JP2014222936A - Image decoding device, image decoding method, image encoding/decoding method and image decoding program - Google Patents

Image decoding device, image decoding method, image encoding/decoding method and image decoding program Download PDF

Info

Publication number
JP2014222936A
JP2014222936A JP2014149570A JP2014149570A JP2014222936A JP 2014222936 A JP2014222936 A JP 2014222936A JP 2014149570 A JP2014149570 A JP 2014149570A JP 2014149570 A JP2014149570 A JP 2014149570A JP 2014222936 A JP2014222936 A JP 2014222936A
Authority
JP
Japan
Prior art keywords
signal
prediction
inter
intra
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014149570A
Other languages
Japanese (ja)
Inventor
加藤 晴久
Haruhisa Kato
晴久 加藤
内藤 整
Hitoshi Naito
整 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Research Inc
Original Assignee
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI R&D Laboratories Inc filed Critical KDDI R&D Laboratories Inc
Priority to JP2014149570A priority Critical patent/JP2014222936A/en
Publication of JP2014222936A publication Critical patent/JP2014222936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image decoding device which improves efficiency by reducing the quantity of information.SOLUTION: The image decoding device is configured to decode a signal obtained by performing orthogonal transformation/quantization/encoding of an input image signal formed from a plurality of unit blocks including a plurality of pixels. The image decoding device comprises inter-signal prediction means for determining whether a reference signal can be selected from a signal separated into color signals and whether inter-signal prediction can be applied to each signal to be predicted on the basis of intra-signal prediction information for performing intra-signal prediction on each of pixels on the basis of a reconstituted image signal. An image signal is obtained which is decoded from information of the inter-signal prediction and information of the intra-signal prediction by performing inter-signal compensation and intra-signal compensation.

Description

本発明は、画像を圧縮して符号化する場合の画像符号化技術に関し、特に、画像内における相関のある情報から符号対象を予測し、予測誤差を符号化することで符号化効率の向上を図る画像復号装置、画像復号方法、画像符号化復号方法及び画像復号プログラムに関する。   The present invention relates to an image encoding technique in the case of compressing and encoding an image, and in particular, predicts a coding target from correlated information in the image and encodes a prediction error to improve encoding efficiency. The present invention relates to an image decoding device, an image decoding method, an image encoding / decoding method, and an image decoding program.

従来の画像符号化において符号化効率を向上させる方式としては、時間冗長性を削減する方法と空間冗長性を削減する方法が存在した。
時間冗長性を削減する方法としては、フレーム差分方式や動き補償方式がある。フレーム差分方式は、連続する2枚の画像を単純に減算し差分を符号化するものである。
動き補償方式は、参照フレームに対して動きベクトルを適用することで符号対象フレームの近似画像を生成し、符号対象フレームとの差分を符号化する。この動き補償方式は、画像間の相違を小さくした上で符号化するため、フレーム差分方式より符号化効率の面で優れている。
その一方、動き補償方式で用いる動きベクトルの推定方法は、時間冗長度の削減を可能とするものの、静止画には利用できないという課題があった。
As a method for improving the coding efficiency in the conventional image coding, there are a method for reducing temporal redundancy and a method for reducing spatial redundancy.
As a method for reducing temporal redundancy, there are a frame difference method and a motion compensation method. In the frame difference method, two consecutive images are simply subtracted and the difference is encoded.
In the motion compensation method, an approximate image of an encoding target frame is generated by applying a motion vector to a reference frame, and a difference from the encoding target frame is encoded. This motion compensation method is superior to the frame difference method in terms of encoding efficiency because encoding is performed after reducing differences between images.
On the other hand, the motion vector estimation method used in the motion compensation method has a problem that it can not be used for still images, although it can reduce time redundancy.

符号化効率の向上のための空間冗長性削減方法としては、例えば直交変換係数を量子化する方式が存在する。この方式は、直交変換は画素信号を周波数領域に写像し、エネルギーを低域に集中させるものである。この方式によれば、人間の視覚特性が高域に敏感でないことを利用して、高域成分を量子化で除去することで符号化効率を上げることが可能となる。   As a spatial redundancy reduction method for improving the coding efficiency, for example, there is a method of quantizing orthogonal transform coefficients. In this method, orthogonal transformation maps a pixel signal to a frequency domain and concentrates energy in a low frequency. According to this method, it is possible to increase the coding efficiency by removing the high frequency component by quantization using the fact that the human visual characteristic is not sensitive to the high frequency.

また、符号化を行う場合、特許文献1に示されるように、符号化の処理対象となっている領域の周囲に存在する符号化済みブロックに対して局部復号を行うことで復号信号を生成し、この復号信号を用いて面内予測(イントラ予測)を行うことで予測信号を生成し、符号化対象となっているブロック内の信号成分と、生成した予測信号との差分によって得られる残差信号に対して、所定の直交変換および量子化を行うことで空間冗長性削減し、符号化効率の改善を図ることが一般的に行われている。   In addition, when encoding is performed, as shown in Patent Document 1, a decoded signal is generated by performing local decoding on an encoded block existing around a region to be encoded. The prediction signal is generated by performing in-plane prediction (intra prediction) using this decoded signal, and the residual obtained by the difference between the signal component in the block to be encoded and the generated prediction signal In general, a signal is subjected to predetermined orthogonal transformation and quantization to reduce spatial redundancy and improve coding efficiency.

特許第3734492号Japanese Patent No. 3734492

上述した直交変換と量子化の組み合わせや空間予測方法による空間冗長性削減方法は、フレーム内の空間冗長性を削減するが、同一フレームの異なる色信号については独立して処理するため、色信号の冗長性まで削減することはできないという課題があった。   The spatial redundancy reduction method using the combination of orthogonal transformation and quantization and the spatial prediction method described above reduces spatial redundancy in a frame, but different color signals in the same frame are processed independently, There was a problem that redundancy could not be reduced.

本発明は上記事情に鑑みて提案されたもので、画像を分離して得られた複数の色信号の中から基準となる基準信号を適応的に選択し、この基準信号から他の信号(被予測信号)を予測することで、被予測信号の情報量を削減し符号化効率を向上させる画像復号装置、画像復号方法、画像符号化復号方法及び画像復号プログラムを提供することを目的としている。   The present invention has been proposed in view of the above circumstances, and a reference signal serving as a reference is adaptively selected from a plurality of color signals obtained by separating images, and another signal (covered signal) is selected from the reference signal. An object of the present invention is to provide an image decoding device, an image decoding method, an image encoding / decoding method, and an image decoding program that reduce the amount of information of a signal to be predicted and improve the encoding efficiency by predicting the prediction signal.

上記目的を達成するため本発明は、複数の画素から構成される単位ブロックの各画素に対して信号内予測される各画素との間で差分処理を行って得られた信号内予測残差信号について直交変換・量子化・符号化を行って単位ブロック毎に符号化を行うに際し、単位ブロック内の信号内予測残差信号を一つの基準信号と被予測信号で構成される複数信号に分離し、信号間予測を行うことで色信号の冗長性の削減を可能とする。   In order to achieve the above object, the present invention provides an intra-signal prediction residual signal obtained by performing a difference process between each pixel of a unit block composed of a plurality of pixels and each pixel predicted in the signal. When performing orthogonal transform / quantization / encoding for each unit block, the intra-signal prediction residual signal in the unit block is separated into a plurality of signals composed of one reference signal and a predicted signal. By performing inter-signal prediction, it is possible to reduce the redundancy of color signals.

請求項1は、複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号装置において、
再構成画像信号を基に各画素に対して信号内予測するための信号内予測情報に基づいて、色信号に分離した信号からの基準信号の選択及び各被予測信号への信号間予測の適用の是非を決定する信号間予測手段を備え、
前記信号間予測の情報及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得ることを特徴としている。
An image decoding apparatus that decodes a signal obtained by orthogonally transforming, quantizing, and encoding an input image signal composed of a plurality of unit blocks each having a plurality of pixels.
Based on intra-signal prediction information for intra-signal prediction for each pixel based on the reconstructed image signal, selection of a reference signal from signals separated into color signals and application of inter-signal prediction to each predicted signal With inter-signal prediction means to determine the pros and cons of
An image signal to be decoded is obtained by performing inter-signal compensation and intra-signal compensation from the inter-signal prediction information and the intra-signal prediction information.

請求項2は、複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号装置において、
色信号に分離された信号から符号化された予測情報を基に変化に富んだ信号を基準信号として選択して信号間予測信号を取得する信号間補償手段と、
前記予測情報から得た信号内予測情報と再構成画像信号から信号内予測信号を取得する信号内補償手段と、を備え、
前記基準信号、信号間予測信号及び信号内予測信号から信号間補償及び信号内補償を行って復号される画像信号を得ることを特徴としている。
An image decoding apparatus that decodes a signal obtained by orthogonally transforming, quantizing, and encoding an input image signal composed of a plurality of unit blocks each having a plurality of pixels.
Inter-signal compensation means for selecting a signal rich in change based on prediction information encoded from a signal separated into color signals as a reference signal and obtaining an inter-signal prediction signal;
Intra-signal prediction information obtained from the prediction information and in-signal compensation means for obtaining an intra-signal prediction signal from a reconstructed image signal, and
An image signal to be decoded is obtained by performing inter-signal compensation and intra-signal compensation from the reference signal, the inter-signal prediction signal, and the intra-signal prediction signal.

請求項3は、請求項2の画像復号装置において、前記変化に富んだ信号の判定について、近傍画素の分散または振幅、平均が最大となることにより行う請求項2の画像復号装置。   The image decoding device according to claim 2, wherein in the image decoding device according to claim 2, the determination of the signal rich in change is performed by maximizing a variance, an amplitude, or an average of neighboring pixels.

請求項4は、請求項2の画像復号装置において、前記変化に富んだ信号の判定について、色信号に分離された信号の近傍画素同士の分散または振幅、平均が最大となることにより行うことを特徴としている。   According to a fourth aspect of the present invention, in the image decoding apparatus according to the second aspect, the determination of the signal rich in change is performed by maximizing the variance, amplitude, or average of neighboring pixels of the signal separated into color signals. It is a feature.

請求項5は、複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号装置において、
符号化された予測情報を基に色信号に分離された信号から基準信号、被予測信号、各信号間予測の適用の可否を復号して信号間予測情報を取得する信号間予測手段と、
前記予測情報から信号内予測情報を取得する信号内予測手段と、を備え、
前記基準信号、各被予測信号、各信号間予測の適用の可否及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得ることを特徴としている。
An image decoding device for decoding a signal obtained by orthogonally transforming, quantizing, and encoding an input image signal composed of a plurality of unit blocks having a plurality of pixels,
Inter-signal prediction means for decoding the reference signal, the signal to be predicted, and the applicability of inter-signal prediction from the signal separated into color signals based on the encoded prediction information to obtain inter-signal prediction information;
Intra-signal prediction means for acquiring intra-signal prediction information from the prediction information, and
An image signal to be decoded is obtained by performing inter-signal compensation and intra-signal compensation from the reference signal, each predicted signal, applicability of inter-signal prediction and the intra-signal prediction information.

請求項6は、複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号方法において、
再構成画像信号を基に各画素に対して信号内予測するための信号内予測情報に基づいて、色信号に分離した信号からの基準信号の選択及び各被予測信号への信号間予測の適用の是非を決定する手順と、
前記信号間予測の情報及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得る手順とを含むことを特徴としている。
An image decoding method for decoding a signal obtained by orthogonally transforming, quantizing, and encoding an input image signal composed of a plurality of unit blocks having a plurality of pixels,
Based on intra-signal prediction information for intra-signal prediction for each pixel based on the reconstructed image signal, selection of a reference signal from signals separated into color signals and application of inter-signal prediction to each predicted signal The procedure for determining the right or wrong of
And a procedure for obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the inter-signal prediction information and the intra-signal prediction information.

請求項7は、複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号方法において、
色信号に分離された信号から符号化された予測情報を基に変化に富んだ信号を基準信号として選択して信号間予測信号を取得するとともに、前記予測情報から得た信号内予測情報と再構成画像信号から信号内予測信号を取得する手順と、
前記基準信号、信号間予測信号及び信号内予測信号から信号間補償及び信号内補償を行って復号される画像信号を得る手順とを含むことを特徴としている。
An image decoding method for decoding a signal obtained by orthogonally transforming, quantizing, and encoding an input image signal composed of a plurality of unit blocks having a plurality of pixels,
Based on the prediction information encoded from the signals separated into color signals, a signal rich in change is selected as a reference signal to acquire an inter-signal prediction signal, and the intra-signal prediction information obtained from the prediction information A procedure for obtaining an intra-signal prediction signal from a constituent image signal;
And a procedure for obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the reference signal, the inter-signal prediction signal, and the intra-signal prediction signal.

請求項8は、請求項7の画像復号方法において、
前記変化に富んだ信号の判定について、近傍画素の分散または振幅、平均が最大となることにより行うことを特徴としている。
Claim 8 is the image decoding method of claim 7,
The determination of the signal rich in change is performed by maximizing the dispersion or amplitude and average of neighboring pixels.

請求項9は、請求項7の画像復号方法において、
前記変化に富んだ信号の判定について、色信号に分離された信号の近傍画素同士の分散または振幅、平均が最大となることにより行うことを特徴としている。
Claim 9 is the image decoding method of claim 7,
The determination of the signal rich in change is performed by maximizing the variance, amplitude, and average of neighboring pixels of the signal separated into color signals.

請求項10は、複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号方法において、
符号化された予測情報を基に色信号に分離された信号から基準信号、被予測信号、各信号間予測の適用の可否を復号して信号間予測情報を取得するとともに、前記予測情報から信号内予測情報を取得する手順と、
前記基準信号、各被予測信号、各信号間予測の適用の可否及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得る手順とを含むことを特徴としている。
An image decoding method for decoding a signal obtained by orthogonally transforming, quantizing, and encoding an input image signal composed of a plurality of unit blocks each having a plurality of pixels,
The inter-signal prediction information is acquired by decoding the reference signal, the signal to be predicted, and the applicability of inter-signal prediction from the signal separated into color signals based on the encoded prediction information, and the signal from the prediction information The procedure to obtain the forecast information,
And a procedure for obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the intra-signal prediction information, and whether or not to apply the reference signal, each signal to be predicted, inter-signal prediction. .

請求項11の画像符号化復号方法は、
直交変換・量子化された画像信号を復号することで得られた符号化済領域に該当する再構成画像信号を基に前記入力画像信号の符号化対象領域に該当する各画素に対して信号内予測するための信号内予測情報を算出する手順と、
前記信号内予測手段からの前記信号内予測情報と前記再構成画像信号とから信号内予測信号を得る手順と、
符号化対象領域となっている入力画像信号と前記信号内予測信号との差分処理により得られた信号内予測残差信号について基準信号と被予測信号とに分離し基準信号の各画素に対応する被予測信号の各画素について信号間予測するための信号間予測情報を算出する手順と、
直交変換・量子化された画像信号を復号することで得られた復号信号内予測残差信号と前記信号間予測手段からの信号間予測情報とから符号化対象領域の信号間予測信号を得る手順と、
前記信号内予測残差信号と前記信号間予測信号との差分処理を行って得られた信号間予測残差信号について直交変換・量子化・符号化を行うことで前記被予測信号の各画素の符号化を行う手順と、を有し、
前記信号間予測情報における基準信号及び被予測信号は、前記信号内予測残差信号を色信号に分離した分離信号であり、
続いて、請求項6、7、10のいずれか1項に記載された画像復号方法の各手順を実行することで復号される画像信号を得ることを特徴としている。
The image encoding / decoding method of claim 11 comprises:
Based on the reconstructed image signal corresponding to the encoded region obtained by decoding the orthogonally transformed and quantized image signal, the signal in the signal corresponding to the encoding target region of the input image signal. A procedure for calculating in-signal prediction information for prediction;
Obtaining an intra-signal prediction signal from the intra-signal prediction information from the intra-signal prediction means and the reconstructed image signal;
The intra-signal prediction residual signal obtained by the difference process between the input image signal that is the encoding target region and the intra-signal prediction signal is separated into the reference signal and the predicted signal and corresponds to each pixel of the reference signal. A procedure for calculating inter-signal prediction information for inter-signal prediction for each pixel of the predicted signal;
A procedure for obtaining an inter-signal prediction signal in an encoding target region from an intra-decoded prediction residual signal obtained by decoding an orthogonally transformed and quantized image signal and inter-signal prediction information from the inter-signal prediction means When,
By performing orthogonal transform / quantization / coding on the inter-signal prediction residual signal obtained by performing the difference process between the intra-signal prediction residual signal and the inter-signal prediction signal, each pixel of the predicted signal is obtained. And a procedure for performing encoding,
The reference signal and the signal to be predicted in the inter-signal prediction information are separated signals obtained by separating the intra-signal prediction residual signal into color signals,
Subsequently, an image signal to be decoded is obtained by executing each procedure of the image decoding method according to any one of claims 6, 7, and 10.

請求項12の画像復号プログラムは、請求項6乃至請求項10のいずれか1項に記載の各手順をコンピュータに実行させることを特徴としている。   An image decoding program according to a twelfth aspect causes a computer to execute each procedure according to any one of the sixth to tenth aspects.

本発明によれば、画像復号装置において、画像信号を分離して得られた複数の信号の中から基準となる基準信号を適応的に選択し、その他の信号を基準信号から予測することで、空間冗長性を削減して被予測信号の情報量を削減し、符号化効率を向上させることができる。
また、基準信号及び被予測信号を色信号に分離した分離信号で信号間予測を行うことで、色信号の冗長性の削減を可能とする。
分離した信号から基準信号の選択及び各被予測信号への信号間予測の適用の可否の組み合わせを決定する信号間予測情報について、適用する信号の組み合わせを符号量及び歪み量から算出される符号化コストを最小化するように選定することで、適正な信号予測を行うことができる。
According to the present invention, in the image decoding apparatus, adaptively selecting a reference signal serving as a reference from among a plurality of signals obtained by separating an image signal, and predicting other signals from the reference signal, It is possible to reduce the amount of information of the signal to be predicted by reducing the spatial redundancy and improve the coding efficiency.
Further, by performing inter-signal prediction using a separated signal obtained by separating the reference signal and the predicted signal into color signals, it is possible to reduce the redundancy of the color signals.
For inter-signal prediction information that determines a combination of selection of a reference signal from separated signals and applicability of inter-signal prediction to each predicted signal, encoding in which a combination of applied signals is calculated from a code amount and a distortion amount By selecting so as to minimize the cost, an appropriate signal prediction can be performed.

画像符号化装置の実施の形態の一例を示すブロック図である。It is a block diagram which shows an example of embodiment of an image coding apparatus. 画像符号化装置に入力される入力画像の説明図である。It is explanatory drawing of the input image input into an image coding apparatus. 画像符号化装置の信号間予測手段及び信号間補償手段における信号間予測情報及び信号間予測信号の算出手順を示すフローチャート図である。It is a flowchart figure which shows the calculation procedure of the prediction information between signals in the signal prediction means and the signal compensation means of an image coding apparatus, and the signal prediction signal between signals.

本発明による画像符号化装置の実施形態の一例について、図1及び図2を参照しながら説明する。
本発明の画像符号化装置は、従来から存在する複数の画素から構成される単位ブロックの各画素に対して、符号化済画素から信号内予測される各画素との間で差分処理を行って得られた信号内予測残差信号について直交変換・量子化・符号化を行って単位ブロック毎に符号化を行う画像符号化装置に対して、前記単位ブロック内の信号内予測残差信号を一つの基準信号と被予測信号で構成される複数信号に分離し、複数の信号間の信号を予測する機能を付加した構成を特徴とするものである。
An example of an embodiment of an image encoding device according to the present invention will be described with reference to FIGS.
The image coding apparatus according to the present invention performs difference processing between each pixel of a unit block composed of a plurality of existing pixels and each pixel predicted in the signal from the coded pixel. The obtained intra-prediction residual signal is subjected to orthogonal transform / quantization / encoding to perform encoding for each unit block. It is characterized in that it is separated into a plurality of signals composed of one reference signal and a signal to be predicted, and a function for predicting signals between the plurality of signals is added.

すなわち、本発明の画像符号化装置は、図1に示すように、直交変換で周波数領域に変換する変換手段1と、直交変換係数を量子化する量子化手段2と、量子化された直交変換係数を可変長符号化する符号化手段3と、量子化された直交変換係数を逆量子化する逆量子化手段4と、逆量子化された直交変換係数を逆変換する逆変換手段5と、空間冗長性を削減する信号内予測情報を決定する信号内予測手段6と、空間冗長性を予測して信号内予測信号を再構成する信号内補償手段7とを備えた画像符号化装置に対して、複数の信号間の信号を予測する信号間予測手段8及び信号間予測信号を得る信号間補償手段9を備えて構成されている。   That is, as shown in FIG. 1, the image coding apparatus of the present invention includes a transforming means 1 for transforming into a frequency domain by orthogonal transform, a quantizing means 2 for quantizing orthogonal transform coefficients, and a quantized orthogonal transform. Encoding means 3 for variable-length encoding the coefficients, inverse quantization means 4 for inversely quantizing the quantized orthogonal transform coefficients, inverse transform means 5 for inversely transforming the inversely quantized orthogonal transform coefficients, For an image coding apparatus including intra-signal prediction means 6 for determining intra-signal prediction information for reducing spatial redundancy, and intra-signal compensation means 7 for reconstructing an intra-signal prediction signal by predicting spatial redundancy. The inter-signal prediction means 8 for predicting signals between a plurality of signals and the inter-signal compensation means 9 for obtaining inter-signal prediction signals are provided.

第一の差分器11は、空間冗長性を削減するもので、符号化対象領域の画素について、入力画像信号と、信号内補償手段7から送られる符号化済画素から予測された信号内予測信号との差分を計算する。差分して得られた信号内予測残差信号は、信号間予測手段8及び第二の差分器12にそれぞれ送られる。   The first subtractor 11 reduces spatial redundancy, and for the pixels in the encoding target region, the intra-signal prediction signal predicted from the input image signal and the encoded pixel sent from the intra-signal compensation means 7. And calculate the difference. The intra-signal prediction residual signal obtained by the difference is sent to the inter-signal prediction means 8 and the second differentiator 12, respectively.

第二の差分器12は、信号間冗長性を削減するもので、符号化対象領域の画素について、第一の差分器11から送られる信号内予測残差信号と、信号間補償手段9から送られる符号化済画素から予測された信号間予測信号との差分を計算する。差分して得られた信号間予測残差信号は、変換手段1に送られる。   The second subtracter 12 reduces inter-signal redundancy, and the intra-signal prediction residual signal sent from the first subtractor 11 and the inter-signal compensation means 9 are sent from the pixel in the encoding target region. The difference with the inter-signal prediction signal predicted from the encoded pixel to be calculated is calculated. The inter-signal prediction residual signal obtained by the difference is sent to the conversion means 1.

第一の加算器13は、信号間冗長性を補償するもので、逆変換手段5から送られる再生(復号)された信号間予測残差信号と、信号間補償手段9から送られる信号間予測信号との合計を計算することで信号内予測残差信号を再構成(復号)する。加算して得られた信号内予測残差信号は、信号間予測手段8,信号間補償手段9,第二の加算器14にそれぞれ送られる。   The first adder 13 compensates for inter-signal redundancy. The reproduced (decoded) inter-signal prediction residual signal sent from the inverse transform means 5 and the inter-signal prediction sent from the inter-signal compensation means 9 are used. The intra-signal prediction residual signal is reconstructed (decoded) by calculating the sum with the signal. The intra-signal prediction residual signal obtained by the addition is sent to the inter-signal prediction means 8, the inter-signal compensation means 9, and the second adder 14, respectively.

第二の加算器14は、信号間冗長性を補償するもので、第一の加算器13から送られる信号内予測残差信号と、信号内補償手段7から送られる信号内予測信号との合計を計算することで符号化済画素に対応する画像信号(再構成画像信号)を再構成する。加算して得られた再構成画素信号は、信号内予測手段6及び信号内補償手段7にそれぞれ送られる。   The second adder 14 compensates for inter-signal redundancy, and is the sum of the intra-signal prediction residual signal sent from the first adder 13 and the intra-signal prediction signal sent from the intra-signal compensation means 7. To reconstruct the image signal (reconstructed image signal) corresponding to the encoded pixel. The reconstructed pixel signal obtained by the addition is sent to the intra-signal prediction means 6 and the intra-signal compensation means 7, respectively.

変換手段1へは、入力画像及び第二の差分器12から送られる信号間予測誤差信号が入力され、直交変換によって周波数領域に変換し、直交変換によって得られた変換係数を量子化手段2に出力する。直交変換としてはDCT乃至DCTの近似変換またはDWTなどを利用することができる。
入力画像の各ピクチャ(フレーム)は、予め規定された数の画素(例えば、32×32画素、16×16画素、8×8画素、4×4画素あるいはそれらの組み合わせ)から構成される単位ブロックに分割され、単位ブロック毎に符号化が行われる。入力画像の各ピクチャ(フレーム)は、図2に示すように、例えば色空間においてRGB信号に分離されるR信号フレーム20,G信号フレーム30,B信号フレーム40から構成される。各単位ブロックは、R信号ブロック21に対して、空間的に対応するG信号ブロック及びB信号ブロックを有して構成されている。
An input image and an inter-signal prediction error signal sent from the second differentiator 12 are input to the transform unit 1, the signal is transformed into the frequency domain by orthogonal transform, and the transform coefficient obtained by the orthogonal transform is sent to the quantizer 2. Output. As the orthogonal transform, DCT to DCT approximate transform or DWT can be used.
Each picture (frame) of the input image is a unit block composed of a predetermined number of pixels (for example, 32 × 32 pixels, 16 × 16 pixels, 8 × 8 pixels, 4 × 4 pixels, or a combination thereof). And is encoded for each unit block. As shown in FIG. 2, each picture (frame) of the input image is composed of, for example, an R signal frame 20, a G signal frame 30, and a B signal frame 40 that are separated into RGB signals in a color space. Each unit block is configured to have a G signal block and a B signal block spatially corresponding to the R signal block 21.

従前の方法で画像符号化を行う場合、RGB信号の各フレームについて、信号内予測信号に基づいて空間冗長性を削減する処理のみが行われていた。例えば、R信号ブロック21の画像に輪郭や模様等(斜線部分)が存在するような場合、画像内における相関のある周囲の情報から符号対象を予測し、予測誤差を符号化することが行われている。
本例では、変換手段1に対して、各ピクチャが単位ブロックに分割された入力画像が入力され、変換手段1では、RGBの各信号ブロックの各画素の信号若しくは、第二の差分器12から入力される信号間予測残差信号に基づいて空間的に対応する各画素との間で求めた差分値を変換することで信号間冗長性を削減する処理が行われる。
When image coding is performed by the conventional method, only processing for reducing spatial redundancy is performed for each frame of the RGB signal based on the intra-signal prediction signal. For example, when the image of the R signal block 21 has a contour, a pattern, or the like (shaded portion), a coding target is predicted from surrounding information with correlation in the image, and a prediction error is encoded. ing.
In this example, an input image obtained by dividing each picture into unit blocks is input to the conversion unit 1, and the conversion unit 1 receives signals from each pixel of each RGB signal block or the second subtractor 12. A process for reducing inter-signal redundancy is performed by converting a difference value obtained with each spatially corresponding pixel based on the input inter-signal prediction residual signal.

量子化手段2は、変換手段1から送られた変換係数を量子化する。量子化によって得られた量子化値は、符号化手段3及び逆量子化手段4に出力される。
量子化処理に用いられる量子化パラメータは、定数値の組み合わせとして設定することが可能である。または、変換係数の情報量に応じて制御することで出力するビットレートを一定に保つことも可能である。
The quantization unit 2 quantizes the transform coefficient sent from the transform unit 1. The quantized value obtained by the quantization is output to the encoding unit 3 and the inverse quantization unit 4.
The quantization parameter used for the quantization process can be set as a combination of constant values. Alternatively, the output bit rate can be kept constant by controlling according to the information amount of the transform coefficient.

符号化手段3は、量子化手段2から送られた量子化された変換係数を符号化し、符号情報として出力する。符号化は、符号間の冗長性を取り除く可変長符号又は算術符号などを利用することができる。   The encoding means 3 encodes the quantized transform coefficient sent from the quantization means 2 and outputs it as code information. For the encoding, a variable length code or an arithmetic code that removes redundancy between codes can be used.

逆量子化手段4は、量子化処理の逆の手順を行うことで、量子化手段2から送られた量子化された変換係数を逆量子化する。逆量子化によって得られた量子化誤差を含む変換係数は逆変換手段5に送られる。   The inverse quantization means 4 inversely quantizes the quantized transform coefficient sent from the quantization means 2 by performing the reverse procedure of the quantization process. The transform coefficient including the quantization error obtained by the inverse quantization is sent to the inverse transform means 5.

逆変換手段5は、直交変換の逆の手順を行うことで、逆量子化手段4から送られた量子化誤差を含む変換係数を逆直交変換する。逆変換によって得られた量子化誤差を含む信号間予測残差信号は第一の加算器13に送られる。   The inverse transform unit 5 performs an inverse orthogonal transform on the transform coefficient including the quantization error sent from the inverse quantization unit 4 by performing the inverse procedure of the orthogonal transform. The inter-signal prediction residual signal including the quantization error obtained by the inverse transformation is sent to the first adder 13.

次に、本発明の画像符号化装置の特徴的構成である変換手段1に入力される信号間予測残差信号を得るために第二の差分器12に入力される信号間予測信号の算出について説明する。
信号間予測信号の算出は、信号内予測手段6及び信号内補償手段7に対して、第一の加算器13を介して信号内予測残差信号が入力される信号間予測手段8及び信号間補償手段9を設けることで行われる。以下、信号内予測手段6,信号内補償手段7,信号間予測手段8及び信号間補償手段9の各機能について説明する。
Next, the calculation of the inter-signal prediction signal input to the second subtractor 12 in order to obtain the inter-signal prediction residual signal input to the conversion means 1 which is a characteristic configuration of the image encoding device of the present invention. explain.
The inter-signal prediction signal is calculated by calculating the inter-signal prediction means 8 and the inter-signal prediction means 6 and the intra-signal compensation means 7 to which the intra-signal prediction residual signal is input via the first adder 13. This is done by providing compensation means 9. Hereinafter, functions of the intra-signal prediction unit 6, the intra-signal compensation unit 7, the inter-signal prediction unit 8, and the inter-signal compensation unit 9 will be described.

信号内予測手段6は、空間冗長性を削減する信号内予測情報を決定するものであり、第二の加算器14から送られた量子化誤差を含む符号化済画素に対応する再構成画素信号を基に、入力信号を近似するための信号内予測情報を決定する。決定された信号内予測情報は信号内補償手段7及び符号化手段3に送られる。図1中、量子化手段2への線は省略しているが、信号内予測情報の一部は量子化され符号化される。
信号内予測については、従来から各種方法が行われている。例えば一例として、規格化されているH.264のイントラ予測を利用する場合は、各イントラ予測モードで個別に符号化し、符号量と歪量から算出される符号化コストを最小化するイントラ予測モード(レート歪み最適化法)を選択し、信号内予測情報とする。例えば、図2において、R信号ブロック(単位ブロック)21の符号化を行う場合、既に符号化されている同じR信号フレーム21における斜線部分の画像(特に、直上や左部の画像)22から予測して信号内予測情報を求める。
The intra-signal prediction means 6 determines intra-signal prediction information for reducing spatial redundancy, and a reconstructed pixel signal corresponding to an encoded pixel including a quantization error sent from the second adder 14. Based on the above, in-signal prediction information for approximating the input signal is determined. The determined intra-signal prediction information is sent to the intra-signal compensation means 7 and the encoding means 3. In FIG. 1, the line to the quantizing means 2 is omitted, but a part of the intra-signal prediction information is quantized and encoded.
Various methods have been conventionally used for intra-signal prediction. For example, as an example, the standardized H.264 standard. When using H.264 intra prediction, an intra prediction mode (rate distortion optimization method) that individually encodes each intra prediction mode and minimizes the coding cost calculated from the code amount and the distortion amount is selected. This is assumed to be intra-signal prediction information. For example, in FIG. 2, when encoding an R signal block (unit block) 21, prediction is performed from an image (particularly, an image directly above or to the left) 22 in a hatched portion in the same encoded R signal frame 21. In-signal prediction information is obtained.

信号内補償手段7は、空間冗長性を予測して信号内予測信号を再構成するものであり、信号内予測手段6から送られる信号内予測情報と第二の加算器14から送られる再構成画素信号から当該領域の信号内予測信号を生成する。信号内予測信号は第一の差分器11及び第二の加算器14に送られる。   The intra-signal compensation means 7 predicts spatial redundancy and reconstructs the intra-signal prediction signal. The intra-signal prediction information sent from the intra-signal prediction means 6 and the reconfiguration sent from the second adder 14 An intra-signal prediction signal of the region is generated from the pixel signal. The intra-signal prediction signal is sent to the first subtractor 11 and the second adder 14.

信号間予測手段8は、信号間冗長性を削減する信号間予測情報を決定するものである。
信号間予測手段8は、前記単位ブロック内の信号内予測残差信号を一つの基準信号と被予測信号で構成される複数信号に分離することで複数の信号間の信号を予測する。
信号間予測手段8は、第一の加算器13から送られた量子化誤差を含む信号内予測残差信号を基に、第一の差分器11から送られた信号内予測残差信号を近似するための係数を算出する。
算出された予測係数は、信号間予測情報として信号間補償手段9及び符号化手段3に送られる。図1中、量子化手段2への線は省略しているが、信号間予測情報の一部は量子化され符号化される。
The inter-signal prediction means 8 determines inter-signal prediction information for reducing inter-signal redundancy.
The inter-signal prediction unit 8 predicts signals between a plurality of signals by separating the intra-signal prediction residual signal in the unit block into a plurality of signals composed of one reference signal and a predicted signal.
The inter-signal prediction means 8 approximates the intra-signal prediction residual signal sent from the first subtractor 11 based on the intra-signal prediction residual signal containing the quantization error sent from the first adder 13. The coefficient to do is calculated.
The calculated prediction coefficient is sent to the inter-signal compensation unit 9 and the encoding unit 3 as inter-signal prediction information. In FIG. 1, the line to the quantizing means 2 is omitted, but a part of the inter-signal prediction information is quantized and encoded.

以下、信号間予測手段8による予測係数の算出及び信号間補償手段9による信号間予測信号の生成手順について、図3を参照しながら説明する。
先ず、信号間予測手段8において、予測係数の算出には入力された信号を複数の信号に分離する(ステップ51)。信号を分離する種類や数は問わないが、一例として上述したように、単位ブロックを色空間のRGB信号に分離する。また、色空間の信号に分離する場合、YUV信号,YCbCr信号等の色空間の信号を利用することも可能である。
Hereinafter, the calculation procedure of the prediction coefficient by the inter-signal prediction unit 8 and the generation procedure of the inter-signal prediction signal by the inter-signal compensation unit 9 will be described with reference to FIG.
First, in the inter-signal prediction means 8, the input signal is separated into a plurality of signals for calculation of the prediction coefficient (step 51). The type and number of signals are not limited, but as described above, as an example, the unit block is separated into RGB signals in the color space. In addition, when separating into color space signals, it is also possible to use color space signals such as YUV signals and YCbCr signals.

次に、分離された信号を信号間予測手段8の基準となる基準信号と予測される被予測信号とに分類するとともに、被予測信号に対して信号間予測情報の適用の可否を判断し(ステップ52)、基準信号から信号間予測情報を算出する(ステップ53)。基準信号と被予測信号は、いずれも単一であっても複数であっても良い。基準信号は予め決定したものを固定して使用してもよいし、また、領域など一定範囲で基準信号を変化させるようにしてもよい。   Next, the separated signals are classified into a reference signal as a reference of the inter-signal prediction means 8 and a predicted signal to be predicted, and whether or not the inter-signal prediction information can be applied to the predicted signal ( Step 52), inter-signal prediction information is calculated from the reference signal (step 53). Both the reference signal and the signal to be predicted may be single or plural. A predetermined reference signal may be used in a fixed manner, or the reference signal may be changed within a certain range such as a region.

例えば、入力画像に対してRGB信号で信号分離を行った場合、木の葉等の緑が多い画像に対しては、G信号を基準信号とすることで、被予測信号の滑らかさを正確に再現できるため被予測信号と予測信号との差を小さくして符号化の効率化を図ることができる。
すなわち、画像信号として変化の大きい信号を基準信号として選択することで、画質向上を図ることができる。逆に、画像信号として変化の大きい信号は符号量も多く占めるため、変化の大きい信号を被予測信号として選択することで、符号量削減を図ることができる。
For example, when signal separation is performed on an input image using RGB signals, the smoothness of the signal to be predicted can be accurately reproduced by using the G signal as a reference signal for images with many green leaves such as leaves. Therefore, it is possible to reduce the difference between the signal to be predicted and the prediction signal to improve the encoding efficiency.
That is, image quality can be improved by selecting a signal having a large change as an image signal as a reference signal. On the contrary, since a signal with a large change as an image signal occupies a large amount of code, the code amount can be reduced by selecting a signal with a large change as a predicted signal.

被予測信号を求めるに際しては、基準信号からの信号間予測を適用するかどうかの選択が行われる。この選択は、信号間予測情報等を考慮したレート歪み最適化法で決める。
信号間予測情報の算出は、単位ブロック毎に予測可能とし、予測する場合は単位ブロック内の画素信号毎に予測の有無を設定可能とすることが好ましい。
In obtaining the signal to be predicted, whether to apply inter-signal prediction from the reference signal is selected. This selection is determined by a rate distortion optimization method considering inter-signal prediction information and the like.
The calculation of the inter-signal prediction information is preferably predictable for each unit block, and in the case of prediction, it is preferable that the presence / absence of prediction can be set for each pixel signal in the unit block.

基準信号を領域などに応じて変化させる場合は、基準信号の選定及び信号予測を適用するかどうかを表す情報を符号化(明示)することも、符号化しない(暗示する)ことも可能である。
明示する場合は、全ての信号を個別に符号化し符号量と歪量から算出される符号化コストを最小化する信号を選択し、その信号を表す情報を信号間予測情報に含める。被予測信号を限定する場合も同様に、その信号を表す情報を信号間予測情報に含める。例えば、符号化コストは、符号量をR、歪量をDとした場合、重み和(R+λD)で算出する。
When the reference signal is changed depending on the region or the like, it is possible to encode (express) or not (implicit) information indicating selection of the reference signal and whether to apply signal prediction. .
When clearly indicating, all signals are individually encoded, a signal that minimizes the encoding cost calculated from the code amount and the distortion amount is selected, and information representing the signal is included in the inter-signal prediction information. Similarly, when the signal to be predicted is limited, information representing the signal is included in the inter-signal prediction information. For example, the encoding cost is calculated as a weight sum (R + λD), where R is the code amount and D is the distortion amount.

すなわち、RGBの各色信号に対して、基準信号の選定及び信号間予測の適用の可否については、下のような10通りの組み合わせが存在する。
(1)Rを基準信号とする(基準),G信号間予測を適用する(適用),B適用
(2)R基準,G適用,B信号間予測を適用しない(非適用)
(3)R基準,G非適用,B適用
(4)G基準,R適用,B適用
(5)G基準,R適用,B非適用
(6)G基準,R非適用,B適用
(7)B基準,G適用,R適用
(8)B基準,G適用,R非適用
(9)B基準,G非適用,R適用
(10)非適用
これらの全ての符号化コストを求め、符号化コストが最小となるものを選択することで、RGB信号に対する基準信号の選定、及び、各被予測信号に対する信号予測の適用の可否を判断することができる。
In other words, for the RGB color signals, there are the following 10 combinations as to whether or not the reference signal can be selected and inter-signal prediction can be applied.
(1) R is used as a reference signal (reference), G signal prediction is applied (applied), B is applied (2) R criterion, G is applied, B signal prediction is not applied (not applied)
(3) R standard, G non-application, B application (4) G standard, R application, B application (5) G standard, R application, B non-application (6) G standard, R non-application, B application (7) B standard, G application, R application (8) B standard, G application, R non application (9) B standard, G non application, R application (10) non application By selecting the signal having the smallest value, it is possible to determine whether or not the selection of the reference signal for the RGB signal and the application of the signal prediction to each predicted signal can be performed.

この場合(明示する場合)は、信号間予測情報に対して、例えば基準信号がRGBのどの信号であるか表示する2ビットと、被予測信号について信号間予測を適用するかどうか表示する2ビットで表現し、可変長符号化で符号化できる。   In this case (when specified), for example, 2 bits indicating whether the reference signal is RGB or not, and 2 bits indicating whether the inter-signal prediction is applied to the predicted signal with respect to the inter-signal prediction information. And can be encoded by variable length encoding.

一方、暗示する場合は、変化に富んだ信号を基準信号として用いると予測の精度が向上するので、近傍画素の分散又は振幅、平均が最大となる信号を選択し、復号側も同様の手段で基準信号を選択することで、その信号を表す情報を信号間予測情報に含めないようにする。
または、変化に富んだ信号を被予測信号として用いると符号化効率が向上するので、基準信号と被予測信号との近傍画素同士の分散又は振幅、平均が最大となる信号を選択し、復号側も同様の手段で被予測信号を選択することで、その信号を表す情報を信号間予測情報に含めないようにする。
または、信号内予測が原画像の高い相関を損なわないモードを選択していれば、信号内予測誤差信号に信号間の冗長性が残るため、信号内予測情報に基づいて信号間予測の適用の是非を決定することもできる。
On the other hand, in the case of implied, if a signal rich in change is used as a reference signal, the accuracy of prediction is improved. Therefore, a signal that maximizes the variance or amplitude and average of neighboring pixels is selected, and the decoding side uses the same means. By selecting the reference signal, information representing the signal is not included in the inter-signal prediction information.
Alternatively, if a signal rich in change is used as the predicted signal, the encoding efficiency is improved. Therefore, the signal having the maximum variance, amplitude, and average between neighboring pixels of the reference signal and the predicted signal is selected and decoded. In addition, by selecting a signal to be predicted by the same means, information representing the signal is not included in the inter-signal prediction information.
Alternatively, if a mode in which intra-signal prediction does not impair the high correlation of the original image is selected, redundancy between signals remains in the intra-signal prediction error signal. You can also decide what you want.

前記信号間予測手段は,分離した信号から基準信号と被予測信号の組み合わせを決定する場合に、予め入力信号と最適な組み合わせを統計的に機械学習させておき、生成された辞書をもとに入力された信号に対する基準信号及び組み合わせを推定するように構成してもよい。機械学習には公知のDecision Tree やRandom Forest,Neural Network など任意の識別器を用いることができる。識別器に用いる特徴量としては、符号化対象領域の近傍画素情報や信号内予測情報、入力画像信号そのものを用いる。動画像の符号化においては、辞書を予め作成しておくだけでなく、一定のフレーム毎若しくはカット点毎に上述の符号化コスト(発生符号量と歪量との重み和から算出される値)を最小化する最適な組み合わせを全探索し逐次学習を適用しても良い。   The inter-signal prediction means statistically machine-learns an optimal combination of the input signal and the input signal in advance when determining a combination of the reference signal and the signal to be predicted from the separated signals, and based on the generated dictionary. You may comprise so that the reference signal and combination with respect to the input signal may be estimated. Any classifier such as a known Decision Tree, Random Forest, or Neural Network can be used for machine learning. As the feature amount used for the discriminator, neighboring pixel information of the encoding target region, intra-signal prediction information, and the input image signal itself are used. In encoding moving images, not only a dictionary is created in advance, but also the above-mentioned encoding cost (a value calculated from the sum of weights of generated code amount and distortion amount) for each fixed frame or cut point. It is also possible to apply full-time learning by searching for an optimal combination that minimizes.

次に、基準信号が決定され、信号間予測を適用する場合に、基準信号から被予測信号を近似するための予測式と予測係数について説明する。
一例として、YUV信号の色空間の信号に分離し、Y信号を基準信号、U信号及びV信号を被予測信号とする場合、予測手段は線形結合の乗数a及び補正値bを予測係数とし、小領域単位で推定できる。ある小領域Rに属する座標ベクトルxのU信号及びV信号の予測式は数1で与えられる。
Next, when a reference signal is determined and inter-signal prediction is applied, a prediction formula and a prediction coefficient for approximating a signal to be predicted from the reference signal will be described.
As an example, when the YUV signal is separated into a color space signal, the Y signal is a reference signal, and the U signal and the V signal are prediction signals, the prediction means uses a linear combination multiplier a and a correction value b as prediction coefficients, Can be estimated in small area units. A prediction formula for the U signal and the V signal of the coordinate vector x belonging to a certain small region R is given by Equation 1.

Figure 2014222936
Figure 2014222936

ここで、Y(x),U(x),V(x)は、それぞれYUV信号の画素値を表す。()内のxはベクトルである。ただし、基準信号には誤差の伝播を防ぐため量子化誤差が含まれている。   Here, Y (x), U (x), and V (x) each represent a pixel value of the YUV signal. X in () is a vector. However, the reference signal includes a quantization error to prevent error propagation.

予測係数は、予測誤差の2乗を最小にするように推定する。
具体的にU信号に対する予測係数a及びbについて、算出方法の一例を述べる。予測誤差の2乗E2は、数2で表される。
The prediction coefficient is estimated so as to minimize the square of the prediction error.
Specifically, an example of a calculation method for the prediction coefficients a u and b u for the U signal will be described. The square E 2 of the prediction error is expressed by Equation 2.

Figure 2014222936
Figure 2014222936

このとき、2乗誤差E 2の係数a及びbによる偏微分は数3で表される。 At this time, the partial differentiation of the square error E u 2 by the coefficients a and b is expressed by Equation 3.

Figure 2014222936
Figure 2014222936

ここで、nは小領域Rに属する画素数を表す。
2乗誤差E2を最小化するには数3が「0」になることが必要なので、数4を解けば、予測係数a及びbを算出できる。
Here, n represents the number of pixels belonging to the small region R.
Since Equation 3 needs to be “0” in order to minimize the square error E 2 , the prediction coefficients a u and b u can be calculated by solving Equation 4.

Figure 2014222936
Figure 2014222936

数4を解くと2乗誤差E2を最小にする乗数aと補正値bは数5で求められる。 When Equation 4 is solved, a multiplier a u and a correction value b u that minimize the square error E 2 are obtained by Equation 5.

Figure 2014222936
Figure 2014222936

なお、補正値bは乗数aを用いて導出できるので、乗数aを量子化して符号化する場合は、量子化誤差を含む乗数で補正値を算出することで予測精度を向上させることが可能となる。
上述の計算では、U信号に対する予測係数a及びbを求めたが、V信号に対する予測係数a及びbも数5のU(ベクトルx)をV(ベクトルx)に差し替えるだけで同様の方式を用いることが可能である。
Since the correction value b u can be derived using a multiplier a u, when encoding quantized multiplier a u is possible to improve the prediction accuracy by calculating the correction value in multiplier including a quantization error Is possible.
In the above calculation, the prediction coefficients a u and b u for the U signal are obtained, but the prediction coefficients a v and b v for the V signal are the same by simply replacing U (vector x) in Formula 5 with V (vector x). It is possible to use this method.

信号間補償手段9は、信号間冗長性を予測して信号間予測信号を再構成するもので、信号間予測手段8からの信号間予測情報と、第一の加算器13からの信号内予測残差信号とから信号間予測信号を得る(ステップ54)。すなわち、信号間補償手段9は、信号間予測手段8から送られる信号間予測情報と第一の加算器13から送られる信号間予測残差信号から被予測信号を近似する信号間予測信号を生成する。生成された信号間予測信号は、第一の加算器13及び第二の差分器12に出力される。
上述の例で、信号間予測手段8が線形結合を利用し、信号間予測情報が乗数aおよび補正値bから構成されている場合は、予測信号は上述した数1で生成される。
The inter-signal compensation means 9 predicts inter-signal redundancy and reconstructs the inter-signal prediction signal. The inter-signal prediction information from the inter-signal prediction means 8 and the intra-signal prediction from the first adder 13 are used. An inter-signal prediction signal is obtained from the residual signal (step 54). That is, the inter-signal compensation means 9 generates an inter-signal prediction signal that approximates the predicted signal from the inter-signal prediction information sent from the inter-signal prediction means 8 and the inter-signal prediction residual signal sent from the first adder 13. To do. The generated inter-signal prediction signal is output to the first adder 13 and the second differentiator 12.
In the above example, when the inter-signal prediction means 8 uses linear combination and the inter-signal prediction information is composed of the multiplier a and the correction value b, the prediction signal is generated by the above-described formula 1.

上述した構成の画像符号化装置によれば、変換手段1で各単位ブロックの符号化対象領域の画素についての変換を行うに際して、色空間で分離された信号(RGB信号,YUV信号,YCbCr信号等)について、第二の差分器12から入力される信号間予測誤差信号に基づいて空間的に対応する各画素の差分値を変換し、量子化手段2及び符号化手段3により符号化される。
変換手段1に入力される信号間予測誤差信号は、既に符号化された画像領域の再生画素信号及び再生された信号内予測誤差信号から信号内予測及び信号間予測を行うことで算出する。
According to the image encoding apparatus having the above-described configuration, when the conversion unit 1 performs conversion on the pixels in the encoding target area of each unit block, signals separated in the color space (RGB signal, YUV signal, YCbCr signal, etc.) ), The difference value of each spatially corresponding pixel is converted based on the inter-signal prediction error signal input from the second differentiator 12, and is encoded by the quantization means 2 and the encoding means 3.
The inter-signal prediction error signal input to the conversion means 1 is calculated by performing intra-signal prediction and inter-signal prediction from the regenerated pixel signal of the already encoded image region and the regenerated intra-signal prediction error signal.

すなわち、単位ブロックの符号化対象領域の各画素信号について符号化を行う場合、符号化対象画素の周辺の符号化済の画素信号について、逆量子化手段4及び逆変換手段5を介することで、信号間予測残差信号を再生し、第一の加算器13及び第二の加算器14を介して信号内予測残差信号を再生し、信号内予測手段6及び信号内補償手段7に出力される。同時に、第一の加算器13を介して信号内予測残差信号が再生され、信号間予測手段8及び信号間補償手段9に出力される。   That is, when encoding is performed for each pixel signal in the encoding target region of the unit block, the encoded pixel signal around the encoding target pixel is passed through the inverse quantization unit 4 and the inverse transform unit 5, The inter-signal prediction residual signal is reproduced, the intra-signal prediction residual signal is reproduced via the first adder 13 and the second adder 14, and is output to the intra-signal prediction means 6 and the intra-signal compensation means 7. The At the same time, an intra-signal prediction residual signal is reproduced via the first adder 13 and output to the inter-signal prediction means 8 and the inter-signal compensation means 9.

信号内予測手段6へは、入力画像が入力され、信号内予測情報により信号内補償手段7で信号内予測信号が生成され、第一の差分器11に出力される。
第一の差分器11では、入力画像と信号内予測信号の差分により信号内予測残差信号が生成され、信号間予測手段8及び第二の差分器12に出力される。
An input image is input to the intra-signal prediction unit 6, an intra-signal prediction signal is generated by the intra-signal compensation unit 7 based on the intra-signal prediction information, and is output to the first subtractor 11.
In the first differentiator 11, an intra-signal prediction residual signal is generated based on the difference between the input image and the intra-signal prediction signal, and is output to the inter-signal prediction unit 8 and the second differentiator 12.

信号間予測手段8では、第一の差分器11からの信号内予測残差信号と、第一の加算器13からの信号内予測残差信号により信号間予測情報が算出されて信号間予測信号が生成され、第二の差分器12に出力される。
第二の差分器12では、第一の差分器11からの信号内予測残差信号と信号間予測信号の差分により信号間予測残差信号が生成され、この信号間予測残差信号が変換手段1に入力されることで、既に符号化された画像領域の画素信号からのイントラ予測を行うとともに、色空間における基準信号から他の信号を予測して被予測信号とすることで、空間冗長性を削減して被予測信号の情報量を削減し、符号化効率を向上させることができる。
In the inter-signal prediction means 8, inter-signal prediction information is calculated from the intra-signal prediction residual signal from the first subtractor 11 and the intra-signal prediction residual signal from the first adder 13, and the inter-signal prediction signal is calculated. Is generated and output to the second subtractor 12.
In the second subtractor 12, an inter-signal prediction residual signal is generated by the difference between the intra-signal prediction residual signal from the first subtractor 11 and the inter-signal prediction signal, and this inter-signal prediction residual signal is converted into a conversion means. 1 is used to perform intra prediction from a pixel signal of an already encoded image region, and to predict other signals from a reference signal in a color space to obtain a predicted signal, thereby providing spatial redundancy. The amount of information of the signal to be predicted can be reduced, and the coding efficiency can be improved.

上述した画像符号化装置によれば、入力信号を複数の信号に分離し、基準となる信号から他の信号を予測して被予測信号における情報の発生量を削減する信号予測を採用することで、高い符号化効率が可能となる。また、時間的冗長性などを削減する従来の予測方式と組み合わせることが可能であり、更なる符号化効率の向上を図ることが可能となる。
また、上述した信号間予測残差信号について直交変換・量子化・符号化を行って得られる符号列は符号化手段3から出力されるが、画像復号装置(図示せず)において、前記符号列を基に復号、逆量子化、逆変換して得られる信号間残差信号と、前記信号間予測信号と、前記信号内予測信号を使用して画像符号化装置と逆の処理を行うことで復号することができる。
すなわち、前記信号間予測残差信号について直交変換・量子化・符号化を行うことで得られた符号列に対して復号を行う画像復号装置において、図1の画像符号化装置と逆の処理を行うに際して、逆量子化手段4及び逆変換手段5により信号間予測残差信号を得て信号内補償(信号内補償手段7)及び信号間補償(信号間補償手段9)を行う場合に、信号内予測手段6及び信号間予測手段8でパラメータとして求めた係数を取得し、信号間予測信号及び信号内予測信号から画像符号化装置と同様の信号間補償及び信号内補償を行うことで、復号されて映像出力となる画像信号(再構成画素信号)を得ることができる。
According to the above-described image encoding device, the input signal is separated into a plurality of signals, and other signals are predicted from the reference signal to employ signal prediction that reduces the amount of information generated in the predicted signal. High encoding efficiency is possible. Further, it can be combined with a conventional prediction method that reduces temporal redundancy and the like, and it is possible to further improve the coding efficiency.
In addition, a code string obtained by performing orthogonal transform, quantization, and coding on the inter-signal prediction residual signal described above is output from the encoding means 3, but in the image decoding device (not shown), the code string By using the inter-signal residual signal obtained by decoding, inverse quantization, and inverse transform based on the signal, the inter-signal prediction signal, and the intra-signal prediction signal, a process reverse to that of the image encoding device is performed. Can be decrypted.
That is, in the image decoding apparatus that performs decoding on a code string obtained by performing orthogonal transform, quantization, and encoding on the inter-signal prediction residual signal, the reverse process of the image encoding apparatus in FIG. 1 is performed. When performing the inter-signal compensation residual signal (intra-signal compensation unit 7) and the inter-signal compensation (inter-signal compensation unit 9) by obtaining the inter-signal prediction residual signal by the inverse quantization unit 4 and the inverse transform unit 5, The coefficient obtained as a parameter by the inner prediction unit 6 and the inter-signal prediction unit 8 is obtained, and decoding is performed by performing inter-signal compensation and intra-signal compensation similar to those of the image coding device from the inter-signal prediction signal and the intra-signal prediction signal. Thus, it is possible to obtain an image signal (reconstructed pixel signal) that becomes a video output.

1…変換手段、 2…量子化手段、 3…符号化手段、 4…逆量子化手段、 5…逆変換手段、 6…信号内予測手段、 7…信号内補償手段、 8…信号間予測手段、 9…信号間補償手段、 11…第一の差分器、 12…第二の差分器、 13…第一の加算器、 14…第二の加算器、 20…R信号フレーム、 21…R信号ブロック(単位ブロック)。   DESCRIPTION OF SYMBOLS 1 ... Conversion means, 2 ... Quantization means, 3 ... Coding means, 4 ... Inverse quantization means, 5 ... Inverse conversion means, 6 ... Intra-signal prediction means, 7 ... Intra-signal compensation means, 8 ... Inter-signal prediction means 9 ... Inter-signal compensation means, 11 ... First differencer, 12 ... Second differencer, 13 ... First adder, 14 ... Second adder, 20 ... R signal frame, 21 ... R signal Block (unit block).

Claims (12)

複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号装置において、
再構成画像信号を基に各画素に対して信号内予測するための信号内予測情報に基づいて、色信号に分離した信号からの基準信号の選択及び各被予測信号への信号間予測の適用の是非を決定する信号間予測手段を備え、
前記信号間予測の情報及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得る
ことを特徴とする画像復号装置。
In an image decoding device that decodes a signal obtained by orthogonal transform / quantization / encoding an input image signal composed of a plurality of unit blocks having a plurality of pixels,
Based on intra-signal prediction information for intra-signal prediction for each pixel based on the reconstructed image signal, selection of a reference signal from signals separated into color signals and application of inter-signal prediction to each predicted signal With inter-signal prediction means to determine the pros and cons of
An image decoding apparatus characterized by obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the inter-signal prediction information and the intra-signal prediction information.
複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号装置において、
色信号に分離された信号から符号化された予測情報を基に変化に富んだ信号を基準信号として選択して信号間予測信号を取得する信号間補償手段と、
前記予測情報から得た信号内予測情報と再構成画像信号から信号内予測信号を取得する信号内補償手段と、を備え、
前記基準信号、信号間予測信号及び信号内予測信号から信号間補償及び信号内補償を行って復号される画像信号を得る
ことを特徴とする画像復号装置。
In an image decoding device that decodes a signal obtained by orthogonal transform / quantization / encoding an input image signal composed of a plurality of unit blocks having a plurality of pixels,
Inter-signal compensation means for selecting a signal rich in change based on prediction information encoded from a signal separated into color signals as a reference signal and obtaining an inter-signal prediction signal;
Intra-signal prediction information obtained from the prediction information and in-signal compensation means for obtaining an intra-signal prediction signal from a reconstructed image signal, and
An image decoding apparatus, wherein an image signal to be decoded is obtained by performing inter-signal compensation and intra-signal compensation from the reference signal, inter-signal prediction signal, and intra-signal prediction signal.
前記変化に富んだ信号の判定について、近傍画素の分散または振幅、平均が最大となることにより行う請求項2の画像復号装置。   The image decoding apparatus according to claim 2, wherein the determination of the signal rich in change is performed by maximizing a variance, an amplitude, and an average of neighboring pixels. 前記変化に富んだ信号の判定について、色信号に分離された信号の近傍画素同士の分散または振幅、平均が最大となることにより行う請求項2の画像復号装置。   The image decoding apparatus according to claim 2, wherein the determination of the signal rich in change is performed by maximizing the variance, amplitude, or average of neighboring pixels of the signal separated into color signals. 複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号装置において、
符号化された予測情報を基に色信号に分離された信号から基準信号、被予測信号、各信号間予測の適用の可否を復号して信号間予測情報を取得する信号間予測手段と、
前記予測情報から信号内予測情報を取得する信号内予測手段と、を備え、
前記基準信号、各被予測信号、各信号間予測の適用の可否及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得る
ことを特徴とする画像復号装置。
In an image decoding device that decodes a signal obtained by orthogonal transform / quantization / encoding an input image signal composed of a plurality of unit blocks having a plurality of pixels,
Inter-signal prediction means for decoding the reference signal, the signal to be predicted, and the applicability of inter-signal prediction from the signal separated into color signals based on the encoded prediction information to obtain inter-signal prediction information;
Intra-signal prediction means for acquiring intra-signal prediction information from the prediction information, and
An image decoding apparatus characterized by obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the reference signal, each predicted signal, applicability of inter-signal prediction, and intra-signal prediction information.
複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号方法において、
再構成画像信号を基に各画素に対して信号内予測するための信号内予測情報に基づいて、色信号に分離した信号からの基準信号の選択及び各被予測信号への信号間予測の適用の是非を決定する手順と、
前記信号間予測の情報及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得る手順とを含む
ことを特徴とする画像復号方法。
In an image decoding method for decoding an input image signal composed of a plurality of unit blocks having a plurality of pixels and performing orthogonal transformation, quantization, and encoding,
Based on intra-signal prediction information for intra-signal prediction for each pixel based on the reconstructed image signal, selection of a reference signal from signals separated into color signals and application of inter-signal prediction to each predicted signal The procedure for determining the right or wrong of
And a procedure for obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the inter-signal prediction information and the intra-signal prediction information.
複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号方法において、
色信号に分離された信号から符号化された予測情報を基に変化に富んだ信号を基準信号として選択して信号間予測信号を取得するとともに、前記予測情報から得た信号内予測情報と再構成画像信号から信号内予測信号を取得する手順と、
前記基準信号、信号間予測信号及び信号内予測信号から信号間補償及び信号内補償を行って復号される画像信号を得る手順とを含む
ことを特徴とする画像復号方法。
In an image decoding method for decoding an input image signal composed of a plurality of unit blocks having a plurality of pixels and performing orthogonal transformation, quantization, and encoding,
Based on the prediction information encoded from the signals separated into color signals, a signal rich in change is selected as a reference signal to acquire an inter-signal prediction signal, and the intra-signal prediction information obtained from the prediction information A procedure for obtaining an intra-signal prediction signal from a constituent image signal;
And a procedure of obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the reference signal, the inter-signal prediction signal, and the intra-signal prediction signal.
前記変化に富んだ信号の判定について、近傍画素の分散または振幅、平均が最大となることにより行う請求項7の画像復号方法。   The image decoding method according to claim 7, wherein the determination of the signal rich in change is performed by maximizing a variance, an amplitude, and an average of neighboring pixels. 前記変化に富んだ信号の判定について、色信号に分離された信号の近傍画素同士の分散または振幅、平均が最大となることにより行う請求項7の画像復号方法。   The image decoding method according to claim 7, wherein the determination of the signal rich in change is performed by maximizing a variance, an amplitude, or an average of neighboring pixels of the signal separated into color signals. 複数画素を有する複数の単位ブロックから構成される入力画像信号を直交変換・量子化・符号化した信号の復号を行う画像復号方法において、
符号化された予測情報を基に色信号に分離された信号から基準信号、被予測信号、各信号間予測の適用の可否を復号して信号間予測情報を取得するとともに、前記予測情報から信号内予測情報を取得する手順と、
前記基準信号、各被予測信号、各信号間予測の適用の可否及び前記信号内予測情報から信号間補償及び信号内補償を行って復号される画像信号を得る手順とを含む
ことを特徴とする画像復号方法。
In an image decoding method for decoding an input image signal composed of a plurality of unit blocks having a plurality of pixels and performing orthogonal transformation, quantization, and encoding,
The inter-signal prediction information is acquired by decoding the reference signal, the signal to be predicted, and the applicability of inter-signal prediction from the signal separated into color signals based on the encoded prediction information, and the signal from the prediction information The procedure to obtain the forecast information,
And a step of obtaining an image signal to be decoded by performing inter-signal compensation and intra-signal compensation from the reference signal, each predicted signal, applicability of inter-signal prediction, and intra-signal prediction information. Image decoding method.
直交変換・量子化された画像信号を復号することで得られた符号化済領域に該当する再構成画像信号を基に前記入力画像信号の符号化対象領域に該当する各画素に対して信号内予測するための信号内予測情報を算出する手順と、
前記信号内予測手段からの前記信号内予測情報と前記再構成画像信号とから信号内予測信号を得る手順と、
符号化対象領域となっている入力画像信号と前記信号内予測信号との差分処理により得られた信号内予測残差信号について基準信号と被予測信号とに分離し基準信号の各画素に対応する被予測信号の各画素について信号間予測するための信号間予測情報を算出する手順と、
直交変換・量子化された画像信号を復号することで得られた復号信号内予測残差信号と前記信号間予測手段からの信号間予測情報とから符号化対象領域の信号間予測信号を得る手順と、
前記信号内予測残差信号と前記信号間予測信号との差分処理を行って得られた信号間予測残差信号について直交変換・量子化・符号化を行うことで前記被予測信号の各画素の符号化を行う手順と、を有し、
前記信号間予測情報における基準信号及び被予測信号は、前記信号内予測残差信号を色信号に分離した分離信号であり、
続いて、請求項6、7、10のいずれか1項に記載された画像復号方法の各手順を実行することで復号される画像信号を得る
ことを特徴とする画像符号化復号方法。
Based on the reconstructed image signal corresponding to the encoded region obtained by decoding the orthogonally transformed and quantized image signal, the signal in the signal corresponding to the encoding target region of the input image signal. A procedure for calculating in-signal prediction information for prediction;
Obtaining an intra-signal prediction signal from the intra-signal prediction information from the intra-signal prediction means and the reconstructed image signal;
The intra-signal prediction residual signal obtained by the difference process between the input image signal that is the encoding target region and the intra-signal prediction signal is separated into the reference signal and the predicted signal and corresponds to each pixel of the reference signal. A procedure for calculating inter-signal prediction information for inter-signal prediction for each pixel of the predicted signal;
A procedure for obtaining an inter-signal prediction signal in an encoding target region from an intra-decoded prediction residual signal obtained by decoding an orthogonally transformed and quantized image signal and inter-signal prediction information from the inter-signal prediction means When,
By performing orthogonal transform / quantization / coding on the inter-signal prediction residual signal obtained by performing the difference process between the intra-signal prediction residual signal and the inter-signal prediction signal, each pixel of the predicted signal is obtained. And a procedure for performing encoding,
The reference signal and the signal to be predicted in the inter-signal prediction information are separated signals obtained by separating the intra-signal prediction residual signal into color signals,
Subsequently, an image signal to be decoded is obtained by executing each procedure of the image decoding method according to claim 6, 7, or 10.
請求項6乃至請求項10のいずれか1項に記載の各手順をコンピュータに実行させることを特徴とする画像復号プログラム。   An image decoding program that causes a computer to execute each procedure according to any one of claims 6 to 10.
JP2014149570A 2014-07-23 2014-07-23 Image decoding device, image decoding method, image encoding/decoding method and image decoding program Pending JP2014222936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149570A JP2014222936A (en) 2014-07-23 2014-07-23 Image decoding device, image decoding method, image encoding/decoding method and image decoding program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149570A JP2014222936A (en) 2014-07-23 2014-07-23 Image decoding device, image decoding method, image encoding/decoding method and image decoding program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013217818A Division JP5667269B2 (en) 2013-10-18 2013-10-18 Image encoding device, image decoding device, image encoding / decoding device, image encoding / decoding method, and image encoding / decoding program

Publications (1)

Publication Number Publication Date
JP2014222936A true JP2014222936A (en) 2014-11-27

Family

ID=52122211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149570A Pending JP2014222936A (en) 2014-07-23 2014-07-23 Image decoding device, image decoding method, image encoding/decoding method and image decoding program

Country Status (1)

Country Link
JP (1) JP2014222936A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343774A (en) * 2003-05-16 2004-12-02 Samsung Electronics Co Ltd Video encoding/decoding method and apparatus using residue prediction of video
JP2006310941A (en) * 2005-04-26 2006-11-09 Kddi Corp Image coding device
JP2008537402A (en) * 2005-04-18 2008-09-11 サムスン エレクトロニクス カンパニー リミテッド Video encoding or decoding method and apparatus
JP2008306719A (en) * 2007-06-11 2008-12-18 Samsung Electronics Co Ltd Method and apparatus for encoding and decoding video by using inter color compensation
JP2009518940A (en) * 2006-07-04 2009-05-07 サムスン エレクトロニクス カンパニー リミテッド Image encoding method and apparatus, decoding method and apparatus
JP2009529845A (en) * 2006-03-13 2009-08-20 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for encoding moving picture by adaptively applying optimal prediction mode, and method and apparatus for decoding moving picture
JP2009543423A (en) * 2006-07-04 2009-12-03 サムスン エレクトロニクス カンパニー リミテッド Video encoding / decoding method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343774A (en) * 2003-05-16 2004-12-02 Samsung Electronics Co Ltd Video encoding/decoding method and apparatus using residue prediction of video
JP2008537402A (en) * 2005-04-18 2008-09-11 サムスン エレクトロニクス カンパニー リミテッド Video encoding or decoding method and apparatus
JP2006310941A (en) * 2005-04-26 2006-11-09 Kddi Corp Image coding device
JP2009529845A (en) * 2006-03-13 2009-08-20 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for encoding moving picture by adaptively applying optimal prediction mode, and method and apparatus for decoding moving picture
JP2009518940A (en) * 2006-07-04 2009-05-07 サムスン エレクトロニクス カンパニー リミテッド Image encoding method and apparatus, decoding method and apparatus
JP2009543423A (en) * 2006-07-04 2009-12-03 サムスン エレクトロニクス カンパニー リミテッド Video encoding / decoding method and apparatus
JP2008306719A (en) * 2007-06-11 2008-12-18 Samsung Electronics Co Ltd Method and apparatus for encoding and decoding video by using inter color compensation

Similar Documents

Publication Publication Date Title
JP5421757B2 (en) Image encoding device
KR102015374B1 (en) Methods of determination for chroma quantization parameter and apparatuses for using the same
KR101974261B1 (en) Encoding method and apparatus comprising convolutional neural network(cnn) based in-loop filter, and decoding method and apparatus comprising convolutional neural network(cnn) based in-loop filter
KR101362757B1 (en) Method and apparatus for image encoding and decoding using inter color compensation
JP5646641B2 (en) Method for coding a block of an image and method for reconstructing a block of an image
JP5545783B2 (en) Method for decoding a stream of encoded data representing an image sequence and method for encoding an image sequence
US20180249162A1 (en) Method and apparatus for decoding a video using an intra prediction
US20150189276A1 (en) Video encoding method and apparatus, video decoding method and apparatus, and programs therefor
JP6356913B2 (en) Method and apparatus for decoding / encoding a video signal using a transformation derived from a graph template
JP7402280B2 (en) Video decoding device, video decoding method and program
KR20100046202A (en) Method for processing images and the corresponding electronic device
KR101874015B1 (en) Methods and apparatus for video transform encoding/decoding
JP5909149B2 (en) COLOR CONVERTER, ENCODER AND DECODER, AND PROGRAM THEREOF
JP6042001B2 (en) Moving picture coding apparatus and moving picture coding method
KR102059842B1 (en) Method and apparatus for performing graph-based transformation using generalized graph parameters
US10212436B2 (en) Image encoding apparatus, image decoding apparatus and image transmission method
KR20130046377A (en) Methods for coding and reconstructing a pixel block and corresponding devices
WO2014084674A2 (en) Intra prediction method and intra prediction apparatus using residual transform
JP6564315B2 (en) Encoding device, decoding device, and program
JP2019134284A (en) Encoding apparatus, decoding apparatus, encoding method, and decoding method
JP5667269B2 (en) Image encoding device, image decoding device, image encoding / decoding device, image encoding / decoding method, and image encoding / decoding program
JP2014222936A (en) Image decoding device, image decoding method, image encoding/decoding method and image decoding program
WO2013038888A1 (en) Image encoding device and image decoding device
WO2012118359A2 (en) Method for determining color difference component quantization parameter and device using the method
KR102506115B1 (en) Method for generating quantization table

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104