JP2014183192A - Polarized led and display device using the same - Google Patents

Polarized led and display device using the same Download PDF

Info

Publication number
JP2014183192A
JP2014183192A JP2013056754A JP2013056754A JP2014183192A JP 2014183192 A JP2014183192 A JP 2014183192A JP 2013056754 A JP2013056754 A JP 2013056754A JP 2013056754 A JP2013056754 A JP 2013056754A JP 2014183192 A JP2014183192 A JP 2014183192A
Authority
JP
Japan
Prior art keywords
led
light
phosphor
wire grid
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013056754A
Other languages
Japanese (ja)
Inventor
Motoki Katsuyama
元樹 勝山
Hiroyuki Emori
洋之 江森
Toshiyuki Yamamoto
理之 山本
Yoshitaka Takechi
義孝 武市
Yosuke Kanetani
洋介 金谷
Satoshi Saito
聡 斉藤
Yusuke Ina
祐介 伊奈
Katsuhiko Sakitama
克彦 崎玉
Tokuo Koma
徳夫 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polatechno Co Ltd
Original Assignee
Polatechno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polatechno Co Ltd filed Critical Polatechno Co Ltd
Priority to JP2013056754A priority Critical patent/JP2014183192A/en
Publication of JP2014183192A publication Critical patent/JP2014183192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarized LED having improved luminance and high use efficiency of light, and to provide a backlight unit, a liquid crystal display device, a head-up display unit and a liquid crystal projector using the polarized LED.SOLUTION: The polarized LED has such a configuration that: at least one LED element is mounted on a substrate; the LED element is covered with a phosphor dispersed resin layer containing a phosphor that absorbs light emission of the LED element; a wire grid polarizing element is disposed on an exiting surface side of the LED element; and preferably, the LED element is mounted on a bottom of a recessed portion formed on the substrate and the inner surface of the recess portion has a reflection surface.

Description

本発明は、ワイヤグリッド偏光素子及び蛍光体を用いた偏光LED、該偏光LEDを有するバックライトユニット、液晶表示装置、ヘッドアップディスプレイおよび液晶プロジェクターに関する。   The present invention relates to a polarized LED using a wire grid polarizing element and a phosphor, a backlight unit having the polarized LED, a liquid crystal display device, a head-up display, and a liquid crystal projector.

液晶表示装置(LCD:Liquid Crystal Display)は、薄型化、低電圧駆動および低電力消耗などといった利点を有するため、卓上型およびノート型パソコンのディスプレイ、及びプロジェクター等への応用が広まっている。液晶表示装置の主な構造は、光源、液晶パネル及び液晶パネルの前後両側に位置する二つの偏光素子である。光線は光源から出射された後、液晶パネルの光源に近い側の偏光素子へ達すると、光線の約半分が透過する。その後、透過した光線は液晶パネルおよびその反対側にある偏光素子を透過して画像を表示する。   A liquid crystal display (LCD) has advantages such as thinning, low voltage driving, and low power consumption, and therefore has been widely applied to desktop and notebook personal computer displays and projectors. The main structure of the liquid crystal display device is a light source, a liquid crystal panel, and two polarizing elements located on both front and rear sides of the liquid crystal panel. After the light beam is emitted from the light source, when it reaches the polarizing element closer to the light source of the liquid crystal panel, about half of the light beam is transmitted. Thereafter, the transmitted light passes through the liquid crystal panel and the polarizing element on the opposite side to display an image.

近年、液晶表示装置等の画像表示装置の光源として、エネルギー消費量の少ない発光ダイオード(LED:Light Emitting Diode)が広く利用されている。LEDは、光を放射する半導体ダイオードであり、電気エネルギーを可視光又は紫外光に変換するものである。
また、従来より、上記の表示装置において、偏光光源も用いられることが知られており、近年、該偏光光源として、エネルギー消費の少ないLEDも多用されるようになってきている。また、偏光を得るためにワイヤグリッド偏光素子を用いて、LED光源の光利用率を向上させるために、反射板などを設ける技術も知られている(特許文献1及び2)。
In recent years, light emitting diodes (LEDs) with low energy consumption have been widely used as light sources for image display devices such as liquid crystal display devices. An LED is a semiconductor diode that emits light, and converts electrical energy into visible light or ultraviolet light.
Conventionally, it has been known that a polarized light source is also used in the above display device. In recent years, an LED with low energy consumption has been frequently used as the polarized light source. In addition, a technique is also known in which a wire grid polarizing element is used to obtain polarized light, and a reflector or the like is provided in order to improve the light utilization rate of the LED light source (Patent Documents 1 and 2).

特開2005−79104JP-A-2005-79104 特開2005−328042JP 2005-328042 A

上記技術等により、LEDでの光の利用効率も、かなり向上してきている。しかしながら、表示装置の小型化や、また、表示画像のより鮮明化、偏光された光のプロジェクターへの利用、自動車のヘッドライトへの使用など利用範囲の広がりから、耐久化の向上、及び、白色LEDでの光の利用効率の効率化が望まれている。   Due to the above-described technology and the like, the light use efficiency in the LED has been considerably improved. However, due to the downsizing of the display device, the display image becoming clearer, the use of polarized light in projectors, the use in automobile headlights, etc. There is a demand for efficient use of light in LEDs.

上記の問題に鑑み、本発明の目的は、LEDから発光された無偏光の光を、効率的に直線偏光変換すると共に、LEDから発光された光の出射量をより向上させ、輝度の高い偏光LED(偏光LED光源)、特に白色偏光LEDを得ようとするものである。   In view of the above problems, the object of the present invention is to efficiently convert non-polarized light emitted from an LED into linearly polarized light, and to further improve the amount of light emitted from the LED, thereby increasing polarization of the light. It is intended to obtain an LED (polarized LED light source), particularly a white polarized LED.

本発明者らは上記課題を解決するために鋭意研究を行った結果、LEDの発光部全体を、蛍光体を含む樹脂で直接覆うと共に、ワイヤグリッド偏光素子を、該偏光素子からの反射光が該蛍光体を含む樹脂に戻るようにワイヤグリッド偏光素子を配置することにより、上記課題を解決できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have directly covered the entire light emitting portion of the LED with a resin containing a phosphor, and the wire grid polarization element is reflected light from the polarization element. It has been found that the above problem can be solved by arranging the wire grid polarizing element so as to return to the resin containing the phosphor, and the present invention has been completed.

具体的には、下記(1)〜(19)の発明に関する。
(1) 基板上に少なくとも一つのLED素子が実装され、該LED素子から発光された光を吸収して発光する蛍光体を含有する蛍光体分散樹脂が、該LED素子の実装部以外の部分を直接覆うように配され、且つ、該LED素子からの光の出射面側にワイヤグリッド偏光素子が、ワイヤグリッド偏光素子からの反射光が該蛍光体分散樹脂に戻るように配置された偏光LED。
(2) ワイヤグリッド偏光素子のワイヤグリッドの周期が150nm以下である上記(1)に記載の偏光LED。
(3) ワイヤグリッド偏光素子のワイヤグリッドの周期が120nm以下である上記(2)に記載の偏光LED。
(4) ワイヤグリッド偏光素子において、ワイヤグリッド上にワイヤグリッドと屈折率が異なる誘電体層が設けられている上記(1)〜(3)のいずれか一項に記載の偏光LED。
(5) 基板に形成された凹部の底部に該LED素子が実装され、該凹部に該蛍光体分散樹脂が充填され、該凹部の内側面に、少なくとも該蛍光体からの光及びワイヤグリッド偏光素子からの反射光を、反射する反射面を有する上記(1)〜(4)のいずれか一項に記載の偏光LED。
(6) ワイヤグリッド偏光素子が上記反射面の末端部と密着するように配置されている上記(5)に記載の偏光LED。
(7) ワイヤグリッド偏光素子とLED素子の間に四分の一波長板を更に備える上記(1)〜(4)のいずれか一項に記載の偏光LED。
(8) 前記ワイヤグリッド偏光素子が、ガラス基板の表面にワイヤグリッドを有する偏光素子であり、ワイヤグリッド形成面がLED素子と対向するように配置されている上記(1)〜(7)の何れか一項に記載の偏光LED。
(9) 上記LED素子が青色光または青色よりも短波長の光を発光するLED素子であり、上記蛍光体として緑色または緑色より長波長の蛍光を発する蛍光体を含む上記(1)〜(8)のいずれか一項に記載の偏光LED。
(10) 上記LED素子が発光極大波長が400〜500nmの青色光を出射するLED素子である上記(1)〜(9)のいずれか一項に記載の偏光LED。
(11) 上記蛍光体が発光極大波長500〜650nmの蛍光を発する蛍光体である上記(1)〜(10)のいずれか一項に記載の偏光LED。
(12) 出射光が白色である上記(1)〜(11)のいずれか一項に記載の偏光LED。
(13) 前記ワイヤグリッド偏光素子が波長450nmの光及び波長550nmの光の単体透過率が両者とも45%以上であるワイヤグリッド偏光素子である上記(1)〜(12)のいずれか一項に記載の偏光LED。
(14) 基板上に実装されたLED素子が複数個である上記(1)〜(13)のいずれか一項に記載の偏光LED。
(15) 上記(1)〜(14)のいずれか一項に記載の偏光LEDを用いた表示装置。
(16) 上記(1)〜(13)のいずれか一項に記載の偏光LEDの複数個を回路基板上に並べて配置されている又は上記(14)に記載の偏光LEDを用いた液晶用バックライト。
(17) 上記(16)に記載の液晶用バックライトを有する液晶表示装置。
(18) 上記(1)〜(14)のいずれか一項に記載の偏光LEDを光源として備えたヘッドアップディスプレイ。
(19) 上記(1)〜(14)のいずれか一項に記載の偏光LEDを光源として備える液晶プロジェクター。
Specifically, the present invention relates to the following (1) to (19).
(1) At least one LED element is mounted on the substrate, and the phosphor-dispersed resin containing a phosphor that emits light by absorbing light emitted from the LED element is a portion other than the mounting part of the LED element. A polarized LED that is arranged so as to cover directly, and is arranged such that a wire grid polarization element is disposed on the light emission surface side of the LED element, and reflected light from the wire grid polarization element returns to the phosphor-dispersed resin.
(2) The polarization LED according to (1), wherein the period of the wire grid of the wire grid polarization element is 150 nm or less.
(3) The polarizing LED according to (2), wherein the wire grid period of the wire grid polarizing element is 120 nm or less.
(4) The polarization LED according to any one of (1) to (3), wherein a dielectric layer having a refractive index different from that of the wire grid is provided on the wire grid in the wire grid polarization element.
(5) The LED element is mounted on the bottom of the recess formed in the substrate, the phosphor is filled with the phosphor-dispersed resin, and at least light from the phosphor and a wire grid polarization element are formed on the inner surface of the recess. Polarized LED as described in any one of said (1)-(4) which has a reflective surface which reflects the reflected light from.
(6) The polarizing LED according to (5), wherein the wire grid polarizing element is disposed so as to be in close contact with the end portion of the reflecting surface.
(7) The polarizing LED according to any one of (1) to (4), further including a quarter-wave plate between the wire grid polarizing element and the LED element.
(8) Any of the above (1) to (7), wherein the wire grid polarizing element is a polarizing element having a wire grid on the surface of a glass substrate, and the wire grid forming surface is arranged to face the LED element. The polarized LED according to claim 1.
(9) The above LED element is an LED element that emits blue light or light having a shorter wavelength than blue, and includes the phosphor that emits green or longer wavelength fluorescence than green as the phosphor. The polarized LED according to any one of the above.
(10) The polarized LED according to any one of (1) to (9), wherein the LED element is an LED element that emits blue light having a light emission maximum wavelength of 400 to 500 nm.
(11) The polarized LED according to any one of (1) to (10), wherein the phosphor is a phosphor that emits fluorescence having an emission maximum wavelength of 500 to 650 nm.
(12) The polarized LED according to any one of (1) to (11), wherein the emitted light is white.
(13) The wire grid polarizing element according to any one of (1) to (12), wherein the single transmittances of light having a wavelength of 450 nm and light having a wavelength of 550 nm are both 45% or more. The polarized LED as described.
(14) The polarized LED according to any one of (1) to (13), wherein the LED element is mounted in plural on the substrate.
(15) A display device using the polarized LED according to any one of (1) to (14).
(16) A plurality of the polarized LEDs according to any one of (1) to (13) are arranged on a circuit board, or a liquid crystal back using the polarized LED according to (14). Light.
(17) A liquid crystal display device having the liquid crystal backlight according to (16).
(18) A head-up display comprising the polarized LED according to any one of (1) to (14) as a light source.
(19) A liquid crystal projector including the polarizing LED according to any one of (1) to (14) as a light source.

本発明によれば、偏光LEDにおいて、耐久性がよく、高輝度を有する偏光LEDを得ることができる。特に本発明は白色光を発光する偏光LEDに適し、また、高透過型ワイヤグリッド偏光素子を用いることにより、より高輝度を有する偏光LEDを得ることができる。   According to the present invention, in a polarized LED, a polarized LED having good durability and high luminance can be obtained. In particular, the present invention is suitable for a polarized LED that emits white light, and a polarized LED having higher luminance can be obtained by using a highly transmissive wire grid polarizing element.

本発明の表面実装型偏光LEDの構成を示す断面図である。It is sectional drawing which shows the structure of the surface mount-type polarization LED of this invention. 本発明の砲弾型偏光LEDの構成を示す断面図である。It is sectional drawing which shows the structure of the bullet-type polarized LED of this invention. 本発明の表面実装型偏光LEDにおいて、基板上に複数のLED素子を備える構成を示す断面図である。In the surface mount type polarization LED of the present invention, it is a sectional view showing the composition provided with a plurality of LED elements on a substrate. 本発明の表面実装型の偏光LEDを適用した液晶表示装置の構成例を示す。1 shows a configuration example of a liquid crystal display device to which a surface-mounted polarization LED of the present invention is applied. 本発明の表面実装型の偏光LEDを適用したヘッドアップディスプレイユニット(HUDユニット)の構成例を示す。The structural example of the head up display unit (HUD unit) to which the surface mount type polarization LED of the present invention is applied is shown.

図1〜図3は、本発明に係る偏光LEDの模式的な断面図である。図1〜図3に示すように、本発明の偏光LEDは、少なくとも、基板に実装された少なくとも一つのLED素子と、該LED素子の発光を吸収して発光する蛍光体が分散され、該LED素子を直接覆う蛍光体分散樹脂層と、LED素子からの光の出射面側に、ワイヤグリッド偏光素子からの反射光が該蛍光体分散樹脂に戻るように備えられたワイヤグリッド偏光素子とを少なくとも備える。   1 to 3 are schematic cross-sectional views of a polarized LED according to the present invention. As shown in FIGS. 1 to 3, the polarized LED of the present invention includes at least one LED element mounted on a substrate and a phosphor that absorbs light emitted from the LED element and emits light. A phosphor-dispersed resin layer that directly covers the element, and a wire-grid polarizing element provided on the light-emitting surface side of the light from the LED element so that reflected light from the wire-grid polarizing element returns to the phosphor-dispersed resin Prepare.

本発明の偏光LEDに使用する基板としては、たとえば、アルミナ、窒化アルミニウム(AlN)等のセラミックス、ガラス、エポキシ樹脂等が用いられる。システムの放熱効果を高め、偏光LEDの温度上昇を抑制することができるため、アルミナや窒化アルミニウム等の熱伝導性が高い材料を使用することが好ましい。
基板には電極が形成されている。電極としては、たとえば、Ag、Pt、Ru、PdおよびAl等からなる金属電極が用いられる。
As a substrate used for the polarized LED of the present invention, for example, ceramics such as alumina and aluminum nitride (AlN), glass, epoxy resin and the like are used. Since the heat dissipation effect of the system can be enhanced and the temperature rise of the polarized LED can be suppressed, it is preferable to use a material having high thermal conductivity such as alumina or aluminum nitride.
Electrodes are formed on the substrate. As the electrode, for example, a metal electrode made of Ag, Pt, Ru, Pd, Al, or the like is used.

本発明の偏光LEDに用いる基板には、図1又は図2に示す通り、LED素子が実装されるための凹部が形成されていることが好ましい。その場合、LED素子は形成された凹部の底部に実装される。該凹部は、基板自体に形成されても、また、LED素子を装着する基板上に、LED素子を囲うように、凸部を形成することにより、該凹部が形成されていてもよい。該凹部の深さは、LED素子がその凹部に完全に収まり、かつ、該凹部に、該蛍光体分散樹脂を充填したときに、LED素子の上部を該蛍光体分散樹脂で覆うことが出来る深さが好ましい。
本発明の偏光LEDの好ましい態様においては、LED素子を囲う基板の内側(LED素子側)の面、特に上記の凹部が形成されている内側の面に、少なくとも、ワイヤグリッド偏光素子からの反射光及び蛍光体から発光された光を、反射して、蛍光体分散樹脂を通って、LED素子からの光の出射側に戻すように、反射面を有する。該反射面は、通常、LED素子からの光も反射して、光の出射側に戻す。従って、LED素子からの光、蛍光体から発光された光、及び、ワイヤグリッドで反射された光の全てが、再度蛍光体分散樹脂を通って、LED素子からの光の出射側に戻されることなる。これがくり返されることにより、LED素子から発せられた光は、全て無駄になることなく、蛍光体の発光に使用されると共に、偏光として出射されることになる。
該反射面は、基板自体の内側が光を反射できるように磨かれていても、また、内側に金属膜等を付けて反射面を形成しても、また、反射板を該基板の内側に設けて反射面を形成してもよい。通常反射板を設ける方法が簡便で好ましい。
また、底面の反射面は導電性の金属膜で形成されていてもよい。
本発明の偏光LEDに使用するLED素子は、フリップチップ(flip-chip)方式により基板の電極に接続されるLED素子であってもよい。その場合、LED素子の電極は、例えばインジウムスズ酸化物(ITO)からなる透明電極を使用することが好ましい。
As shown in FIG. 1 or FIG. 2, it is preferable that the substrate used for the polarized LED of the present invention has a recess for mounting the LED element. In that case, the LED element is mounted on the bottom of the formed recess. The concave portion may be formed on the substrate itself, or the concave portion may be formed by forming a convex portion on the substrate on which the LED element is mounted so as to surround the LED element. The depth of the recess is such that the LED element can be completely accommodated in the recess and the upper portion of the LED element can be covered with the phosphor dispersion resin when the recess is filled with the phosphor dispersion resin. Is preferable.
In a preferred embodiment of the polarized LED of the present invention, at least the reflected light from the wire grid polarizing element is provided on the inner surface (LED element side) of the substrate surrounding the LED element, particularly on the inner surface where the concave portion is formed. And the light emitted from the phosphor is reflected, passes through the phosphor dispersion resin, and returns to the light emission side from the LED element. The reflecting surface usually reflects light from the LED element and returns it to the light emitting side. Therefore, all of the light from the LED element, the light emitted from the phosphor, and the light reflected by the wire grid are again returned to the light emission side from the LED element through the phosphor dispersion resin. Become. By repeating this, all the light emitted from the LED element is used for light emission of the phosphor and emitted as polarized light without being wasted.
The reflecting surface is polished so that the inside of the substrate itself can reflect light, or a reflecting surface is formed by attaching a metal film or the like to the inside, and the reflecting plate is placed inside the substrate. It may be provided to form a reflective surface. Usually, the method of providing a reflector is simple and preferable.
Further, the bottom reflective surface may be formed of a conductive metal film.
The LED element used in the polarized LED of the present invention may be an LED element connected to an electrode of a substrate by a flip-chip method. In that case, it is preferable to use the transparent electrode which consists of indium tin oxide (ITO), for example for the electrode of an LED element.

本発明で使用するLED素子としては、青色又はそれよりも長波長の光を発するLED素子であればいずれも使用できる。本発明で使用するLED素子は、たとえば、炭化珪素(シリコンカーバイト)の基板上にGaP、GaAsP、GaAlAs、GaN、InGaN、AlGaN又はInGaAlP等の半導体からなる発光層を形成することにより得られる。
本発明の偏光LEDにおいては、青色光を発するLED素子の使用が好ましく、極大波長400〜500nmの青色光を発する青色LED素子の使用がより好ましい。青色LED素子としては、公知の青色LED素子を用いることができ、たとえば、GaN系LED素子を用いることができる。
LED素子は、基板の所定の位置に実装され、AuSn共晶半田他の各種半田または銀ペースト等により電極に接合されるか、又は、リードワイヤ等を用いて電極と接続される。
As the LED element used in the present invention, any LED element that emits light having a wavelength of blue or longer wavelength can be used. The LED element used in the present invention can be obtained, for example, by forming a light emitting layer made of a semiconductor such as GaP, GaAsP, GaAlAs, GaN, InGaN, AlGaN or InGaAlP on a silicon carbide (silicon carbide) substrate.
In the polarized LED of the present invention, use of an LED element that emits blue light is preferable, and use of a blue LED element that emits blue light having a maximum wavelength of 400 to 500 nm is more preferable. As the blue LED element, a known blue LED element can be used, and for example, a GaN-based LED element can be used.
The LED element is mounted at a predetermined position on the substrate and is bonded to the electrode with AuSn eutectic solder or other various solders, silver paste, or the like, or connected to the electrode using a lead wire or the like.

本発明の偏光LEDにおいては、蛍光体分散樹脂が、該LED素子の実装部以外の全体、特に発光部の全体を直接覆うように配される。このようにすることにより、該LED素子からの光が効率良く蛍光体を発光させると共に、蛍光体の発光に使用されなかった光はそのまま直接ワイヤグリッド偏光素子へ到達する。該ワイヤグリッド偏光素子では、該偏光素子に到着した光(LED素子から直接到着した光、蛍光体から発光された光等)の半分が該偏光素子を通過して偏光として出射され、残りの半量は該ワイヤグリッド偏光素子で反射される。反射された光は蛍光体分散樹脂に戻り、蛍光体の発光を増強し、蛍光体の発光量を増加する。従って、出射光の光量を増やし、輝度を高めることができる。
特に、上記した、基板の内側面に光の反射面を有する場合は、該LED素子からの光は、無駄なく、偏光として出射されるので、出射された光の輝度をより高めることができる。
本発明で使用する蛍光体としては、LED素子が発する光を吸収し、LED素子の出射光より長波長の蛍光を発する蛍光体が使用される。
本発明の偏光LEDに使用可能な蛍光体としては、青色または青色よりも短波長の光を吸収し、吸収光よりも長波長の蛍光を発する蛍光体であれば何れも使用でき、緑色または緑色よりも長波長の蛍光を発する蛍光体が好ましい。例えば、青色〜青紫色の光を吸収して、緑色、黄色又は赤色の光を発する緑色蛍光体、黄色蛍光体又は赤色蛍光体等が挙げられる。また、紫外光を出射するLED素子を使用する場合は、紫外光を吸収して青色、緑色、黄色又は赤色の蛍光を発する青色蛍光体、緑色蛍光体、黄色蛍光体又は赤色蛍光体等が単独又は2種以上の組合せで使用できる。
In the polarized LED of the present invention, the phosphor-dispersed resin is disposed so as to directly cover the entire portion other than the mounting portion of the LED element, particularly the entire light emitting portion. By doing so, the light from the LED element efficiently causes the phosphor to emit light, and the light not used for the light emission of the phosphor directly reaches the wire grid polarization element as it is. In the wire grid polarization element, half of the light arriving at the polarization element (light directly arrived from the LED element, light emitted from the phosphor, etc.) is emitted as polarized light through the polarization element, and the remaining half amount Is reflected by the wire grid polarization element. The reflected light returns to the phosphor-dispersed resin, enhances the light emission of the phosphor, and increases the light emission amount of the phosphor. Therefore, the quantity of emitted light can be increased and the luminance can be increased.
In particular, when the light reflecting surface is provided on the inner side surface of the substrate, the light from the LED element is emitted as polarized light without waste, so that the luminance of the emitted light can be further increased.
As the phosphor used in the present invention, a phosphor that absorbs light emitted from the LED element and emits fluorescence having a longer wavelength than the light emitted from the LED element is used.
As the phosphor that can be used in the polarized LED of the present invention, any phosphor can be used as long as it absorbs blue or shorter wavelength light than blue and emits longer wavelength fluorescence than absorbed light. A phosphor that emits longer wavelength fluorescence is more preferable. For example, a green phosphor, a yellow phosphor, or a red phosphor that absorbs blue to blue-violet light and emits green, yellow, or red light. In addition, when an LED element that emits ultraviolet light is used, a blue phosphor, a green phosphor, a yellow phosphor, or a red phosphor that absorbs ultraviolet light and emits blue, green, yellow, or red fluorescence is used alone. Or it can be used in combination of 2 or more types.

緑色蛍光体としては、たとえば、490〜575nm程度の発光極大波長を有する緑色蛍光体が用いられる。緑色蛍光体としては、たとえば、ユーロピウムマンガン付活アルミン酸塩からなる緑色蛍光体、および、ユーロピウムマンガン付活珪酸塩からなる緑色蛍光体の少なくとも1種を含む緑色蛍光体等が挙げられる。   As the green phosphor, for example, a green phosphor having an emission maximum wavelength of about 490 to 575 nm is used. Examples of the green phosphor include a green phosphor comprising at least one of a green phosphor composed of europium manganese activated aluminate and a green phosphor composed of europium manganese activated silicate.

黄色蛍光体としては、たとえば、500〜650nm程度、好ましくは520〜620nm程度の発光極大波長を有する黄色蛍光体が用いられる。黄色蛍光体としては、たとえば、セリウムをドープしたイットリウム・アルミニウム・ガーネットを用いたYAG系黄色蛍光体、および、セリウムをドープしたテルビウム・アルミニウム・ガーネットを用いたTAG系黄色蛍光体の少なくとも1種を含む黄色蛍光体等が挙げられる。   As the yellow phosphor, for example, a yellow phosphor having an emission maximum wavelength of about 500 to 650 nm, preferably about 520 to 620 nm is used. Examples of the yellow phosphor include at least one of a YAG yellow phosphor using cerium-doped yttrium aluminum garnet and a TAG yellow phosphor using cerium-doped terbium aluminum garnet. Examples thereof include yellow phosphors.

赤色蛍光体としては、たとえば、620〜780nm程度の発光極大波長を有する赤色蛍光体が用いられる。赤色蛍光体としては、たとえば、ユーロピウム付活酸硫化ランタンからなる赤色蛍光体、および、ユーロピウム付活CaSiAlNからなる赤色蛍光体の少なくとも1種を含む赤色蛍光体等が挙げられる。 As the red phosphor, for example, a red phosphor having a light emission maximum wavelength of about 620 to 780 nm is used. Examples of the red phosphor include a red phosphor composed of at least one of a red phosphor composed of europium activated lanthanum oxysulfide and a red phosphor composed of europium activated CaSiAlN 3 .

青色蛍光体としては、たとえば、400〜490nm程度の発光極大波長を有する青色蛍光体が用いられる。青色蛍光体としては、例えば、バリウム・アルミニウム酸化物(BAM)を主材料とする青色蛍光体等が挙げられる。   As the blue phosphor, for example, a blue phosphor having a light emission maximum wavelength of about 400 to 490 nm is used. Examples of the blue phosphor include a blue phosphor mainly composed of barium / aluminum oxide (BAM).

蛍光体分散樹脂に使用する蛍光体は、単独であってもよいし、また、複数の蛍光体の併用であってもよい。例えば、LED素子として青色LED素子を使用し、蛍光体として、青色光を吸収する黄色蛍光体を単独で使用するか、又は、青色光を吸収する緑色蛍光体と赤色蛍光体の両者を組み合わせて使用することによって、白色光を出射する偏光LEDを得ることができる。
本発明で使用する蛍光体の粒径は特に限定されないが、平均粒径が、通常10μm以上、好ましくは10μm〜100μm、さらに好ましくは20μm〜80μmである。ここで、平均粒径とは、レーザー回折法で測定した値を意味する。
本発明の偏光LEDにおいては、吸収極大波長が400〜500nmであり、発光極大波長が520〜620nmである黄色蛍光体を単独で使用するか、または、吸収極大波長が400〜500nmであり、発光極大波長が490〜575nmである緑色蛍光体及び吸収極大波長が400〜500nmであり、発光極大波長が520〜620nmである赤色蛍光体の両者を併用することがより好ましい。吸収極大波長が400〜500nmであり、発光極大波長が520〜620nmである黄色蛍光体を単独で使用することが特に好ましい。
The phosphor used in the phosphor dispersion resin may be a single phosphor or a combination of a plurality of phosphors. For example, a blue LED element is used as the LED element, and a yellow phosphor that absorbs blue light is used alone as a phosphor, or both a green phosphor and a red phosphor that absorb blue light are combined. By using it, a polarized LED that emits white light can be obtained.
The particle size of the phosphor used in the present invention is not particularly limited, but the average particle size is usually 10 μm or more, preferably 10 μm to 100 μm, more preferably 20 μm to 80 μm. Here, the average particle diameter means a value measured by a laser diffraction method.
In the polarized LED of the present invention, a yellow phosphor having an absorption maximum wavelength of 400 to 500 nm and an emission maximum wavelength of 520 to 620 nm is used alone, or an absorption maximum wavelength is 400 to 500 nm and light is emitted. It is more preferable to use both a green phosphor having a maximum wavelength of 490 to 575 nm and a red phosphor having an absorption maximum wavelength of 400 to 500 nm and an emission maximum wavelength of 520 to 620 nm. It is particularly preferable to use a yellow phosphor alone having an absorption maximum wavelength of 400 to 500 nm and an emission maximum wavelength of 520 to 620 nm.

蛍光体分散樹脂で、LED素子の実装部分以外を直接に覆う方法は、LED素子の実装部分(基板への装着部分)以外の部分を直接に覆うことができれば、特に制限されない。例えば、上記蛍光体を透明樹脂中に分散した熱又は光硬化型樹脂組成物を、実装されたLED素子の周囲に充填し、該樹脂組成物を硬化させればよい。該樹脂組成物の硬化は、通常の硬化型樹脂組成物の硬化方法に従って、紫外線照射または加熱等により行うことができる。
LED素子を覆う蛍光体分散樹脂量は、通常、LED素子の全体を十分に被覆できる量であれば、特に支障はない。本発明の偏光LEDは、好ましい態様においては、白色光を出射する。従って、その場合には、例えば、青色発光LEDから発せられた光を白色光として出射できる量の蛍光体分散樹脂で、該青色発光LEDを覆えばよい。前記基板の凹部の底部にLED素子が実装された、本発明の偏光LEDにおいては、該凹部に、蛍光体分散樹脂を、LED素子から発せられた光を、白色光にすることの出来る量で、充填する。充填量は、本発明の効果が達成される量であれば、支障は無く、凹部の上部にすき間が出来ても良いが、好ましくは、該凹部が一杯になる量で充填する。一杯になるまで充填することにより、ワイヤグリッド偏光素子を取り付けたときに、該蛍光体分散樹脂とワイヤグリッド偏光素子とが密着し、ワイヤグリッド偏光素子からの反射光がより効率的に蛍光体の発光を増強する。
The method of directly covering the portion other than the LED element mounting portion with the phosphor dispersion resin is not particularly limited as long as the portion other than the LED element mounting portion (mounting portion on the substrate) can be directly covered. For example, a heat or photocurable resin composition in which the phosphor is dispersed in a transparent resin may be filled around the mounted LED element and the resin composition may be cured. The resin composition can be cured by ultraviolet irradiation or heating according to a normal curing method for a curable resin composition.
The amount of the phosphor-dispersed resin that covers the LED element is usually not particularly limited as long as it is an amount that can sufficiently cover the entire LED element. In a preferred embodiment, the polarized LED of the present invention emits white light. Therefore, in that case, for example, the blue light emitting LED may be covered with a phosphor-dispersed resin in an amount capable of emitting light emitted from the blue light emitting LED as white light. In the polarized LED of the present invention in which the LED element is mounted on the bottom of the concave portion of the substrate, the phosphor-dispersed resin is provided in the concave portion in such an amount that the light emitted from the LED element can be converted into white light. Fill. As long as the effect of the present invention is achieved, the filling amount is not hindered and a gap may be formed in the upper portion of the concave portion. Preferably, the filling amount is such that the concave portion is filled. When the wire grid polarizing element is attached, the phosphor dispersed resin and the wire grid polarizing element are in close contact with each other, and the reflected light from the wire grid polarizing element is more efficiently reflected in the phosphor. Increase luminescence.

蛍光体の分散に用いられている透明樹脂は、光学部材において一般的に使用される、可視光の透過率が高い樹脂であれば特に支障はない。
本発明で使用する該蛍光体分散樹脂を形成するには、例えば市販の光学部材用の硬化性樹脂組成物に、蛍光体を均一に分散させることにより得ることが出来る。市販の光学部材用の硬化性樹脂組成物としては、市販の熱又は光硬化性のシリコーン樹脂又はエポキシ樹脂等の樹脂組成物が用いられる。
蛍光体分散樹脂における蛍光体の含有量は、所望の色相、好ましくは白色を有する出射光が得られるように適宜調整すればよい。複数の蛍光体を使用する場合の各蛍光体の比率は、所望する色相が得られるように適宜調整される。
If the transparent resin used for dispersion | distribution of fluorescent substance is a resin generally used in an optical member and has a high visible light transmittance, there is no particular problem.
In order to form the phosphor-dispersed resin used in the present invention, it can be obtained, for example, by dispersing the phosphor uniformly in a commercially available curable resin composition for optical members. As a commercially available curable resin composition for optical members, a commercially available resin composition such as a heat- or photo-curable silicone resin or epoxy resin is used.
What is necessary is just to adjust suitably content of the fluorescent substance in fluorescent substance dispersion resin so that the emitted light which has a desired hue, Preferably white is obtained. The ratio of each phosphor when using a plurality of phosphors is appropriately adjusted so that a desired hue can be obtained.

本発明の偏光LEDは、LED素子及び蛍光体を適宜選択することにより、単色光を出射するLED素子から任意の色相を有する偏光を得ることができる。
本発明の好ましい偏光LEDとしては、青色光を出射する青色LED素子を使用する偏光LEDが挙げられる。青色LED素子とともに、該青色LEDからの青色光を吸収し、黄色光を出す黄色蛍光体又は/及び該青色光を吸収して緑色光を出す緑色蛍光体又は/及び赤色蛍光体を使用して得られる白色偏光LEDはより好ましく、青色LED素子と該黄色蛍光体を使用して得られる白色偏光LEDは、更に好ましい。
本発明の偏光LEDにおいては、発光極大波長が400〜500nmの青色光を出射するLED素子と、吸収極大波長が400〜500nmであり、且つ、発光極大波長が500〜650nmである黄色蛍光体とを組み合わせて使用することが特に好ましい。
The polarized LED of the present invention can obtain polarized light having an arbitrary hue from an LED element that emits monochromatic light by appropriately selecting an LED element and a phosphor.
A preferable polarized LED of the present invention includes a polarized LED using a blue LED element that emits blue light. Along with the blue LED element, a yellow phosphor that absorbs blue light from the blue LED and emits yellow light and / or a green phosphor that absorbs the blue light and emits green light and / or a red phosphor is used. The obtained white polarized LED is more preferable, and the white polarized LED obtained using the blue LED element and the yellow phosphor is further preferable.
In the polarized LED of the present invention, an LED element that emits blue light having an emission maximum wavelength of 400 to 500 nm, a yellow phosphor having an absorption maximum wavelength of 400 to 500 nm, and an emission maximum wavelength of 500 to 650 nm; It is particularly preferable to use in combination.

上記の好ましい白色偏光LEDは、青色LED素子から出された青色光と、蛍光体から出された光が混合して、白色光を出射するように、蛍光体分散樹脂層中の蛍光体の含有量を調整すれば良い。
本発明における白色光としては、CIE(Commission Internationale d'Eclairage)によって提案されたXYZ表色系で示した場合に、その白色の色度が、X=0.270〜0.320、且つ、Y=0.270〜0.320の範囲が好ましく、より好ましくは、X=0.280〜0.310、且つ、Y=0.280〜0.310の範囲がより好ましい。更に好ましくは、上記の範囲で、更に、X=0.3及びY=0.3に近づくように調整するのが好ましい。
なお、本発明の偏光LEDにおけるLED素子と蛍光体の組合せは上記に限られないが、上記白色偏光LEDが好ましい。
The preferable white polarized LED includes the phosphor in the phosphor-dispersed resin layer so that the blue light emitted from the blue LED element and the light emitted from the phosphor are mixed to emit white light. Adjust the amount.
As the white light in the present invention, when shown in the XYZ color system proposed by CIE (Commission Internationale d'Eclairage), the white chromaticity is X = 0.270 to 0.320, and Y = 0.270 to 0.320 is preferable, and more preferably, X = 0.280 to 0.310 and Y = 0.280 to 0.310 are more preferable. More preferably, it is preferable to adjust so as to approach X = 0.3 and Y = 0.3 in the above range.
In addition, although the combination of the LED element and fluorescent substance in polarization LED of this invention is not restricted above, the said white polarization LED is preferable.

本発明の偏光LEDは、上記のように蛍光体分散樹脂で覆われたLED素子からの光の出射面側(以下LED出光側とも云う)に、ワイヤグリッド偏光素子(ワイヤグリッド偏光板とも云われる)を、ワイヤグリッド偏光素子での反射光が再びLED素子を覆う蛍光体分散樹脂に戻るように、備えることを特徴とする。ワイヤグリッド偏光素子を上記のように設けることにより、LED素子から発せられた光の一部は蛍光体樹脂層中の蛍光体を発光させ、残りの光は、蛍光体から発せられた光と共に、ワイヤグリッド偏光素子に到達する。到達した光はワイヤグリッド偏光素子の透過軸に平行な方向(ワイヤグリッド偏光素子におけるワイヤーと直交する方向)の光のみが偏光として外部へ出射する。一方、透過軸と直交する方向(ワイヤグリッド偏光素子におけるワイヤーと平行する方向)の光はワイヤグリッド偏光素子で反射される。その反射光が再び蛍光体分散樹脂層へと導かれる。その結果、ワイヤグリッド偏光素子での反射光は蛍光体分散樹脂層中の蛍光体を発光させ、蛍光体からの発光量が増加する。また、本発明の好ましい態様においては、LED素子が、基板の有する凹部における底部に実装され、蛍光体分散樹脂が、LED素子を覆うように、凹部の内側に充填され、かつ、該凹部の内側面には、光を反射する反射面を有するので、ワイヤグリッド偏光素子での反射光で、蛍光体の発光に使用されなかった光、蛍光体から発せられた光で、LED出光側以外の方向に発せられた光、及び、LEDから発せられた光で、LED出光側以外の方向に発せられた光で、かつ、蛍光体の発光にも使用されなかった光等の光が全て反射面で反射され、再び、蛍光体分散樹脂層に戻る。該好ましい態様においては、光のこの循環がくり返されるので、結果として、理論上は、LED素子から発せられた光、蛍光体から発せられた光の全て(100%)が無駄なく、偏光として出射される。実際には、ワイヤグリッド偏光素子での反射の際の損失、樹脂層を通過することによる損失、反射面での反射の際の損失等が生じるので、理論通りには行かないが、出射光全体の輝度を大きく向上させることができる。   The polarizing LED of the present invention is also referred to as a wire grid polarizing element (also referred to as a wire grid polarizing plate) on the light emission surface side (hereinafter also referred to as LED light emitting side) from the LED element covered with the phosphor dispersion resin as described above. ) So that the reflected light from the wire grid polarization element returns to the phosphor-dispersed resin covering the LED element again. By providing the wire grid polarization element as described above, a part of the light emitted from the LED element causes the phosphor in the phosphor resin layer to emit light, and the remaining light together with the light emitted from the phosphor, A wire grid polarization element is reached. Only the light in the direction parallel to the transmission axis of the wire grid polarizing element (the direction orthogonal to the wire in the wire grid polarizing element) reaches the outside as polarized light. On the other hand, light in a direction orthogonal to the transmission axis (direction parallel to the wire in the wire grid polarizing element) is reflected by the wire grid polarizing element. The reflected light is again guided to the phosphor-dispersed resin layer. As a result, the reflected light from the wire grid polarizing element causes the phosphor in the phosphor-dispersed resin layer to emit light, and the amount of light emitted from the phosphor increases. In a preferred embodiment of the present invention, the LED element is mounted on the bottom of the recess of the substrate, the phosphor-dispersed resin is filled inside the recess so as to cover the LED element, and the inside of the recess Since the side has a reflective surface that reflects light, the light reflected from the wire grid polarization element is not used for light emission of the phosphor, and the light emitted from the phosphor is in a direction other than the LED output side. The light emitted from the LED and the light emitted from the LED and emitted in the direction other than the LED light emission side and not used for the light emission of the phosphor are all reflected on the reflecting surface. It is reflected and returns to the phosphor-dispersed resin layer again. In this preferred embodiment, this circulation of light is repeated, and as a result, theoretically, all (100%) of the light emitted from the LED element and the light emitted from the phosphor is not wasted and is polarized. Emitted. Actually, there is a loss when reflecting on the wire grid polarization element, a loss due to passing through the resin layer, a loss when reflecting on the reflecting surface, etc. The luminance can be greatly improved.

本発明で使用するワイヤグリッド偏光素子について以下に説明する。
本発明で使用するワイヤグリッド偏光素子は、特に制限はなく、透明基板上にワイヤーを平行に並べて、偏光を可能とした偏光素子であれば何れも使用できるが、単体透過率が、450nmの波長及び550nmの波長の光で、何れも45%より大きいものが好ましい。より好ましくは、上記波長の単体透過率が何れも46%以上が好ましく、更に好ましくは47%以上である。ワイヤグリッド偏光素子の単体透過率の上限は50%までよいが、通常49%以下程度である。該高透過率ワイヤグリッド偏光素子を用いることにより、偏光として出射される光の輝度を大幅に向上させることが出来る。
また、該ワイヤグリッド偏光素子の透過軸と平行な偏光の透過率が、450nmの波長及び550nmの波長において何れも90%より大きいワイヤグリッド偏光素子も好ましい。該透過率が92%以上のものはより好ましい。そのようなワイヤグリッド偏光素子を用いることにより、偏光として出射される光の輝度が向上するためである。更に、好ましくは、450nmの波長及び550nmの波長において、少なくとも何れか一方の偏光における該透過率が94%を超えるものがより好ましい。最も好ましくは、450nmの波長及び550nmの波長の両者における該透過率が94%以上のものである。
また、上記において、偏光素子の透過軸と直交する偏光の透過率が、450nmの波長及び550nmの波長の光で、何れも1%より小さいワイヤグリッド偏光素子が好ましく、何れも0.6%より小さいものはより好ましい。
なお、本明細書における「単体透過率」は、偏光板を1枚使用して自然光(無偏光)を照射したときの透過率を言い、JIS Z8701:1999に準拠した方法により分光光度計を用いて測定される。また、偏光素子の透過軸と平行又は直交する偏光の透過率は、該偏光素子を1枚使用して、該透過軸に平行又は直交する光を該偏光素子に照射したときの透過率を言い、分光光度計を用いて測定される。なお、ワイヤグリッド偏光素子において、透過軸とは、ワイヤグリッドのワイヤ−と直交する方向を言う。
The wire grid polarizing element used in the present invention will be described below.
The wire grid polarizing element used in the present invention is not particularly limited, and any wire polarizing element can be used as long as it can be polarized by arranging wires in parallel on a transparent substrate, but the single transmittance is a wavelength of 450 nm. And light having a wavelength of 550 nm, both of which are preferably greater than 45%. More preferably, the single transmittance of the above wavelength is preferably 46% or more, and more preferably 47% or more. The upper limit of the single transmittance of the wire grid polarizing element may be up to 50%, but is usually about 49% or less. By using the high transmittance wire grid polarizing element, the luminance of light emitted as polarized light can be greatly improved.
Also preferred is a wire grid polarizing element in which the transmittance of polarized light parallel to the transmission axis of the wire grid polarizing element is greater than 90% at a wavelength of 450 nm and a wavelength of 550 nm. More preferably, the transmittance is 92% or more. This is because the brightness of light emitted as polarized light is improved by using such a wire grid polarization element. Furthermore, it is more preferable that the transmittance of at least one of the polarized light exceeds 94% at a wavelength of 450 nm and a wavelength of 550 nm. Most preferably, the transmittance at a wavelength of 450 nm and a wavelength of 550 nm is 94% or more.
Also, in the above, a wire grid polarizing element in which the transmittance of polarized light perpendicular to the transmission axis of the polarizing element is 450 nm and 550 nm is less than 1%, and both are preferably less than 0.6%. Smaller ones are more preferable.
In addition, “single transmittance” in this specification means a transmittance when a single polarizing plate is used and irradiated with natural light (non-polarized light), and a spectrophotometer is used according to a method based on JIS Z8701: 1999. Measured. The transmittance of polarized light parallel or perpendicular to the transmission axis of the polarizing element is the transmittance when one polarizing element is used and the polarizing element is irradiated with light parallel or perpendicular to the transmission axis. , Measured using a spectrophotometer. In the wire grid polarization element, the transmission axis means a direction orthogonal to the wire of the wire grid.

ワイヤグリッド偏光素子の透明基板としては、従来の透明樹脂製の基板又はガラス製基板等が使用でき、耐熱性の面からガラス製基板を使用することが好ましい。ワイヤグリッドを構成する材料としては、例えばアルミニウム、銀、銅、クロム、チタン、ニッケル、タングステン及び鉄などの金属又はこれらの合金が使用できる。
ワイヤグリッドのワイヤーの周期(ピッチ)が、入射する電磁波に比して充分短い場合、ワイヤグリッドは偏光子として作用して、電磁波のうち、ワイヤーと電場の向きが平行な偏光成分を反射し、直交する偏光成分を透過する。
ワイヤーの周期を、少なくとも入射光の波長の2分の1より短くすることにより、優れた偏光特性を有するワイヤグリッド偏光素子とすることができる。本発明の偏光LEDに使用するワイヤグリッド偏光素子の、ワイヤーの周期(ピッチ)は150nm以下が好ましく、より好ましくは145nm以下である。該周期が125nm以下であるとき更に好ましく、120nm以下は最も好ましい。該周期の下限は特にないが、技術上の問題から70nm程度である。商業生産を考えた場合、90〜125nm程度が最も好ましい。
そのようなワイヤグリッド偏光素子は、450nmの波長における透過軸と平行な偏光の透過率が82%以上と高く、又550nmの波長における透過軸と平行な偏光の透過率も86%以上と高い上、透過軸と直交する偏光の反射率は、両波長において、85〜90%程度と高いことから、偏光LEDからの偏光の出射量を増やすことができ、偏光LEDからの出射光の輝度を高めることができる。
As the transparent substrate of the wire grid polarizing element, a conventional transparent resin substrate or glass substrate can be used, and it is preferable to use a glass substrate from the viewpoint of heat resistance. As a material constituting the wire grid, for example, metals such as aluminum, silver, copper, chromium, titanium, nickel, tungsten and iron, or alloys thereof can be used.
When the period (pitch) of the wire of the wire grid is sufficiently short compared to the incident electromagnetic wave, the wire grid acts as a polarizer, and reflects the polarization component in which the direction of the wire and the electric field is parallel in the electromagnetic wave, Transmits orthogonal polarization components.
By making the period of the wire shorter than at least half of the wavelength of incident light, a wire grid polarizing element having excellent polarization characteristics can be obtained. The wire period (pitch) of the wire grid polarizing element used in the polarizing LED of the present invention is preferably 150 nm or less, more preferably 145 nm or less. More preferably, the period is 125 nm or less, and most preferably 120 nm or less. The lower limit of the period is not particularly limited, but is about 70 nm due to technical problems. When commercial production is considered, about 90 to 125 nm is most preferable.
Such a wire grid polarizing element has a high transmittance of polarized light parallel to the transmission axis at a wavelength of 450 nm as high as 82% and a high transmittance of polarized light parallel to the transmission axis at a wavelength of 550 nm as high as 86%. Since the reflectance of polarized light orthogonal to the transmission axis is high at about 85 to 90% at both wavelengths, the amount of polarized light emitted from the polarized LED can be increased, and the luminance of the emitted light from the polarized LED is increased. be able to.

本発明の偏光LEDに使用可能なワイヤグリッド偏光素子は、例えば、製品名ProFlux PPL05C及びProFlux PFU01C(いずれも株式会社ポラテクノ製、ガラス基板、アルミニウム製ワイヤグリッド)等として市場より入手することができる。
また、本発明の偏光LEDに使用するワイヤグリッド偏光素子においては、基板上に形成されたワイヤグリッド上(ワイヤグリッド基板とは反対側)に、ワイヤーを構成する材料と屈折率が異なる誘電体層が形成されていてもよい。誘電体層の厚さは、80〜120nm程度が好ましく、より好ましくは90〜110nmである。このような誘電体層を形成することにより、450nmの波長におけるワイヤグリッドの透過軸と直交する偏光の反射率を最大90%程度まで向上させることができる。このような誘電体層を構成する材料としては、シリコン、アルミニウム、クロム、チタン、ニッケル及びタングステンから選択される物質の酸化物、窒化物又は酸化窒化物が使用できるが、これらに限定されない。
Wire grid polarization elements that can be used in the polarized LED of the present invention can be obtained from the market as, for example, product names ProFlux PPL05C and ProFlux PFU01C (both manufactured by Polatechno Co., Ltd., glass substrate, aluminum wire grid).
Moreover, in the wire grid polarizing element used for the polarized LED of the present invention, a dielectric layer having a refractive index different from that of the material constituting the wire is formed on the wire grid formed on the substrate (the side opposite to the wire grid substrate). May be formed. The thickness of the dielectric layer is preferably about 80 to 120 nm, and more preferably 90 to 110 nm. By forming such a dielectric layer, the reflectance of polarized light orthogonal to the transmission axis of the wire grid at a wavelength of 450 nm can be improved up to about 90%. As a material constituting such a dielectric layer, an oxide, nitride or oxynitride of a substance selected from silicon, aluminum, chromium, titanium, nickel and tungsten can be used, but is not limited thereto.

本発明の好ましい態様である凹部が形成された基板を有する図1〜図3に示す本発明の偏光LEDにおいては、ワイヤグリッド偏光素子は、基板の凹部の開口部を完全に塞ぐように配置される。ワイヤグリッド偏光素子は、基板の凹部の開口部を完全に塞ぐ大きさであれば支障は無いが、経済性の面から、基板凹部の開口部の形状に合った形状及びサイズが好ましい。この場合、図1に示すようにLED素子ごとにワイヤグリッド偏光素子を有するものであっても、また、図3に示すように、基板凹部の底部に複数のLED素子を実装し、複数のLED素子を一緒に覆う蛍光体分散樹脂を充填した上に、開口部を塞ぐように、一つのワイヤグリッド偏光素子を有するものであっても良い。
本発明の偏光LEDにおいては、耐久性、透過及び反射性能向上の観点から、透明ガラス基板表面にワイヤグリッドが形成されているワイヤグリッド偏光素子を使用することが好ましい。該ワイヤグリッド偏光素子をLED素子に配置する際のLED素子に対向する面としては、ワイヤグリッドが形成された基板表面、及び、ワイヤグリッドが形成されていない基板表面のいずれであってもよい。該偏光素子は、ワイヤグリッド形成面がLED素子と対向するように配置されることが好ましい。
本発明の偏光LEDにおいては、偏光子がLED素子に非常に近接して設置されるため、LED素子の使用中は発熱により高温になることが想定される。そのためガラス基板を用いたワイヤグリッド偏光素子を有する本発明の偏光LEDが好ましく、該偏光LEDは耐熱性に優れることから、常に安定した偏光特性を発揮する。
In the polarized LED of the present invention shown in FIG. 1 to FIG. 3 having a substrate having a recess formed as a preferred embodiment of the present invention, the wire grid polarization element is disposed so as to completely close the opening of the recess of the substrate. The The wire grid polarizing element has no problem as long as it completely closes the opening of the concave portion of the substrate, but from the viewpoint of economy, a shape and a size that match the shape of the opening of the concave portion of the substrate are preferable. In this case, even if each LED element has a wire grid polarizing element as shown in FIG. 1, a plurality of LED elements are mounted on the bottom of the substrate recess as shown in FIG. In addition to filling the phosphor-dispersed resin that covers the elements together, one wire grid polarizing element may be provided so as to close the opening.
In the polarized LED of the present invention, it is preferable to use a wire grid polarizing element in which a wire grid is formed on the transparent glass substrate surface from the viewpoint of durability, transmission and reflection performance improvement. The surface facing the LED element when the wire grid polarizing element is disposed on the LED element may be either the substrate surface on which the wire grid is formed or the substrate surface on which the wire grid is not formed. The polarizing element is preferably disposed so that the wire grid forming surface faces the LED element.
In the polarized LED of the present invention, since the polarizer is placed very close to the LED element, it is assumed that the LED element is heated to a high temperature during use. Therefore, the polarized LED of the present invention having a wire grid polarizing element using a glass substrate is preferable, and the polarized LED always exhibits stable polarization characteristics because of excellent heat resistance.

上記のようにして得られた本発明の偏光LEDは、必要に応じて透明樹脂により、さらに封止されていてもよい。そのような例としては、図2に示す砲弾型偏光LEDを挙げることが出来る。
該封止用透明樹脂としては、上記蛍光体分散樹脂に用いられる樹脂と同じく、光学部材において一般的に使用される、可視光の透過率が高い硬化型透明樹脂が使用できる。蛍光体分散樹脂層の分散媒と封止樹脂として使用する透明樹脂は、同一であっても異なっていても良く、同一であることが好ましい。
該透明樹脂での封止は、通常のLED封止と同様にして、本発明の偏光LEDを封止すればよい。
The polarized LED of the present invention obtained as described above may be further sealed with a transparent resin as necessary. As such an example, the bullet-type polarized LED shown in FIG. 2 can be mentioned.
As the transparent resin for sealing, a curable transparent resin having a high visible light transmittance, which is generally used in an optical member, can be used, similarly to the resin used for the phosphor dispersion resin. The dispersion medium of the phosphor-dispersed resin layer and the transparent resin used as the sealing resin may be the same or different, and are preferably the same.
What is necessary is just to seal the polarizing LED of this invention like the normal LED sealing for sealing with this transparent resin.

以下、本発明の偏光LEDの代表的な構成を、図面を用いて説明する。
図1は、本発明の表面実装型の偏光LEDの構成を示す断面図である。本発明の偏光LEDの作用について、図1で示す偏光LEDにおいて、LED素子として青色光を発光する青色LED素子を使用し、蛍光体として該青色光を吸収して黄色光を発光する黄色蛍光体を使用する場合を例に挙げて説明する。
図1において、不偏光である青色光がLED素子20から出射されると、その一部が蛍光体分散樹脂層30中の蛍光体に吸収され、黄色蛍光体を発光させ、残部は蛍光体分散樹脂層30を透過し、黄色蛍光体からの光と共に白色光としてワイヤグリッド偏光素子40に達する。ワイヤグリッド偏光素子40に到達した光の一方の偏光は透過して外部へ出射され、それと直交する偏光は反射される。ワイヤグリッド偏光素子40で反射された光は蛍光体分散樹脂層30に戻り、蛍光体の発光を増強する。また、ワイヤグリッド偏光素子での反射光で、蛍光体の発光に使用されなかった光、蛍光体から発せられた光で、LED出光側以外の方向に発せられた光、及び、LED素子から発せられた光で、LED出光側以外の方向に発せられた光で、かつ、蛍光体の発光にも使用されなかった光等が全て反射面で反射され、再び、蛍光体分散樹脂層に戻り、上記と同様なことが偏光LEDの中でくり返される。その結果、光の経路での損失を無視すると理論上、LED素子から発せられた光は、一部は蛍光体の発光に使用され、残りの部分はそのまま、蛍光体からの光と共に、白色偏光として、100%が出射されることになる。
Hereinafter, a typical configuration of the polarized LED of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a configuration of a surface-mounted polarization LED of the present invention. Regarding the action of the polarized LED of the present invention, in the polarized LED shown in FIG. 1, a blue LED element that emits blue light is used as the LED element, and the yellow phosphor that absorbs the blue light and emits yellow light as the phosphor. The case of using will be described as an example.
In FIG. 1, when non-polarized blue light is emitted from the LED element 20, a part of the blue light is absorbed by the phosphor in the phosphor-dispersed resin layer 30, causing the yellow phosphor to emit light, and the remainder being phosphor-dispersed. It passes through the resin layer 30 and reaches the wire grid polarization element 40 as white light together with the light from the yellow phosphor. One polarization of the light reaching the wire grid polarization element 40 is transmitted and emitted to the outside, and the polarized light orthogonal thereto is reflected. The light reflected by the wire grid polarizing element 40 returns to the phosphor-dispersed resin layer 30 and enhances the light emission of the phosphor. In addition, the light reflected by the wire grid polarization element is not used for light emission of the phosphor, the light emitted from the phosphor is emitted in a direction other than the LED light emission side, and emitted from the LED element. The light emitted in the direction other than the LED light emission side and the light that was not used for the light emission of the phosphor is all reflected by the reflecting surface, and again returns to the phosphor-dispersed resin layer, The same as above is repeated in the polarized LED. As a result, theoretically, if the loss in the light path is ignored, the light emitted from the LED element is partly used for light emission of the phosphor, and the remaining part is left as it is together with the light from the phosphor. As a result, 100% is emitted.

本発明の偏光LED、特に凹部に反射面を有する偏光LEDにおいては、上記の通り、LED素子から発せられた全ての方向の光が利用され、蛍光体の発光量が増加すると共に、残りの光は、蛍光体からの光と共に、最終的にはワイヤグリッド偏光素子から偏光として出射されるので、本発明の偏光LEDは、出射光の輝度が向上し、電力消費を抑えることができる。   As described above, the polarized LED of the present invention, particularly the polarized LED having a reflecting surface in the concave portion, utilizes light in all directions emitted from the LED element, and increases the light emission amount of the phosphor and the remaining light. Is finally emitted as polarized light from the wire grid polarization element together with the light from the phosphor, so that the polarized LED of the present invention can improve the brightness of the emitted light and suppress power consumption.

図1〜図3に示すように、本発明の偏光LEDの基板として凹部が形成されている基板を使用する場合、基板凹部の内側面及び底面に反射面が設けられる。該反射面は、好ましくは、反射光を、LED出光側に反射するように設置される。また、該反射面は高反射率材で作製されることにより、蛍光体におけるLED素子の出射光の利用効率及び蛍光体から発せられる蛍光の外部への出射量を増加させ、偏光LEDの輝度をさらに向上させることができる。該反射面での反射率(入射光に対する反射光の割合)は90%以上が好ましく、より好ましくは95%以上、更に好ましくは98%〜100%である。
該高反射率材としては、アルミナなどの白色セラミック、耐熱性白色樹脂などの拡散反射材料が好適に使用できる。
As shown in FIGS. 1-3, when using the board | substrate with which the recessed part is formed as a board | substrate of polarization LED of this invention, a reflective surface is provided in the inner surface and bottom face of a board | substrate recessed part. The reflecting surface is preferably installed so as to reflect the reflected light to the LED light output side. In addition, the reflective surface is made of a highly reflective material, thereby increasing the use efficiency of the emitted light of the LED element in the phosphor and the amount of emitted light emitted from the phosphor to the outside, thereby increasing the brightness of the polarized LED. Further improvement can be achieved. The reflectivity (ratio of reflected light with respect to incident light) on the reflecting surface is preferably 90% or more, more preferably 95% or more, and still more preferably 98% to 100%.
As the high reflectivity material, a diffuse reflection material such as a white ceramic such as alumina or a heat-resistant white resin can be preferably used.

本発明の偏光LEDには、場合により、ワイヤグリッド偏光素子とLED素子との間に、四分の一波長板及び二分の一波長板などの位相差板を設置することができ、四分の一波長板を設置することが好ましい。四分の一波長板を設置する場合、ワイヤグリッド偏光素子の透過軸と、四分の一波長板の進相軸(遅相軸)との角度が45°になるように配置することにより、ワイヤグリッド偏光素子で反射された偏光が、1回目の四分の一波長板の透過、基板凹部の反射面での反射及び2回目の四分の一波長板の透過を経て、ワイヤグリッド偏光素子を透過する偏光に変換されるため、出射光量の増大を図ることができる。   In the polarized LED of the present invention, in some cases, a phase difference plate such as a quarter-wave plate and a half-wave plate can be installed between the wire grid polarization element and the LED element. It is preferable to install a single wavelength plate. When a quarter-wave plate is installed, by arranging the angle between the transmission axis of the wire grid polarization element and the fast axis (slow axis) of the quarter-wave plate to be 45 °, The polarized light reflected by the wire grid polarization element is transmitted through the first quarter-wave plate, reflected by the reflecting surface of the concave portion of the substrate, and transmitted through the second quarter-wave plate. Therefore, the amount of emitted light can be increased.

本発明の偏光LEDの製造方法を、図1で示される表面実装型偏光LEDを例に挙げて説明する。なお、本発明の偏光LEDの製造方法は下記の方法に限定されない。
まず、LED素子載置用の基板凹部11に、ペーストを用いてLED素子20を設置し、リードワイヤ13により各電極12と接続する。このとき、一方のリードワイヤ13を使用する代わりに、一方の電極の上に導電性ペーストを用いてLED素子を接合しても良い。次いで、蛍光体を分散させた蛍光体分散樹脂をLED素子20を被覆するように塗布又は滴下し、該樹脂を硬化させることにより、蛍光体分散樹脂層30を形成する。必要に応じて、蛍光体分散樹脂層30で満たしきれない凹部11の間隙に透明樹脂を満たし、該透明樹脂を硬化させることにより、封止樹脂層を形成してもよい。本発明の偏光LEDにおいては、ワイヤグリッド偏光素子40と基板凹部11とで囲われた空間の全てを蛍光体分散樹脂層30で満たしてもよい。このようにして得られたLEDパッケージの出射面側に、ワイヤグリッド偏光素子40を載置することにより、図1で示す本発明の偏光LEDが製造される。
上記の製造方法により製造された偏光LEDは、従来の白色LED光源と比較して色度のばらつきが少なく、且つ、再現性の良い白色光を発し、また同一の供給電力に対する発光強度も増加する。
The manufacturing method of the polarized LED of the present invention will be described by taking the surface mount type polarized LED shown in FIG. 1 as an example. In addition, the manufacturing method of polarized LED of this invention is not limited to the following method.
First, the LED element 20 is installed using paste in the substrate recess 11 for mounting the LED element, and connected to each electrode 12 by the lead wire 13. At this time, instead of using one lead wire 13, the LED element may be bonded onto one electrode using a conductive paste. Next, the phosphor-dispersed resin layer 30 is formed by applying or dropping the phosphor-dispersed resin in which the phosphor is dispersed so as to cover the LED element 20 and curing the resin. If necessary, the sealing resin layer may be formed by filling the gap between the concave portions 11 that cannot be filled with the phosphor-dispersed resin layer 30 with a transparent resin and curing the transparent resin. In the polarized LED of the present invention, the entire space surrounded by the wire grid polarizing element 40 and the substrate recess 11 may be filled with the phosphor dispersed resin layer 30. The polarized LED of the present invention shown in FIG. 1 is manufactured by placing the wire grid polarizing element 40 on the exit surface side of the LED package thus obtained.
The polarized LED manufactured by the above manufacturing method emits white light with less variation in chromaticity and good reproducibility compared with a conventional white LED light source, and the emission intensity for the same supply power also increases. .

図2は、本発明の砲弾型の偏光LEDの構成を示す断面図である。図1の表面実装型偏光LEDと同じ部材には同じ符号を付し、その説明を省略する。
本発明の砲弾型偏光LEDは、基板10、リードワイヤ13、リードフレーム14、LED素子20及び蛍光体分散樹脂層30を有するLEDパッケージ、及び、ワイヤグリッド偏光素子40を備え、該LEDパッケージ及びワイヤグリッド偏光素子40を包囲するように、砲弾型の透明モールド樹脂50を形成することにより製造される。該LEDパッケージの出射面側にワイヤグリッド偏光素子40を配置した後に、透明なモールド樹脂50で封止し、砲弾型に形成して硬化させること以外は、上記の図1の表面実装型偏光LEDの製造方法と同様にして、本発明の砲弾型偏光LEDを製造することができる。
FIG. 2 is a cross-sectional view showing a configuration of a bullet-type polarized LED of the present invention. The same members as those in the surface-mounted polarization LED of FIG.
The bullet-type polarized LED of the present invention includes a substrate 10, a lead wire 13, a lead frame 14, an LED element 20 having an LED element 20 and a phosphor-dispersed resin layer 30, and a wire grid polarizing element 40, and the LED package and the wire. It is manufactured by forming a shell-shaped transparent mold resin 50 so as to surround the grid polarizing element 40. The surface mount type polarization LED of FIG. 1 described above except that the wire grid polarization element 40 is disposed on the light emitting surface side of the LED package, then sealed with a transparent mold resin 50, formed into a shell shape and cured. The bullet-type polarized LED of the present invention can be manufactured in the same manner as the manufacturing method.

本発明の砲弾型偏光LEDにおいてモールド樹脂として使用する樹脂は、前記の蛍光体分散樹脂層の分散媒又は封止樹脂として使用可能な、可視光において透明な硬化型樹脂を使用することができる。モールド樹脂の発光方向に突出する凸形状を適宜加工することで、光の取り出し方位或いは発光の広がり角を制御することが可能になる。   As the resin used as the mold resin in the bullet-type polarized LED of the present invention, a curable resin transparent in visible light that can be used as a dispersion medium or a sealing resin for the phosphor-dispersed resin layer can be used. By appropriately processing the convex shape protruding in the light emission direction of the mold resin, it becomes possible to control the light extraction direction or the light emission spread angle.

図1及び図2に示した偏光LEDでは、上記蛍光体分散樹脂層で被覆されたLED素子(以下、蛍光体被覆素子とも言う)が各基板に1個ずつ実装されている。しかしながら、本発明に係る偏光LEDは、各基板に複数個の蛍光体被覆素子を有していても良く、また、当該蛍光体被覆素子と共に、他の構成を有する青色、緑色、赤色、黄色及び/又は白色等の各発光色を有するLED素子を同一基板上に実装していてもよい。
図3に、1つの基板凹部11に複数個のLED素子20を実装し、当該複数個のLED素子20が蛍光体分散樹脂層30で被覆され、出射面に1つのワイヤグリッド偏光素子40を配置してなる本発明の偏光LEDの構成を示す。
In the polarized LED shown in FIGS. 1 and 2, one LED element (hereinafter also referred to as a phosphor-coated element) covered with the phosphor-dispersed resin layer is mounted on each substrate. However, the polarized LED according to the present invention may have a plurality of phosphor-coated elements on each substrate, and have blue, green, red, yellow, and other structures having other configurations together with the phosphor-coated elements. LED elements having respective emission colors such as white may be mounted on the same substrate.
In FIG. 3, a plurality of LED elements 20 are mounted on one substrate recess 11, the plurality of LED elements 20 are covered with a phosphor-dispersed resin layer 30, and one wire grid polarizing element 40 is disposed on the exit surface. The structure of the polarization LED of this invention formed is shown.

本発明の偏光LEDは、各種表示装置の光源として好ましく使用できる。例えば図4に示すように、本発明の表面実装型偏光LEDを、回路基板にマトリックス上に配列することにより、面状偏光LEDを作製し、液晶表示装置用バックライトユニットとして使用することができる。
本発明の面状偏光LEDを備えてなるバックライトユニットを用いて、液晶セル等の光学部品と組み合わせることにより、液晶表示装置を製造することができる。
図4に、本発明の面状偏光LEDを備えるバックライトユニットを用いた液晶表示装置の一例を示す。液晶表示装置に用いる液晶セルとしては、従来の2枚の直線偏光素子により液晶層が挟持されてなる従来の液晶セルが使用できる。従来の2枚の直線偏光素子を有する液晶セルを使用するときは、本発明の面状偏光LEDの出射光の偏光面と入射側直線偏光素子の透過軸が平行になるように配置すればよい。また、本発明の面状偏光LEDは偏光を出射するため、液晶セルとして、入射側が偏光能を有さない透明基板であり、出射側のみに直線偏光素子を有する液晶セルを使用することもできる。
The polarized LED of the present invention can be preferably used as a light source for various display devices. For example, as shown in FIG. 4, a surface-mounted polarization LED of the present invention is arranged on a circuit board on a matrix to produce a planar polarization LED, which can be used as a backlight unit for a liquid crystal display device. .
A liquid crystal display device can be manufactured by combining a backlight unit including the planar polarization LED of the present invention with an optical component such as a liquid crystal cell.
FIG. 4 shows an example of a liquid crystal display device using a backlight unit including the planar polarization LED of the present invention. As the liquid crystal cell used in the liquid crystal display device, a conventional liquid crystal cell in which a liquid crystal layer is sandwiched between two conventional linearly polarizing elements can be used. When using a conventional liquid crystal cell having two linearly polarizing elements, the plane of polarized light of the planar polarization LED of the present invention may be arranged so that the polarization plane of the incident light is parallel to the transmission axis of the incident side linearly polarizing element. . Further, since the planar polarization LED of the present invention emits polarized light, a liquid crystal cell having a transparent substrate having no polarization ability on the incident side and having a linearly polarizing element only on the emission side can be used as the liquid crystal cell. .

図5に示すように、本発明の液晶表示装置は、ヘッドアップディスプレイユニット(HUDユニット)に用いることができる。図5において、本発明の液晶表示装置は、被表示体(たとえば、自動車のフロントウインドウなど)に表示光を投射するための所定の装置に装着されている。具体的には、本発明のHUDユニットは、本発明の偏光LEDと液晶セルとを少なくとも有する液晶表示装置、及び、凹面鏡を少なくとも有する。液晶表示装置から出射された表示光は、凹面鏡により反射され、フロントウインドウ等に投射される。このような車載用のHUDユニットは、自動車の運転に必要な情報(たとえば、方向指示、車間距離、走行距離、各種警告情報、道路情報など)の表示に用いられる。   As shown in FIG. 5, the liquid crystal display device of the present invention can be used for a head-up display unit (HUD unit). In FIG. 5, the liquid crystal display device of the present invention is mounted on a predetermined device for projecting display light onto a display object (for example, a front window of an automobile). Specifically, the HUD unit of the present invention has at least a liquid crystal display device having at least the polarizing LED of the present invention and a liquid crystal cell, and a concave mirror. The display light emitted from the liquid crystal display device is reflected by the concave mirror and projected onto the front window or the like. Such a vehicle-mounted HUD unit is used to display information necessary for driving a vehicle (for example, direction indication, inter-vehicle distance, travel distance, various warning information, road information, etc.).

本発明の偏光LEDは、マイクロプロジェクター等の小型液晶プロジェクターの白色光源として使用することもできる。このとき、本発明の砲弾型偏光LEDを使用することが好ましい。
本発明の偏光LEDを光源として用いることにより、高輝度であっても消費電力が低く、また色度のバラつきも少ないという優れた特徴を有する液晶表示装置、HUDユニット及び小型液晶プロジェクター等の各種表示装置を製造することができる。
The polarized LED of the present invention can also be used as a white light source for a small liquid crystal projector such as a micro projector. At this time, it is preferable to use the bullet-type polarized LED of the present invention.
By using the polarized LED of the present invention as a light source, various displays such as a liquid crystal display device, a HUD unit, and a small liquid crystal projector having excellent characteristics of low power consumption and low chromaticity variation even at high luminance. The device can be manufactured.

以下に本発明の実施例を示すが、本発明はこれらに限定されて解釈されるものではない。   Examples of the present invention will be shown below, but the present invention is not limited to these examples.

実施例1
基板上に凹部を有し、凹部の底面及び側面の内側に反射板を有し、凹部の底面に青色LED素子が実装され、該LED素子が完全に覆われるように、凹部全体に、黄色発光の蛍光体分散樹脂が充填されたLEDユニット(日亜化学工業株式会社製、製品名NS6W083BT)を用い、ガラス表面に周期が144nmであるワイヤグリッドが形成されたワイヤグリッド偏光素子(450nmの波長の単体透過率46.5%、550nmの単体透過率47.1%)(株式会社ポラテクノ製、製品名PPL05C)を、ワイヤグリッド形成面をLED素子に対向させ、基板の凹部を完全に蓋をするように貼り合わせ、本発明の偏光LEDを得た。
Example 1
It has a recess on the substrate, a reflector on the bottom and side surfaces of the recess, a blue LED element is mounted on the bottom of the recess, and the entire recess is covered with yellow light so that the LED element is completely covered LED unit (manufactured by Nichia Corporation, product name NS6W083BT) filled with a phosphor dispersion resin, and a wire grid polarizer (wavelength of 450 nm having a wavelength of 144 nm formed on the glass surface) Single transmittance 46.5%, single transmittance 47.1% at 550 nm (product name PPL05C, manufactured by Polatechno Co., Ltd.) with the wire grid forming surface facing the LED element, and the concave portion of the substrate is completely covered Thus, the polarizing LED of the present invention was obtained.

実施例2
上記実施例1において、ワイヤグリッド偏光素子を、ガラス表面に周期が120nmであるワイヤグリッドが形成された450nmの波長の単体透過率47.1%及び550nmの単体透過率47.7%のワイヤグリッド偏光素子(株式会社ポラテクノ製、製品名PFU01C)に換えた以外は実施例1と同様にして、本発明の偏光LEDを得た。
Example 2
In the first embodiment, the wire grid polarizing element is a wire grid having a single transmittance of 47.1% at a wavelength of 450 nm and a single transmittance of 47.7% at 550 nm, in which a wire grid having a period of 120 nm is formed on the glass surface. A polarizing LED of the present invention was obtained in the same manner as in Example 1 except that the polarizing element (product name: PFU01C, manufactured by Polatechno Co., Ltd.) was used.

[比較例1]
ワイヤグリッド偏光素子の代わりに吸収型直線偏光板(株式会社ポラテクノ製染料系偏光板、製品名SHC−115U)を用いること以外は、実施例1と同様にして比較用の偏光LEDを作製した。
実施例1、実施例2及び比較例2で使用した各偏光板について、透過軸に平行又は直交する偏光に対する、波長450nm及び550nmにおける透過率を、下記表1に示す。表1において、Tpは透過軸と平行な偏光に対する透過率を示し、Tsは透過軸と直交する偏光に対する透過率を示す。
[Comparative Example 1]
A comparative polarized LED was produced in the same manner as in Example 1 except that an absorption linear polarizing plate (Polatechno dye-based polarizing plate, product name SHC-115U) was used instead of the wire grid polarizing element.
Table 1 below shows the transmittance at wavelengths of 450 nm and 550 nm with respect to polarized light parallel to or orthogonal to the transmission axis of each polarizing plate used in Example 1, Example 2, and Comparative Example 2. In Table 1, Tp represents the transmittance for polarized light parallel to the transmission axis, and Ts represents the transmittance for polarized light orthogonal to the transmission axis.

Figure 2014183192
Figure 2014183192

各実施例及び比較例で得られた偏光LEDについて、出射光のうち、ワイヤグリッドの透過軸と平行な成分及び直交する成分のそれぞれの照度(以下、偏光照度と言う)を、下記の方法に従って測定した。
偏光LEDの出射面上に、基準偏光板、分光放射照度計(ウシオ電機株式会社製、製品名スペクトロラディオメータUSR−40)の受光部をこの順に設置し、可視光領域の波長範囲における、基準偏光板の透過軸が偏光LEDの透過軸と平行又は直交するように基準偏光板を配置したときの照度を、それぞれ測定した。基準偏光板として、染料系偏光板(株式会社ポラテクノ製、製品名SHC−125U)を用いた。
450nm及び550nmにおける各偏光成分ごとの照度測定結果を表2に示す。表2において、Tpolは基準偏光板の透過軸と本発明の偏光LED又は比較用偏光LEDの透過軸とを平行にしたときの照度を示し、Tpol-cは基準偏光板の透過軸と本発明の偏光LED又は比較用偏光LEDの透過軸とを直交させたときの照度を示す。
For the polarized LED obtained in each of the examples and comparative examples, the illuminance (hereinafter referred to as polarized illuminance) of the component parallel to and orthogonal to the transmission axis of the wire grid in the emitted light is referred to in the following method. It was measured.
A light receiving part of a reference polarizing plate and a spectral irradiance meter (product name Spectroradiometer USR-40, manufactured by Ushio Electric Co., Ltd.) is installed in this order on the output surface of the polarized LED, and the reference in the wavelength range of the visible light region The illuminance when the reference polarizing plate was arranged so that the transmission axis of the polarizing plate was parallel or perpendicular to the transmission axis of the polarizing LED was measured. As the reference polarizing plate, a dye-based polarizing plate (manufactured by Polatechno Co., Ltd., product name SHC-125U) was used.
Table 2 shows the illuminance measurement results for each polarization component at 450 nm and 550 nm. In Table 2, Tpol represents the illuminance when the transmission axis of the reference polarizing plate is parallel to the transmission axis of the polarized LED of the present invention or the polarizing LED for comparison, and Tpol-c represents the transmission axis of the reference polarizing plate and the present invention. Illuminance when the transmission axis of the polarizing LED or the comparative polarizing LED is orthogonal to each other is shown.

Figure 2014183192
Figure 2014183192

表2に示す通り、ワイヤグリッド偏光素子を用いた本発明の偏光LEDは、従来の吸収型直線偏光板を用いた比較例1の偏光LEDに比して、青色光に該当する450nmにおけるTpolは、実施例1では約1.04倍に向上し、実施例2では約1.16倍に向上し、黄色光に該当する550nmにおけるTpolは、実施例1では約1.32倍に向上し、実施例2では約1.57倍に向上した。さらに、比較例1の偏光LEDに比して、450nmにおけるTpol-cは、実施例1では約77%に低下し、実施例2では約65%に低下し、550nmにおけるTpol-cは、実施例1では約94%に低下し、実施例2では約88%に低下した。従って、ワイヤグリッド偏光素子を用いた本発明の偏光LEDを用いることにより、従来の染料系偏光素子を用いた偏光LEDに比して、出射光量が増大し、且つ、液晶表示装置に使用した時の黒表示において光漏れのない表示が可能である。   As shown in Table 2, the polarized LED of the present invention using a wire grid polarizing element has a Tpol at 450 nm corresponding to blue light as compared with the polarized LED of Comparative Example 1 using a conventional absorption linearly polarizing plate. In Example 1, it is improved by about 1.04 times, in Example 2 is improved by about 1.16 times, and Tpol at 550 nm corresponding to yellow light is improved by about 1.32 times in Example 1, In Example 2, it improved about 1.57 times. Furthermore, compared to the polarization LED of Comparative Example 1, Tpol-c at 450 nm is reduced to about 77% in Example 1, is reduced to about 65% in Example 2, and Tpol-c at 550 nm is In Example 1, it decreased to about 94%, and in Example 2, it decreased to about 88%. Therefore, when the polarized LED of the present invention using a wire grid polarizing element is used, the amount of emitted light is increased as compared with a polarized LED using a conventional dye-based polarizing element, and when used in a liquid crystal display device. In black display, display without light leakage is possible.

本発明の偏光LEDは、上記の通り、輝度の高い出射光を出すことが出来ることから、液晶表示装置、HUDユニット及びマイクロプロジェクター等の各種表示装置に用いられる各種の光源として有用である。   Since the polarized LED of the present invention can emit emitted light with high brightness as described above, it is useful as various light sources used in various display devices such as liquid crystal display devices, HUD units, and microprojectors.

10 基板
10−1 基板上の凹部形成部分
11 基板反射面
12 電極
13 リードワイヤ
14 リードフレーム
20 LED素子
30 蛍光体分散樹脂層
40 ワイヤグリッド偏光素子
50 モールド樹脂
DESCRIPTION OF SYMBOLS 10 Substrate 10-1 Concave formation part 11 Substrate reflective surface 12 Electrode 13 Lead wire 14 Lead frame 20 LED element 30 Phosphor dispersed resin layer 40 Wire grid polarizing element 50 Mold resin

Claims (19)

基板上に少なくとも一つのLED素子が実装され、該LED素子から発光された光を吸収して発光する蛍光体を含有する蛍光体分散樹脂が、該LED素子の実装部以外の部分を直接覆うように配され、且つ、該LED素子からの光の出射面側にワイヤグリッド偏光素子が、ワイヤグリッド偏光素子からの反射光が該蛍光体分散樹脂に戻るように配置された偏光LED。   At least one LED element is mounted on the substrate, and a phosphor dispersion resin containing a phosphor that absorbs light emitted from the LED element and emits light directly covers a portion other than the mounting part of the LED element. And a wire grid polarizing element arranged on the light emission surface side of the light from the LED element, and a reflected LED from the wire grid polarizing element is returned to the phosphor-dispersed resin. ワイヤグリッド偏光素子のワイヤグリッドの周期が150nm以下である請求項1に記載の偏光LED。   The polarization LED according to claim 1, wherein a period of the wire grid of the wire grid polarization element is 150 nm or less. ワイヤグリッド偏光素子のワイヤグリッドの周期が120nm以下である請求項2に記載の偏光LED。   The polarization LED according to claim 2, wherein the period of the wire grid of the wire grid polarization element is 120 nm or less. ワイヤグリッド偏光素子において、ワイヤグリッド上にワイヤグリッドと屈折率が異なる誘電体層が設けられている請求項1〜3のいずれか一項に記載の偏光LED。   The polarization LED according to any one of claims 1 to 3, wherein a dielectric layer having a refractive index different from that of the wire grid is provided on the wire grid in the wire grid polarization element. 基板に形成された凹部の底部に該LED素子が実装され、該凹部に該蛍光体分散樹脂が充填され、該凹部の内側面に、少なくとも該蛍光体からの光及びワイヤグリッド偏光素子からの反射光を、反射する反射面を有する請求項1〜4のいずれか一項に記載の偏光LED。   The LED element is mounted on the bottom of the recess formed in the substrate, the phosphor is filled with the phosphor-dispersed resin, and at least light from the phosphor and reflection from the wire grid polarizing element are formed on the inner surface of the recess. The polarized LED according to claim 1, further comprising a reflective surface that reflects light. ワイヤグリッド偏光素子が上記反射面の末端部と密着するように配置されている請求項5に記載の偏光LED。   The polarization LED according to claim 5, wherein the wire grid polarization element is disposed so as to be in close contact with the end portion of the reflection surface. ワイヤグリッド偏光素子とLED素子の間に四分の一波長板を更に備える請求項1〜4のいずれか一項に記載の偏光LED。   The polarization LED according to any one of claims 1 to 4, further comprising a quarter-wave plate between the wire grid polarization element and the LED element. 前記ワイヤグリッド偏光素子が、ガラス基板の表面にワイヤグリッドを有する偏光素子であり、ワイヤグリッド形成面がLED素子と対向するように配置されている請求項1〜7のいずれか一項に記載の偏光LED。   The said wire grid polarizing element is a polarizing element which has a wire grid on the surface of a glass substrate, and is arrange | positioned so that a wire grid formation surface may oppose an LED element. Polarized LED. 上記LED素子が青色光または青色よりも短波長の光を発光するLED素子であり、上記蛍光体として緑色または緑色より長波長の蛍光を発する蛍光体を含む請求項1〜8のいずれか一項に記載の偏光LED。   The LED element is an LED element that emits blue light or light having a shorter wavelength than blue, and includes a phosphor that emits green or fluorescence having a longer wavelength than green as the phosphor. The polarized LED according to 1. 上記LED素子が発光極大波長が400〜500nmの青色光を出射するLED素子である請求項1〜9のいずれか一項に記載の偏光LED。   The polarized LED according to any one of claims 1 to 9, wherein the LED element is an LED element that emits blue light having a light emission maximum wavelength of 400 to 500 nm. 上記蛍光体が発光極大波長500〜650nmの蛍光を発する蛍光体である請求項1〜10のいずれか一項に記載の偏光LED。   The polarizing LED according to any one of claims 1 to 10, wherein the phosphor is a phosphor that emits fluorescence having an emission maximum wavelength of 500 to 650 nm. 出射光が白色である請求項1〜11のいずれか一項に記載の偏光LED。   Output light is white, Polarized LED as described in any one of Claims 1-11. 前記ワイヤグリッド偏光素子が波長450nmの光及び波長550nmの光の単体透過率が両者とも45%以上であるワイヤグリッド偏光素子である請求項1〜12のいずれか一項に記載の偏光LED。   The polarization LED according to any one of claims 1 to 12, wherein the wire grid polarization element is a wire grid polarization element in which single transmittances of light having a wavelength of 450 nm and light having a wavelength of 550 nm are both 45% or more. 基板上に実装されたLED素子が複数個である請求項1〜13のいずれか一項に記載の偏光LED。   The polarized LED according to any one of claims 1 to 13, wherein there are a plurality of LED elements mounted on the substrate. 請求項1〜14のいずれか一項に記載の偏光LEDを用いた表示装置。   The display apparatus using the polarization LED as described in any one of Claims 1-14. 請求項1〜13のいずれか一項に記載の偏光LEDの複数個が回路基板上に並べて配置されているか又は請求項14に記載の偏光LEDを用いた液晶用バックライト。   The backlight for liquid crystals using the polarization LED as described in any one of Claims 1-13. 請求項16に記載の液晶用バックライトを有する液晶表示装置。   A liquid crystal display device comprising the liquid crystal backlight according to claim 16. 請求項1〜14のいずれか一項に記載の偏光LEDを光源として備えたヘッドアップディスプレイ。   A head-up display comprising the polarized LED according to any one of claims 1 to 14 as a light source. 請求項1〜14のいずれか一項に記載の偏光LEDを光源として備える液晶プロジェクター。   A liquid crystal projector provided with the polarized LED according to claim 1 as a light source.
JP2013056754A 2013-03-19 2013-03-19 Polarized led and display device using the same Pending JP2014183192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056754A JP2014183192A (en) 2013-03-19 2013-03-19 Polarized led and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056754A JP2014183192A (en) 2013-03-19 2013-03-19 Polarized led and display device using the same

Publications (1)

Publication Number Publication Date
JP2014183192A true JP2014183192A (en) 2014-09-29

Family

ID=51701615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056754A Pending JP2014183192A (en) 2013-03-19 2013-03-19 Polarized led and display device using the same

Country Status (1)

Country Link
JP (1) JP2014183192A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291929A (en) * 2015-06-10 2017-01-04 中华映管股份有限公司 New line display module
CN107209413A (en) * 2015-01-28 2017-09-26 欧司朗光电半导体有限公司 Photoelectron device with radiation converting element and the method for manufacturing radiation converting element
KR20170130266A (en) * 2016-05-18 2017-11-28 라이트온 옵토 테크놀로지 (창조우) 컴퍼니 리미티드 Lighting display and method forming therefor
WO2018092720A1 (en) * 2016-11-21 2018-05-24 マクセル株式会社 Information display device
JP2018124474A (en) * 2017-02-02 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. Display device and method for manufacturing the same
CN109448568A (en) * 2018-09-30 2019-03-08 深圳市时代华影科技股份有限公司 Polarisation LED chip, packaging body, mould group and display screen, 3D display device and method
JP2020523737A (en) * 2017-06-08 2020-08-06 レイア、インコーポレイテッドLeia Inc. Light source and multi-view backlight using it
US11307434B2 (en) 2016-09-01 2022-04-19 3D Live, Inc. Stereoscopic display apparatus employing light emitting diodes with polarizing film/lens materials
US11326763B1 (en) * 2019-02-06 2022-05-10 Apple Inc. Light-emitting diodes with optical filters
US11543676B2 (en) 2019-08-30 2023-01-03 3D Live, Inc. Encapsulation of polarized light emitters
US11861941B1 (en) 2019-02-06 2024-01-02 Apple Inc. Eye camera systems with polarized light

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073722A (en) * 1996-08-30 1998-03-17 Sony Corp Polarizing optical element and its production
JP2005079104A (en) * 2003-09-02 2005-03-24 Taida Electronic Ind Co Ltd Polarized light source
JP2005328042A (en) * 2004-03-19 2005-11-24 Lumileds Lighting Us Llc Optical system for light-emitting diode
US20060203468A1 (en) * 2004-03-30 2006-09-14 Goldeneye, Inc. Light recycling illumination systems with wavelength conversion
JP2008020670A (en) * 2006-07-13 2008-01-31 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2008083656A (en) * 2005-10-17 2008-04-10 Asahi Kasei Corp Method of manufacturing wire grid polarizer
JP2009128658A (en) * 2007-11-26 2009-06-11 Toshiba Corp Head-up display optical film, the head-up display, and moving vehicle
US20100277887A1 (en) * 2009-05-01 2010-11-04 National Taiwan University Of Science & Technology Polarized white light emitting diode
JP2011507240A (en) * 2007-12-14 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polarized beam emitting semiconductor device
US20120256217A1 (en) * 2011-04-07 2012-10-11 Himax Technologies Limited Light-emitting diode package
US20130015482A1 (en) * 2011-07-14 2013-01-17 National Taiwan University Of Science And Technology Polarized white light emitting diode
JP2013065660A (en) * 2011-09-16 2013-04-11 Toshiba Lighting & Technology Corp Light emitting module and light emitting device
JP2013239673A (en) * 2012-05-17 2013-11-28 Stanley Electric Co Ltd Light emitting device and lamp for vehicle

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073722A (en) * 1996-08-30 1998-03-17 Sony Corp Polarizing optical element and its production
JP2005079104A (en) * 2003-09-02 2005-03-24 Taida Electronic Ind Co Ltd Polarized light source
JP2005328042A (en) * 2004-03-19 2005-11-24 Lumileds Lighting Us Llc Optical system for light-emitting diode
US20060203468A1 (en) * 2004-03-30 2006-09-14 Goldeneye, Inc. Light recycling illumination systems with wavelength conversion
JP2008083656A (en) * 2005-10-17 2008-04-10 Asahi Kasei Corp Method of manufacturing wire grid polarizer
JP2008020670A (en) * 2006-07-13 2008-01-31 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2009128658A (en) * 2007-11-26 2009-06-11 Toshiba Corp Head-up display optical film, the head-up display, and moving vehicle
JP2011507240A (en) * 2007-12-14 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polarized beam emitting semiconductor device
US20100277887A1 (en) * 2009-05-01 2010-11-04 National Taiwan University Of Science & Technology Polarized white light emitting diode
US20120256217A1 (en) * 2011-04-07 2012-10-11 Himax Technologies Limited Light-emitting diode package
US20130015482A1 (en) * 2011-07-14 2013-01-17 National Taiwan University Of Science And Technology Polarized white light emitting diode
JP2013065660A (en) * 2011-09-16 2013-04-11 Toshiba Lighting & Technology Corp Light emitting module and light emitting device
JP2013239673A (en) * 2012-05-17 2013-11-28 Stanley Electric Co Ltd Light emitting device and lamp for vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209413A (en) * 2015-01-28 2017-09-26 欧司朗光电半导体有限公司 Photoelectron device with radiation converting element and the method for manufacturing radiation converting element
CN107209413B (en) * 2015-01-28 2021-09-10 欧司朗光电半导体有限公司 Optoelectronic device with a radiation conversion element and method for producing a radiation conversion element
JP2018503983A (en) * 2015-01-28 2018-02-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic device having radiation conversion element and method of manufacturing radiation conversion element
US10573790B2 (en) 2015-01-28 2020-02-25 Osram Oled Gmbh Optoelectronic arrangement having a radiation conversion element and method for producing a radiation conversion element
CN106291929A (en) * 2015-06-10 2017-01-04 中华映管股份有限公司 New line display module
JP2017027004A (en) * 2015-06-10 2017-02-02 中華映管股▲ふん▼有限公司 Head-up display module
US9791695B2 (en) 2015-06-10 2017-10-17 Chunghwa Picture Tubes, Ltd. Head-up display module
KR102043495B1 (en) * 2016-05-18 2019-12-02 라이트온 옵토 테크놀로지 (창조우) 컴퍼니 리미티드 Digital numerical display and method forming therefor
KR20170130266A (en) * 2016-05-18 2017-11-28 라이트온 옵토 테크놀로지 (창조우) 컴퍼니 리미티드 Lighting display and method forming therefor
US11327334B2 (en) 2016-09-01 2022-05-10 3D Live, Inc. Methods of manufacturing a stereoscopic display system
JP7432666B2 (en) 2016-09-01 2024-02-16 リミナル スペース インコーポレイテッド Method of manufacturing a stereoscopic display device
US11307434B2 (en) 2016-09-01 2022-04-19 3D Live, Inc. Stereoscopic display apparatus employing light emitting diodes with polarizing film/lens materials
WO2018092720A1 (en) * 2016-11-21 2018-05-24 マクセル株式会社 Information display device
US10890763B2 (en) 2016-11-21 2021-01-12 Maxell, Ltd. Information display apparatus
JP2018084596A (en) * 2016-11-21 2018-05-31 マクセル株式会社 Information display device
JP2018124474A (en) * 2017-02-02 2018-08-09 三星電子株式会社Samsung Electronics Co.,Ltd. Display device and method for manufacturing the same
JP2020523737A (en) * 2017-06-08 2020-08-06 レイア、インコーポレイテッドLeia Inc. Light source and multi-view backlight using it
JP7437938B2 (en) 2017-06-08 2024-02-26 レイア、インコーポレイテッド Light source and multi-view backlight using it
CN109448568A (en) * 2018-09-30 2019-03-08 深圳市时代华影科技股份有限公司 Polarisation LED chip, packaging body, mould group and display screen, 3D display device and method
US11326763B1 (en) * 2019-02-06 2022-05-10 Apple Inc. Light-emitting diodes with optical filters
US11861941B1 (en) 2019-02-06 2024-01-02 Apple Inc. Eye camera systems with polarized light
US11754852B2 (en) 2019-08-30 2023-09-12 Liminal Space, Inc. Encapsulation of polarized light emitters
US11543676B2 (en) 2019-08-30 2023-01-03 3D Live, Inc. Encapsulation of polarized light emitters

Similar Documents

Publication Publication Date Title
JP7125636B2 (en) light emitting device
JP2014183192A (en) Polarized led and display device using the same
JP6299811B2 (en) Light emitting device
US9429830B2 (en) Fluorescent light emitting element and projector
JP7048873B2 (en) Light emitting device and manufacturing method of light emitting device
JP4761848B2 (en) Semiconductor light emitting device
TWI794311B (en) Light-emitting module and integrated light-emitting module
WO2009144922A1 (en) White light led, and backlight and liquid crystal display device using the same
TWI766032B (en) Light-emitting device and method of manufacturing same
TWI817708B (en) Light source
JP5052397B2 (en) Light emitting device and light emitting apparatus
JP5557828B2 (en) Light emitting device
JP7082273B2 (en) Light emitting device, integrated light emitting device and light emitting module
JP2004128393A (en) Led device
CN105280801A (en) Light emitting module
WO2013175706A1 (en) Optical element, light-emitting device, and projection device
JP6326830B2 (en) Light emitting device and lighting device including the same
JP7082272B2 (en) Light emitting device
JP2010153561A (en) Light emitting device
JP5779220B2 (en) Phosphor and light emitting device including the same
KR102467197B1 (en) Light emitting diode package, backlight unit and liquid crystal display device comprising the same
JP2011166057A (en) Liquid-crystal display device
KR101791173B1 (en) Light emitting package array
JP2013016564A (en) Light emitting device
KR20120045540A (en) Light emitting device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627