JP2015005794A - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
JP2015005794A
JP2015005794A JP2013128165A JP2013128165A JP2015005794A JP 2015005794 A JP2015005794 A JP 2015005794A JP 2013128165 A JP2013128165 A JP 2013128165A JP 2013128165 A JP2013128165 A JP 2013128165A JP 2015005794 A JP2015005794 A JP 2015005794A
Authority
JP
Japan
Prior art keywords
portions
straight
conductive film
extension
silver conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013128165A
Other languages
Japanese (ja)
Inventor
由 村野
Yu Murano
由 村野
英史 藤田
Hidefumi Fujita
英史 藤田
伊東 大輔
Daisuke Ito
大輔 伊東
紺野 慎一
Shinichi Konno
慎一 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013128165A priority Critical patent/JP2015005794A/en
Priority to PCT/JP2014/065821 priority patent/WO2014203835A1/en
Publication of JP2015005794A publication Critical patent/JP2015005794A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • H01Q9/24Shunt feed arrangements to single active elements, e.g. for delta matching

Landscapes

  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized antenna of which the communication distance per unit area of a silver conductive film is longer in comparison with a conventional antenna used for an RFID tag or the like.SOLUTION: In an antenna, a linearly extending silver conductive film (a silver conductive film including a sintered body of silver particles) 10 is formed on a substrate. The silver conductive film 10 includes: a loop part 10a extending with the substantially equal line width in a loop shape so as to surround a substantially rectangular plane shape; and a pair of extension parts 10b extending with the substantially equal line width reversely to each other from both ends of one of four linear parts which linearly extend in the loop part 10a. Each of the extension parts 10b is formed from a plurality of parallel parts 10c which extend substantially in parallel with the one linear part, and a plurality of vertical parts 10d extending substantially vertically to these parallel parts 10c. One of these parallel parts 10c is connected to the one linear part, and the parallel parts 10c and the vertical parts 10d are alternately and continuously formed.

Description

本発明は、アンテナに関し、特に、RFIDタグなどに使用するアンテナに関する。   The present invention relates to an antenna, and more particularly to an antenna used for an RFID tag or the like.

RFIDタグは、RFID(Radio Frequency IDentification(無線通信による個体識別技術))を利用したタグであり、識別番号などのデータを記憶する半導体チップと、電波を送受信するためのアンテナとを備えた薄型で軽量の小型電子装置である。   The RFID tag is a tag using RFID (Radio Frequency IDentification (individual identification technology by wireless communication)), and is a thin type equipped with a semiconductor chip for storing data such as an identification number and an antenna for transmitting and receiving radio waves. It is a lightweight small electronic device.

このようなRFIDタグは、物流管理などの様々な分野において様々な使用環境で広く利用されることが期待されており、大量生産により製造コストを低減して普及させることが望まれている。また、RFIDタグ用アンテナは、データ送受信可能距離(通信距離)を拡大し、送受信時のデータ損失を低減するために、電気抵抗が低いことが必要である。さらに、RFIDタグは、(例えば、輸送容器のトラッキング、トレーサビリティー、位置情報の管理や、ランドリータグのように衣類洗濯業者による衣類の管理などの)様々な物流管理などの分野において使用されることから、使用環境により繰り返し折り曲げられる場面が多いので、繰り返し折り曲げられても、アンテナの金属疲労による断線や電気抵抗の増大など、アンテナの特性の劣化によってRFIDタグとして使用することができなくなるのを防止する必要があるため、屈曲性が良好であることが必要である。   Such an RFID tag is expected to be widely used in various usage environments in various fields such as physical distribution management, and it is desired to reduce the manufacturing cost by mass production and spread it. In addition, the RFID tag antenna needs to have low electrical resistance in order to increase the data transmission / reception possible distance (communication distance) and reduce data loss during transmission / reception. Furthermore, RFID tags should be used in various logistics management fields (eg, tracking of transport containers, traceability, location information management, and clothing management by clothing washers like laundry tags). Therefore, even if it is repeatedly bent, it can be prevented from being used as an RFID tag due to deterioration of antenna characteristics such as disconnection due to metal fatigue of the antenna or an increase in electrical resistance. Therefore, it is necessary that the flexibility be good.

RFIDタグ用アンテナ回路(導電回路)を形成する方法として、銅線のコイルや針金をアンテナとして利用する方法、銅箔やアルミニウム箔などの金属箔を基材に転写する方法、プラスチックフィルムなどの基材に積層した金属箔に耐エッチング性インクをアンテナ回路パターン印刷してマスキングした後に金属箔をエッチングする方法などがある。   The RFID tag antenna circuit (conductive circuit) can be formed by using a coil or wire of copper wire as an antenna, a method of transferring a metal foil such as copper foil or aluminum foil onto a substrate, or a substrate such as a plastic film. For example, there is a method of etching the metal foil after masking the metal foil laminated on the material with an etching resistant ink by printing an antenna circuit pattern.

しかし、これらの方法では、生産性に制限があり、大量生産には向いていないことから、製造コストをさらに低減させるのが困難である。また、これらの方法のうち、金属箔を基材に転写する方法や金属箔をエッチングする方法では、金属箔が圧延などより製造されているが、金属箔中の金属の割合がほぼ100%と高い値であるため、金属箔によってアンテナ回路が形成されたRFIDタグは、電気特性が良好になるものの、屈曲性が悪くなるという問題がある。また、金属箔によってアンテナ回路が形成されたRFIDタグでは、一般に膜厚10〜50μm程度の金属箔が使用されているが、金属箔が厚過ぎると、金属板の性質に近くなって基材との密着性が低下し、RFIDタグの屈曲時に金属箔が基材から剥離する可能性がある。さらに、金属箔中の金属の割合が高いため、RFIDタグの屈曲時に屈曲面に応力が集中してしまい、屈曲面にクラックが発生し易くなり、その結果、電気特性の悪化や断線が生じ、RFIDタグ用アンテナとして機能しなくなる。一方、RFIDタグの屈曲性を向上させるために、金属箔の代わりに、金属成分と樹脂成分からなる導電膜を使用して金属の割合を低下させると、一般に応力緩和により屈曲性を向上させることができるが、金属成分の量が低下することにより、電気抵抗が悪化して、RFIDタグ用アンテナとして十分な特性を満たさなくなる。   However, these methods are limited in productivity and are not suitable for mass production, so that it is difficult to further reduce manufacturing costs. Of these methods, in the method of transferring the metal foil to the substrate and the method of etching the metal foil, the metal foil is manufactured by rolling or the like, but the ratio of the metal in the metal foil is almost 100%. Since the value is high, the RFID tag in which the antenna circuit is formed of the metal foil has a problem that the electrical property is good but the flexibility is poor. In addition, in an RFID tag in which an antenna circuit is formed of a metal foil, a metal foil with a film thickness of about 10 to 50 μm is generally used. However, if the metal foil is too thick, the properties of the metal plate become close to the substrate. There is a possibility that the metal foil peels off from the base material when the RFID tag is bent. Furthermore, since the ratio of the metal in the metal foil is high, stress is concentrated on the bent surface when the RFID tag is bent, and cracks are likely to occur on the bent surface, resulting in deterioration of electrical characteristics and disconnection, It will not function as an RFID tag antenna. On the other hand, in order to improve the flexibility of the RFID tag, instead of metal foil, using a conductive film composed of a metal component and a resin component to reduce the metal ratio generally improves the flexibility by stress relaxation. However, when the amount of the metal component is reduced, the electrical resistance is deteriorated and the characteristics sufficient for the RFID tag antenna are not satisfied.

金属箔を使用しないで基材との密着性が良好な導電回路を形成するRFIDタグ用アンテナを製造する方法として、40質量%以下の銀粒子を含む水性導電性インクを、フレキソ印刷によりフィルム状基材の表面に塗布して乾燥させることによって、フィルム状基材の表面に厚さ0.1〜0.5μmの導電膜を形成してRFIDタグの一種であるICタグ用のアンテナを製造する方法が提案されている(例えば、特許文献1参照)。   As a method of manufacturing an RFID tag antenna that forms a conductive circuit with good adhesion to a substrate without using a metal foil, a water-based conductive ink containing 40% by mass or less of silver particles is formed into a film by flexographic printing. By applying and drying on the surface of the base material, a conductive film having a thickness of 0.1 to 0.5 μm is formed on the surface of the film-like base material to manufacture an antenna for an IC tag which is a kind of RFID tag. A method has been proposed (see, for example, Patent Document 1).

特開2010−268073号公報(段落番号0030、0059)JP 2010-268073 A (paragraph numbers 0030 and 0059)

しかし、特許文献1の方法では、電気抵抗が低いICタグ用アンテナを大量生産して製造コストを低減することができるが、通信距離が短いため、通信距離をさらに延長することが望まれている。   However, in the method of Patent Document 1, it is possible to mass-produce IC tag antennas with low electrical resistance and reduce the manufacturing cost. However, since the communication distance is short, it is desired to further extend the communication distance. .

したがって、本発明は、このような従来の問題点に鑑み、RFIDタグなどに使用する従来のアンテナと比べて銀導電膜の単位面積当たりの通信距離が長い小型のアンテナを提供することを目的とする。   Accordingly, in view of the above-described conventional problems, the present invention aims to provide a small antenna having a long communication distance per unit area of a silver conductive film as compared with a conventional antenna used for an RFID tag or the like. To do.

本発明者らは、上記課題を解決するために鋭意研究した結果、線状に延びる銀導電膜が基板上に形成されたアンテナにおいて、銀導電膜を、略長方形の平面形状を取り囲むようにループ状に略同一の線幅で延びるループ部と、このループ部の略直線状に延びる4つの直線部のうちの1つの直線部の両端の各々から互いに逆方向に略同一の線幅で延びる一対の延長部とから形成することにより、RFIDタグなどに使用する従来のアンテナと比べて銀導電膜の単位面積当たりの通信距離を長い小型のアンテナを製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that in an antenna in which a linearly extending silver conductive film is formed on a substrate, the silver conductive film is looped so as to surround a substantially rectangular planar shape. A pair of loop portions having substantially the same line width and substantially the same line width in opposite directions from both ends of one straight portion of the four straight portions extending substantially linearly of the loop portion. It is found that a small antenna having a longer communication distance per unit area of the silver conductive film can be manufactured than the conventional antenna used for an RFID tag or the like, and the present invention is completed. It came to do.

すなわち、本発明によるアンテナは、線状に延びる銀導電膜が基板上に形成されたアンテナにおいて、銀導電膜が、略長方形の平面形状を取り囲むようにループ状に略同一の線幅で延びるループ部と、このループ部の略直線状に延びる4つの直線部のうちの1つの直線部の両端の各々から互いに逆方向に略同一の線幅で延びる一対の延長部とからなることを特徴とする。   That is, the antenna according to the present invention is a loop in which a silver conductive film extending on a substrate is formed on a substrate, and the silver conductive film extends in a loop shape with substantially the same line width so as to surround a substantially rectangular planar shape. And a pair of extensions extending from each of the ends of one of the four straight portions of the loop portion in a substantially straight line shape with substantially the same line width in opposite directions. To do.

このアンテナにおいて、一対の延長部が、上記の1つの直線部の略中央部から上記の1つの直線部に略垂直に延びる直線に対してそれぞれ対称に配置されるのが好ましく、一対の延長部の各々の先端部が延長部の他の部分と略同一の線幅を有するのが好ましい。   In this antenna, the pair of extension portions are preferably arranged symmetrically with respect to a straight line extending substantially perpendicularly from the substantially central portion of the one straight portion to the one straight portion. It is preferable that each of the end portions of each has substantially the same line width as the other portions of the extension portion.

また、一対の延長部の各々が、上記の1つの直線部に対して略平行に延びる平行部と、この平行部に対して略垂直に延びる垂直部とからなるのが好ましい。この場合、一対の延長部の各々の延長部の平行部と垂直部がそれぞれ複数あり、これらの平行部の1つが上記の1つの直線部に接続され、平行部と垂直部が交互に連続的に形成されているのが好ましい。この場合、一対の延長部の各々の延長部の複数の平行部の長さが、略同一の長さであるのが好ましい。また、一対の延長部の各々の延長部の垂直部の長さが、ループ部の4つの直線部のうちの上記の1つの直線部に対して略垂直に延びる直線部の長さと略同一であるのが好ましい。あるいは、一対の延長部の各々の延長部の垂直部の長さが、ループ部の4つの直線部のうちの上記の1つの直線部に対して略垂直に延びる直線部より長くてもよい。   Moreover, it is preferable that each of a pair of extension part consists of a parallel part extended substantially parallel with respect to said one linear part, and a perpendicular part extended substantially perpendicular | vertical with respect to this parallel part. In this case, there are a plurality of parallel parts and vertical parts of each extension part of the pair of extension parts, and one of these parallel parts is connected to the one straight part, and the parallel parts and the vertical parts are alternately continuous. It is preferable that it is formed. In this case, it is preferable that the lengths of the plurality of parallel portions of the extension portions of the pair of extension portions are substantially the same length. Further, the length of the vertical portion of each extension portion of the pair of extension portions is substantially the same as the length of the straight portion extending substantially perpendicular to the one straight portion of the four straight portions of the loop portion. Preferably there is. Alternatively, the length of the vertical portion of each extension portion of the pair of extension portions may be longer than the straight portion extending substantially perpendicular to the one straight portion of the four straight portions of the loop portion.

また、一対の延長部の各々が、上記の1つの直線部から蛇行しながら曲線状に延びてもよい。この場合、一対の延長部の各々が、4つの直線部のうちの上記の1つの直線部の延長線とこの直線部に対して平行な直線部の延長線との間で蛇行するのが好ましい。また、一対の延長部の各々が、4つの直線部のうちの上記の1つの直線部の延長線とこの直線部に対して平行な直線部の延長線の一方から他方および他方から一方に向かう各々の部分において、ループ部の方に近づくように延びる部分を有するのが好ましい。また、一対の延長部の各々が、4つの直線部のうちの上記の1つの直線部の延長線付近と、4つの直線部のうちの上記の1つの直線部に平行な直線部の延長線付近において、略半円状に延びる部分を有するのが好ましい。   Moreover, each of a pair of extension part may extend in the shape of a curve, meandering from said one linear part. In this case, it is preferable that each of the pair of extension portions meander between the extension line of the one straight portion of the four straight portions and the extension line of the straight portion parallel to the straight portion. . Further, each of the pair of extension portions is directed from one to the other and one to the other of the extension line of the one straight portion of the four straight portions and the extension line of the straight portion parallel to the straight portion. Each part preferably has a part extending so as to approach the loop part. Further, each of the pair of extension portions is in the vicinity of the extension line of the one straight portion of the four straight portions, and the extension line of the straight portion parallel to the one straight portion of the four straight portions. In the vicinity, it is preferable to have a portion extending in a substantially semicircular shape.

また、銀導電膜の面積が135〜265mmであり且つ銀導電膜の線幅が1.0mm以下であるのが好ましく、銀導電膜の厚さが1〜10μmであるのが好ましい。さらに、銀導電膜が銀粒子の焼結体を含むのが好ましい。 Moreover, it is preferable that the area of a silver electrically conductive film is 135-265 mm < 2 >, and the line | wire width of a silver electrically conductive film is 1.0 mm or less, and it is preferable that the thickness of a silver electrically conductive film is 1-10 micrometers. Further, the silver conductive film preferably contains a sintered body of silver particles.

本発明によれば、RFIDタグなどに使用する従来のアンテナと比べて銀導電膜の単位面積当たりの通信距離が長い小型のアンテナを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, compared with the conventional antenna used for an RFID tag etc., the small antenna with a long communication distance per unit area of a silver electrically conductive film can be provided.

本発明によるアンテナの実施の形態の形状を説明する図である。It is a figure explaining the shape of embodiment of the antenna by this invention. 本発明によるアンテナの実施の形態の変形例の形状を説明する図である。It is a figure explaining the shape of the modification of embodiment of the antenna by this invention. 本発明によるアンテナの実施の形態の他の変形例の形状を説明する図である。It is a figure explaining the shape of the other modification of embodiment of the antenna by this invention. 本発明によるアンテナの実施の形態の他の変形例の形状を説明する図である。It is a figure explaining the shape of the other modification of embodiment of the antenna by this invention. 図1〜図4のアンテナのICチップ実装部を拡大して示す図である。It is a figure which expands and shows the IC chip mounting part of the antenna of FIGS.

図1〜図4に示すように、本発明によるアンテナの実施の形態は、線状に延びる銀導電膜(銀粒子の焼結体を含む銀導電膜)10が基板上に形成されたアンテナにおいて、銀導電膜10が、略長方形の平面形状を取り囲むようにループ状に略同一の線幅で延びるループ部10aと、このループ部10aの略直線状に延びる4つの直線部のうちの1つの直線部の両端の各々から互いに逆方向に略同一の線幅で延びる一対の延長部10bとからなる。これらの一対の延長部10bは、上記の1つの直線部の略中央部から上記の1つの直線部に略垂直に延びる直線に対してそれぞれ対称に配置されている。また、一対の延長部10bの各々の先端部は、延長部10bの他の部分と略同一の線幅を有する。   As shown in FIGS. 1 to 4, an antenna according to an embodiment of the present invention is an antenna in which a linearly extending silver conductive film (a silver conductive film including a sintered body of silver particles) 10 is formed on a substrate. The silver conductive film 10 has a loop portion 10a extending in a loop shape with substantially the same line width so as to surround a substantially rectangular planar shape, and one of four linear portions extending in a substantially linear shape of the loop portion 10a. It consists of a pair of extension part 10b extended from each of the both ends of a linear part to the mutually opposite direction by the substantially the same line | wire width. The pair of extension portions 10b are arranged symmetrically with respect to a straight line extending substantially perpendicularly from the substantially central portion of the one straight portion to the one straight portion. Moreover, each front-end | tip part of a pair of extension part 10b has a line width substantially the same as the other part of the extension part 10b.

図1〜図3に示すように、一対の延長部10bの各々が、上記の1つの直線部に対して略平行に延びる複数の平行部10cと、これらの平行部10cに対して略垂直に延びる複数の垂直部10dとからなり、これらの平行部10cの1つが上記の1つの直線部に接続され、平行部10cと垂直部10dが交互に連続的に形成されている形状が好ましい。一対の延長部10bの各々の延長部10bの複数の平行部10cの長さが、略同一の長さであるのが好ましい。また、一対の延長部10bの各々の延長部10bの垂直部10dの長さが、ループ部10aの4つの直線部のうちの上記の1つの直線部に対して略垂直に延びる直線部の長さと略同一であるのが好ましい。あるいは、一対の延長部10bの各々の延長部10bの垂直部10dの長さが、ループ部10aの4つの直線部のうちの上記の1つの直線部に対して略垂直に延びる直線部より長くてもよい。   As shown in FIGS. 1-3, each of a pair of extension part 10b is substantially perpendicular | vertical with respect to several parallel part 10c extended substantially parallel with respect to said one linear part, and these parallel parts 10c. A shape in which the plurality of vertical portions 10d extend, one of the parallel portions 10c is connected to the one straight portion, and the parallel portions 10c and the vertical portions 10d are alternately and continuously formed is preferable. The lengths of the plurality of parallel portions 10c of the extension portions 10b of the pair of extension portions 10b are preferably substantially the same length. In addition, the length of the vertical portion 10d of each extension portion 10b of the pair of extension portions 10b is the length of the straight portion extending substantially perpendicular to the one straight portion of the four straight portions of the loop portion 10a. Are preferably substantially the same. Alternatively, the length of the vertical portion 10d of each extension portion 10b of the pair of extension portions 10b is longer than the straight portion extending substantially perpendicular to the one straight portion of the four straight portions of the loop portion 10a. May be.

図4に示すように、一対の延長部10bの各々が、上記の1つの直線部から蛇行しながら曲線状に延びる形状でもよい。一対の延長部10bの各々は、4つの直線部のうちの上記の1つの直線部の延長線とこの直線部に対して平行な直線部の延長線との間で蛇行するのが好ましい。また、一対の延長部10bの各々が、4つの直線部のうちの上記の1つの直線部の延長線とこの直線部に対して平行な直線部の延長線の一方から他方および他方から一方に向かう各々の部分において、ループ部10aの方に近づくように延びる部分を有するのが好ましい。また、一対の延長部10bの各々が、4つの直線部のうちの上記の1つの直線部の延長線付近と、4つの直線部のうちの1つの直線部に平行な直線部の延長線付近において、略半円状に延びる部分を有するのが好ましい。   As shown in FIG. 4, each of the pair of extending portions 10b may have a shape extending in a curved shape while meandering from the one straight portion. Each of the pair of extension portions 10b preferably meanders between the extension line of the one straight portion of the four straight portions and the extension line of the straight portion parallel to the straight portion. Further, each of the pair of extension portions 10b extends from one of the four straight portions to the other and one from the other of the straight portions parallel to the straight portion. It is preferable to have a portion extending so as to approach the loop portion 10a in each of the facing portions. In addition, each of the pair of extension portions 10b is in the vicinity of the extension line of the above-described one straight portion of the four straight portions, and in the vicinity of the extension line of the straight portion parallel to one of the four straight portions. In this case, it is preferable to have a portion extending in a substantially semicircular shape.

なお、図1〜図5において、参照符号12は、RFIDタグチップなどの半導体チップが取り付けられるICチップ実装部を示している。   1 to 5, reference numeral 12 denotes an IC chip mounting portion to which a semiconductor chip such as an RFID tag chip is attached.

また、銀導電膜の面積が135〜265mmであり且つ銀導電膜(のループ部と延長部)の線幅が1.0mm以下であるのが好ましい。銀導電膜の面積が135〜265mmであり且つ銀導電膜の線幅が1.0mm以下であれば、RFIDタグチップを取り付けてRFIDタグチップ搭載アンテナを作製したときに、(銀の使用量を少なくするために)銀導電膜の面積を小さくしても通信距離が長くなる。 The area of the electro-conductive silver film is 135~265Mm 2 and the line width of the electro-conductive silver film (the loop portion and the extension of) is preferably at 1.0mm or less. If the area of the silver conductive film is 135 to 265 mm 2 and the line width of the silver conductive film is 1.0 mm or less, when the RFID tag chip is attached and the RFID tag chip mounted antenna is manufactured (the amount of silver used is reduced). Therefore, even if the area of the silver conductive film is reduced, the communication distance is increased.

さらに、銀導電膜の厚さは1〜10μmであるのが好ましい。銀導電膜の厚さは、薄くなるほどコスト的に有利になるが、1μm未満になると、RFIDタグ用アンテナとして使用した場合に、表皮効果によりUHF帯における電気抵抗が増大して通信距離が短くなる。   Furthermore, the thickness of the silver conductive film is preferably 1 to 10 μm. The thinner the silver conductive film, the more advantageous in terms of cost. However, when it is less than 1 μm, when used as an RFID tag antenna, the electrical resistance in the UHF band increases due to the skin effect and the communication distance becomes shorter. .

また、本発明によるアンテナの実施の形態は、50〜80質量%の銀粒子を含む銀粒子分散液を基板に塗布した後に焼成することにより、上記の銀導電膜を基板上に形成することによって製造することができる。銀粒子分散液中の銀粒子の含有量が50質量%未満では、上記の銀導電膜を基板上に形成し難くなり、銀導電膜中の銀粒子の焼結体の量が少な過ぎるために導電性が悪化して電気抵抗が高くなり、80質量%を超えると、銀粒子分散液の粘度が高くなって、フレキソ印刷などにより塗布し難くなる。   Moreover, the embodiment of the antenna according to the present invention is formed by applying the silver particle dispersion liquid containing 50 to 80% by mass of silver particles to the substrate and then baking it to form the above silver conductive film on the substrate. Can be manufactured. When the silver particle content in the silver particle dispersion is less than 50% by mass, it becomes difficult to form the silver conductive film on the substrate, and the amount of the sintered body of silver particles in the silver conductive film is too small. When the electrical conductivity is deteriorated and the electric resistance is increased and the amount exceeds 80% by mass, the viscosity of the silver particle dispersion becomes high, and it becomes difficult to apply by flexographic printing or the like.

このアンテナの製造方法において、銀粒子分散液の基板への塗布が、フレキソ印刷によって行われるのが好ましく、フレキソ印刷を複数回繰り返してもよい。また、銀粒子の平均粒径が20nm以下であるのが好ましく、5〜15nmであるのが好ましい。銀粒子の平均粒径が数nm〜十数nm程度になると、比表面積が大きくなって融点が劇的に低下するため、300℃以下の低温で焼成しても銀粒子同士を焼結させることができる(すなわち、銀ナノ粒子の低温焼結性を得ることができる)が、銀粒子の平均粒径が20nmより大きくなると、銀ナノ粒子の低温焼結性を得ることが困難になる。このような低温で焼成して銀粒子同士を焼結させるために、熱風循環式乾燥器またはIR焼成炉を使用することができる。   In this antenna manufacturing method, the silver particle dispersion is preferably applied to the substrate by flexographic printing, and the flexographic printing may be repeated a plurality of times. Moreover, it is preferable that the average particle diameter of a silver particle is 20 nm or less, and it is preferable that it is 5-15 nm. When the average particle size of the silver particles is about several nanometers to several tens of nanometers, the specific surface area increases and the melting point decreases dramatically. (That is, the low-temperature sinterability of the silver nanoparticles can be obtained). However, when the average particle size of the silver particles is larger than 20 nm, it is difficult to obtain the low-temperature sinterability of the silver nanoparticles. In order to sinter silver particles by firing at such a low temperature, a hot-air circulating dryer or an IR firing furnace can be used.

なお、本明細書中において、「銀粒子の平均粒径」とは、銀粒子の透過型電子顕微鏡写真(TEM像)による一次粒子径の平均値である一次粒子平均径をいう。   In the present specification, the “average particle diameter of silver particles” refers to an average primary particle diameter that is an average value of primary particle diameters obtained by transmission electron micrographs (TEM images) of silver particles.

銀粒子の平均粒径(一次粒子平均径)は、例えば、60質量%のAg粒子(平均粒径10nmの銀粒子)と3.0質量%の塩化ビニルコポリマーラテックスと2.0質量%のポリウレタンシックナーと2.5質量%のプロピレングリコールとを含むAgインク(ピーケム アソシエイツ インク社製のPFI−700型)などの銀粒子を含むAgインク2質量部をシクロヘキサン96質量部とオレイン酸2質量部の混合溶液に添加し、超音波によって分散させた後、得られた分散溶液を支持膜付きCuマイクログリッドに滴下して乾燥させ、このマイクログリッド上の銀粒子を透過型電子顕微鏡(日本電子株式会社製のJEM−100CXMark−II型)により加速電圧100kVとして明視野で観察した像を倍率300,000倍で撮影し、得られたTEM像から算出することができる。この銀粒子の一次粒子平均径の算出は、例えば、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))を使用して行うことができる。この画像解析ソフトは、色の濃淡で個々の粒子を識別して解析するものであり、例えば、300,000倍のTEM像に対して「粒子の明度」を「暗」、「雑音除去フィルタ」を「有」、「円形しきい値」を「20」、「重なり度」を「50」とする条件で円形粒子解析を行って、200個以上の粒子について一次粒子径を測定し、その数平均径を求めて一次粒子平均径とすることができる。なお、TEM像中に凝結粒子や異形粒子が多数ある場合には、測定不能とすればよい。   The average particle size (average primary particle size) of the silver particles is, for example, 60% by mass Ag particles (silver particles having an average particle size of 10 nm), 3.0% by mass vinyl chloride copolymer latex, and 2.0% by mass polyurethane. 2 parts by mass of Ag ink containing silver particles, such as Ag ink containing Pt-Chem Associates, Inc. (PFI-Associates, Inc.) containing 2.5% by mass of propylene glycol, 96 parts by mass of cyclohexane and 2 parts by mass of oleic acid After being added to the mixed solution and dispersed by ultrasonic waves, the obtained dispersed solution is dropped onto a Cu microgrid with a supporting film and dried, and silver particles on the microgrid are transferred to a transmission electron microscope (JEOL Ltd.) JEM-100CXMark-II type) made in bright field at an acceleration voltage of 100 kV, taken at a magnification of 300,000 And can be calculated from the obtained TEM image. The primary particle average diameter of the silver particles can be calculated using, for example, image analysis software (A Image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.). This image analysis software discriminates and analyzes individual particles based on color shading. For example, for a 300,000-fold TEM image, the “particle brightness” is “dark” and “noise removal filter”. Is “Yes”, “Circular threshold” is “20”, and “Overlapping degree” is “50”, and circular particle analysis is performed to measure the primary particle diameter of 200 or more particles. An average diameter can be calculated | required and it can be set as an average primary particle diameter. In addition, what is necessary is just to make measurement impossible when there are many condensed particles and irregular-shaped particles in a TEM image.

以下、本発明によるアンテナの実施例について詳細に説明する。   Hereinafter, embodiments of the antenna according to the present invention will be described in detail.

[実施例1〜12、比較例1〜12]
まず、60質量%のAg粒子(一次粒子径15nm、二次粒子径340nmの銀粒子)と、3.0質量%の塩化ビニルコポリマーラテックスと、2.0質量%のポリウレタンシックナーと、2.5質量%のプロピレングリコールとを含むAgインク(ピーケム アソシエイツ インク社製のPFI−700型)を用意した。
[Examples 1-12, Comparative Examples 1-12]
First, 60% by mass of Ag particles (silver particles having a primary particle size of 15 nm and a secondary particle size of 340 nm), 3.0% by mass of vinyl chloride copolymer latex, 2.0% by mass of polyurethane thickener, 2.5 Ag ink (PFI-700 type manufactured by P-Chem Associates, Inc.) containing mass% propylene glycol was prepared.

次に、ロール・ツー・ロールの連続式フレキソ印刷機(KPG社製)と、フレキソ印刷版(株式会社渡辺護三堂製)を使用し、アニロックス容量8cc/m、印刷速度15m/分で、PET(ポリエチレンテレフタレート)フィルムからなる基材(東洋紡株式会社製のコスモシャインA4300)上に、図1に示すような(横95mm×縦8.2mmの大きさで、ループ部の線幅が1.0mm、延長部の線幅が0.8mmの)アンテナ形状の膜を形成するように上記のAgインクを印刷した後、印刷経路に設置した熱風炉(設定温度140℃)とIR加熱炉(IRランプ:1.95kW×10)によりIRの出力10%で焼成することによって、厚さ1.6μmの銀導電膜からなるRFIDアンテナを作製した。なお、銀導電膜の膜厚は、レーザーマイクロスコープ(株式会社キーエンス製の型式VK−9700)を用いて、銀導電膜が形成された基材の表面と銀導電膜の表面との高低差を100箇所測定し、平均値を算出することによって求めた。 Next, a roll-to-roll continuous flexographic printing machine (manufactured by KPG) and a flexographic printing plate (manufactured by Watanabe Gosando Co., Ltd.) were used, with an anilox capacity of 8 cc / m 2 and a printing speed of 15 m / min. 1 on a base material made of PET (polyethylene terephthalate) film (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) (95 mm wide × 8.2 mm vertical) with a loop portion having a line width of 1 After printing the above Ag ink so as to form an antenna-shaped film (0.0 mm, extension line width 0.8 mm), a hot blast furnace (set temperature 140 ° C.) and an IR heating furnace (set at a printing path) An RFID antenna made of a silver conductive film having a thickness of 1.6 μm was manufactured by firing with an IR lamp of 1.95 kW × 10) at an IR output of 10%. In addition, the film thickness of a silver electrically conductive film uses the laser microscope (model VK-9700 by Keyence Corporation), and the height difference between the surface of the base material in which the silver electrically conductive film was formed, and the surface of a silver electrically conductive film. It measured by measuring 100 places and calculating | requiring the average value.

各々の実施例および比較例のアンテナでは、ループ部から延びる各々の延長部の垂直部の本数(例えば、図1に示すアンテナ形状では、ループ部から延びる各々の延長部の垂直部の本数は7本)、基材上に形成された銀導電膜の面積、および基材上の銀導電膜形成領域(横95mm×縦8.2mmの長方形の部分)に対する銀導電膜の面積率をそれぞれ表1に示す本数、面積および面積率とした(表1に銀導電膜中の銀量も示す)。なお、銀導電膜の線幅および面積は、外観検査機(ナビタスビジョンソリューション製のNC−FLX)により計測した。   In the antennas of the respective examples and comparative examples, the number of vertical portions of each extension extending from the loop portion (for example, in the antenna shape shown in FIG. 1, the number of vertical portions of each extension extending from the loop portion is 7 1), the area ratio of the silver conductive film formed on the base material, and the area ratio of the silver conductive film to the silver conductive film formation region on the base material (rectangular portion of 95 mm wide × 8.2 mm long). (The amount of silver in the silver conductive film is also shown in Table 1). The line width and area of the silver conductive film were measured with an appearance inspection machine (NC-FLX manufactured by Navitas Vision Solution).

次に、作製したRFIDアンテナのICチップ実装部に異方性導電接着剤(ACP)(京セラケミカル株式会社製のTAP0604C(Au/Niコートポリマー粒子))を薄く塗布し、このACP上にICチップ(Impinj社製のMonza3)を配置した後、熱圧着装置(ミュールバウワー社製のTTS300)により160℃の温度で1.0Nの圧力を加えて10秒間密着させ、ICチップをRFIDアンテナに固定して接続させることによって、RFIDアンテナにICチップを実装した。   Next, an anisotropic conductive adhesive (ACP) (TAP0604C (Au / Ni coated polymer particles) manufactured by Kyocera Chemical Co., Ltd.) is thinly applied to the IC chip mounting portion of the RFID antenna thus manufactured, and the IC chip is formed on the ACP. (Monza 3 manufactured by Impinj) was placed, and then a pressure of 1.0 N was applied at a temperature of 160 ° C. for 10 seconds with a thermocompression bonding apparatus (TTS300 manufactured by Mühlbauer) to fix the IC chip to the RFID antenna. Then, the IC chip was mounted on the RFID antenna.

このようにして作製したRFIDタグチップ搭載アンテナについて、電波暗箱(マイクロニクス社製のMY1530)中において、通信距離測定器(Voyantic社製のtagformance)を用いて、800MHz〜1100MHzの周波数領域(ISO/IEC 18000−6C規格に準拠)の通信距離(Theoretical read range forward)を測定した。なお、この測定に先立って、この条件における環境設定(tagformance付属のリファレンスタグによる設定)を行った。測定した通信距離および銀導電膜の単位面積当たりの通信距離を表1に示す。   The RFID tag chip-mounted antenna thus produced is used in a frequency range (ISO / IEC) of 800 MHz to 1100 MHz using a communication distance measuring device (Voantic tagformance) in an anechoic box (MY1530 manufactured by Micronics). The communication distance (based on 18000-6C standard) was measured. Prior to this measurement, the environment was set under these conditions (setting using a reference tag attached to tagformance). Table 1 shows the measured communication distance and the communication distance per unit area of the silver conductive film.

Figure 2015005794
Figure 2015005794

[実施例13〜21、比較例13〜24]
延長部の線幅を1.0mmとした以外は、実施例1と同様の方法により、厚さ1.6μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。なお、各々の実施例および比較例のアンテナでは、ループ部から延びる各々の延長部の垂直部の本数、基材上に形成された銀導電膜の面積および基材上の銀導電膜形成領域に対する銀導電膜の面積率をそれぞれ表2に示す本数、面積および面積率とした(表2に銀導電膜中の銀量も示す)。
[Examples 13 to 21, Comparative Examples 13 to 24]
An RFID antenna made of a silver conductive film having a thickness of 1.6 μm was produced in the same manner as in Example 1 except that the line width of the extension portion was 1.0 mm, and an RFID tag chip mounted antenna was produced. In the antennas of the examples and comparative examples, the number of vertical portions of each extension extending from the loop portion, the area of the silver conductive film formed on the base material, and the silver conductive film formation region on the base material The area ratio of the silver conductive film was the number, area, and area ratio shown in Table 2, respectively (Table 2 also shows the amount of silver in the silver conductive film).

このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により測定した通信距離および銀導電膜の単位面積当たりの通信距離を表2に示す。   Table 2 shows the communication distance and the communication distance per unit area of the silver conductive film measured by the same method as in Example 1 for the RFID tag chip mounted antenna thus manufactured.

Figure 2015005794
Figure 2015005794

[比較例25〜43]
延長部の線幅を1.2mmとした以外は、実施例1と同様の方法により、厚さ1.6μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。なお、各々の実施例および比較例のアンテナでは、ループ部から延びる各々の延長部の垂直部の本数、基材上に形成された銀導電膜の面積および基材上の銀導電膜形成領域に対する銀導電膜の面積率をそれぞれ表3に示す本数、面積および面積率とした(表3に銀導電膜中の銀量も示す)。
[Comparative Examples 25-43]
An RFID antenna made of a silver conductive film having a thickness of 1.6 μm was produced in the same manner as in Example 1 except that the line width of the extended portion was 1.2 mm, and an RFID tag chip mounted antenna was produced. In the antennas of the examples and comparative examples, the number of vertical portions of each extension extending from the loop portion, the area of the silver conductive film formed on the base material, and the silver conductive film formation region on the base material The area ratio of the silver conductive film was defined as the number, area, and area ratio shown in Table 3, respectively (Table 3 also shows the amount of silver in the silver conductive film).

このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により測定した通信距離および銀導電膜の単位面積当たりの通信距離を表3に示す。   Table 3 shows the communication distance and the communication distance per unit area of the silver conductive film, measured by the same method as in Example 1, for the RFID tag chip mounted antenna thus manufactured.

Figure 2015005794
Figure 2015005794

[比較例44〜60]
延長部の線幅を1.4mmとした以外は、実施例1と同様の方法により、厚さ1.6μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。なお、各々の実施例および比較例のアンテナでは、ループ部から延びる各々の延長部の垂直部の本数、基材上に形成された銀導電膜の面積および基材上の銀導電膜形成領域に対する銀導電膜の面積率をそれぞれ表4に示す本数、面積および面積率とした(表4に銀導電膜中の銀量も示す)。
[Comparative Examples 44-60]
An RFID antenna made of a silver conductive film having a thickness of 1.6 μm was produced in the same manner as in Example 1 except that the line width of the extension portion was 1.4 mm, and an RFID tag chip mounted antenna was produced. In the antennas of the examples and comparative examples, the number of vertical portions of each extension extending from the loop portion, the area of the silver conductive film formed on the base material, and the silver conductive film formation region on the base material The area ratio of the silver conductive film was defined as the number, area, and area ratio shown in Table 4, respectively (Table 4 also shows the amount of silver in the silver conductive film).

このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により測定した通信距離および銀導電膜の単位面積当たりの通信距離を表4に示す。   Table 4 shows the communication distance and the communication distance per unit area of the silver conductive film, measured by the same method as in Example 1, for the RFID tag chip mounted antenna thus manufactured.

Figure 2015005794
Figure 2015005794

[比較例61〜76]
延長部の線幅を1.6mmとした以外は、実施例1と同様の方法により、厚さ1.6μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。なお、各々の実施例および比較例のアンテナでは、ループ部から延びる各々の延長部の垂直部の本数、基材上に形成された銀導電膜の面積および基材上の銀導電膜形成領域に対する銀導電膜の面積率をそれぞれ表5に示す本数、面積および面積率とした(表5に銀導電膜中の銀量も示す)。
[Comparative Examples 61-76]
An RFID antenna made of a silver conductive film having a thickness of 1.6 μm was produced in the same manner as in Example 1 except that the line width of the extension portion was 1.6 mm, and an RFID tag chip mounted antenna was produced. In the antennas of the examples and comparative examples, the number of vertical portions of each extension extending from the loop portion, the area of the silver conductive film formed on the base material, and the silver conductive film formation region on the base material The area ratio of the silver conductive film was defined as the number, area, and area ratio shown in Table 5, respectively (Table 5 also shows the amount of silver in the silver conductive film).

このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により測定した通信距離および銀導電膜の単位面積当たりの通信距離を表5に示す。   Table 5 shows the communication distance and the communication distance per unit area of the silver conductive film measured by the same method as in Example 1 for the RFID tag chip mounted antenna thus manufactured.

Figure 2015005794
Figure 2015005794

これらの結果から、実施例1〜21のように、銀導電膜の面積が135〜265mmであり且つ銀導電膜(のループ部と延長部)の線幅が1.0mm以下であれば、銀導電膜の単位面積当たりの通信距離が0.026m/mm以上と長くなるのがわかる。 From these results, as in Examples 1 to 21, if the area of the silver conductive film is 135 to 265 mm 2 and the line width of the silver conductive film (loop portion and extension thereof) is 1.0 mm or less, It can be seen that the communication distance per unit area of the silver conductive film is as long as 0.026 m / mm 2 or more.

[比較例77]
銀導電膜の線幅が異なるように(図示しない)従来の(横95mm×縦8.2mmの大きさの)アンテナ形状(基材上に形成された銀導電膜の面積は399mm、基材上の銀導電膜形成領域(横70mm×縦14.5mmの長方形の部分)に対する銀導電膜の面積率は52%、銀導電膜中の銀量は1.47mg)の膜を形成した以外は、実施例1と同様の方法により、厚さ1.6μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により、通信距離を測定し、銀導電膜の単位面積当たりの通信距離を求めたところ、通信距離は7.2mであり、銀導電膜の単位面積当たりの通信距離は0.018m/mmであった。
[Comparative Example 77]
Conventional antenna shape (95 mm wide × 8.2 mm long) (the area of the silver conductive film formed on the substrate is 399 mm 2 ) so that the line width of the silver conductive film is different (not shown) The area ratio of the silver conductive film with respect to the upper silver conductive film formation region (rectangular portion 70 mm wide × 14.5 mm long) was 52%, and the amount of silver in the silver conductive film was 1.47 mg). In the same manner as in Example 1, an RFID antenna made of a 1.6 μm-thick silver conductive film was produced, and an RFID tag chip mounted antenna was produced. With respect to the RFID tag chip mounted antenna thus produced, the communication distance was measured by the same method as in Example 1 and the communication distance per unit area of the silver conductive film was determined. The communication distance was 7.2 m. The communication distance per unit area of the silver conductive film was 0.018 m / mm 2 .

[実施例22]
塗工紙(三菱製紙株式会社製のDFカラーM70)からなる基材を使用し、アニロックス容量13cc/mとし、図2に示すような(横70mm×縦14.5mmの大きさで線幅0.8mmの)アンテナ形状(ループ部から延びる各々の延長部の垂直部の本数は6本、基材上に形成された銀導電膜の面積は222mm、基材上の銀導電膜形成領域(横70mm×縦14.5mmの長方形の部分)に対する銀導電膜の面積率は22%、銀導電膜中の銀量は1.33mg)の膜を形成し、ICチップ(Impinj社製のMonza4)を使用した以外は、実施例1と同様の方法により、厚さ2.2μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により、通信距離を測定し、銀導電膜の単位面積当たりの通信距離を求めたところ、通信距離は9.0mであり、銀導電膜の単位面積当たりの通信距離は0.041m/mmであった。
[Example 22]
Using a base material made of coated paper (DF color M70 manufactured by Mitsubishi Paper Industries Co., Ltd.) and an anilox capacity of 13 cc / m 2 , as shown in FIG. 2 (width 70 mm × length 14.5 mm, line width) 0.8 mm) antenna shape (the number of vertical portions of each extension extending from the loop portion is 6, the area of the silver conductive film formed on the base material is 222 mm 2 , the silver conductive film formation region on the base material) The area ratio of the silver conductive film with respect to (rectangular portion of 70 mm wide × 14.5 mm long) was 22%, and the amount of silver in the silver conductive film was 1.33 mg), and an IC chip (Monza4 manufactured by Impinj) was formed. In the same manner as in Example 1, an RFID antenna made of a silver conductive film having a thickness of 2.2 μm was produced to produce an RFID tag chip mounted antenna. With respect to the RFID tag chip mounted antenna thus produced, the communication distance was measured by the same method as in Example 1 and the communication distance per unit area of the silver conductive film was determined. The communication distance was 9.0 m. The communication distance per unit area of the silver conductive film was 0.041 m / mm 2 .

[実施例23]
図4に示すような(横70mm×縦14.5mmの大きさで線幅0.8mmの)アンテナ形状(図1〜図3のループ部から延びる各々の延長部に対応する曲線部分の本数は6本、基材上に形成された銀導電膜の面積は212mm、基材上の銀導電膜形成領域(横70mm×縦14.5mmの長方形の部分)に対する銀導電膜の面積率は21%、銀導電膜中の銀量は1.27mg)の膜を形成した以外は、実施例22と同様の方法により、厚さ2.2μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により、通信距離を測定し、銀導電膜の単位面積当たりの通信距離を求めたところ、通信距離は8.4mであり、銀導電膜の単位面積当たりの通信距離は0.040m/mmであった。
[Example 23]
As shown in FIG. 4, the number of curve portions corresponding to each extension portion extending from the loop portion of FIGS. 1 to 3 is 70 mm (width 70 mm × length 14.5 mm and line width 0.8 mm). Six, the area of the silver conductive film formed on the base material is 212 mm 2 , and the area ratio of the silver conductive film to the silver conductive film formation region on the base material (rectangular portion 70 mm wide × 14.5 mm long) is 21 %, The amount of silver in the silver conductive film was 1.27 mg), and an RFID antenna made of a silver conductive film having a thickness of 2.2 μm was produced by the same method as in Example 22, and the RFID tag chip An on-board antenna was produced. With respect to the RFID tag chip mounted antenna thus manufactured, the communication distance was measured by the same method as in Example 1 and the communication distance per unit area of the silver conductive film was determined. The communication distance was 8.4 m. The communication distance per unit area of the silver conductive film was 0.040 m / mm 2 .

[比較例78]
銀導電膜の線幅が異なるように(図示しない)従来の(横70mm×縦14.5mmの大きさの)アンテナ形状(基材上に形成された銀導電膜の面積は578mm、基材上の銀導電膜形成領域(横70mm×縦14.5mmの長方形の部分)に対する銀導電膜の面積率は57%、銀導電膜中の銀量は3.47mg)の膜を形成した以外は、実施例22と同様の方法により、厚さ2.2μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により、通信距離を測定し、銀導電膜の単位面積当たりの通信距離を求めたところ、通信距離は6.9mであり、銀導電膜の単位面積当たりの通信距離は0.012m/mmであった。
[Comparative Example 78]
Conventional antenna shape (70 mm wide × 14.5 mm long) (the area of the silver conductive film formed on the substrate is 578 mm 2 ) so that the line width of the silver conductive film is different (not shown) The area ratio of the silver conductive film to the upper silver conductive film formation region (rectangular portion of 70 mm wide × 14.5 mm long) was 57%, and the amount of silver in the silver conductive film was 3.47 mg). In the same manner as in Example 22, an RFID antenna made of a silver conductive film having a thickness of 2.2 μm was produced, and an RFID tag chip mounted antenna was produced. With respect to the RFID tag chip mounted antenna thus produced, the communication distance was measured by the same method as in Example 1 and the communication distance per unit area of the silver conductive film was determined. The communication distance was 6.9 m. The communication distance per unit area of the silver conductive film was 0.012 m / mm 2 .

[実施例24]
塗工紙(三菱製紙株式会社製のDFカラーM70)からなる基材を使用し、アニロックス容量13cc/mとし、図3に示すような(横50mm×縦30mmの大きさで線幅0.8mmの)アンテナ形状(ループ部から延びる各々の延長部の垂直部の本数は3本、基材上に形成された銀導電膜の面積は239mm、基材上の銀導電膜形成領域(横50mm×縦30mmの長方形の部分)に対する銀導電膜の面積率は16%、銀導電膜中の銀量は1.41mg)の膜を形成した以外は、実施例1と同様の方法により、厚さ2.2μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により、通信距離を測定し、銀導電膜の単位面積当たりの通信距離を求めたところ、通信距離は6.9mであり、銀導電膜の単位面積当たりの通信距離は0.029m/mmであった。
[Example 24]
A base material made of coated paper (DF color M70 manufactured by Mitsubishi Paper Industries Co., Ltd.) is used, the anilox capacity is 13 cc / m 2, and the size shown in FIG. 8 mm) antenna shape (the number of vertical portions of each extension extending from the loop portion is 3, the area of the silver conductive film formed on the substrate is 239 mm 2 , and the silver conductive film formation region (horizontal) on the substrate The area ratio of the silver conductive film with respect to the 50 mm × 30 mm long rectangular portion) was 16%, and the amount of silver in the silver conductive film was 1.41 mg). An RFID antenna made of a 2.2 μm thick silver conductive film was produced, and an RFID tag chip mounted antenna was produced. With respect to the RFID tag chip mounted antenna thus produced, the communication distance was measured by the same method as in Example 1 and the communication distance per unit area of the silver conductive film was determined. The communication distance was 6.9 m. The communication distance per unit area of the silver conductive film was 0.029 m / mm 2 .

[比較例79]
銀導電膜の線幅が異なるように(図示しない)従来の(横50mm×縦30mmの大きさの)アンテナ形状(基材上に形成された銀導電膜の面積は710mm、基材上の銀導電膜形成領域(横50mm×縦30mmの長方形の部分)に対する銀導電膜の面積率は47%、銀導電膜中の銀量は4.26mg)の膜を形成した以外は、実施例24と同様の方法により、厚さ2.2μmの銀導電膜からなるRFIDアンテナを作製し、RFIDタグチップ搭載アンテナを作製した。このようにして作製したRFIDタグチップ搭載アンテナについて、実施例1と同様の方法により、通信距離を測定し、銀導電膜の単位面積当たりの通信距離を求めたところ、通信距離は4.5mであり、銀導電膜の単位面積当たりの通信距離は0.006m/mmであった。
[Comparative Example 79]
Conventional antenna shape (50 mm wide x 30 mm long) (the area of the silver conductive film formed on the base material is 710 mm 2 ) so that the line width of the silver conductive film is different (not shown) Example 24, except that the area ratio of the silver conductive film to the silver conductive film formation region (rectangular portion of 50 mm wide × 30 mm long) was 47%, and the amount of silver in the silver conductive film was 4.26 mg. By the same method as described above, an RFID antenna made of a silver conductive film having a thickness of 2.2 μm was produced, and an RFID tag chip mounted antenna was produced. With respect to the RFID tag chip mounted antenna thus manufactured, the communication distance was measured by the same method as in Example 1, and the communication distance per unit area of the silver conductive film was determined. The communication distance was 4.5 m. The communication distance per unit area of the silver conductive film was 0.006 m / mm 2 .

これらの結果から、実施例22〜24のアンテナ形状では、同様の大きさの比較例78および79の従来のアンテナ形状と比べて、銀導電膜の単位面積当たりの通信距離が極めて長くなるのがわかる。   From these results, in the antenna shapes of Examples 22 to 24, the communication distance per unit area of the silver conductive film is extremely long as compared with the conventional antenna shapes of Comparative Examples 78 and 79 having the same size. Recognize.

本発明によるアンテナをRFIDタグ用のアンテナとして使用すれば、実用的な通信距離のアンテナを備えたFEIDタグを製造することができる。   If the antenna according to the present invention is used as an antenna for an RFID tag, an FEID tag having an antenna with a practical communication distance can be manufactured.

10 銀導電膜
10a ループ部
10b 延長部
10c 平行部
10d 垂直部
12 ICチップ実装部
10 Silver conductive film 10a Loop portion 10b Extension portion 10c Parallel portion 10d Vertical portion 12 IC chip mounting portion

Claims (15)

線状に延びる銀導電膜が基板上に形成されたアンテナにおいて、銀導電膜が、略長方形の平面形状を取り囲むようにループ状に略同一の線幅で延びるループ部と、このループ部の略直線状に延びる4つの直線部のうちの1つの直線部の両端の各々から互いに逆方向に略同一の線幅で延びる一対の延長部とからなることを特徴とする、アンテナ。 In an antenna in which a linearly extending silver conductive film is formed on a substrate, the silver conductive film has a loop portion extending substantially in the same line width in a loop shape so as to surround a substantially rectangular planar shape, and an approximately of the loop portion. An antenna comprising: a pair of extension portions extending from each of both ends of one straight portion of four straight portions extending in a straight line shape with substantially the same line width in opposite directions. 前記一対の延長部が、前記1つの直線部の略中央部から前記1つの直線部に略垂直に延びる直線に対してそれぞれ対称に配置されることを特徴とする、請求項1に記載のアンテナ。 2. The antenna according to claim 1, wherein the pair of extension portions are arranged symmetrically with respect to a straight line extending substantially perpendicularly from the substantially central portion of the one straight line portion to the one straight line portion. . 前記一対の延長部の各々の先端部が前記延長部の他の部分と略同一の線幅を有することを特徴とする、請求項1または2に記載のアンテナ。 3. The antenna according to claim 1, wherein a tip end portion of each of the pair of extension portions has substantially the same line width as other portions of the extension portions. 前記一対の延長部の各々が、前記1つの直線部に対して略平行に延びる平行部と、この平行部に対して略垂直に延びる垂直部とからなることを特徴とする、請求項1乃至3のいずれかに記載のアンテナ。 Each of the pair of extension portions includes a parallel portion extending substantially parallel to the one straight portion and a vertical portion extending substantially perpendicular to the parallel portion. 4. The antenna according to any one of 3. 前記一対の延長部の各々の延長部の平行部と垂直部がそれぞれ複数あり、これらの平行部の1つが前記1つの直線部に接続され、平行部と垂直部が交互に連続的に形成されていることを特徴とする、請求項4に記載のアンテナ。 Each of the pair of extension portions has a plurality of parallel portions and vertical portions, and one of these parallel portions is connected to the one straight portion, and the parallel portions and the vertical portions are alternately and continuously formed. The antenna according to claim 4, wherein 前記一対の延長部の各々の延長部の複数の平行部の長さが、略同一の長さであることを特徴とする、請求項5に記載のアンテナ。 6. The antenna according to claim 5, wherein the length of the plurality of parallel portions of each of the extension portions of the pair of extension portions is substantially the same length. 前記一対の延長部の各々の延長部の垂直部の長さが、前記ループ部の4つの直線部のうちの前記1つの直線部に対して略垂直に延びる直線部の長さと略同一であることを特徴とする、請求項4乃至6のいずれかに記載のアンテナ。 The length of the vertical portion of each extension portion of the pair of extension portions is substantially the same as the length of the straight portion extending substantially perpendicular to the one straight portion of the four straight portions of the loop portion. The antenna according to any one of claims 4 to 6, characterized by the above. 前記一対の延長部の各々の延長部の垂直部の長さが、前記ループ部の4つの直線部のうちの前記1つの直線部に対して略垂直に延びる直線部より長いことを特徴とする、請求項4乃至6のいずれかに記載のアンテナ。 The length of the vertical portion of each extension portion of the pair of extension portions is longer than the straight portion extending substantially perpendicular to the one straight portion of the four straight portions of the loop portion. The antenna according to any one of claims 4 to 6. 前記一対の延長部の各々が、前記1つの直線部から蛇行しながら曲線状に延びることを特徴とする、請求項1乃至3のいずれかに記載のアンテナ。 4. The antenna according to claim 1, wherein each of the pair of extension portions extends in a curved shape while meandering from the one linear portion. 5. 前記一対の延長部の各々が、前記4つの直線部のうちの前記1つの直線部の延長線とこの直線部に対して平行な直線部の延長線との間で蛇行することを特徴とする、請求項9に記載のアンテナ。 Each of the pair of extension portions meanders between an extension line of the one straight portion of the four straight portions and an extension line of a straight portion parallel to the straight portion. The antenna according to claim 9. 前記一対の延長部の各々が、前記4つの直線部のうちの前記1つの直線部の延長線とこの直線部に対して平行な直線部の延長線の一方から他方および他方から一方に向かう各々の部分において、前記ループ部の方に近づくように延びる部分を有することを特徴とする、請求項9または10に記載のアンテナ。 Each of the pair of extension portions is directed from one of the four straight portions to the other and from the other to one of an extension line of the straight portion parallel to the straight portion. 11. The antenna according to claim 9, further comprising a portion that extends toward the loop portion. 前記一対の延長部の各々が、前記4つの直線部のうちの前記1つの直線部の延長線付近と、前記4つの直線部のうちの前記1つの直線部に平行な直線部の延長線付近において、略半円状に延びる部分を有することを特徴とする、請求項9乃至11のいずれかに記載のアンテナ。 Each of the pair of extension portions is in the vicinity of an extension line of the one straight portion of the four straight portions, and in the vicinity of an extension line of a straight portion parallel to the one straight portion of the four straight portions. The antenna according to claim 9, further comprising a portion extending in a substantially semicircular shape. 前記銀導電膜の面積が135〜265mmであり且つ前記銀導電膜の線幅が1.0mm以下であることを特徴とする、請求項1乃至12のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 12, wherein an area of the silver conductive film is 135 to 265 mm 2 and a line width of the silver conductive film is 1.0 mm or less. 前記銀導電膜の厚さが1〜10μmであることを特徴とする、請求項1乃至13のいずれかに記載のアンテナ。 The antenna according to claim 1, wherein the silver conductive film has a thickness of 1 to 10 μm. 前記銀導電膜が銀粒子の焼結体を含むことを特徴とする、請求項1乃至14のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 14, wherein the silver conductive film includes a sintered body of silver particles.
JP2013128165A 2013-06-19 2013-06-19 Antenna Pending JP2015005794A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013128165A JP2015005794A (en) 2013-06-19 2013-06-19 Antenna
PCT/JP2014/065821 WO2014203835A1 (en) 2013-06-19 2014-06-09 Antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128165A JP2015005794A (en) 2013-06-19 2013-06-19 Antenna

Publications (1)

Publication Number Publication Date
JP2015005794A true JP2015005794A (en) 2015-01-08

Family

ID=52104570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128165A Pending JP2015005794A (en) 2013-06-19 2013-06-19 Antenna

Country Status (2)

Country Link
JP (1) JP2015005794A (en)
WO (1) WO2014203835A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018117A1 (en) * 2015-07-27 2017-02-02 株式会社村田製作所 Wireless communication device and rfid tag for laundry
JPWO2016098387A1 (en) * 2014-12-16 2017-08-31 株式会社村田製作所 Wireless communication device and article having the same
KR20180043290A (en) 2015-08-20 2018-04-27 도레이 카부시키가이샤 METHOD FOR MANUFACTURING AN ANTENNA SUBSTRATE, METHOD FOR MANUFACTURING AN ANTENNA BODY WITH WIRING AND ELECTRODE
WO2018155382A1 (en) * 2017-02-21 2018-08-30 株式会社村田製作所 Rfid tag
JP2020071807A (en) * 2018-11-02 2020-05-07 大日本印刷株式会社 RF tag label and article with RF tag label

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190319B2 (en) * 2001-10-29 2007-03-13 Forster Ian J Wave antenna wireless communication device and method
JP2007081632A (en) * 2005-09-13 2007-03-29 Nec Tokin Corp Radio ic tag
JP2007249620A (en) * 2006-03-16 2007-09-27 Nec Tokin Corp Wireless tag
US8717244B2 (en) * 2007-10-11 2014-05-06 3M Innovative Properties Company RFID tag with a modified dipole antenna
TW200919327A (en) * 2007-10-29 2009-05-01 China Steel Corp Three-dimensional wireless identification label adhered onto metal
US20100097280A1 (en) * 2008-10-20 2010-04-22 Smartrac Ip B.V. Transponder device
JP5375561B2 (en) * 2009-11-30 2013-12-25 凸版印刷株式会社 RFID tag
US8833664B2 (en) * 2009-12-18 2014-09-16 Yu Yung Choi Enhanced performance and security RFID device
JP2013109715A (en) * 2011-11-24 2013-06-06 Dainippon Printing Co Ltd Manufacturing method of ic tag, and ic tag manufacturing device
JP2013114513A (en) * 2011-11-29 2013-06-10 Nitta Ind Corp Information storage medium
JP2013070420A (en) * 2012-11-30 2013-04-18 Fujifilm Corp Rfid tag, non-contact communication device, non-contact communication method, and non-contact communication system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016098387A1 (en) * 2014-12-16 2017-08-31 株式会社村田製作所 Wireless communication device and article having the same
WO2017018117A1 (en) * 2015-07-27 2017-02-02 株式会社村田製作所 Wireless communication device and rfid tag for laundry
JPWO2017018117A1 (en) * 2015-07-27 2018-01-11 株式会社村田製作所 RFID tag for wireless communication device and laundry
KR20180043290A (en) 2015-08-20 2018-04-27 도레이 카부시키가이샤 METHOD FOR MANUFACTURING AN ANTENNA SUBSTRATE, METHOD FOR MANUFACTURING AN ANTENNA BODY WITH WIRING AND ELECTRODE
WO2018155382A1 (en) * 2017-02-21 2018-08-30 株式会社村田製作所 Rfid tag
JPWO2018155382A1 (en) * 2017-02-21 2019-06-27 株式会社村田製作所 RFID tag
US11641714B2 (en) 2017-02-21 2023-05-02 Murata Manufacturing Co., Ltd. RFID tag
JP2020071807A (en) * 2018-11-02 2020-05-07 大日本印刷株式会社 RF tag label and article with RF tag label
JP7275532B2 (en) 2018-11-02 2023-05-18 大日本印刷株式会社 RF tag labels and articles with RF tag labels

Also Published As

Publication number Publication date
WO2014203835A1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5850784B2 (en) Booster antenna and manufacturing method thereof
WO2014203835A1 (en) Antenna
JP5526779B2 (en) Non-contact IC tag
JP6114677B2 (en) Apparatus and method for printed radio frequency identification (RFID) tags
WO2018100975A1 (en) Combined coil module and magnetic sheet
Yang et al. Design, fabrication and applications of flexible RFID antennas based on printed electronic materials and technologies
He et al. 3D-printed graphene and stretchable antennas for wearable RFID applications
JP5876285B2 (en) RFID tag antenna and manufacturing method thereof
CN205486213U (en) Radio -frequency antenna and contain RFID tag of this radio -frequency antenna
WO2014119000A1 (en) Silver conductive film and method for producing same
Janeczek et al. Printed HF antennas for RFID on-metal transponders
JP2015046729A (en) Antenna for ic tag and ic tag using the same
Hayata et al. Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device
CN106650889A (en) Near field communication label integrated with magnetic composite membrane, and preparation method thereof
TW202139066A (en) RFID tag
Sakai et al. Preparation of solder plated patterns on paper and applying to RFID tags
TW201432728A (en) Silver conductive film and method for producing same
CN109543809A (en) Apply the RFIDnt ultra-high frequency Inlay in 860 ~ 960MHz
WO2014208374A1 (en) Method for manufacturing silver electroconductive film
JP2012137895A (en) Method for manufacturing radio communication device
CN207586973U (en) A kind of novel fire extinguishing rescue outfit equipment high temperature resistant electronic tag
JP5993225B2 (en) Non-contact data transmitter / receiver
JP2016081273A (en) Inlay for sheet-like card
JP2009213009A (en) Plane antenna