるか、同一位置とみなされる2つの点群データの値を平均化して決定する。
In these figures, 91 is a survey target, 91-1 to 91-4 are segmented survey targets, and 92 is a feature point.
Next, the overlay method will be described.
(1) As shown in FIG. 9, the position of the center of gravity of the reflective paint spot 82 is calculated as a reference point 83, and the corresponding pixel 81 on the photograph is determined.
(2) The three-dimensional shape data (three-dimensional point group) is superimposed using the position data of the reference point 83 that exists in common in the two three-dimensional point group data as a mark (FIG. 10). The coordinates of the overlap location are determined by using one data as a representative or by averaging the values of two point group data regarded as the same position.

図11は本発明の実施例を示す防振化した平行ステレオカメラを示す図である。つまり、ステレオカメラ部の拡大図である。カメラの一方を測量用として用いてもよい。別途、測量用単眼カメラを用いる場合にはそのカメラにも同様の防振装置を設ける。
101は平行ステレオカメラ、102はそのステレオカメラ101の防振機構である。カメラの一方を測量用として用いてもよい。別途、測量用単眼カメラを用いる場合にはそのカメラにも同様の防振装置を設ける。
FIG. 11 is a view showing a vibration-proof parallel stereo camera according to an embodiment of the present invention. That is, it is an enlarged view of the stereo camera unit. One of the cameras may be used for surveying. Separately, when a monocular camera for surveying is used, the camera is provided with a similar vibration isolator.
101 is a parallel stereo camera, and 102 is an anti-vibration mechanism for the stereo camera 101. One of the cameras may be used for surveying. Separately, when a monocular camera for surveying is used, the camera is provided with a similar vibration isolator.

図12は本発明の実施例を示す撮影システムの模式図である。
(1)地上の制御用ノートPC(パソコン)111と模型航空機上の撮影用ノートPC(パソコン)112間でTCP/IPによりデータ通信する。
(2)ステレオカメラの撮影画像を常に地上に送信し、地上の制御用ノートPC(パソコン)111でモニタする。
(3)ステレオカメラ(動画撮影)の撮影の開始、停止を地上から制御する。
(4)モニタ画像を参考にしながら模型航空機を移動させ、測量に必要な画像を収録する。
(5)撮影画像を地上で確認し、必要な画像が撮影出来ていない場合は再度撮影する。
FIG. 12 is a schematic diagram of an imaging system showing an embodiment of the present invention.
(1) Data communication is performed between the ground control notebook PC (personal computer) 111 and the photographing notebook PC (personal computer) 112 on the model aircraft by TCP / IP.
(2) A captured image of the stereo camera is always transmitted to the ground and monitored by the ground control notebook PC (personal computer) 111.
(3) Control the start and stop of stereo camera (moving image shooting) from the ground.
(4) Move the model aircraft while referring to the monitor image and record the images necessary for surveying.
(5) Check the photographed image on the ground, and if necessary images are not photographed, photograph again.

図13は本発明の実施例を示す測量作業実施状況を示す図面代用写真である。
人が近寄り難い測量対象岩塊121であっても本発明の空撮測量装置122によって容易に測量することができる。
図14は本発明の実施例を示す本発明の実施例を示す得られた形状データ、色情報を持った3次元点群を2次元表示した図面代用写真である。
FIG. 13 is a drawing-substituting photograph showing the surveying work implementation status showing an embodiment of the present invention.
Even the surveyed rock mass 121 that is difficult for humans to approach can be easily surveyed by the aerial surveying device 122 of the present invention.
FIG. 14 is a drawing-substituting photograph in which a three-dimensional point group having the obtained shape data and color information is two-dimensionally displayed to show the embodiment of the present invention.

この図に示すように、形状データ、色情報を持った3次元点群を2次元表示することができる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
As shown in this figure, a three-dimensional point group having shape data and color information can be displayed two-dimensionally.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の空撮測量方法および装置は、平行ステレオカメラを標尺代わりに利用することにより、測量対象に標尺や基準点を設置することなく、空撮測量装置のみで、様々な対象物の大きさ、対象物との距離に応じた3 次元形状の取得が可能になる空撮測量方法および装置として利用可能である。   The aerial surveying method and apparatus of the present invention uses a parallel stereo camera in place of a standard measure, so that a variety of object sizes can be obtained using only the aerial surveying instrument without installing a standard or reference point on the survey target. It can be used as an aerial surveying method and apparatus that enables acquisition of a three-dimensional shape according to the distance to the object.

1,12,41 模型航空機
2 防振装置
3,17 ステレオカメラ
4 撮影および通信制御用PC
5 反射塗料スポッター
6,19,42A 測量用単眼カメラ
7,18 傾斜および方位計
8,15 距離計
9 地上局
11,122 空撮測量装置
12 模型航空機
13 GPS
14 IMU
16 操縦用無線送受信装置
20,43 再帰反射塗料噴射機
21,26,30 制御装置
22,31,35 記録装置
23 撮影用無線送受信装置
24 航空機操縦部
25 操縦情報無線送受信機
27,33,37 入力装置
28 撮影および噴射情報制御部
29 撮影および噴射情報無線送受信機
32,38 表示装置
34 3次元形状データ解析部
36 演算装置
40,71,80,91 測量対象
42,101 平行ステレオカメラ
44 再帰反射塗料
51 左カメラ
52 右カメラ
53 左画像
54 右画像
55 左画像上の位置Pl (u,v)
56 右画像上の位置Pr (u′,v′)
57 位置座標P(X,Y,Z)
b 基線長
f 焦点距離
61 左側の1回目撮影位置
62 1回目画像
63 1回目画像上の位置Pl (u,v)
65 右側の2回目撮影位置
66 2回目画像
67 2回目画像上の位置Pr (u,v)
72,92 特徴点
73 平行ステレオカメラで測量した特徴点間距離
74 測量対象の傾斜の補正
75 測量対象の方位の補正
81 測量対象の画素
82 再帰反射塗料スポット
83 基準点(図心にあたる画素)
91−1〜91−4 分割撮影された測量対象
102 ステレオカメラの防振機構
111 地上の制御用ノートPC(パソコン)
112 模型航空機上の撮影用ノートPC(パソコン)
121 人が近寄り難い測量対象岩塊
1,12,41 Model aircraft 2 Anti-vibration device 3,17 Stereo camera 4 PC for shooting and communication control
5 Reflective paint spotter 6,19,42A Surveying monocular camera 7,18 Tilt and bearing meter 8,15 Distance meter 9 Ground station 11,122 Aerial surveying device 12 Model aircraft 13 GPS
14 IMU
16 Radio transmission / reception device for control 20, 43 Retroreflective paint sprayer 21, 26, 30 Control device 22, 31, 35 Recording device 23 Radio transmission / reception device for photographing 24 Aircraft control unit 25 Control information radio transmitter / receiver 27, 33, 37 Input Device 28 Imaging and ejection information control unit 29 Imaging and ejection information wireless transceiver 32, 38 Display device 34 Three-dimensional shape data analysis unit 36 Arithmetic device 40, 71, 80, 91 Survey object 42, 101 Parallel stereo camera 44 Retroreflective paint 51 Left camera 52 Right camera 53 Left image 54 Right image 55 Position P l (u, v) on the left image
56 Position P r (u ′, v ′) on right image
57 Position coordinates P (X, Y, Z)
b Base line length f Focal length 61 First imaging position on left side 62 First image 63 Position P 1 (u, v) on first image
65 Second-time shooting position on the right side 66 Second-time image 67 Position P r (u, v) on the second-time image
72,92 Feature point 73 Distance between feature points measured by parallel stereo camera 74 Correction of tilt of survey target 75 Correction of direction of survey target 81 Pixel of survey target 82 Retroreflective paint spot 83 Reference point (pixel corresponding to centroid)
91-1 to 91-4 Surveyed Objects Taken in Divided 102 Stereo Camera Anti-Vibration Mechanism 111 Ground Control Notebook PC (PC)
112 Notebook PC (computer) for shooting on model aircraft
121 Masses for surveying that are difficult for people to approach

Claims (10)

模型航空機に防振機構を介してステレオカメラと角度および方位計を取り付けた測量用単眼カメラと、反射塗料の噴射装置を取り付け、測量対象の写真を撮影し、撮影画像に画像相関法を適用することにより、測量対象に標尺を人が設置することなく、任意の大きさの測量対象を必要とする精度で測量し、測量対象に人が基準点を設置することなく画像の貼り合わせを行うようにしたことを特徴とする空撮測量方法。   A monocular camera for surveying with a stereo camera and an angle and direction meter attached to the model aircraft via an anti-vibration mechanism, and an injection device for reflective paint are attached to take a photo of the survey object, and apply the image correlation method to the captured image By doing this, the person does not install a measuring instrument on the surveying object, but the surveying object of any size is surveyed with the accuracy required, and the person pastes the images without installing a reference point on the surveying object. An aerial survey method characterized by 請求項1記載の空撮測量方法において、前記ステレオカメラにより測量対象の特徴点間距離計測を行うことを特徴とする空撮測量方法。   2. The aerial surveying method according to claim 1, wherein the distance between feature points of the survey target is measured by the stereo camera. 請求項1記載の空撮測量方法において、前記測量用単眼カメラによりカメラ撮影時の測量用単眼カメラの傾斜および方位情報を測量用単眼カメラに取り付けた傾斜および方位計により同時に記録することを特徴とする空撮測量方法。   2. The aerial surveying method according to claim 1, wherein the tilting and azimuth information of the surveying monocular camera at the time of photographing by the surveying monocular camera is simultaneously recorded by the tilting and azimuth meter attached to the surveying monocular camera. Aerial surveying method to do. 請求項1記載の空撮測量方法において、3次元形状データの貼り合わせが必要な場合は、模型航空機を測量対象に近づけて、再帰反射塗料噴射機で測量対象に基準点を設けることを特徴とする空撮測量方法。   The aerial surveying method according to claim 1, wherein when the three-dimensional shape data needs to be pasted together, the model aircraft is brought close to the survey target, and a reference point is set on the survey target with the retroreflective paint sprayer. Aerial surveying method to do. 請求項4記載の空撮測量方法において、1撮影写真あたり、写真のオーバーラップ予定部分に最低3箇所のスポットを写り込むように基準点を設けることを特徴とする空撮測量方法。   5. The aerial surveying method according to claim 4, wherein a reference point is provided so that at least three spots are reflected on a portion of the photograph that is to be overlapped for each photographed photograph. 請求項4記載の空撮測量方法において、測量対象を撮影する際に、画像相関解析に用いる2枚の画像のオーバーラップ箇所に最低3箇所のスポットを写り込むよう配慮し、フラッシュ撮影することを特徴とする空撮測量方法。   5. The aerial surveying method according to claim 4, wherein when photographing a survey object, taking into account that at least three spots are reflected in an overlap portion of two images used for image correlation analysis, and photographing with flash. Features aerial surveying methods. (a)模型航空機に防振機構を介してステレオカメラと角度および方位計を取り付けた単眼カメラと、再帰反射塗料の噴射装置と、操縦用無線送受信機と、撮影用無線送受信機とを具備する空撮測量用航空機と、
(b)該空撮測量用航空機との無線通信を行う空撮測量用航空機の操縦部と、
(c)該空撮測量用航空機の無線通信を行う撮影および噴射情報制御部とを具備することを特徴とする空撮測量装置。
(A) The model aircraft includes a monocular camera in which a stereo camera and an angle and direction meter are attached via a vibration isolation mechanism, a retroreflective coating spraying device, a steering radio transceiver, and a radio transceiver for photographing. Aerial survey aircraft,
(B) an aerial survey aircraft control unit that performs wireless communication with the aerial survey aircraft;
(C) An aerial surveying apparatus comprising an imaging and injection information control unit that performs wireless communication of the aerial surveying aircraft.
請求項7記載の空撮測量装置において、前記空撮測量用航空機の操縦のためのGPS、IMU、及び距離計を備えることを特徴とする空撮測量装置。   8. The aerial surveying device according to claim 7, further comprising: a GPS, an IMU, and a distance meter for controlling the aerial survey aircraft. 請求項7記載の空撮測量装置において、前記撮影および噴射情報制御部には、撮影および噴射情報無線送受信機と、該撮影および噴射情報無線送受信機の制御装置と、記録装置と、表示装置と、入力装置と、前記記録装置に接続される3次元形状データ解析部とを具備することを特徴とする空撮測量装置。   8. The aerial surveying instrument according to claim 7, wherein the imaging and ejection information control unit includes an imaging and ejection information wireless transceiver, a control device for the imaging and ejection information wireless transceiver, a recording device, and a display device. An aerial surveying instrument comprising: an input device; and a three-dimensional shape data analysis unit connected to the recording device. 請求項9記載の空撮測量装置において、前記3次元形状データ解析部に記憶装置と演算装置と入力装置と表示装置を具備することを特徴とする空撮測量装置。   The aerial surveying instrument according to claim 9, wherein the three-dimensional shape data analysis unit includes a storage device, a calculation device, an input device, and a display device.
JP2013135813A 2013-06-28 2013-06-28 Aerial surveying method and apparatus Expired - Fee Related JP6058483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135813A JP6058483B2 (en) 2013-06-28 2013-06-28 Aerial surveying method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135813A JP6058483B2 (en) 2013-06-28 2013-06-28 Aerial surveying method and apparatus

Publications (2)

Publication Number Publication Date
JP2015010911A true JP2015010911A (en) 2015-01-19
JP6058483B2 JP6058483B2 (en) 2017-01-11

Family

ID=52304198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135813A Expired - Fee Related JP6058483B2 (en) 2013-06-28 2013-06-28 Aerial surveying method and apparatus

Country Status (1)

Country Link
JP (1) JP6058483B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629980A (en) * 2015-12-23 2016-06-01 深圳速鸟创新科技有限公司 Single-camera oblique photography three-dimensional modeling system
CN105783878A (en) * 2016-03-11 2016-07-20 三峡大学 Small unmanned aerial vehicle remote sensing-based slope deformation detection and calculation method
WO2018020691A1 (en) * 2016-07-29 2018-02-01 株式会社 ニコン・トリンブル Monitoring method, monitoring system, and program
JP2019152533A (en) * 2018-03-02 2019-09-12 株式会社パスコ Building structure shape calculating system and building structure imaging device
CN110989642A (en) * 2019-11-27 2020-04-10 中国民用航空总局第二研究所 Aircraft ground traction intelligent auxiliary method and system based on three-dimensional path tracking
CN113313757A (en) * 2021-07-27 2021-08-27 广州市勤思网络科技有限公司 Ship cabin passenger safety early warning algorithm based on monocular distance measurement
CN114076568A (en) * 2022-01-19 2022-02-22 中铁第一勘察设计院集团有限公司 Air-ground-depth integrated visual slope automatic monitoring system and method
WO2023142608A1 (en) * 2022-01-26 2023-08-03 上海飞机制造有限公司 System and method for obtaining aircraft profile

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091289A (en) * 1999-09-17 2001-04-06 Data Tec:Kk Sensor unit
JP2002328021A (en) * 2001-04-27 2002-11-15 Hayashi Katsuyoshi Method for measuring damage of disaster using helicopter photographing
JP2007212430A (en) * 2006-08-07 2007-08-23 Kurabo Ind Ltd Photogrammetry device and system
JP2008076285A (en) * 2006-09-22 2008-04-03 Ihi Corp Photogrammetric system
JP2010014546A (en) * 2008-07-03 2010-01-21 Ihi Corp Fiducial gage and method for three-dimensional measurement
JP2011252803A (en) * 2010-06-02 2011-12-15 Ihi Corp Photographic measuring target and photographic measuring method
JP2012040975A (en) * 2010-08-20 2012-03-01 Railway Technical Research Institute Radio controlled aircraft for forming reflecting target
JP2012140101A (en) * 2011-01-04 2012-07-26 Topcon Corp Flight control system for flying object
WO2013051300A1 (en) * 2011-10-03 2013-04-11 Hanabata Mitsuaki Disaster circumstance ascertainment system
JP2013108927A (en) * 2011-11-24 2013-06-06 Topcon Corp Aerial photograph imaging method and aerial photograph imaging device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091289A (en) * 1999-09-17 2001-04-06 Data Tec:Kk Sensor unit
JP2002328021A (en) * 2001-04-27 2002-11-15 Hayashi Katsuyoshi Method for measuring damage of disaster using helicopter photographing
JP2007212430A (en) * 2006-08-07 2007-08-23 Kurabo Ind Ltd Photogrammetry device and system
JP2008076285A (en) * 2006-09-22 2008-04-03 Ihi Corp Photogrammetric system
JP2010014546A (en) * 2008-07-03 2010-01-21 Ihi Corp Fiducial gage and method for three-dimensional measurement
JP2011252803A (en) * 2010-06-02 2011-12-15 Ihi Corp Photographic measuring target and photographic measuring method
JP2012040975A (en) * 2010-08-20 2012-03-01 Railway Technical Research Institute Radio controlled aircraft for forming reflecting target
JP2012140101A (en) * 2011-01-04 2012-07-26 Topcon Corp Flight control system for flying object
WO2013051300A1 (en) * 2011-10-03 2013-04-11 Hanabata Mitsuaki Disaster circumstance ascertainment system
JP2013108927A (en) * 2011-11-24 2013-06-06 Topcon Corp Aerial photograph imaging method and aerial photograph imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016013985; 鈴木 太郎(Taro SUZUKI)(外10名): '小型自律飛行ロボットを用いた災害時における情報収集システムの構築(Development of Information Collect' 日本ロボット学会誌(Journal of the Robotics Society of Japan) 第26巻,第6号, 20080915, 553-560, 社団法人日本ロボット学会(The Robotics Society of *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629980A (en) * 2015-12-23 2016-06-01 深圳速鸟创新科技有限公司 Single-camera oblique photography three-dimensional modeling system
CN105629980B (en) * 2015-12-23 2018-07-31 深圳速鸟创新科技有限公司 A kind of one camera oblique photograph 3 d modeling system
CN105783878A (en) * 2016-03-11 2016-07-20 三峡大学 Small unmanned aerial vehicle remote sensing-based slope deformation detection and calculation method
WO2018020691A1 (en) * 2016-07-29 2018-02-01 株式会社 ニコン・トリンブル Monitoring method, monitoring system, and program
JPWO2018020691A1 (en) * 2016-07-29 2019-02-14 株式会社ニコン・トリンブル Monitoring method, monitoring system and program
JP2019152533A (en) * 2018-03-02 2019-09-12 株式会社パスコ Building structure shape calculating system and building structure imaging device
JP7086643B2 (en) 2018-03-02 2022-06-20 株式会社パスコ Building structure shape calculation system and building structure photography equipment
CN110989642A (en) * 2019-11-27 2020-04-10 中国民用航空总局第二研究所 Aircraft ground traction intelligent auxiliary method and system based on three-dimensional path tracking
CN110989642B (en) * 2019-11-27 2023-09-01 中国民用航空总局第二研究所 Intelligent aircraft ground traction auxiliary method and system based on three-dimensional path tracking
CN113313757A (en) * 2021-07-27 2021-08-27 广州市勤思网络科技有限公司 Ship cabin passenger safety early warning algorithm based on monocular distance measurement
CN114076568A (en) * 2022-01-19 2022-02-22 中铁第一勘察设计院集团有限公司 Air-ground-depth integrated visual slope automatic monitoring system and method
WO2023142608A1 (en) * 2022-01-26 2023-08-03 上海飞机制造有限公司 System and method for obtaining aircraft profile

Also Published As

Publication number Publication date
JP6058483B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6058483B2 (en) Aerial surveying method and apparatus
US8699005B2 (en) Indoor surveying apparatus
US9377301B2 (en) Mobile field controller for measurement and remote control
EP2869024B1 (en) Three-dimensional measuring method and surveying system
US9109889B2 (en) Determining tilt angle and tilt direction using image processing
US8229166B2 (en) Image-based tracking
US8897482B2 (en) Stereo photogrammetry from a single station using a surveying instrument with an eccentric camera
KR101223242B1 (en) Apparatus for drawing digital map
CN106872993A (en) Portable distance-measuring device and the method for catching relative position
KR101214081B1 (en) Image expression mapping system using space image and numeric information
CN102798456B (en) Method, device and system for measuring working range of engineering mechanical arm frame system
KR101342393B1 (en) Georeferencing Method of Indoor Omni-Directional Images Acquired by Rotating Line Camera
JP2016048172A (en) Image processor, image processing method, and program
KR20170094030A (en) System and Method for providing mapping of indoor navigation and panorama pictures
JP4077385B2 (en) Global coordinate acquisition device using image processing
JP2018146524A (en) Survey system
CN110095659A (en) Deep space exploration rover communication antenna pointing accuracy dynamic testing method
WO2019188961A1 (en) Target device and surveying system
CN114442129A (en) Dynamic adjustment method for improving unmanned aerial vehicle survey precision of complex slope rock mass
JP2001317915A (en) Three-dimensional measurement apparatus
WO2019160778A1 (en) Image capturing system, method, and analysis of objects of interest
US20220049956A1 (en) Method for water level measurement and method for obtaining 3d water surface spatial information using unmanned aerial vehicle and virtual water control points
JP6773473B2 (en) Survey information management device and survey information management method
JP6425353B2 (en) Signs for aerial photogrammetry and 3D solid model generation, aerial photogrammetric methods
KR20220013757A (en) Measuring system for crack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161207

R150 Certificate of patent or registration of utility model

Ref document number: 6058483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees