JP2014225212A - Photovoltaic power generator - Google Patents

Photovoltaic power generator Download PDF

Info

Publication number
JP2014225212A
JP2014225212A JP2013114662A JP2013114662A JP2014225212A JP 2014225212 A JP2014225212 A JP 2014225212A JP 2013114662 A JP2013114662 A JP 2013114662A JP 2013114662 A JP2013114662 A JP 2013114662A JP 2014225212 A JP2014225212 A JP 2014225212A
Authority
JP
Japan
Prior art keywords
converter
solar cell
output
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013114662A
Other languages
Japanese (ja)
Inventor
照哉 濱井
Teruya Hamai
照哉 濱井
宏和 永井
Hirokazu Nagai
宏和 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2013114662A priority Critical patent/JP2014225212A/en
Publication of JP2014225212A publication Critical patent/JP2014225212A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Dc-Dc Converters (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generator capable of controlling the output from a solar cell without using any on-off switch at the output side of the solar cell.SOLUTION: The photovoltaic power generator includes: a solar cell 1; a DC/DC converter 2 for boosting the output voltage from the solar cell 1; a DC/AC converter 3 that converts the output from the DC/DC converter 2 into an AC current and outputs the same to a system power source 4; and a controller 6 that, when the output voltage Vb from the solar cell 1 gets higher than an output target voltage Va1 of the DC/DC converter 2, sets the input target voltage Va2 of the DC/AC converter 3 to be higher than the output voltage Vb from the solar cell 1.

Description

本発明は、太陽電池を用いた発電装置に関する。  The present invention relates to a power generation device using a solar cell.

太陽電池で発電した電力を系統電源へ供給する装置として、例えば、太陽電池で発電した直流電力をDC/DC変換器で昇圧した後、DC/AC変換器で交流に変換してから系統電源へ供給する装置が知られている。  As an apparatus for supplying power generated by a solar cell to a system power source, for example, after boosting DC power generated by a solar cell with a DC / DC converter, the DC / AC converter converts it to AC and then to the system power source. Devices for feeding are known.

太陽電池の発電能力は太陽電池に照射する太陽光の量と、太陽電池が動作する温度に影響を受けるため、日々天候が変わる環境下で、太陽電池の発電能力を常に最適化する方法として、最大電力点追尾(MPPT:Maximum Power Point Tracking)制御がある。また、太陽電池の発電電力を有効に利用する方式として、例えば、太陽電池と蓄電池とを組み合わせて、太陽電池の発電電力を蓄電池へ充電することで、太陽電池の発電電力を余すことなく利用する方式が知られている。  Since the power generation capacity of solar cells is affected by the amount of sunlight irradiated to the solar cells and the temperature at which the solar cells operate, as a way to constantly optimize the power generation capacity of solar cells in an environment where the weather changes daily, There is a maximum power point tracking (MPPT) control. In addition, as a method of effectively using the generated power of the solar battery, for example, by combining the solar battery and the storage battery and charging the generated power of the solar battery to the storage battery, the generated power of the solar battery is used without surplus. The method is known.

太陽電池の発電能力は前述の通り、太陽光の量と周囲温度に影響を受けるため、天候が悪い日であってもなるべく多くの発電量を得るために、DC/DC変換器の定格以上となる太陽電池を設置することがある。  As described above, the power generation capacity of the solar cell is affected by the amount of sunlight and the ambient temperature. Therefore, in order to obtain as much power generation as possible even on a bad day, May be installed.

その場合、逆に、太陽電池の発電に好適な条件が整うと、DC/DC変換器に定格以上の電圧がかかり、DC/DC変換器で制御できる電圧範囲を超えた電圧がそのまま出力されるため、系統電源や蓄電池への影響が懸念されることとなる。これを回避するために、太陽電池の出力を抑制するため、太陽電池の出力側に開閉スイッチを設け、これを所定の条件に応じてオン/オフする装置が考案されている。  In that case, on the contrary, when conditions suitable for power generation of the solar cell are established, a voltage exceeding the rating is applied to the DC / DC converter, and a voltage exceeding the voltage range that can be controlled by the DC / DC converter is output as it is. Therefore, there is a concern about the influence on the system power supply and the storage battery. In order to avoid this, in order to suppress the output of the solar cell, a device has been devised in which an open / close switch is provided on the output side of the solar cell and this is turned on / off according to a predetermined condition.

特開2011−101455号公報JP 2011-101455 A 特開平10−243575号公報Japanese Patent Laid-Open No. 10-243575

開閉スイッチにより太陽電池を切り離しているため、環境や条件によっては頻繁に開閉する可能性があり、電流が流れている状態での切り離しとなるため接点寿命も短くなり、開閉スイッチの定期的な交換が発生する等のメンテナンス性の悪化が問題となる。また、開閉のたびにノイズを発生する。さらに、一旦スイッチを開放してから太陽電池が十分発電できる状態でスイッチを閉じたとき装置内のコンデンサに対し過大な充電電流が流れるため予備充電用の抵抗を開閉スイッチと並列に設ける必要があるといった問題がある。  Since the solar cell is disconnected by the open / close switch, it may be frequently opened and closed depending on the environment and conditions, and the contact life is shortened because it is disconnected in the state where current flows, and the open / close switch is periodically replaced. Deterioration in maintainability such as occurrence of a problem becomes a problem. In addition, noise is generated each time opening and closing. Furthermore, when the switch is closed in a state where the solar cell can generate enough power once the switch is opened, a precharging resistor must be provided in parallel with the open / close switch because an excessive charging current flows to the capacitor in the device. There is a problem.

本発明は、太陽電池の出力側に開閉スイッチを使用することなく、太陽電池の出力を抑制する太陽光発電装置を提供することを目的とする。  An object of this invention is to provide the solar power generation device which suppresses the output of a solar cell, without using an opening / closing switch on the output side of a solar cell.

上記目的を達成するために、実施形態の太陽光発電装置は、太陽電池と、前記太陽電池の出力電圧を昇圧するDC/DC変換器と、前記DC/DC変換器の出力を交流に変換し系統電源へ出力するDC/AC変換器と、前記太陽電池の出力電圧が前記DC/DC変換器の出力目標電圧よりも高くなった場合に、前記DC/AC変換器の入力目標電圧を前記太陽電池の出力電圧より高く設定する制御器とを備えることを特徴としている。  In order to achieve the above object, a photovoltaic power generation apparatus according to an embodiment converts a solar cell, a DC / DC converter that boosts the output voltage of the solar cell, and an output of the DC / DC converter into alternating current. When the output voltage of the DC / AC converter to be output to the system power supply and the solar cell is higher than the output target voltage of the DC / DC converter, the input target voltage of the DC / AC converter is And a controller for setting higher than the output voltage of the battery.

この構成により、太陽電池の出力電圧がDC/DC変換器の定格電圧よりも高くなった場合に、太陽電池の出力を抑制することができる。  With this configuration, when the output voltage of the solar cell becomes higher than the rated voltage of the DC / DC converter, the output of the solar cell can be suppressed.

また、上記目的を達成するために、別の実施形態の太陽光発電装置は、太陽電池と、前記太陽電池の出力電圧を昇圧する第1のDC/DC変換器と、電力貯蔵手段と、前記電力貯蔵手段を充放電する第2のDC/DC変換器と、前記第1のDC/DC変換器と第2のDC/DC変換器と並列に接続され、前記第1のDC/DC変換器と第2のDC/DC変換器の少なくとも一方の直流出力を交流に変換し、または前記系統電源からの交流出力を直流に変換して出力するDC/AC変換器と、前記太陽電池の出力電圧が前記第1のDC/DC変換器の出力目標電圧よりも高くなった場合に、前記第2のDC/DC変換器の前記系統電源側の目標電圧を前記太陽電池の出力電圧より高く設定する制御器とを備えることを特徴としている。  In order to achieve the above object, a photovoltaic power generation apparatus according to another embodiment includes a solar cell, a first DC / DC converter that boosts an output voltage of the solar cell, power storage means, A second DC / DC converter for charging and discharging power storage means; and the first DC / DC converter connected in parallel with the first DC / DC converter and the second DC / DC converter. A DC / AC converter that converts a direct current output of at least one of the first and second DC / DC converters into an alternating current, or converts an alternating current output from the system power supply into a direct current and outputs the output, and an output voltage of the solar cell Is higher than the output target voltage of the first DC / DC converter, the target voltage on the system power supply side of the second DC / DC converter is set higher than the output voltage of the solar cell. And a controller.

この構成により、太陽電池の出力電圧が第1のDC/DC変換器の定格電圧よりも高くなった場合に、太陽電池の出力を抑制することができる。  With this configuration, the output of the solar cell can be suppressed when the output voltage of the solar cell becomes higher than the rated voltage of the first DC / DC converter.

本発明の実施形態によれば、太陽電池の出力側に開閉スイッチを使用することなく、太陽電池の出力を抑制する太陽光発電装置を提供することができる。  According to the embodiment of the present invention, it is possible to provide a solar power generation device that suppresses the output of a solar cell without using an open / close switch on the output side of the solar cell.

本発明の第1の実施形態の構成図。The block diagram of the 1st Embodiment of this invention. 太陽電池のV−I特性及びV−P特性の一例のグラフ。The graph of an example of the VI characteristic and VP characteristic of a solar cell. 本発明の第2の実施形態の構成図。The block diagram of the 2nd Embodiment of this invention.

(第1の実施形態)
図1は本発明の第1の実施形態の構成を示す図である。太陽電池1で発電された直流電力はDC/DC変換器2で所定の電圧へ昇圧され、DC/AC変換器3で交流に変換された後に系統電源4へ供給される。
(First embodiment)
FIG. 1 is a diagram showing the configuration of the first exemplary embodiment of the present invention. The DC power generated by the solar cell 1 is boosted to a predetermined voltage by the DC / DC converter 2, converted to AC by the DC / AC converter 3, and then supplied to the system power supply 4.

DC/DC変換器2は、チョッパ回路を有しており、太陽電池1の出力電圧Vbを昇圧目標電圧Va1になるように昇圧する。また、太陽電池1の太陽電池の発電能力を最適化するためのMPPT(Maximum Power Point Tracking)制御を行う。  The DC / DC converter 2 has a chopper circuit, and boosts the output voltage Vb of the solar cell 1 so as to become the boost target voltage Va1. Moreover, MPPT (Maximum Power Point Tracking) control for optimizing the power generation capability of the solar cell of the solar cell 1 is performed.

ここで、MPPT制御について概略を説明すると、太陽電池は日射強度及び温度により最大電力を発生させる動作点が異なるため、太陽電池の発電電力を有効に活用するには、刻々変化していく最適動作点に追従させて発電することが重要となる。このような最大電力を取り出す最適動作点を求めるには、太陽電池の出力が最大となる最適動作点に追従制御させる最大電力追従制御{MPPT(Maximum Power Point Tracking)制御}が用いられる。例えば、現状の動作点で得られる出力電力と、現状の動作点から少しだけ移動させた動作点で得られる出力電力とを比較して最適動作点への方向判断を行い、最適動作点へと追従させる山登り法などが用いられる。  Here, the outline of the MPPT control will be described. Since the operating point for generating the maximum power differs depending on the solar radiation intensity and the temperature, the optimum operation that changes every moment is used in order to effectively use the generated power of the solar cell. It is important to generate power by following the points. In order to obtain such an optimal operating point for extracting the maximum power, maximum power tracking control {MPPT (Maximum Power Point Tracking) control) for tracking control to the optimal operating point at which the output of the solar cell is maximum is used. For example, the output power obtained at the current operating point is compared with the output power obtained at the operating point slightly moved from the current operating point to determine the direction to the optimal operating point, and to the optimal operating point. The hill-climbing method to follow is used.

図2は、太陽電池の出力電圧Vと出力電流Iとの関係を示したV−I特性及び太陽電池の出力電圧Vと出力電力Pとの関係を示したV−P特性の一例のグラフである。図2に示すように、太陽電池は、日射強度及び温度が一定の場合には一定のV−I特性曲線C1及び一定のV−P特性曲線P1を有し、V−I特性曲線C1上の出力電力が最大出力P1maxとなるのが最適動作点C11{座標C11(V1,I1)}である。通常時は、この最適動作点C11となるように太陽電池1の出力電圧VbがDC/DC変換器2によりMPPT制御される。  FIG. 2 is a graph of an example of the V-I characteristic showing the relationship between the output voltage V and the output current I of the solar cell and the V-P characteristic showing the relationship between the output voltage V and the output power P of the solar cell. is there. As shown in FIG. 2, the solar cell has a constant VI characteristic curve C1 and a constant VP characteristic curve P1 when the solar radiation intensity and temperature are constant, and is on the VI characteristic curve C1. The output power becomes the maximum output P1max at the optimum operating point C11 {coordinate C11 (V1, I1)}. In normal times, the output voltage Vb of the solar cell 1 is MPPT-controlled by the DC / DC converter 2 so as to reach the optimum operating point C11.

DC/AC変換器3は、DC/DC変換器2の直流出力を交流へ変換して系統電源4へ電力を供給する。さらに、DC/AC変換器3内では主回路電圧Vaが入力目標電圧Va2となるように出力電力を調整するよう動作する。  The DC / AC converter 3 converts the direct current output of the DC / DC converter 2 into alternating current and supplies power to the system power supply 4. Further, the DC / AC converter 3 operates to adjust the output power so that the main circuit voltage Va becomes the input target voltage Va2.

DC/AC変換器3はDC/DC変換器2よりも制御処理周期が早くなるように設定し、かつDC/AC変換器3の電圧制御の入力目標電圧Va2をVa1より低い値に設定する。DC/DC変換器でVa1まで電圧を昇圧し、DC/AC変換器3の電圧制御によりVa2へ降圧されることで電位差が生じることにより、太陽電池1の発電電力が系統電源4へ流れることになる。実際には、Va1を365V、Va2を355Vとすると、Vaは357Vくらいの値を推移する。  The DC / AC converter 3 is set so that the control processing cycle is earlier than that of the DC / DC converter 2, and the input target voltage Va2 for voltage control of the DC / AC converter 3 is set to a value lower than Va1. A voltage difference is generated by stepping up the voltage to Va1 by the DC / DC converter and stepping down to Va2 by voltage control of the DC / AC converter 3, whereby the generated power of the solar cell 1 flows to the system power supply 4. Become. Actually, when Va1 is 365V and Va2 is 355V, Va changes to a value of about 357V.

ここで、多少の悪天候になった場合であっても太陽電池1の発電量を確保するために太陽電池1の太陽光パネルを多く設置することがあり、DC/DC変換器2の定格以上になる太陽電池1が設置される場合がある。このような場合、太陽電池1の発電に好適な条件が整うとDC/DC変換器2の定格以上の電圧が発電されることになり、もはやDC/DC変換器2の昇圧機能は失われ、DC/DC変換器2の内部にある、本来は系統電源4側からの逆流防止のためのダイオードを通じて太陽電池1の発電電力がそのままDC/AC変換器3へ入力されることになる。DC/DC変換器2の昇圧機能が失われるとともに太陽電池1の発電電力を抑制する機能も失われるため、DC/AC変換器3を介して発電を継続し、系統電源4へ電圧上昇等の悪影響を及ぼす恐れがある。  Here, in order to ensure the amount of power generated by the solar cell 1 even in the case of some bad weather, a large number of solar panels of the solar cell 1 may be installed, exceeding the rating of the DC / DC converter 2. The solar cell 1 which becomes may be installed. In such a case, when conditions suitable for power generation of the solar cell 1 are satisfied, a voltage exceeding the rating of the DC / DC converter 2 is generated, and the boosting function of the DC / DC converter 2 is lost. The generated power of the solar cell 1 is directly input to the DC / AC converter 3 through a diode that is originally inside the DC / DC converter 2 and prevents backflow from the system power supply 4 side. Since the boosting function of the DC / DC converter 2 is lost and the function of suppressing the generated power of the solar cell 1 is also lost, the power generation is continued through the DC / AC converter 3 and the voltage is increased to the system power supply 4. There is a risk of adverse effects.

この系統電源4への悪影響を回避するために、太陽電池1の出力側に開閉スイッチを設けて、それをオフすることで系統電源4を保護することが考えられるが、機械的な開閉動作を伴うため開閉スイッチの消耗や故障等が問題となる。  In order to avoid this adverse effect on the system power supply 4, it is conceivable that an open / close switch is provided on the output side of the solar cell 1 and the system power supply 4 is protected by turning it off. Therefore, there is a problem such as exhaustion and breakdown of the open / close switch.

そこで、本実施の形態では開閉スイッチではなく制御器6を設けている。制御器6は、太陽電池1の出力電圧VbとDC/DC変換器2の昇圧目標電圧Va1を監視し、Vb>Va1となった場合は、DC/AC変換器3の入力目標電圧Va2をVa2>Vbとなるように設定変更する。その結果、DC/AC変換器3内の電圧制御はVbがより高くなるように動作し、図2を見て明らかなように、太陽電池の特性として発電電圧が上昇すると電流、電力は0になる、または0に近づくため、系統電源4への出力を抑制することができる。  Therefore, in this embodiment, a controller 6 is provided instead of the open / close switch. The controller 6 monitors the output voltage Vb of the solar cell 1 and the boost target voltage Va1 of the DC / DC converter 2, and when Vb> Va1, the input target voltage Va2 of the DC / AC converter 3 is Va2. Change the setting so that> Vb. As a result, the voltage control in the DC / AC converter 3 operates so that Vb becomes higher. As is apparent from FIG. 2, when the generated voltage increases as the characteristics of the solar cell, the current and power become zero. Since it becomes or approaches 0, the output to the system power supply 4 can be suppressed.

Vb<Va1となれば、制御器6はDC/AC変換器3の入力目標電圧Va2を元に戻すことにより通常の制御状態に戻る。このときハンチング防止のため判定にはヒステリシスやオンディレイタイマを持たせても良い。  If Vb <Va1, the controller 6 returns to the normal control state by restoring the input target voltage Va2 of the DC / AC converter 3. At this time, a hysteresis or an on-delay timer may be provided for determination to prevent hunting.

(第1の実施形態の効果)
本実施の形態によれば、太陽電池1の出力側に開閉スイッチを設けることなく、系統電源4への供給電力を抑制するために太陽電池1自体の発電電力を直接抑制することができるので、開閉スイッチの寿命に左右されることなくメンテナンス性に優れた太陽光発電装置を提供でき、また、機械的に切り離さないため発電電力の無駄を軽減することができる。開閉スイッチに対して半導体による電圧調整は高速であることから、発電機会を無駄にする時間が短くなり、また、開閉スイッチを動作させるための電力も不要となるからである。
(Effects of the first embodiment)
According to the present embodiment, since the open / close switch is not provided on the output side of the solar cell 1, the generated power of the solar cell 1 itself can be directly suppressed in order to suppress the power supplied to the system power supply 4. A solar power generation device with excellent maintainability can be provided without being influenced by the life of the on / off switch, and waste of generated power can be reduced because it is not mechanically disconnected. This is because voltage adjustment by a semiconductor with respect to the open / close switch is fast, so that time for wasting power generation is shortened, and electric power for operating the open / close switch is not required.

(第2の実施形態)
図3は本発明の第2の実施形態の構成を示す図である。第1の実施形態と比較して構成上、異なる点は、蓄電池7(電力貯蔵手段)と蓄電池7へ充放電するDC/DC変換器8を備えていることである。
(Second Embodiment)
FIG. 3 is a diagram showing the configuration of the second exemplary embodiment of the present invention. The difference in configuration compared to the first embodiment is that a storage battery 7 (power storage means) and a DC / DC converter 8 that charges and discharges the storage battery 7 are provided.

DC/DC変換器2は、第1の実施形態と同様、MPPT制御を行い、太陽電池1の発電電力が最大になるように動作する。  As in the first embodiment, the DC / DC converter 2 performs MPPT control and operates so that the generated power of the solar cell 1 is maximized.

DC/AC変換器5は、DCからAC(放電方向)へ、あるいはACからDC(充電方向)へ双方向の変換が可能で、一定の電力を系統電源4または蓄電池7へ供給するよう電力制御を行う。いずれの方向へ出力するかは制御器9からDC/AC変換器5に対して切替指令を与えることで切り替えることができ、例えば、系統連系して太陽電池1または/および蓄電池7から系統電源4へ電力を供給する場合、または系統電源4から蓄電池7へ充電する場合など、図示しないPC等の設定手段から制御器9へ指令を与えることにより時間スケジュールに基づいてDC/AC変換器5の出力方向を任意に決定することができる。また、DC/AC変換器5に対して停止指令により放電方向、充電方向のいずれについても電力供給を停止することができる。  The DC / AC converter 5 can perform bidirectional conversion from DC to AC (discharge direction) or from AC to DC (charge direction), and controls power to supply constant power to the system power supply 4 or the storage battery 7. I do. The direction of output can be switched by giving a switching command from the controller 9 to the DC / AC converter 5. For example, the grid power is connected to the system power supply from the solar battery 1 or / and the storage battery 7. 4 or when charging the storage battery 7 from the system power supply 4 or the like, by giving a command to the controller 9 from a setting means such as a PC (not shown) of the DC / AC converter 5 based on the time schedule. The output direction can be arbitrarily determined. Further, the power supply can be stopped in both the discharging direction and the charging direction by a stop command to the DC / AC converter 5.

蓄電池7は、鉛蓄電池やリチウムイオン二次電池など、充放電が可能な電源である。DC/DC変換器8は、蓄電池7の充電および放電を制御し、DC/DC変換器2とDC/AC変換器5との間の電圧Vaを一定に保つように動作する。また、制御器6は、蓄電池7の充電状態を監視し、電池の性能劣化を防ぐため、過充電、過放電になる前にDC/DC変換器8の目標電圧Va2を変更したりDC/AC変換器5へ停止指令を与える。  The storage battery 7 is a power source that can be charged and discharged, such as a lead storage battery or a lithium ion secondary battery. The DC / DC converter 8 controls charging and discharging of the storage battery 7 and operates so as to keep the voltage Va between the DC / DC converter 2 and the DC / AC converter 5 constant. In addition, the controller 6 monitors the state of charge of the storage battery 7 and changes the target voltage Va2 of the DC / DC converter 8 before overcharging or overdischarging in order to prevent battery performance deterioration or DC / AC. A stop command is given to the converter 5.

太陽電池1の発電電力を系統電源4へ供給しているときに、系統側の事情により系統への出力を停止した場合、太陽電池1の発電電力を有効活用するため、太陽電池1の発電電力を蓄電池7へ充電する。蓄電池7が満充電に近づけば、蓄電池7への充電を停止する必要がある。蓄電池7への充電を停止するために、太陽電池1の出力側に開閉スイッチを設けて、それをオフすることで蓄電池7の過充電を保護することが考えられるが、機械的な開閉動作を伴うため開閉スイッチの消耗や故障等が問題となる。  When the generated power of the solar cell 1 is supplied to the system power supply 4 and the output to the system is stopped due to circumstances on the system side, the generated power of the solar cell 1 is effectively used to effectively use the generated power of the solar cell 1 Is charged into the storage battery 7. When the storage battery 7 is close to full charge, it is necessary to stop charging the storage battery 7. In order to stop the charging of the storage battery 7, it is conceivable to provide an open / close switch on the output side of the solar battery 1 and to turn it off to protect the overcharge of the storage battery 7. Therefore, there is a problem such as exhaustion and breakdown of the open / close switch.

そこで、本実施の形態では開閉スイッチではなく制御器9を設けている。制御器9によりDC/DC変換器8の目標電圧(この場合は入力目標電圧)Va2をVa1より高く設定変更することにより蓄電池7への電力流入を防ぐことができ、蓄電池7の過充電を防止できる。さらには、DC/DC変換器2の定格以上の太陽電池1が設置されている場合には、Va2をVbより高く設定することにより同様となる。その結果、図2を見て明らかなように、太陽電池の特性として発電電圧が上昇すると電流、電力は0になる、または0に近づくため、蓄電池7の充電を抑制することができる。  Therefore, in this embodiment, a controller 9 is provided instead of the open / close switch. By changing the target voltage (input target voltage in this case) Va2 of the DC / DC converter 8 higher than Va1 by the controller 9, it is possible to prevent inflow of power to the storage battery 7 and prevent overcharge of the storage battery 7. it can. Furthermore, when the solar cell 1 having a rating equal to or higher than that of the DC / DC converter 2 is installed, the same applies by setting Va2 higher than Vb. As a result, as apparent from FIG. 2, when the power generation voltage increases as the characteristics of the solar cell, the current and power become 0 or approach 0, so that charging of the storage battery 7 can be suppressed.

(第2の実施形態の効果)
従って、本実施の形態によれば、第1の実施形態と同様、蓄電池7を用いた構成のときであっても、太陽電池1の出力側に開閉スイッチを設けることなく、蓄電池7の過充電を防止するために太陽電池1自体の発電電力を直接抑制することができるので、開閉スイッチの寿命に左右されることなくメンテナンス性に優れた太陽光発電装置を提供でき、また、機械的に切り離さないため発電電力の無駄を軽減することができる。
(Effect of 2nd Embodiment)
Therefore, according to the present embodiment, similarly to the first embodiment, even when the storage battery 7 is used, the storage battery 7 is overcharged without providing an open / close switch on the output side of the solar battery 1. In order to prevent this, the generated power of the solar cell 1 itself can be directly suppressed, so that it is possible to provide a solar power generation device with excellent maintainability without being affected by the life of the on / off switch, and mechanically disconnected. Therefore, waste of generated power can be reduced.

1・・・太陽電池、
2,8・・・DC/DC変換器、
3,5・・・DC/AC変換器、
4・・・系統電源、
6,9・・・制御器
7・・・蓄電池
1 ... solar cell,
2,8 ... DC / DC converter,
3, 5 ... DC / AC converter,
4 ... System power supply,
6, 9 ... Controller 7 ... Storage battery

Claims (2)

太陽電池と、
前記太陽電池の出力電圧を昇圧するDC/DC変換器と、
前記DC/DC変換器の出力を交流に変換し系統電源へ出力するDC/AC変換器と、
前記太陽電池の出力電圧が前記DC/DC変換器の出力目標電圧よりも高くなった場合に、前記DC/AC変換器の入力目標電圧を前記太陽電池の出力電圧より高く設定する制御器と、を備えることを特徴とする太陽光発電装置。
Solar cells,
A DC / DC converter that boosts the output voltage of the solar cell;
A DC / AC converter for converting the output of the DC / DC converter into an alternating current and outputting it to a system power supply;
A controller that sets the input target voltage of the DC / AC converter higher than the output voltage of the solar cell when the output voltage of the solar cell becomes higher than the output target voltage of the DC / DC converter; A solar power generation apparatus comprising:
太陽電池と、
前記太陽電池の出力電圧を昇圧する第1のDC/DC変換器と、
電力貯蔵手段と、
前記電力貯蔵手段を充放電する第2のDC/DC変換器と、
前記第1のDC/DC変換器と第2のDC/DC変換器と並列に接続され、前記第1のDC/DC変換器と第2のDC/DC変換器の少なくとも一方の直流出力を交流に変換し、または前記系統電源からの交流出力を直流に変換して出力するDC/AC変換器と、
前記太陽電池の出力電圧が前記第1のDC/DC変換器の出力目標電圧よりも高くなった場合に、前記第2のDC/DC変換器の前記系統電源側の目標電圧を前記太陽電池の出力電圧より高く設定する制御器と、を備えることを特徴とする太陽光発電装置。
Solar cells,
A first DC / DC converter that boosts the output voltage of the solar cell;
Power storage means;
A second DC / DC converter for charging and discharging the power storage means;
The first DC / DC converter and the second DC / DC converter are connected in parallel, and the direct current output of at least one of the first DC / DC converter and the second DC / DC converter is AC. Or a DC / AC converter that converts an alternating current output from the system power source into a direct current and outputs the direct current,
When the output voltage of the solar cell becomes higher than the output target voltage of the first DC / DC converter, the target voltage on the grid power supply side of the second DC / DC converter is And a controller for setting the output voltage higher than the output voltage.
JP2013114662A 2013-05-15 2013-05-15 Photovoltaic power generator Pending JP2014225212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114662A JP2014225212A (en) 2013-05-15 2013-05-15 Photovoltaic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114662A JP2014225212A (en) 2013-05-15 2013-05-15 Photovoltaic power generator

Publications (1)

Publication Number Publication Date
JP2014225212A true JP2014225212A (en) 2014-12-04

Family

ID=52123831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114662A Pending JP2014225212A (en) 2013-05-15 2013-05-15 Photovoltaic power generator

Country Status (1)

Country Link
JP (1) JP2014225212A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074113A (en) * 1996-08-30 1998-03-17 Canon Inc Power controller for solar battery
JP2004364493A (en) * 2003-05-09 2004-12-24 Canon Inc Electric power conversion apparatus and control method therefor, as well as solar power generation arrangement
WO2013018507A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Power conversion apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074113A (en) * 1996-08-30 1998-03-17 Canon Inc Power controller for solar battery
JP2004364493A (en) * 2003-05-09 2004-12-24 Canon Inc Electric power conversion apparatus and control method therefor, as well as solar power generation arrangement
WO2013018507A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Power conversion apparatus

Similar Documents

Publication Publication Date Title
US11936187B2 (en) Method and system for extracting excess power
Mahmood et al. Decentralized power management of a PV/battery hybrid unit in a droop-controlled islanded microgrid
US8854004B2 (en) Energy storage system and controlling method thereof
Guan et al. Coordinated secondary control for balanced discharge rate of energy storage system in islanded AC microgrids
US8004232B2 (en) Method of battery charging and power control in conjunction with maximum power point tracking
US10312693B2 (en) Power generation system that couples a photovoltaic array to a DC energy storage source
JP5882845B2 (en) Power storage type solar power generation system
JP5541982B2 (en) DC power distribution system
JP2013161139A (en) Power supply system and power supply device
WO2011122672A1 (en) Power supply system, power supply method, and control program for power supply system
JP2013102576A (en) Charge control system, charge control device, charge control method, and discharge control device
WO2011152512A1 (en) Power supply control device
JP5841279B2 (en) Electric power charging device
US20210288504A1 (en) Power conversion system, method for controlling converter circuit, and program
JP2011160610A (en) Photovoltaic power generation device
JP2017099235A (en) Power conversion system and controller
JP2013102571A (en) Power supply device, power control system, and starting method of electrical apparatus
KR101737461B1 (en) System for obtaining a driving power source to the power generation of the solar cell and method therefor
JP2013099207A (en) Control apparatus and control method
JP2016103915A (en) Storage battery system and power storage method
JP2015065765A (en) Charging circuit and charging system
JP6707309B2 (en) Power supply system
Deeba et al. Coordinated control of multi-functional battery energy storage system in an unbalanced network
JP2014225212A (en) Photovoltaic power generator
JP5810254B2 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171010