JP2014172309A - Identification medium and identification method thereof - Google Patents

Identification medium and identification method thereof Download PDF

Info

Publication number
JP2014172309A
JP2014172309A JP2013047893A JP2013047893A JP2014172309A JP 2014172309 A JP2014172309 A JP 2014172309A JP 2013047893 A JP2013047893 A JP 2013047893A JP 2013047893 A JP2013047893 A JP 2013047893A JP 2014172309 A JP2014172309 A JP 2014172309A
Authority
JP
Japan
Prior art keywords
optical layer
sensor
identification medium
identification
metallic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013047893A
Other languages
Japanese (ja)
Inventor
Miho Minamikawa
美穂 南川
Satoshi Gocho
智 牛腸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013047893A priority Critical patent/JP2014172309A/en
Publication of JP2014172309A publication Critical patent/JP2014172309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Credit Cards Or The Like (AREA)
  • Printing Methods (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a mechanically readable identification medium with high difficulty in forgery; and an identification method thereof.SOLUTION: An identification medium with extremely high difficulty in forgery includes a non-metal optical layer 12 having a characteristic absorption different from the others in at least a part of the near infrared wavelength range. The identification medium achieves a highly accurate authenticity determination through mechanical reading by optical sensors 34-37 and an eddy current sensor so as to enhance forgery resistance. An identification method of the identification medium is also provided.

Description

本発明は、センサーによる機械読み取りにて真偽判定を行う、識別媒体およびその識別方法に関する。   The present invention relates to an identification medium and a method for identifying the same that perform authenticity determination by machine reading by a sensor.

一般的に、識別媒体としては、紙幣、株券、商品券さらにはクレジットカード等の有価証券類の他、商品用の封印シールやタグ類等が知られている。このような識別媒体は、偽造・複製による不正使用を防止するため、精巧な印刷技術による印刷等が施されているものの、近年の偽造・複製による不正使用の頻発に鑑み、これら精巧な印刷等に加え特殊なインキによる偽造防止策が施されるようになってきている。   In general, as identification media, seals and tags for products are known in addition to securities such as banknotes, stock certificates, gift certificates, and credit cards. Although such identification media have been subjected to printing by elaborate printing technology to prevent unauthorized use due to counterfeiting / duplication, these elaborate printing, etc. in view of the frequent occurrence of fraudulent use due to forgery / duplication in recent years In addition, anti-counterfeiting measures using special inks are being implemented.

例えば、紫外光を照射することで可視光域にて発光する蛍光インキ、目視角度によって色や明るさが変わるOVD(Optically Variable Device)インキ等を紙面上に印刷することで、カラーコピー等の複写機で簡単に偽造出来ない方法が施されている。   For example, fluorescent copies that emit light in the visible light range when irradiated with ultraviolet light, OVD (Optically Variable Device) ink that changes in color and brightness depending on the viewing angle, etc. are printed on paper, making copies such as color copies. There are methods that cannot be easily counterfeited by machine.

ところが、最近の偽造品は、カラーコピーに加えて上記蛍光インキやOVDを模倣したものを付加した精巧な偽造品が出回ってきている。これらの偽造品は、正品との比較、専門家が見れば容易に判別つくが、一般の人が見ても簡単に真贋判定することは難しい。   However, as for the recent counterfeit products, elaborate counterfeit products in which a product imitating the above-described fluorescent ink or OVD is added in addition to the color copy. These counterfeit products can be easily discriminated if compared with genuine products and viewed by experts, but it is difficult for ordinary people to easily determine authenticity.

そこで、目視による真偽判定に加えて、センサーによる機械読み取りにて真偽判定を行う偽造防止策を併用している有価証券類も多い。これは目視による真偽判定が出来ない、例えば自動販売機の紙幣鑑別器などにも有効である。   Therefore, there are many securities that use anti-counterfeiting measures that perform true / false judgments by machine reading by sensors in addition to visual true / false judgments. This is also effective for a bill discriminator for a vending machine, for example, in which authenticity cannot be determined visually.

機械読み取りによる偽造防止策としては、目視ではその機能性が見えないが機能性を検知出来るセンサーで反応する材料を、インキ中に混入させる方法が一般的である。例えば、インキ中に磁性粉を混入させた磁気インキは目視では黒色のインキに見えているだけだが、MR(Magneto Resistive)センサーにて磁性の存在の有無が分かる。   As a measure for preventing counterfeiting by machine reading, a method of mixing a material that reacts with a sensor that cannot detect the functionality visually but can detect the functionality into ink. For example, magnetic ink in which magnetic powder is mixed in the ink is visually visible as black ink, but an MR (Magneto Resistive) sensor can detect the presence or absence of magnetism.

また、赤外線、特に近赤外線に着目し、近赤外線領域の一部を吸収もしくは透過するインキを使用した偽造防止策がある。例えば、プロセスインキの墨インキであるカーボンブラックを主成分とした黒色のインキと近赤外線領域に吸収のない黒色インキを組み合わせる方法、可視光域に特定の吸収がほとんど無く近赤外線域の一部に吸収のあるインキを用いる方法、さらに前記近赤外線域の一部に吸収のあるインキを他のプロセスインキ(墨以外)に混入させることによる方法等が挙げられる。   In addition, paying attention to infrared rays, particularly near infrared rays, there is a forgery prevention measure using ink that absorbs or transmits part of the near infrared region. For example, a method that combines black ink, which is mainly composed of carbon black, which is a process ink, and black ink that does not absorb in the near-infrared region, and that there is almost no specific absorption in the visible light region and part of the near-infrared region. Examples thereof include a method using an ink having absorption, and a method by mixing an ink having absorption in a part of the near-infrared region into another process ink (other than black).

これらセンサーによる機械読み取りを行う方法では、機器導入の為の費用が発生すると言う問題点を有する。また、安価なセンサーもしくは読取点が少ない真偽判定を行う場合では、偽造品まで正品と判別してしまう虞がある。   The method of performing machine reading by these sensors has a problem that costs for introducing the equipment are incurred. Further, in the case of performing authenticity determination with an inexpensive sensor or a small number of reading points, there is a possibility that even a counterfeit product may be determined as a genuine product.

しかし、この近赤外線域の特徴点のみをセンサーで検知して真偽判定を行う場合、特徴点のみを真似した偽造品と区別が付かなくなるという問題を有する。これに対する偽造防止策として、複数の特徴点を検知して真偽判定を行うように構成することで、簡単な偽造に対する対抗措置をとることができる。また、近赤外線域に特徴を持つインキも複数種の光学的機能性材料を混入させることで、複雑な分光波形となり、それらの特徴点を検出するように構成することで、偽造が非常に困難な識別媒体になる。   However, when only the feature points in the near-infrared region are detected by the sensor and the authenticity determination is performed, there is a problem that it cannot be distinguished from a counterfeit product imitating only the feature points. As a countermeasure against counterfeiting, it is possible to take a countermeasure against simple counterfeiting by detecting a plurality of feature points and performing the authenticity determination. Ink with characteristics in the near-infrared region can also be mixed with multiple types of optical functional materials, resulting in a complex spectral waveform. It becomes an easy identification medium.

ところが、このような偽造防止策は、目視による真偽判定に加えて行う場合有効であるが、目視による真偽判定をせず、機械読み取りだけで真偽判定を行う場合、偽造防止インキの分光波形を複雑にしても真似される虞を有する。例えば、金属を用いた光学多層膜にて光の制御を行えば、媒体製造コストおよび外観を度返しすれば類似の分光波形を作ることが出来る。この場合、目視での確認が出来れば、偽造品と一目で分かるが、機械読み取りだけで真偽判定を識別する物品には不向きである。   However, such anti-counterfeiting measures are effective when performed in addition to visual authenticity determination, but when performing anti-counterfeiting only by machine reading without performing visual authenticity determination, the spectrum of anti-counterfeit ink is used. Even if the waveform is complicated, there is a risk of being imitated. For example, if the light is controlled with an optical multilayer film using metal, a similar spectral waveform can be created if the medium manufacturing cost and appearance are repeated. In this case, if it can be visually confirmed, it can be recognized as a counterfeit product at a glance, but it is not suitable for an article for identifying authenticity determination only by machine reading.

特開2005−74641号公報JP 2005-74641 A 特開平7−37027号公報JP-A-7-37027 特許第3246017号公報Japanese Patent No. 3246017 特開2009−149068号公報JP 2009-149068 A

本発明は、上記の事情に鑑みてなされたもので、光学センサーにて特徴的な分光波形を持つセキュリティ部の特徴点の反射率を複数点読み取ることで、真偽判定を行い、さらに媒体上を渦電流センサーが移動することで、金属の有無を検出することで、偽造防止効果が高く、かつ、真偽判定の識別精度をより向上できる識別媒体およびその識別方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and performs true / false determination by reading a plurality of reflectances of feature points of a security part having a characteristic spectral waveform by an optical sensor, and further on the medium. It is an object of the present invention to provide an identification medium and a method for identifying the same that can detect the presence or absence of metal by moving the eddy current sensor, thereby providing a high anti-counterfeit effect and further improving the accuracy of identification for authenticity determination. To do.

請求項1に記載の発明は、非導電性基材の少なくとも一方の面上の一部に、近赤外線波長域の少なくとも一部において他と異なる特徴的な吸収を有する非金属光学層を設けた識別媒体を特徴とする。   In the invention according to claim 1, a nonmetallic optical layer having a characteristic absorption different from the others in at least a part of the near infrared wavelength region is provided on a part of at least one surface of the nonconductive substrate. Features an identification medium.

請求項2に係る発明は、請求項1に記載の識別媒体において、非導電性基材上の非金属光学層に金属パターン層を埋設したことを特徴とする。   The invention according to claim 2 is characterized in that, in the identification medium according to claim 1, a metal pattern layer is embedded in a non-metallic optical layer on a non-conductive substrate.

請求項3に係る発明は、請求項1又は請求項2に記載の識別媒体を識別する識別方法であって、非金属光学層の複数の特徴点波長に対する反射率を測定して該非金属光学層を検出し、かつ、前記非金属光学層を含む非導電性基材上の各部における渦電流を測定して前記非金属光学層を検出し、真偽判定を行うようにした識別方法を特徴とする。   The invention according to claim 3 is an identification method for identifying the identification medium according to claim 1 or 2, wherein the non-metallic optical layer is measured by measuring the reflectance of the non-metallic optical layer with respect to a plurality of feature point wavelengths. And an identification method in which the non-metallic optical layer is detected by measuring eddy currents in each part on the non-conductive substrate including the non-metallic optical layer to detect authenticity. To do.

請求項4に係る発明は、請求項2に記載の識別媒体を識別する識別方法であって、前記非金属光学層の複数の特徴点波長に対する反射率を測定して該非金属光学層を検出し、かつ、前記非金属光学層を含む非導電性基材上の各部の渦電流を測定して、その電流差に基づいて前記非金属光学層内の金属パターン層の有無を検出して真偽判定を行うようにした識別方法を特徴とする。   The invention according to claim 4 is the identification method for identifying the identification medium according to claim 2, wherein the non-metallic optical layer is detected by measuring the reflectance of the non-metallic optical layer with respect to a plurality of feature point wavelengths. And measuring the eddy current of each part on the non-conductive substrate including the non-metallic optical layer, and detecting the presence or absence of the metal pattern layer in the non-metallic optical layer based on the current difference. It is characterized by an identification method in which a determination is made.

本発明によれば、識別媒体の特徴点波長の反射率をスキャン測定すると、その移動方向によって反射率が変化することで、その変化量により真偽判定を行うと共に、渦電流をスキャン測定して真偽判定を行うことで、より高精度な真偽判定が可能な識別媒体およびその識別方法を提供することができる。   According to the present invention, when the reflectance of the feature point wavelength of the identification medium is scan-measured, the reflectance changes depending on the moving direction. By performing authenticity determination, it is possible to provide an identification medium and a method for identifying the same capable of more accurate authenticity determination.

本発明の一実施の形態に係る識別媒体を示す平面図である。It is a top view which shows the identification medium which concerns on one embodiment of this invention. 図1の識別媒体のX−X´線上を断面して示した断面図である。FIG. 2 is a cross-sectional view showing the identification medium of FIG. 1 along the line XX ′. 図1に用いられるセキュリティインキの分光特性を示した特性図である。It is a characteristic view which showed the spectral characteristic of the security ink used for FIG. 本発明の一実施の形態に係る識別方法に用いられる光学読取センサーの要部を示した概略図である。It is the schematic which showed the principal part of the optical reading sensor used for the identification method which concerns on one embodiment of this invention. 本発明の適用されるセキュリティインキと光学読取センサーの波長の関係を示した特性図である。It is the characteristic view which showed the relationship between the security ink to which this invention is applied, and the wavelength of an optical reading sensor. 図1の識別媒体と光学読取りセンサー出力の関係を示した概念図である。It is the conceptual diagram which showed the relationship between the identification medium of FIG. 1, and an optical reading sensor output. 図1の識別媒体と渦電流センサー出力の関係を示した概念図である。It is the conceptual diagram which showed the relationship between the identification medium of FIG. 1, and an eddy current sensor output. 光学多層膜が設けられている識別媒体の渦電流センサーの出力を示した概念図である。It is the conceptual diagram which showed the output of the eddy current sensor of the identification medium provided with the optical multilayer film. 本発明の他の実施の形態に係る識別媒体を断面して示した断面図である。It is sectional drawing which carried out the cross section and showed the identification medium which concerns on other embodiment of this invention. 図9の識別媒体と渦電流センサー出力の関係を示した概念図である。It is the conceptual diagram which showed the relationship between the identification medium of FIG. 9, and an eddy current sensor output.

以下、発明の実施の形態に係る識別媒体およびその識別方法について、図面を参照して詳細に説明する。   Hereinafter, an identification medium and an identification method according to an embodiment of the invention will be described in detail with reference to the drawings.

図1は、一実施の形態に係る識別媒体1を示すもので、非導電性基材11の一方の面上の一部に非金属光学層12が設けられてなる(図2参照)。非金属光学層12は、近赤外線波長域である、例えば700nmから1000nmの範囲の少なくとも一部に他と異なる特徴的な吸収を持つ光学特性を有する。   FIG. 1 shows an identification medium 1 according to an embodiment, in which a non-metallic optical layer 12 is provided on a part of one surface of a non-conductive substrate 11 (see FIG. 2). The non-metallic optical layer 12 has optical characteristics having characteristic absorption different from others in at least a part of the near-infrared wavelength range, for example, a range of 700 nm to 1000 nm.

上記非導電性基材11は、その上層に設けられる非金属光学層12を保持できるものであれば特に指定はないが、識別媒体として通常使用される、紙、プラスチック、布が挙げられる。また、非導電性基材11の下層には、粘着剤もしくは接着剤を設けて、ステッカーもしくは転写箔としても良い。非金属光学層12を基材11上に設ける印刷方式として、オフセット印刷法、凸版印刷法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、パッド印刷法等が可能である。   The non-conductive substrate 11 is not particularly specified as long as it can hold the non-metallic optical layer 12 provided on the upper layer. Examples of the non-conductive substrate 11 include paper, plastic, and cloth that are usually used as an identification medium. Moreover, an adhesive or an adhesive may be provided on the lower layer of the non-conductive substrate 11 to form a sticker or a transfer foil. As a printing method in which the nonmetallic optical layer 12 is provided on the substrate 11, an offset printing method, a relief printing method, a gravure printing method, a screen printing method, a flexographic printing method, a pad printing method, and the like are possible.

上記非金属光学層12は、例えば図3に示す分光特性に設定され、可視光領域においてほぼ全域で吸収し、目視にて黒色に視認される。この可視光領域における色は、黒に限らず、金属を使用していなければ、何色でも構わない。   The non-metallic optical layer 12 is set to have the spectral characteristics shown in FIG. 3, for example, and absorbs almost all over the visible light region and is visually recognized as black. The color in the visible light region is not limited to black, and any color may be used as long as no metal is used.

ここで、本発明において可視光領域は、400nmから700nmと定義する。また、非金属光学層12は、近赤外線波長領域において、少なくとも一部が吸収されており、吸収の幅は、広くても構わないが、狭い方が偽造防止効果は高く、様々な組み合わせに対応可能である。   Here, in the present invention, the visible light region is defined as 400 nm to 700 nm. The non-metallic optical layer 12 is at least partially absorbed in the near-infrared wavelength region, and the absorption range may be wide, but the narrower one has a higher anti-counterfeit effect and corresponds to various combinations. Is possible.

ここで、上記識別媒体1の識別は、例えば図4に示す4個のS1センサー34、S2センサー35、S3センサー36、S4センサー37を用いて可視光領域および近赤外線波長領域の波長の光を照射して非金属光学層12の反射率を読み取り、各隣り合うセンサーの反射率の差に基づいて波長の変化を検出して行なれる。この反射率の差は、例えば図5の波長の5%以上、好ましくは20%以上ある波長にセンサー34〜37を設けることで真偽判定が行われる。   Here, the identification medium 1 is identified by using, for example, four S1 sensors 34, S2 sensors 35, S3 sensors 36, and S4 sensors 37 shown in FIG. Irradiation is performed to read the reflectance of the non-metallic optical layer 12, and the change in wavelength is detected based on the difference in reflectance between adjacent sensors. This difference in reflectance is determined by providing sensors 34 to 37 at a wavelength of 5% or more, preferably 20% or more of the wavelength in FIG. 5, for example.

上記S1センサー34、S2センサー35、S3センサー36、S4センサー37は、例えば図4に示すようにリング状に組合せ配置されて読取りセンサー3が構成され、可視光領域および近赤外線波長領域の波長に相応する光源を形成する。そして、これらS1センサー34、S2センサー35、S3センサー36、S4センサー37は、それぞれ所望の波長24,25,26,27の光を識別媒体1に照射する。   The S1 sensor 34, the S2 sensor 35, the S3 sensor 36, and the S4 sensor 37 are combined and arranged in a ring shape as shown in FIG. 4, for example, to form the reading sensor 3, and have a wavelength in the visible light region and the near infrared wavelength region. A corresponding light source is formed. The S1 sensor 34, S2 sensor 35, S3 sensor 36, and S4 sensor 37 irradiate the identification medium 1 with light having desired wavelengths 24, 25, 26, and 27, respectively.

上記S1センサー34、S2センサー35、S3センサー36、S4センサー37は、例えば中心位置に受光素子31が遮光板32に囲まれて配置され、受光素子31が照射された光が直接的に入射しないように構成されている。なお、受光素子31は、各々のセンサー34〜37の反射光を受光できれば、図4に示す配置構成に限るものでなく、各種の配置構成が可能である。   The S1 sensor 34, the S2 sensor 35, the S3 sensor 36, and the S4 sensor 37 are, for example, arranged with the light receiving element 31 surrounded by the light shielding plate 32 at the center position, and the light irradiated on the light receiving element 31 is not directly incident. It is configured as follows. The light receiving element 31 is not limited to the arrangement shown in FIG. 4 as long as it can receive the reflected light of the sensors 34 to 37, and various arrangements are possible.

上記受光素子31は、各S1センサー34、S2センサー35、S3センサー36、S4センサー37から識別媒体1に照射された反射光を受光するためのセンサーで、一般に使用されているフォトダイオード、フォトトランジスター、CCD素子、CMOS素子等を使用することが出来る。識別媒体1に所定の波長を照射するためのS1センサー34乃至S4センサー37は、一般に使用されているLEDもしくはLD(レーザーダイオード)を使用することが出来る。   The light receiving element 31 is a sensor for receiving reflected light irradiated to the identification medium 1 from each of the S1 sensor 34, S2 sensor 35, S3 sensor 36, and S4 sensor 37, and is generally used as a photodiode or phototransistor. CCD elements, CMOS elements, etc. can be used. As the S1 sensor 34 to S4 sensor 37 for irradiating the identification medium 1 with a predetermined wavelength, a commonly used LED or LD (laser diode) can be used.

次に、本発明の一実施の形態に係る識別媒体1の識別方法について、図6、図7を参照して説明する。   Next, a method for identifying the identification medium 1 according to an embodiment of the present invention will be described with reference to FIGS.

即ち、S1センサー34、S2センサー35、S3センサー36、S4センサー37の各センサー出力44〜47は、読取センサー3を識別媒体1の中心位置(図1のX−X´)上に移動させた時に、各センサー34〜37の反射率の関係が図6となる。そこで、このS1センサー34、S2センサー35、S3センサー36、S4センサー37の各センサー出力44〜47の変化量を捉えて真偽判定を行うことで、より厳密な真偽判定が出来ると同時に、偽造が困難な識別媒体1を形成することが出来る。   That is, the sensor outputs 44 to 47 of the S1 sensor 34, the S2 sensor 35, the S3 sensor 36, and the S4 sensor 37 move the reading sensor 3 onto the center position (XX ′ in FIG. 1) of the identification medium 1. Sometimes, the relationship between the reflectances of the sensors 34 to 37 is shown in FIG. Therefore, by performing true / false determination by capturing the amount of change in each of the sensor outputs 44 to 47 of the S1 sensor 34, S2 sensor 35, S3 sensor 36, and S4 sensor 37, it is possible to perform more accurate authenticity determination, The identification medium 1 that is difficult to forge can be formed.

ここで、読取センサー3にて、識別媒体1上の中心位置に沿って各波長の反射率の変化を読み取る方法として、S1センサー34から順にS4センサー37までそれぞれ単独に測定し、センサー個数分だけ往復させて図6に示すセンサー出力を得ることが一般的であるが、各波長のセンサーを順番にパルス発光させ、その順番通りに反射率をプロットすることで、図6に示すセンサー出力を得ることも出来る。この方法により読取時間の短縮を図ることが出来る。   Here, as a method of reading the change in reflectance of each wavelength along the center position on the identification medium 1 by the reading sensor 3, each of the S1 sensor 34 to the S4 sensor 37 is measured independently, and the number of sensors is the same. The sensor output shown in FIG. 6 is generally obtained by reciprocating, but the sensor output shown in FIG. 6 is obtained by causing the sensors of each wavelength to emit light in order and plot the reflectance in the order. You can also This method can shorten the reading time.

そして、識別媒体1に非金属光学層12が存在する部分と存在しない部分との間で渦電流の差を検出する図示しない渦電流センサーをスキャンし、検出した渦電流の差から金属の存在を識別する。渦電流は、非接触で確実に識別することができるため、上に隠蔽層や保護層等があっても識別可能である。   Then, an eddy current sensor (not shown) that detects an eddy current difference between a portion where the non-metallic optical layer 12 is present and a portion where the non-metallic optical layer 12 is present in the identification medium 1 is scanned, and the presence of metal is detected from the detected eddy current difference. Identify. Since the eddy current can be reliably identified without contact, it can be identified even if there is a concealing layer, a protective layer, or the like.

スキャンする渦電流センサーは、発振コイルを備え、この発振コイルはその前方に高周波磁界を発生させるために発振回路に接続されていて、その前方に高周波を発生させるようになっている。金属が存在する部分では、電磁誘導作用によって表面に渦電流が発生する。この渦電流は、発振コイルの発振エネルギーを減少させるように作用し、この結果、金属が存在する部分では発振振幅が小さくなる。   The eddy current sensor for scanning includes an oscillation coil, and this oscillation coil is connected to an oscillation circuit to generate a high frequency magnetic field in front of the oscillation coil, and generates a high frequency in front of the oscillation coil. In the portion where the metal exists, an eddy current is generated on the surface by electromagnetic induction. This eddy current acts to reduce the oscillation energy of the oscillation coil. As a result, the oscillation amplitude is reduced in the portion where the metal exists.

ここで、識別媒体1における中心位置(図1のX−X´)上を渦電流センサーでスキャンしたときの位置と出力電圧の関係は、図7に示すようになる。即ち、非金属光学層12は、前述の通り、近赤外波長域に特徴的な吸収を持ちながら、金属層ではないため、渦電流センサーでは反応しない。目視では、異なっても金属多層膜で模倣しようとした場合に、渦電流センサーでスキャンすると、図8に示すように出力電圧が下がり、金属層があることが識別される。この識別方法としては、非金属光学層12のない部分との差を比較しての変化量で識別しても、規定値を決めてその範囲に入っているかどうかで識別することも可能である。   Here, the relationship between the position and the output voltage when the eddy current sensor is scanned over the center position (XX ′ in FIG. 1) in the identification medium 1 is as shown in FIG. That is, as described above, the nonmetallic optical layer 12 does not react with the eddy current sensor because it has a characteristic absorption in the near infrared wavelength region but is not a metal layer. Visually, if an attempt is made to imitate with a metal multilayer film even if they are different, scanning with an eddy current sensor lowers the output voltage as shown in FIG. 8, and it is identified that there is a metal layer. As this identification method, it is possible to identify the difference by comparing the difference with the portion without the non-metallic optical layer 12 or by determining whether or not it is within the range by determining a specified value. .

図9は、この発明の他の実施の形態に係る識別媒体5の要部を示すものである。この識別媒体5は、上記非導電性基材11上に金属パターン層13を設け、これを覆うようにして、上記非金属光学層12が設けられて該非金属光学層12内に埋設される。この非金属光学層12は、上述したように光学センサーによる読取りが図6に示すようになる。   FIG. 9 shows a main part of an identification medium 5 according to another embodiment of the present invention. In the identification medium 5, a metal pattern layer 13 is provided on the non-conductive substrate 11, and the non-metal optical layer 12 is provided so as to cover the metal pattern layer 13, and is embedded in the non-metal optical layer 12. As described above, the non-metallic optical layer 12 is read by the optical sensor as shown in FIG.

この金属パターン層13は、金属層がパターン状に形成されており、例えばパターンの有無がわかる四角形でも良いし、コードになっていても良い。金属層に使用される物質は、金属ならば何でも良いが、電気伝導率の高い物質が好ましい。読取りと加工性から例えば、アルミ箔を用いて、パターン状に熱圧をかけて転写することで、パターン形状を作製できるが、その他のものでも良い。   The metal pattern layer 13 has a metal layer formed in a pattern. For example, the metal pattern layer 13 may be a quadrangle that indicates the presence or absence of a pattern, or may be a code. The substance used for the metal layer may be anything as long as it is a metal, but a substance having high electrical conductivity is preferable. From the viewpoint of reading and workability, for example, the pattern shape can be produced by transferring the pattern shape by applying heat and pressure using an aluminum foil, but other patterns may be used.

この実施の形態において、図示しない渦電流センサーをスキャンしたときの位置と出力電圧の関係は、図10に示す特性となる。金属パターン層13のある部分は、渦電流センサーでスキャンしたとき、出力電圧が下がる。この金属パターン層13の有無で、判別が可能であり、パターンをコード化すれば、渦電流センサーでスキャンした出力電圧よりコード認識が可能となる。光学センサー3の読み取り結果にこの渦電流センサーの結果を合わせることにより、高精度な識別が可能となる。   In this embodiment, the relationship between the position when the eddy current sensor (not shown) is scanned and the output voltage has the characteristics shown in FIG. When a portion of the metal pattern layer 13 is scanned with an eddy current sensor, the output voltage is lowered. The determination can be made based on the presence or absence of the metal pattern layer 13, and if the pattern is coded, the code can be recognized from the output voltage scanned by the eddy current sensor. By matching the result of the eddy current sensor with the reading result of the optical sensor 3, it is possible to identify with high accuracy.

次に、本発明に基づく実施例1,2と比較例1、2、3を作製して比較検討する。   Next, Examples 1 and 2 and Comparative Examples 1, 2, and 3 based on the present invention are manufactured and compared.

(実施例1)
上質紙の上に、下記組成の配合で混合した非金属光学層をオフセット法にて印刷して、所定の大きさに断裁して、識別媒体を得た。
Example 1
A non-metallic optical layer mixed with a composition having the following composition was printed on a fine paper by the offset method, and cut into a predetermined size to obtain an identification medium.

[非金属光学層]
YKR−3081(山本化成社製) 5重量部
黒色ペリレン系顔料(戸田工業社製) 15重量部
FDカルトンXメジウムロ(東洋インキ社製) 80重量部
(比較例1)
実施例1と同様の基材を用いて、光学層としてTECSPEC OD2ショートパスフィルター(エドモンド・オプティクス社製)を貼り付け、比較用の媒体を得た。
[Non-metallic optical layer]
YKR-3081 (manufactured by Yamamoto Kasei Co., Ltd.) 5 parts by weight Black perylene pigment (manufactured by Toda Kogyo Co., Ltd.) 15 parts by weight FD Carton X Medium Lo (manufactured by Toyo Ink) 80 parts by weight (Comparative Example 1)
Using the same base material as in Example 1, a TECSPEC OD2 short pass filter (manufactured by Edmund Optics) was attached as an optical layer to obtain a comparative medium.

(実施例2)
上質紙の上に、図9に示す金属パターン層のように、アルミ転写箔(グリームホイル 村田金箔社製)に熱圧をかけて四角形状に2箇所転写した。その上に実施例1と同様の非金属光学層の組成の配合で混合して、これを上質紙の上にオフセット法にて、非金属光学層を印刷し、所定の大きさに断裁して、識別媒体を得た。
(Example 2)
On a high quality paper, as shown in the metal pattern layer shown in FIG. 9, aluminum transfer foil (manufactured by Gream foil Murata Gold Leaf Co., Ltd.) was hot-pressed and transferred in two places in a square shape. On top of that, the same composition of the nonmetallic optical layer as in Example 1 was mixed, and the nonmetallic optical layer was printed on the fine paper by the offset method, and cut into a predetermined size. , Got the identification medium.

(比較例2)
実施例2と同様にして、非金属光学層は設けず、アルミ転写箔のかわりに金属パターン層としてTECSPEC OD2ショートパスフィルターを貼り付けて、識別媒体とした。
(Comparative Example 2)
In the same manner as in Example 2, a non-metallic optical layer was not provided, and a TECSPEC OD2 short pass filter was attached as a metal pattern layer in place of the aluminum transfer foil to obtain an identification medium.

(比較例3)
実施例2と同様にして、アルミ転写箔は設けずに、非金属光学層の部分に光学層としてTECSPEC OD2ショートパスフィルターを貼り付け、識別媒体とした。
(Comparative Example 3)
In the same manner as in Example 2, an aluminum transfer foil was not provided, and a TECSPEC OD2 short pass filter was attached as an optical layer to the non-metallic optical layer to form an identification medium.

上記実施例1により得た識別媒体は、比較例1と比較し、見た目は全く異なったものの、共に光学センサーは、図6と同様の結果を示したが、渦電流センサーでスキャンした出力電圧の結果は、実施例1は図7のようなピークがない結果を得た。   Although the identification medium obtained in Example 1 was completely different from the Comparative Example 1 in appearance, both optical sensors showed the same results as in FIG. 6, but the output voltage scanned by the eddy current sensor was the same. As a result, Example 1 obtained no peak as shown in FIG.

ここで、実施例2の識別媒体は、比較例2と比較し、見た目は全く異なったものの、共に渦電流センサーでスキャンした出力電圧は、同様の図10のような結果が得られた。しかし、光学センサーでスキャンしたセンサー強度は、実施例2は金属パターン層のない部分、つまり、渦電流センサーの出力が下がらない部分で、図6の非金属光学層12の結果を示した。これに対し、比較例2は、金属パターン層のある部分、つまり、渦電流センサーの出力が下がる部分で、図6の非金属光学層12の結果を示し、異なる結果となった。さらに、比較例3は、渦電流センサーでスキャンした出力電圧の結果は図8のようになり、実施例2の図10とは異なる結果を得た。   Here, although the identification medium of Example 2 was completely different from that of Comparative Example 2, the output voltage scanned with the eddy current sensor was similar to that shown in FIG. However, the sensor intensity scanned by the optical sensor shows the result of the non-metallic optical layer 12 in FIG. 6 in the portion where the metal pattern layer is not formed in Example 2, that is, the output of the eddy current sensor is not lowered. On the other hand, the comparative example 2 showed the result of the nonmetallic optical layer 12 of FIG. 6 in the part with a metal pattern layer, ie, the part where the output of an eddy current sensor falls, and became a different result. Further, in Comparative Example 3, the result of the output voltage scanned by the eddy current sensor is as shown in FIG. 8, and a result different from that in FIG. 10 of Example 2 was obtained.

本発明における識別媒体およびその識別方法は、近赤外線波長域の少なくとも一部に他と異なる特徴的な吸収を持つ非金属光学層を設けることで、光学センサーと渦電流センサーによる機械読み取りにて高精度な真偽判定を行うことが出来、かつ金属を用いた光学層に対しても偽造耐性が極めて高い識別が可能であることが確認された。   The identification medium and the identification method thereof according to the present invention are high in mechanical reading by an optical sensor and an eddy current sensor by providing a non-metallic optical layer having a characteristic absorption different from others in at least a part of the near infrared wavelength region. It was confirmed that accurate authenticity determination can be performed, and that an optical layer using metal can be identified with extremely high forgery resistance.

なお、本発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより、種々の発明が抽出され得る。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

例えば実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problems described in the column of problems to be solved by the invention can be solved, and the effects described in the effects of the invention can be obtained. In some cases, a configuration from which this configuration requirement is deleted can be extracted as an invention.

本発明によれば、近赤外線波長域の少なくとも一部に他と異なる特徴的な吸収を持つ非金属光学層を設けるだけの簡単な構成で、機械読取りにて高精度な真偽判定を行うことが出来、かつ、偽造耐性が極めて高い識別媒体およびその識別方法を提供することができる。   According to the present invention, it is possible to make a true / false determination with high accuracy by machine reading with a simple configuration in which a nonmetallic optical layer having a characteristic absorption different from others is provided in at least a part of the near infrared wavelength region. It is possible to provide an identification medium and an identification method with extremely high forgery resistance.

1 … 識別媒体
3 … 読取りセンサー
11 … 非導電性基材
12 … 非金属光学層
13 … 金属パターン層
24 … S1センサーの波長
25 … S2センサーの波長
26 … S3センサーの波長
27 … S4センサーの波長
31 … 受光素子
32 … 遮光板
34 … S1センサー
35 … S2センサー
36 … S3センサー
37 … S4センサー
44 … S1センサーの出力
45 … S2センサーの出力
46 … S3センサーの出力
47 … S4センサーの出力
DESCRIPTION OF SYMBOLS 1 ... Identification medium 3 ... Reading sensor 11 ... Nonelectroconductive base material 12 ... Nonmetallic optical layer 13 ... Metal pattern layer 24 ... Wavelength of S1 sensor 25 ... Wavelength of S2 sensor 26 ... Wavelength of S3 sensor 27 ... Wavelength of S4 sensor 31 ... Light receiving element 32 ... Light shielding plate 34 ... S1 sensor 35 ... S2 sensor 36 ... S3 sensor 37 ... S4 sensor 44 ... S1 sensor output 45 ... S2 sensor output 46 ... S3 sensor output 47 ... S4 sensor output 47

Claims (4)

非導電性基材の少なくとも一方の面上の一部に、近赤外線波長域の少なくとも一部において他と異なる特徴的な吸収を有する非金属光学層を設けたことを特徴とする識別媒体。   An identification medium, wherein a nonmetallic optical layer having a characteristic absorption different from the others in at least a part of a near infrared wavelength region is provided on a part of at least one surface of a nonconductive substrate. 前記基材上の非金属光学層に金属パターン層を埋設したことを特徴とする請求項1に記載の識別媒体。   The identification medium according to claim 1, wherein a metal pattern layer is embedded in a nonmetallic optical layer on the substrate. 請求項1又は請求項2に記載の識別媒体を識別する識別方法であって、
非金属光学層の複数の特徴点波長に対する反射率を測定して該非金属光学層を検出し、かつ、前記非金属光学層を含む非導電性基材上の各部における渦電流を測定して前記非金属光学層を検出して真偽判定を行うことを特徴とする識別媒体の識別方法。
An identification method for identifying the identification medium according to claim 1 or 2,
The reflectance of the non-metallic optical layer with respect to a plurality of feature point wavelengths is measured to detect the non-metallic optical layer, and the eddy current is measured at each part on the non-conductive substrate including the non-metallic optical layer An identification medium identification method, wherein authenticity determination is performed by detecting a non-metallic optical layer.
請求項2に記載の識別媒体を識別する識別方法であって、
前記非金属光学層の複数の特徴点波長に対する反射率を測定して該非金属光学層を検出し、かつ、前記非金属光学層を含む非導電性基材上の各部の渦電流を測定して、その電流差に基づいて前記非金属光学層内の金属パターン層の有無を検出して真偽判定を行うことを特徴とする識別媒体の識別方法。
An identification method for identifying an identification medium according to claim 2,
Detecting the non-metallic optical layer by measuring the reflectance of the non-metallic optical layer with respect to a plurality of feature point wavelengths, and measuring eddy currents at various parts on the non-conductive substrate including the non-metallic optical layer A method for identifying an identification medium, wherein authenticity determination is performed by detecting the presence or absence of a metal pattern layer in the non-metallic optical layer based on the current difference.
JP2013047893A 2013-03-11 2013-03-11 Identification medium and identification method thereof Pending JP2014172309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013047893A JP2014172309A (en) 2013-03-11 2013-03-11 Identification medium and identification method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047893A JP2014172309A (en) 2013-03-11 2013-03-11 Identification medium and identification method thereof

Publications (1)

Publication Number Publication Date
JP2014172309A true JP2014172309A (en) 2014-09-22

Family

ID=51694070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047893A Pending JP2014172309A (en) 2013-03-11 2013-03-11 Identification medium and identification method thereof

Country Status (1)

Country Link
JP (1) JP2014172309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133988A (en) * 2016-01-29 2017-08-03 東洋インキScホールディングス株式会社 Authenticity discrimination method and authenticity discrimination device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180385A (en) * 1985-02-06 1986-08-13 日本化薬株式会社 Identification of securities
JPH05294095A (en) * 1992-01-13 1993-11-09 Kyodo Printing Co Ltd Method for recording and reading information
JP2007207060A (en) * 2006-02-03 2007-08-16 National Printing Bureau Information recording sticking object, printing sheet, and method for discriminating its authenticity
JP2011178009A (en) * 2010-03-01 2011-09-15 National Printing Bureau Forgery preventing printed matter and authenticity discrimination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180385A (en) * 1985-02-06 1986-08-13 日本化薬株式会社 Identification of securities
JPH05294095A (en) * 1992-01-13 1993-11-09 Kyodo Printing Co Ltd Method for recording and reading information
JP2007207060A (en) * 2006-02-03 2007-08-16 National Printing Bureau Information recording sticking object, printing sheet, and method for discriminating its authenticity
JP2011178009A (en) * 2010-03-01 2011-09-15 National Printing Bureau Forgery preventing printed matter and authenticity discrimination method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133988A (en) * 2016-01-29 2017-08-03 東洋インキScホールディングス株式会社 Authenticity discrimination method and authenticity discrimination device

Similar Documents

Publication Publication Date Title
RU2345419C2 (en) Self-scan proof authentified security issue
US7963450B2 (en) Near infrared ink security feature
CA2746209C (en) Fluorescence notch coding and authentication
US8400509B2 (en) Authentication apparatus for value documents
MX2014008734A (en) Multi wavelength excitation/emission authentication and detection scheme.
TW201202062A (en) Improvements in security substrates for security documents
KR20120016152A (en) Position marking for identifying a surface region and method for identifying/authenticating on the basis of the marked surface region
WO2013143009A1 (en) Security document having an ir, magnetic or fluorescent see-through motif
JP2000263909A (en) Forgery discriminating precious printed matter
CN104160430B (en) Audible voucher for visually impaired people identifies
JP2003335085A (en) Security printed matter printed with fine symbol character group comprising a large number of fine symbol characters
JP2014172309A (en) Identification medium and identification method thereof
KR20150093779A (en) Non-periodic tiling document security element
US10255515B2 (en) Method and device for checking a security element
JP4264776B2 (en) Safety protection sheet, authenticity determination method thereof, and authenticity determination device thereof
CN114555380B (en) Security element with machine-readable IR code
JP2007136838A (en) Printed matter for certification and certifying method of the same
JP2018012217A (en) Forgery prevention display body and forgery prevention display body verification device
JP2009226635A (en) Information recording medium and authenticity deciding system
JP2014066836A (en) Counterfeit prevention medium, reading sensor device for counterfeit prevention medium and reading method of the same
JP5321136B2 (en) How to read printed information
JP6131729B2 (en) Reading method of anti-counterfeit medium
KR101270749B1 (en) Apparatus for detecting security article using color magnetic substance and method thereof
JP6175890B2 (en) Anti-counterfeit medium and method for reading anti-counterfeit medium
KR101906480B1 (en) Security sheet for authenticity determination and method for determinating authenticity using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905