JP2014236539A - Power transmission device for non-contact charging and travelling control system of electric vehicle - Google Patents

Power transmission device for non-contact charging and travelling control system of electric vehicle Download PDF

Info

Publication number
JP2014236539A
JP2014236539A JP2013114927A JP2013114927A JP2014236539A JP 2014236539 A JP2014236539 A JP 2014236539A JP 2013114927 A JP2013114927 A JP 2013114927A JP 2013114927 A JP2013114927 A JP 2013114927A JP 2014236539 A JP2014236539 A JP 2014236539A
Authority
JP
Japan
Prior art keywords
power transmission
coil
power
tile
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013114927A
Other languages
Japanese (ja)
Inventor
堀 智
Satoshi Hori
智 堀
隆伸 田端
Takanobu Tabata
隆伸 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Industries Corp
Original Assignee
Kojima Press Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd filed Critical Kojima Press Industry Co Ltd
Priority to JP2013114927A priority Critical patent/JP2014236539A/en
Publication of JP2014236539A publication Critical patent/JP2014236539A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Abstract

PROBLEM TO BE SOLVED: To provide a power transmission device for non-contact charging which forms a flat floor surface with no step.SOLUTION: A power transmission device 20 includes: a power transmission coil 22 disposed on a track of an automatic guided vehicle (AGV) 11 equipped with a power reception coil 31; and an electric supply line 24 for supplying electric power to the power transmission coil 22. The power transmission device 20 is applied to a non-contact charging system 10 of the AGV 11. The power transmission device 20 includes a coil built-in tile 21 formed by the power transmission coil 22 and a tile material 23. In other words, the transmission coil 22 is buried in the tile provided at the track of the AGV 11.

Description

本発明は、非接触充電用送電装置及び電動車両の走行制御システムに関し、特に工場内等を走行する無人搬送車(以下、「AGV」という)の充電に好適な非接触充電用送電装置に関する。   The present invention relates to a non-contact charging power transmission device and a travel control system for an electric vehicle, and more particularly to a non-contact charging power transmission device suitable for charging an automatic guided vehicle (hereinafter referred to as “AGV”) traveling in a factory or the like.

電気自動車やAGV等の電動車両の充電システムとして、非接触充電システムが知られている。例えば、特許文献1には、プリント基板の第1の層に設けられた一次コイルと、プリント基板の第2の層に設けられた共鳴コイルとを備えた、非接触充電システムに適用される送電装置が開示されている。   A contactless charging system is known as a charging system for electric vehicles such as electric vehicles and AGVs. For example, Patent Document 1 discloses a power transmission applied to a non-contact charging system including a primary coil provided in a first layer of a printed circuit board and a resonance coil provided in a second layer of the printed circuit board. An apparatus is disclosed.

特開2010−73976号公報JP 2010-73976 A

ところで、従来の送電装置では、図6(給電線等は省略)に例示するように、AGV等が走行するタイル25上に送電コイル101が内蔵された送電ボックス100を設置する必要がある。このため、例えば当該送電ボックス100を工場内に設置すると、台車やリフト、作業者等の通行の妨げとなる。   By the way, in the conventional power transmission apparatus, it is necessary to install the power transmission box 100 in which the power transmission coil 101 is built on the tile 25 on which the AGV or the like travels as illustrated in FIG. For this reason, for example, if the power transmission box 100 is installed in a factory, it will hinder the passage of carts, lifts, workers, and the like.

本発明に係る非接触充電用送電装置は、受電コイルを搭載した電動車両の走行路に配置される送電コイルと、前記送電コイルに電力を供給するための給電線とを備えた、前記電動車両の非接触充電システムに適用される送電装置であって、前記送電コイルは、前記走行路に設けられる床材に埋め込まれていることを特徴とする。また、当該送電装置において、前記給電線は、前記床材に埋め込まれていることが好適である。   A non-contact charging power transmission device according to the present invention includes a power transmission coil disposed on a traveling path of an electric vehicle equipped with a power receiving coil, and a power supply line for supplying power to the power transmission coil. It is a power transmission apparatus applied to the non-contact charging system, wherein the power transmission coil is embedded in a floor material provided in the travel path. In the power transmission device, it is preferable that the power supply line is embedded in the flooring.

本発明に係る電動車両の走行制御システムは、上記非接触充電用送電装置と、前記電動車両に搭載され、前記送電コイルの磁界を検出するセンサと、制御装置と、を備えた電動車両の走行制御システムであって、前記送電コイルが埋め込まれた前記床材は、前記走行路に沿って複数設けられ、前記制御装置は、前記センサにより検出された前記磁界に基づき前記電動車両を前記走行路に沿って自動走行させることを特徴とする。   A travel control system for an electric vehicle according to the present invention is the travel of an electric vehicle including the contactless power transmission device, a sensor that is mounted on the electric vehicle and detects a magnetic field of the power transmission coil, and a control device. In the control system, a plurality of the flooring in which the power transmission coil is embedded are provided along the travel path, and the control device moves the electric vehicle based on the magnetic field detected by the sensor. It is characterized by being automatically driven along.

本発明に係る非接触充電用送電装置によれば、送電コイルが床材に埋め込まれて一体化されているため、段差のない平坦な床面を形成することができる。これにより、送電装置が、台車やリフト、作業者等の通行の妨げとなることを防止できる。   According to the power transmission device for contactless charging according to the present invention, since the power transmission coil is embedded and integrated in the floor material, a flat floor surface without a step can be formed. Thereby, it can prevent that a power transmission apparatus obstructs traffic of a trolley | bogie, a lift, an operator, etc.

本発明の第1の実施形態である電動車両の非接触充電システムを模式的に示す図である。It is a figure showing typically the non-contact charge system of the electric vehicles which are the 1st embodiment of the present invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 第1の実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 本発明の第2の実施形態である電動車両の非接触充電システムを構成する送電装置を模式的に示す図である。It is a figure which shows typically the power transmission apparatus which comprises the non-contact charge system of the electric vehicle which is the 2nd Embodiment of this invention. 第2の実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 従来の非接触充電システムを構成する送電装置を模式的に示す図である。It is a figure which shows typically the power transmission apparatus which comprises the conventional non-contact charge system.

以下、図面を参照しながら、本発明の実施形態の一例について詳細に説明する。
なお、各図面(図2を除く)では、図面の明瞭化の観点から、実際には見えない送電コイル22等を実線で図示している。
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
In each drawing (excluding FIG. 2), the power transmission coil 22 and the like that are not actually visible are shown by solid lines from the viewpoint of clarifying the drawing.

以下では、工場内を自動走行するAGVの非接触充電システム10を例に挙げて本発明の実施形態を説明するが、本発明の適用はこれに限定されない。本発明の送電装置は、例えば駐車場やサービスステーション等に設置され、電気自動車やハイブリッド車の非接触充電に適用することもできる。   Hereinafter, an embodiment of the present invention will be described by taking an AGV non-contact charging system 10 that automatically runs in a factory as an example, but the application of the present invention is not limited thereto. The power transmission device of the present invention is installed in, for example, a parking lot or a service station, and can be applied to non-contact charging of an electric vehicle or a hybrid vehicle.

図1は、第1の実施形態である非接触充電システム10の概略構成を示す。
図1に示すように、非接触充電システム10は、送電装置20と、AGV11に搭載される受電装置30と、各装置を制御してAGV11の非接触充電を実行する制御装置40とを備える。AGV11の走行路には、例えば走行ライン12が描かれており、AGV11は当該ラインに沿って自動走行する。本実施形態では、かかる自動走行も制御装置40の機能により実行される。
FIG. 1 shows a schematic configuration of a contactless charging system 10 according to the first embodiment.
As shown in FIG. 1, the non-contact charging system 10 includes a power transmission device 20, a power receiving device 30 mounted on the AGV 11, and a control device 40 that controls each device to perform non-contact charging of the AGV 11. For example, a travel line 12 is drawn on the travel path of the AGV 11, and the AGV 11 automatically travels along the line. In the present embodiment, such automatic traveling is also executed by the function of the control device 40.

非接触充電システム10は、AGV11の走行路、即ち走行ライン12に沿って送電装置20を構成する複数の送電コイル22を備え、AGV11の走行中における非接触充電を可能とする。例えば、送電コイル22の上にAGV11の受電装置30が位置するときに、送電コイル22から電力伝送用の電磁波が送電される。そして、受電装置30の受電コイル31により当該電磁波を受波し、これに基づく電力によってAGV11に搭載されたバッテリ13が充電される。   The non-contact charging system 10 includes a plurality of power transmission coils 22 constituting the power transmission device 20 along the traveling path of the AGV 11, that is, the traveling line 12, and enables non-contact charging while the AGV 11 is traveling. For example, when the power receiving device 30 of the AGV 11 is positioned on the power transmission coil 22, an electromagnetic wave for power transmission is transmitted from the power transmission coil 22. And the said electromagnetic waves are received with the receiving coil 31 of the receiving device 30, and the battery 13 mounted in AGV11 with the electric power based on this is charged.

本実施形態では、AGV11が走行する工場の床に、床材として複数のタイル25が配置されている。タイル25は、工場の床材として使用される一般的なタイルである。そして、詳しくは後述するように、床材の一部にコイル内蔵タイル21が用いられている。   In the present embodiment, a plurality of tiles 25 are arranged as floor materials on the floor of a factory where the AGV 11 travels. The tile 25 is a general tile used as a factory flooring. As will be described in detail later, the coil built-in tile 21 is used in a part of the flooring.

送電装置20は、走行ライン12に沿って配置された複数の送電コイル22、各送電コイル22と図示しない電源回路とを接続して各送電コイル22に電力を供給するための給電線24、及び図示しないキャパシタ等を備える。送電コイル22は、電力伝送用の電磁波を送電する送電部としての機能を有する。送電コイル22は、例えば平面状に周回する導線によって形成される。   The power transmission device 20 includes a plurality of power transmission coils 22 arranged along the travel line 12, a power supply line 24 for connecting each power transmission coil 22 and a power supply circuit (not shown) to supply power to each power transmission coil 22, and A capacitor or the like (not shown) is provided. The power transmission coil 22 has a function as a power transmission unit that transmits electromagnetic waves for power transmission. The power transmission coil 22 is formed by, for example, a conductive wire that circulates in a planar shape.

受電装置30は、電力伝送用の電磁波を受波する受波部としての機能を有する受電コイル31、受電コイル31とバッテリ13との間に設けられる充電回路32、及び図示しないキャパシタ等を備える。即ち、受電コイル31は充電回路32に接続され、充電回路32にはバッテリ13が接続されている。受電コイル31は、例えば送電コイル22と同様に、平面状に周回する導線(コイル線)によって形成される。   The power receiving device 30 includes a power receiving coil 31 having a function as a wave receiving unit that receives an electromagnetic wave for power transmission, a charging circuit 32 provided between the power receiving coil 31 and the battery 13, a capacitor (not shown), and the like. That is, the power receiving coil 31 is connected to the charging circuit 32, and the battery 13 is connected to the charging circuit 32. The power receiving coil 31 is formed by a conducting wire (coil wire) that circulates in a planar shape, for example, like the power transmitting coil 22.

非接触充電(給電)の方式は、特に限定されず、例えば電磁誘導方式、共鳴方式のいずれであってもよい。共鳴方式の場合、送電コイル22から受電コイル31への電力伝送は、送電コイル22側の回路と受電コイル31側の回路との結合共振(共鳴)によって行われる。送電コイル22は、例えばキャパシタと共に送電側の共振回路を形成し、受電コイル31は、キャパシタと共に受電側の共振回路を形成する。送電側と受電側とで共振周波数を同一の周波数とし、送電側の共振回路と受電側の共振回路を該周波数で結合共振させる。これにより、送電コイル22と受電コイル31とを機械的に接触させることなく、送電装置20からAGV11に電力を供給することができる。   The method of non-contact charging (power feeding) is not particularly limited, and for example, either an electromagnetic induction method or a resonance method may be used. In the case of the resonance method, power transmission from the power transmission coil 22 to the power reception coil 31 is performed by coupling resonance (resonance) between the circuit on the power transmission coil 22 side and the circuit on the power reception coil 31 side. The power transmission coil 22 forms a power transmission side resonance circuit together with, for example, a capacitor, and the power reception coil 31 forms a power reception side resonance circuit together with the capacitor. The resonance frequency is the same on the power transmission side and the power reception side, and the resonance circuit on the power transmission side and the resonance circuit on the power reception side are coupled and resonated at the frequency. Thereby, electric power can be supplied from the power transmission device 20 to the AGV 11 without mechanically contacting the power transmission coil 22 and the power reception coil 31.

以下、図2をさらに参照して、送電装置20の構成について詳説する。
図2は、図1のA−A線断面、即ちコイル内蔵タイル21を給電線24の長手方向に対して直交する方向に切断した断面を模式的に示す図である。
Hereinafter, the configuration of the power transmission device 20 will be described in detail with reference to FIG.
FIG. 2 is a diagram schematically showing a cross section taken along the line AA of FIG.

図1,2に示すように、送電コイル22は、AGV11の走行路に設けられる床材(タイル材23)に埋め込まれている。即ち、AGV11の走行路には、コイル内蔵タイル21が設けられている。コイル内蔵タイル21は、AGV11の走行路に沿って複数設けられることが好適である。これにより、非接触充電システム10は、AGV11の走行中における非接触充電を可能とする。   As shown in FIGS. 1 and 2, the power transmission coil 22 is embedded in a floor material (tile material 23) provided on the traveling path of the AGV 11. That is, the coil built-in tile 21 is provided on the traveling path of the AGV 11. It is preferable that a plurality of tiles 21 with a built-in coil are provided along the traveling path of the AGV 11. Thereby, the non-contact charging system 10 enables non-contact charging while the AGV 11 is traveling.

1枚のコイル内蔵タイル21は、例えば1つの送電コイル22と、タイル材23とで構成される。コイル内蔵タイル21を構成するタイル材23には、一般的なタイル25と同じ材料、例えばセラミックス(陶磁器)、プラスチック、コンクリート等を用いることができる。即ち、コイル内蔵タイル21は、送電コイル22がタイル材23で被覆され保護された構造である。   One tile 21 with a built-in coil includes, for example, one power transmission coil 22 and a tile material 23. The tile material 23 constituting the coil built-in tile 21 can be made of the same material as the general tile 25, such as ceramics (ceramics), plastic, concrete, and the like. That is, the coil built-in tile 21 has a structure in which the power transmission coil 22 is covered and protected by the tile material 23.

コイル内蔵タイル21の形状は、特に限定されず、例えば40cm角〜50cm角程度の寸法を有する四角形状のパネルとすることができる。コイル内蔵タイル21の寸法は、タイル25と略同等であることが好ましい。また、コイル内蔵タイル21に埋め込まれて一体化される送電コイル22は、図1に示す丸型コイルに限定されず、図3(給電線24を省略)に示す角型コイル等、その他の形状であってもよい。   The shape of the coil built-in tile 21 is not particularly limited, and for example, a square panel having a size of about 40 cm square to 50 cm square can be used. The dimension of the coil built-in tile 21 is preferably substantially the same as that of the tile 25. Further, the power transmission coil 22 embedded and integrated in the coil built-in tile 21 is not limited to the round coil shown in FIG. 1, and other shapes such as a square coil shown in FIG. 3 (the power supply line 24 is omitted). It may be.

コイル内蔵タイル21は、例えば2枚のタイル材23を準備して送電コイル22を挟み込んで製造されてもよいし、タイル材23にプラスチック材料等を用いたインサート成形により製造されてもよい。   The tile with built-in coil 21 may be manufactured, for example, by preparing two tile members 23 and sandwiching the power transmission coil 22, or may be manufactured by insert molding using a plastic material or the like for the tile member 23.

コイル内蔵タイル21には、さらに給電線24が埋め込まれていることが好適である。給電線24は、各コイル内蔵タイル21の送電コイル22と、電源回路とを接続するケーブルである。給電線24をタイルに埋め込むことで、例えば給電線24の破損が抑制され、また給電線24が通行の邪魔になることを防止できる。なお、各送電コイル22への給電方法は、特に限定されないが、各送電コイル22への給電をON/OFFするスイッチ等を設け、AGV11の走行に合わせて当該ON/OFFを実行できることが好ましい。   It is preferable that a power supply line 24 is further embedded in the coil built-in tile 21. The power supply line 24 is a cable for connecting the power transmission coil 22 of each tile with built-in coil 21 and the power supply circuit. By embedding the power supply line 24 in the tile, for example, damage to the power supply line 24 can be suppressed, and the power supply line 24 can be prevented from obstructing passage. In addition, although the power feeding method to each power transmission coil 22 is not particularly limited, it is preferable that a switch or the like for turning on / off power feeding to each power transmission coil 22 is provided so that the ON / OFF can be executed in accordance with the traveling of the AGV 11.

コイル内蔵タイル21には、AGV11の自動走行に使用するトレースセンサを埋め込むこともできる。トレースセンサとして磁気センサを用いる場合は、例えばコイル内蔵タイル21に磁石や磁気テープを埋め込み、AGV11に当該磁石等の磁力を検出する検出器を搭載することができる。この場合、磁石等をタイルに埋め込むことで、例えば磁石等の破損が抑制され、また磁石等が通行の邪魔になることを防止できる。その他、コイル内蔵タイル21の表面に描かれた走行ライン12を赤外線センサ等で検出する方法も挙げられるが、本実施形態では後述の方法によりAGV11の走行制御を実行するものとする。   A trace sensor used for automatic traveling of the AGV 11 can also be embedded in the coil built-in tile 21. When a magnetic sensor is used as the trace sensor, for example, a magnet or a magnetic tape can be embedded in the coil built-in tile 21 and a detector for detecting the magnetic force of the magnet or the like can be mounted on the AGV 11. In this case, by embedding a magnet or the like in the tile, for example, damage to the magnet or the like can be suppressed, and the magnet or the like can be prevented from obstructing passage. In addition, there is a method of detecting the travel line 12 drawn on the surface of the coil built-in tile 21 with an infrared sensor or the like. In this embodiment, the travel control of the AGV 11 is executed by a method described later.

非接触充電システム10は、上記のように、制御装置40を備える。制御装置40は、送電装置20及び受電装置30を制御してAGV11の非接触充電を実行する充電制御手段41を有する。本実施形態では、制御装置40がAGV11の自動走行を制御する走行制御手段42をさらに有する。   The non-contact charging system 10 includes the control device 40 as described above. The control device 40 includes charge control means 41 that controls the power transmission device 20 and the power reception device 30 to perform contactless charging of the AGV 11. In the present embodiment, the control device 40 further includes traveling control means 42 that controls automatic traveling of the AGV 11.

充電制御手段41は、例えばAGV11の走行に合わせて各コイル内蔵タイル21に埋め込まれた送電コイル22への給電をON/OFFする。即ち、コイル内蔵タイル21が配置された走行路に沿って自動走行するAGV11の直下に位置する送電コイル22に対して選択的に給電することが好ましい。そして、上記のように、送電側と受電側とで共振周波数を同一の周波数とし、送電側の共振回路と受電側の共振回路を該周波数で結合共振させて送電装置20からAGV11に電力を供給する。   The charge control means 41 turns ON / OFF the power supply to the power transmission coil 22 embedded in each coil built-in tile 21 in accordance with the traveling of the AGV 11, for example. That is, it is preferable to selectively supply power to the power transmission coil 22 positioned directly under the AGV 11 that automatically travels along the traveling path on which the coil-embedded tile 21 is disposed. Then, as described above, the resonance frequency is the same on the power transmission side and the power reception side, and the power transmission side resonance circuit and the power reception side resonance circuit are coupled and resonated at the frequency to supply power from the power transmission apparatus 20 to the AGV 11. To do.

走行制御手段42は、AGV11の走行制御システムの一部を構成する。走行制御システムは、送電コイル22の磁界を検出する磁気センサ14を有する。磁気センサ14は、AGV11に搭載されている。走行制御手段42は、磁気センサ14により検出された送電コイル22の磁界に基づきAGV11を走行路に沿って自動走行させる機能を有する。これにより、磁石や磁気テープ等をタイルに埋め込むことなく、送電コイル22の磁界を利用してAGV11の走行路に沿った自動走行を可能とする。   The traveling control means 42 constitutes a part of the traveling control system of the AGV 11. The travel control system includes a magnetic sensor 14 that detects the magnetic field of the power transmission coil 22. The magnetic sensor 14 is mounted on the AGV 11. The traveling control means 42 has a function of automatically traveling the AGV 11 along the traveling path based on the magnetic field of the power transmission coil 22 detected by the magnetic sensor 14. This enables automatic traveling along the traveling path of the AGV 11 using the magnetic field of the power transmission coil 22 without embedding a magnet, magnetic tape, or the like in the tile.

以上のように、受電装置30を備える非接触充電システム10によれば、送電コイル22、給電線24、必要によりトレースセンサがタイルに埋め込まれて一体化されているため、段差のない平坦な床面を形成することができる。これにより、送電装置20が、台車やリフト、作業者等の通行の妨げとなることを防止できる。   As described above, according to the non-contact charging system 10 including the power receiving device 30, the power transmission coil 22, the power supply line 24, and, if necessary, the trace sensor are embedded in the tile and integrated, and thus a flat floor without a step. A surface can be formed. Thereby, it can prevent that the power transmission apparatus 20 obstructs passage of a trolley | bogie, a lift, an operator, etc.

図4(給電線を省略)は、第2の実施形態である送電装置20xを示す。
以下では、上記実施形態との相違点について詳説し、重複する説明は省略する。
FIG. 4 (a power supply line is omitted) shows a power transmission device 20x according to the second embodiment.
Hereinafter, differences from the above-described embodiment will be described in detail, and redundant description will be omitted.

図4に示すように、送電装置20xでは、複数のコイル線内蔵タイル21xを組み合わせて1つの送電コイル22xが構成される。送電コイル22xは、例えば平面状に10回程度巻かれた角型コイルであって、コイル線内蔵タイル21xには、直線状のコイル線が内蔵されたタイルと、略L字状に曲がったコイル線が内蔵されたタイルとが含まれる。図4に示す例では、これら2種類のコイル線内蔵タイル21xに埋め込まれたコイル線同士を接続して、合計8枚のコイル線内蔵タイル21xを連結し、1つの送電コイル22xを構成している。   As shown in FIG. 4, in the power transmission device 20 x, one power transmission coil 22 x is configured by combining a plurality of coil wire built-in tiles 21 x. The power transmission coil 22x is, for example, a rectangular coil that is wound about 10 times in a planar shape, and the coil wire built-in tile 21x includes a tile having a straight coil wire and a coil bent in a substantially L shape. And tiles with built-in lines. In the example shown in FIG. 4, these two types of coil wire embedded tiles 21x are connected to each other, and a total of eight coil wire embedded tiles 21x are connected to form one power transmission coil 22x. Yes.

なお、図5に示すように、走行ライン12xが湾曲している場合であっても、複数のコイル線内蔵タイル21xを組み合わせて1つの送電コイル22xを構成することができる。この場合、コイル線内蔵タイル21xに埋め込まれたコイル線も走行ライン12xに沿って湾曲している。   As shown in FIG. 5, even if the travel line 12x is curved, a single power transmission coil 22x can be configured by combining a plurality of coil wire built-in tiles 21x. In this case, the coil wire embedded in the coil wire built-in tile 21x is also curved along the traveling line 12x.

送電装置20xによれば、図1に示す例と比べて、走行路に沿った送電コイルの数が少なくなり、送電コイル同士の間隙の数も少なくなる。このため、AGV11の走行中における充電効率を向上させることができる。   According to the power transmission device 20x, compared to the example illustrated in FIG. 1, the number of power transmission coils along the traveling path is reduced, and the number of gaps between the power transmission coils is also reduced. For this reason, the charging efficiency during traveling of the AGV 11 can be improved.

10 非接触充電システム、11 AGV、12,12x 走行ライン、13 バッテリ、14 磁気センサ、20,20x 送電装置、21 コイル内蔵タイル、22,22x 送電コイル、23 タイル材、24 給電線、25 タイル、30 受電装置、31 受電コイル、32 充電回路、40 制御装置、41 充電制御手段、42 走行制御手段、100 送電ボックス、101 送電コイル   10 contactless charging system, 11 AGV, 12, 12x travel line, 13 battery, 14 magnetic sensor, 20, 20x power transmission device, 21 coil built-in tile, 22, 22x power transmission coil, 23 tile material, 24 feed line, 25 tile, DESCRIPTION OF SYMBOLS 30 Power receiving device, 31 Power receiving coil, 32 Charging circuit, 40 Control apparatus, 41 Charging control means, 42 Travel control means, 100 Power transmission box, 101 Power transmission coil

Claims (3)

受電コイルを搭載した電動車両の走行路に配置される送電コイルと、
前記送電コイルに電力を供給するための給電線と、
を備えた、前記電動車両の非接触充電システムに適用される送電装置であって、
前記送電コイルは、前記走行路に設けられる床材に埋め込まれていることを特徴とする非接触充電用送電装置。
A power transmission coil disposed on a traveling path of an electric vehicle equipped with a power reception coil;
A feed line for supplying power to the power transmission coil;
A power transmission device applied to the non-contact charging system for the electric vehicle,
The power transmission coil is embedded in a floor material provided on the travel path, and is a power transmission device for non-contact charging.
請求項1に記載の非接触充電用送電装置において、
前記給電線は、前記床材に埋め込まれていることを特徴とする非接触充電用送電装置。
The power transmission device for contactless charging according to claim 1,
The power feeding device for contactless charging, wherein the power supply line is embedded in the flooring.
請求項1又は2に記載の非接触充電用送電装置と、
前記電動車両に搭載され、前記送電コイルの磁界を検出するセンサと、
制御装置と、
を備えた電動車両の走行制御システムであって、
前記送電コイルが埋め込まれた前記床材は、前記走行路に沿って複数設けられ、
前記制御装置は、前記センサにより検出された前記磁界に基づき前記電動車両を前記走行路に沿って自動走行させることを特徴とする電動車両の走行制御システム。
A power transmission device for contactless charging according to claim 1 or 2,
A sensor mounted on the electric vehicle for detecting the magnetic field of the power transmission coil;
A control device;
An electric vehicle travel control system comprising:
A plurality of the flooring in which the power transmission coil is embedded are provided along the traveling path,
The control device causes the electric vehicle to automatically travel along the travel path based on the magnetic field detected by the sensor.
JP2013114927A 2013-05-31 2013-05-31 Power transmission device for non-contact charging and travelling control system of electric vehicle Pending JP2014236539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114927A JP2014236539A (en) 2013-05-31 2013-05-31 Power transmission device for non-contact charging and travelling control system of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114927A JP2014236539A (en) 2013-05-31 2013-05-31 Power transmission device for non-contact charging and travelling control system of electric vehicle

Publications (1)

Publication Number Publication Date
JP2014236539A true JP2014236539A (en) 2014-12-15

Family

ID=52138890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114927A Pending JP2014236539A (en) 2013-05-31 2013-05-31 Power transmission device for non-contact charging and travelling control system of electric vehicle

Country Status (1)

Country Link
JP (1) JP2014236539A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635733A (en) * 2014-12-03 2015-05-20 国家电网公司 Automatic guided vehicle and control method thereof
CN105128686A (en) * 2015-08-12 2015-12-09 上海海事大学 Automatic charging ground equipment for all-electric unmanned automatic navigation carrying cart in automated container terminal and charging method
CN105549596A (en) * 2016-02-04 2016-05-04 长沙长泰机器人有限公司 Storehouse intelligent storage system and material transferring method
CN107068360A (en) * 2017-01-06 2017-08-18 南通华为电力设备有限公司 Large-area Magnetic Field equilibrium array coil and regulating step and its wireless charging device
CN107102370A (en) * 2017-04-11 2017-08-29 北京华力兴科技发展有限责任公司 Control method, control device and the vehicle inspection system based on AGV
WO2017182130A1 (en) * 2016-04-22 2017-10-26 Sew-Eurodrive Gmbh & Co. Kg Method for operating a production plant comprising a vehicle and at least one charging point, and production plant having a vehicle for carrying out said method
ITUA20164413A1 (en) * 2016-06-15 2017-12-15 Simone Marini Multi-purpose container that can be opened, also with the function of building tile for lighting applications, home automation and audio amplification
WO2018159540A1 (en) 2017-02-28 2018-09-07 株式会社Ihi Ground-side power supply device
CN108923476A (en) * 2018-05-31 2018-11-30 许继电源有限公司 A kind of electric car direct current wireless charging system
WO2019065317A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Moving body
CN109641668A (en) * 2016-06-30 2019-04-16 史蒂文·丹尼斯·约翰·科斯特洛 The improvement of aircraft taxi
CN111375936A (en) * 2020-03-02 2020-07-07 中国第一汽车股份有限公司 AGV carries movable platform truck fine positioning system
EP3699020A1 (en) * 2019-02-22 2020-08-26 Arrival Limited Wireless battery charging system for automatic guided vehicles
US20220116079A1 (en) * 2019-06-21 2022-04-14 Huawei Technologies Co., Ltd. Magnetic induction communication-based vehicle control apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235432A (en) * 1990-02-09 1991-10-21 Kubota Corp Information storage medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235432A (en) * 1990-02-09 1991-10-21 Kubota Corp Information storage medium

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635733A (en) * 2014-12-03 2015-05-20 国家电网公司 Automatic guided vehicle and control method thereof
CN105128686A (en) * 2015-08-12 2015-12-09 上海海事大学 Automatic charging ground equipment for all-electric unmanned automatic navigation carrying cart in automated container terminal and charging method
CN105549596A (en) * 2016-02-04 2016-05-04 长沙长泰机器人有限公司 Storehouse intelligent storage system and material transferring method
US10730404B2 (en) 2016-04-22 2020-08-04 Sew-Eurodrive Gmbh & Co. Kg Method for operating a production plant comprising a vehicle and at least one charging point, and production plant having a vehicle for carrying out the method
WO2017182130A1 (en) * 2016-04-22 2017-10-26 Sew-Eurodrive Gmbh & Co. Kg Method for operating a production plant comprising a vehicle and at least one charging point, and production plant having a vehicle for carrying out said method
ITUA20164413A1 (en) * 2016-06-15 2017-12-15 Simone Marini Multi-purpose container that can be opened, also with the function of building tile for lighting applications, home automation and audio amplification
CN109641668A (en) * 2016-06-30 2019-04-16 史蒂文·丹尼斯·约翰·科斯特洛 The improvement of aircraft taxi
JP2019521903A (en) * 2016-06-30 2019-08-08 コステロ、 スティーヴン デニス ジョンCOSTELLO, Steven Dennis John Improved aircraft taxiing
CN107068360A (en) * 2017-01-06 2017-08-18 南通华为电力设备有限公司 Large-area Magnetic Field equilibrium array coil and regulating step and its wireless charging device
US10857893B2 (en) 2017-02-28 2020-12-08 Ihi Corporation Ground-side power supply device
WO2018159540A1 (en) 2017-02-28 2018-09-07 株式会社Ihi Ground-side power supply device
CN107102370A (en) * 2017-04-11 2017-08-29 北京华力兴科技发展有限责任公司 Control method, control device and the vehicle inspection system based on AGV
WO2019065317A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Moving body
CN108923476A (en) * 2018-05-31 2018-11-30 许继电源有限公司 A kind of electric car direct current wireless charging system
EP3699020A1 (en) * 2019-02-22 2020-08-26 Arrival Limited Wireless battery charging system for automatic guided vehicles
CN111605418A (en) * 2019-02-22 2020-09-01 来临机器人有限公司 Wireless battery charging system for automated guided vehicles
US20220116079A1 (en) * 2019-06-21 2022-04-14 Huawei Technologies Co., Ltd. Magnetic induction communication-based vehicle control apparatus and method
EP3982227A4 (en) * 2019-06-21 2022-06-29 Huawei Technologies Co., Ltd. Magnetic induction communication-based vehicle control apparatus and method
JP2022537414A (en) * 2019-06-21 2022-08-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Magnetic induction communication based vehicle control apparatus and method
JP7347748B2 (en) 2019-06-21 2023-09-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Magnetic induction communication based vehicle control device and method
CN111375936A (en) * 2020-03-02 2020-07-07 中国第一汽车股份有限公司 AGV carries movable platform truck fine positioning system

Similar Documents

Publication Publication Date Title
JP2014236539A (en) Power transmission device for non-contact charging and travelling control system of electric vehicle
US10984946B2 (en) Reducing magnetic flux density proximate to a wireless charging pad
JP6145318B2 (en) Contactless power transmission equipment
JP6427873B2 (en) Parking assistance device and system
US8319474B2 (en) Non-contact type power feeder system for mobile object
WO2013145613A1 (en) Power supply apparatus
US10507733B2 (en) Energy supply vehicle for supplying an electrically drivable motor vehicle with electrical energy
JP5506327B2 (en) Non-contact power supply device
JP5075973B2 (en) Non-contact power feeder with multi-pole coil structure
US20160025821A1 (en) Guidance and alignment system and methods for electric vehicle wireless charging systems
JP5839039B2 (en) Mobile vehicle power supply system
US10720277B2 (en) Ferrite arrangement in a wireless power-transfer structure to mitigate dimensional tolerance effects on performance
WO2014017281A1 (en) Contactless power-supply system
KR20160146849A (en) Object detection system and method for detecting foreign objects in an inductive power transfer system
JP2009071909A (en) Mobile noncontact power feeder
WO2014184864A1 (en) Contactless power transmission device and moving vehicle
WO2014077042A1 (en) Contactless electricity supply device
JP5389735B2 (en) Power transmission instruction transmission device
CN112352367B (en) Contactless power supply system for vehicle
JP2016187243A (en) Charging system and charging device
JP2015008552A (en) Non-contact power charger
WO2015072574A1 (en) Power-receiving device and power-transmitting device
JP5938667B2 (en) Power supply device
US10333293B2 (en) Method for increasing pad efficiency and robustness
JP2013090392A (en) Non-contact charging device and non-contact power supply facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170613