JP2014151542A - Method for manufacturing fiber board and fiber board - Google Patents

Method for manufacturing fiber board and fiber board Download PDF

Info

Publication number
JP2014151542A
JP2014151542A JP2013022714A JP2013022714A JP2014151542A JP 2014151542 A JP2014151542 A JP 2014151542A JP 2013022714 A JP2013022714 A JP 2013022714A JP 2013022714 A JP2013022714 A JP 2013022714A JP 2014151542 A JP2014151542 A JP 2014151542A
Authority
JP
Japan
Prior art keywords
fiberboard
fibers
fiber
long
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013022714A
Other languages
Japanese (ja)
Inventor
Kenji Onishi
兼司 大西
Seishi Morita
清史 守田
Koichi Matsumura
浩一 松村
Arihiro Adachi
有弘 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013022714A priority Critical patent/JP2014151542A/en
Publication of JP2014151542A publication Critical patent/JP2014151542A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To more simply and inexpensively manufacture a fiber board that has enhanced adhesiveness among filaments and thereby has superior basic performance such as strength, durability and dimension stability.SOLUTION: This method for manufacturing the fiber board comprises the steps of:preparing a material to be bonded, which contains filaments 3 having an average fiber length of 5 mm or more and 50 mm or less and staples 4 having an average fiber length of 2 mm or more and less than 5 mm; supplying a liquid thermosetting resin 6 to the material to be bonded by spraying the liquid thermosetting resin 6 while agitating the material to be bonded; and then subjecting the resultant mixture to hot pressing treatment.

Description

本発明は、繊維板の製造方法と繊維板に関するものである。   The present invention relates to a fiberboard manufacturing method and a fiberboard.

従来より、木質繊維等の繊維にバインダ−を分散させ、加熱加圧成形して得られる繊維板は、内装材や下地材等の住宅用部材、家具等の材料として用いられていた。   Conventionally, fiberboards obtained by dispersing a binder in fibers such as wood fibers and heat-press molding have been used as materials for housing members such as interior materials and base materials, and furniture.

この繊維板に使用される木質繊維は、針葉樹や広葉樹から得られる小片をリファイナーやディファイブレーター等の解繊機を用いて加工されるものであり、通常、長さ7mm未満に加工されている。一方、繊維板に高い表面平滑性や加工性が要求される場合は、長さ2mm以上5mm未満の短繊維を用い、この短繊維に熱硬化性樹脂を塗布した後、加熱加圧成形している。   The wood fiber used for this fiberboard is obtained by processing a small piece obtained from a conifer or a broadleaf tree using a defibrator such as a refiner or a defibrator, and is usually processed to a length of less than 7 mm. On the other hand, when high surface smoothness and workability are required for the fiberboard, a short fiber having a length of 2 mm or more and less than 5 mm is used, and a thermosetting resin is applied to the short fiber, followed by heat and pressure molding. Yes.

このような短繊維を原料の一つとする繊維板は、木質資源の有効活用といった観点から環境に優しく、木材を製材して得られる挽き板に比べて品質が安定しているという特長や、異方性が少なく加工性に優れているという特長を有している。しかしながら、繊維長の短い木質繊維を原料として用いているため、強度が弱く、吸湿時の寸法変化が大きいという欠点がある。そのため、床材、壁材等の内装部材や、ドア材、戸板材等の造作部材等の基材として用いた場合、十分な強度が得られず、また、反りや狂いが大きい等の問題点があった。   Fibreboard made of short fibers as one of the raw materials is environmentally friendly from the standpoint of effective utilization of wood resources, and has the feature that the quality is stable compared to the sawing board obtained by sawing wood. It has the feature that it has little directivity and excellent workability. However, since wood fibers having a short fiber length are used as a raw material, there are disadvantages that strength is weak and dimensional change during moisture absorption is large. Therefore, when used as a base material such as interior materials such as floor materials and wall materials, door materials, door plate materials, etc., sufficient strength cannot be obtained, and problems such as large warpage and deviation was there.

このような問題点を解決するために、本発明者らは、下記特許文献1、2に記載した繊維板の製造方法を提供している。   In order to solve such a problem, the present inventors provide a method for manufacturing a fiberboard described in Patent Documents 1 and 2 below.

特許文献1に記載された繊維板の製造方法においては、ケナフ(アオイ科の一年生草本類)の靱皮部分から得られる平均繊維長が10mm以上200mm以下の長繊維を原料として用いる。この長繊維の集合体にニードルパンチングを行なうことによって、これら長繊維同士を絡み合わせ、長繊維マットを作製し、希釈した熱硬化性接着剤に含浸した後、乾燥し、加熱加圧成形する。得られる繊維板は、従来の繊維板に比べて高い透湿性を有しながら強度が十分である。   In the fiberboard manufacturing method described in Patent Document 1, long fibers having an average fiber length of 10 mm or more and 200 mm or less obtained from the bast portion of kenaf (Aomyceae) are used as raw materials. By performing needle punching on this aggregate of long fibers, these long fibers are entangled with each other to produce a long fiber mat, impregnated with a diluted thermosetting adhesive, dried, and heated and pressed. The obtained fiberboard has sufficient strength while having high moisture permeability as compared with the conventional fiberboard.

また、特許文献2に記載された繊維板の製造方法においては、ヤシ、麻、さとうきび、竹、稲藁等から得られる平均繊維長が6mm以上200mm以下のリグノセルロース長繊維と、アガチス、パイン等の針葉樹や、ラワン、メランチ、ナラ、ブナ、ゴムの木等の広葉樹から得られる平均繊維長が6mm未満のリグノセルロース短繊維とを原料として用いる。これらリグノセルロースの長繊維と短繊維の集合体に、それぞれ粉末接着剤または接着剤の水分散液を添加した後、長繊維の半分の量を型枠中で単一方向に並べて積み重ね、次に短繊維を型枠に入れ、次に長繊維の残り半分をはじめと同じ方向に引き伸ばして積み重ねて積層体を形成する。この積層体を加熱加圧成形することによって得られる繊維板は、従来の繊維板に比べて高強度で、かつ高い寸法安定性を有している。   Moreover, in the manufacturing method of the fiber board described in Patent Document 2, lignocellulose long fibers having an average fiber length of 6 mm or more and 200 mm or less obtained from palm, hemp, sugar cane, bamboo, rice straw, etc., agathis, pine, etc. As a raw material, and short lignocellulose fibers having an average fiber length of less than 6 mm obtained from broad-leaved trees such as Lawan, Meranto, oak, beech and rubber trees. After adding a powder adhesive or an aqueous dispersion of adhesive to each of these lignocellulose long fibers and short fiber aggregates, half of the long fibers are stacked in a single direction in a mold, and then stacked. Short fibers are put into a mold, and then the remaining half of the long fibers are stretched in the same direction as the beginning and stacked to form a laminate. The fiberboard obtained by heat-pressing this laminate has higher strength and higher dimensional stability than conventional fiberboards.

特許4085962号公報Japanese Patent No. 40855962 特許3987644号公報Japanese Patent No. 3987644

しかしながら、特許文献1に記載された繊維板の製造方法においては、長繊維を絡み合わせてマット状に成形する際にニードルパンチングの工程を必要とするため、製造工程の簡略化に課題を残している。また、長繊維マットに熱硬化性接着剤を供給する手段として含浸処理を用いた場合、繊維同士の接着が不十分となることが懸念される。さらには、長繊維マットを熱硬化性接着剤に含浸する工程で繊維の脱落等が生じやすく、必ずしも材料を無駄なく利用できているとは言い切れない面がある。     However, in the manufacturing method of the fiberboard described in Patent Document 1, a needle punching process is required when the long fibers are entangled and formed into a mat shape, so that there remains a problem in simplifying the manufacturing process. Yes. Further, when the impregnation treatment is used as a means for supplying the thermosetting adhesive to the long fiber mat, there is a concern that the adhesion between the fibers becomes insufficient. Furthermore, in the process of impregnating the long-fiber mat with a thermosetting adhesive, the fibers are likely to fall off, and it is not always possible to use the material without waste.

特許文献2に記載された繊維板の製造方法においては、長繊維に接着剤を添加する工程と、短繊維に接着剤を添加する工程とが別々に行われている。また、長繊維からなる層と短繊維からなる層を積み重ねてなる積層板を製造している。このため、製造工程がやや複雑であり、製造設備面においても、接着剤の供給ラインが2系統必要になり、必ずしも製造コストを低く抑えることが容易であるとはいい難い側面があった。   In the fiberboard manufacturing method described in Patent Document 2, the step of adding an adhesive to long fibers and the step of adding an adhesive to short fibers are performed separately. Moreover, the laminated board which laminates the layer which consists of a long fiber, and the layer which consists of a short fiber is manufactured. For this reason, the manufacturing process is somewhat complicated, and also in terms of manufacturing equipment, two supply lines for the adhesive are required, and it is not always easy to keep the manufacturing cost low.

本発明は、以上の通りの事情に鑑みてなされたものであり、長繊維同士の接着性を高め、強度や耐久性、寸法安定性等の基本性能に優れた繊維板を、より簡便に、しかも安価に製造する方法と、この繊維板の製造方法によって製造された繊維板を提供することを課題とする。   The present invention was made in view of the circumstances as described above, enhances the adhesion between long fibers, and more easily a fiberboard excellent in basic performance such as strength, durability, dimensional stability, Moreover, it is an object of the present invention to provide a method for manufacturing at low cost and a fiberboard manufactured by the method for manufacturing the fiberboard.

上記の課題を解決するために、本発明の繊維板の製造方法は、平均繊維長5mm以上50mm以下の長繊維と、平均繊維長2mm以上5mm未満の短繊維とを含む被接着物を攪拌した状態で、この被接着物に液状の熱硬化性樹脂をスプレーして供給した後、加熱加圧成形し、繊維板を製造することを特徴としている。   In order to solve the above-described problems, the fiberboard manufacturing method of the present invention stirs an adherend including long fibers having an average fiber length of 5 mm or more and 50 mm or less and short fibers having an average fiber length of 2 mm or more and less than 5 mm. In the state, after spraying and supplying a liquid thermosetting resin to this adherend, it heat-press-molds and manufactures a fiber board.

この繊維板の製造方法では、被接着物における長繊維の混合割合が10質量%以上90質量%以下であることが好ましい。   In this fiberboard manufacturing method, it is preferable that the mixing ratio of long fibers in the adherend is 10% by mass or more and 90% by mass or less.

この繊維板の製造方法では、気流搬送により攪拌することが好ましい。   In this fiberboard manufacturing method, it is preferable to stir by airflow conveyance.

この繊維板の製造方法では、機械攪拌することが好ましい。   In this fiberboard manufacturing method, it is preferable to perform mechanical stirring.

また、本発明の繊維板は、平均繊維長5mm以上50mm以下の長繊維と、平均繊維長2mm以上5mm未満の短繊維とを含む被接着物の表面に熱硬化性樹脂が均一に分散し、この熱硬化性樹脂が硬化して板状に成形されていることを特徴としている。   In the fiberboard of the present invention, the thermosetting resin is uniformly dispersed on the surface of the adherend including long fibers having an average fiber length of 5 mm to 50 mm and short fibers having an average fiber length of 2 mm to less than 5 mm, The thermosetting resin is cured and formed into a plate shape.

本発明の繊維板の製造方法によれば、長繊維同士の接着性を高め、強度や耐久性、寸法安定性等の基本性能に優れた繊維板を、より簡便に、しかも安価に製造することができる。   According to the fiberboard manufacturing method of the present invention, a fiberboard having improved basic properties such as strength, durability, dimensional stability and the like is more easily and inexpensively manufactured by increasing the adhesion between long fibers. Can do.

また、本発明の繊維板によれば、長繊維同士の接着性が高まり、強度や耐久性、寸法安定性等の基本性能に優れた繊維板が、より簡便に、しかも安価に実現される。   Further, according to the fiberboard of the present invention, a fiberboard having improved basic properties such as strength, durability, dimensional stability and the like can be realized more simply and inexpensively.

本発明の繊維板の製造方法における機械攪拌式の接着剤供給工程を示す概略断面図である。It is a schematic sectional drawing which shows the mechanical stirring type adhesive agent supply process in the manufacturing method of the fiber board of this invention. 本発明の繊維板の製造方法における気流搬送による攪拌方式の接着剤供給工程を示す概略断面図である。It is a schematic sectional drawing which shows the adhesive supply process of the stirring system by the airflow conveyance in the manufacturing method of the fiber board of this invention.

以下に、本発明の繊維板の製造方法と繊維板について、図面に沿って詳細に説明する。図1は、本発明の繊維板の製造方法における機械攪拌式の接着剤供給工程を示す概略断面図である。   Below, the manufacturing method and fiberboard of the fiberboard of this invention are demonstrated in detail along drawing. FIG. 1 is a schematic cross-sectional view showing a mechanically stirring adhesive supply step in the fiberboard manufacturing method of the present invention.

接着剤塗布容器1の中央部に攪拌子2が回転自在に設置されており、攪拌子2が回転することにより、被接着物として含まれる長繊維3と短繊維4が混合されると同時に分散され、別途設けたスプレーノズル5から、液状の熱硬化性樹脂6を噴霧することにより、接着剤である液状の熱硬化性樹脂6を繊維表面に均一に分散させる。   A stirrer 2 is rotatably installed in the central portion of the adhesive application container 1, and when the stirrer 2 rotates, the long fibers 3 and the short fibers 4 included as the adherend are mixed and dispersed at the same time. The liquid thermosetting resin 6 as an adhesive is uniformly dispersed on the fiber surface by spraying the liquid thermosetting resin 6 from a spray nozzle 5 provided separately.

長繊維3には、平均繊維長が5mm以上50mm以下のものを用いる。   As the long fiber 3, one having an average fiber length of 5 mm or more and 50 mm or less is used.

長繊維3の種類としては、植物系または木質系繊維であれば特に限定されないが、例えば、ケナフ、ジュート、亜麻、ラミー、ヘンプ、サイザル等を解繊して得られる靭皮長繊維が例示される。ケナフやジュートは、麻類の一年草であって、主に中国、東南アジア等で栽培されている。これら麻系の繊維は、従来より網やロープ等に利用されており、近年では非木材紙の原料パルプとしても用いられている。また、ケナフやジュートは、靱皮部から長繊維3を容易に得ることができる。   The type of long fiber 3 is not particularly limited as long as it is a plant-based or wood-based fiber, and examples thereof include bast long fibers obtained by defibrating kenaf, jute, flax, ramie, hemp, sisal, etc. The Kenaf and jute are hemp annuals and are cultivated mainly in China and Southeast Asia. These hemp fibers have been conventionally used for nets, ropes, and the like, and in recent years are also used as raw pulp for non-wood paper. In addition, kenaf and jute can easily obtain the long fibers 3 from the bast portion.

これら靭皮繊維を用いる以外にも、例えば、麻系繊維の紡績工程で排出される屑繊維であるカディス繊維を用いることが例示される。カディス繊維は、繊維長が数十mm以上と極端に長いものや繊維径が揃っていないため、紡績用途には用いることができず、通常焼却される等して廃棄物となっているのが現状である。このため、カディス繊維を利用可能とすることは、廃棄物を削減する上で有効となる。   In addition to using these bast fibers, for example, the use of Cadiz fibers that are waste fibers discharged in the spinning process of hemp-based fibers is exemplified. Cadiz fiber is extremely long with a fiber length of several tens of mm or more, and because the fiber diameter is not uniform, it cannot be used for spinning applications, and is usually incinerated, etc. Currently. For this reason, making Cadiz fibers available is effective in reducing waste.

また、その他の長繊維3としては、油ヤシから得られる油ヤシ繊維、ココヤシから得られるココヤシ繊維が例示される。   Examples of the other long fibers 3 include oil palm fibers obtained from oil palm and coconut fibers obtained from coconut palm.

油ヤシは、主にマレーシア、インドネシア、フィリピン等で栽培されており、近年、ヤシ油の需要増加のために、その栽培面積は増加している。ヤシ油の搾油に利用される果実以外の空果房(Empty Fruit Bunch)と呼ばれる果体(果実部)や、油ヤシの葉柄部(Frond)等は、その組成のほとんどが繊維質で構成されているにもかかわらずこれまでにほとんど利用されていない。このため、油ヤシの栽培面積の増加に伴って、空果房や葉柄部の廃棄量も増加している。しかしながら、空果房や葉柄部はハンマーミル等の物理的な剪断処理(解繊処理)により長繊維3が容易に得られ、また、果実を収穫することを目的として果体ごとに集積されているために、空果房も容易に得ることができる。従って、油ヤシ繊維は、コスト面からも繊維板の素材として適している。   Oil palm is mainly cultivated in Malaysia, Indonesia, the Philippines, etc., and its cultivation area has increased in recent years due to an increase in demand for palm oil. The fruit body (fruit part) called empty fruit buns (Empty Fruit Bunch), which are used for oil extraction of palm oil, and the stalk part (Frond) of oil palm are mostly composed of fiber. Despite being rarely used so far. For this reason, with the increase in the cultivation area of oil palm, the amount of waste of empty fruit bunches and petioles also increases. However, the empty fruit bunches and petiole parts can be easily obtained as long fibers 3 by a physical shearing process (defibration process) such as a hammer mill, and are accumulated for each fruit body for the purpose of harvesting fruits. Therefore, empty fruit bunches can be easily obtained. Therefore, the oil palm fiber is suitable as a material for the fiber board from the viewpoint of cost.

以上の長繊維3は、植物原料を機械的に解繊処理することによって得られ、単体または2種類以上を混合して用いることができる。また、長繊維3は、針葉樹から得られる針葉樹繊維や広葉樹から得られる広葉樹繊維に比べて、高い強度を有するものであり、長繊維3を用いることによって、針葉樹繊維や広葉樹繊維のみからなる繊維板に比べて、強度の向上を図ることができる。   The above long fibers 3 are obtained by mechanically defibrating plant raw materials, and can be used alone or in combination of two or more. Further, the long fiber 3 has higher strength than the softwood fiber obtained from the conifer and the hardwood fiber obtained from the hardwood, and by using the long fiber 3, the fiber plate made of only the coniferous fiber or the hardwood fiber. Compared to the above, the strength can be improved.

短繊維4には、平均繊維長が2mm以上5mm未満のものを用いる。   The short fiber 4 has an average fiber length of 2 mm or more and less than 5 mm.

短繊維4の種類としては、植物系または木質系繊維であれば特に限定されないが、例えば、アガチス、パイン等の針葉樹から得られる針葉樹繊維や、ラワン、メランチ、ナラ、ブナ、ゴムの木等の広葉樹から得られる広葉樹繊維が例示される。これらの繊維は、従来から中密度繊維板(MDF、Medium Density Fiberboard)の素材として利用される場合が多いので、供給も安定し入手しやすいという利点がある。従って、このような針葉樹や広葉樹から得られる短繊維4を使用することが好ましい。   The type of the short fiber 4 is not particularly limited as long as it is a plant-based or wood-based fiber. For example, coniferous fibers obtained from conifers such as agathis and pine, lawan, meranti, oak, beech, rubber trees, etc. Examples are hardwood fibers obtained from hardwood. Conventionally, these fibers are often used as a material for medium density fiberboard (MDF), so that there is an advantage that supply is stable and easy to obtain. Therefore, it is preferable to use the short fiber 4 obtained from such a conifer or a hardwood.

また、これら針葉樹繊維、広葉樹繊維以外にも、さとうきび、とうもろこし、竹、イネ等から得られる農産廃棄物繊維を利用することができる。さとうきび、とうもろこし、竹、イネ等の農産廃棄物を、ハンマーミル等の粉砕機やリファイナーと呼ばれる解繊機等で加工することにより、比較的容易に短繊維4を得ることができる。   In addition to these softwood fibers and hardwood fibers, agricultural waste fibers obtained from sugar cane, corn, bamboo, rice and the like can be used. By processing agricultural waste such as sugar cane, corn, bamboo, and rice with a pulverizer such as a hammer mill or a defibrator called a refiner, the short fibers 4 can be obtained relatively easily.

以上の短繊維4は、植物原料を機械的に解繊処理することによって得られ、単体または2種類以上を混合して用いることができる。   The above short fibers 4 are obtained by mechanically defibrating plant raw materials, and can be used alone or in combination of two or more.

なお、長繊維3と短繊維4の組み合わせについては、長繊維3の平均繊維長が比較的長い40mm以上50mm以下の場合は、平均繊維長が3mm以上5mm未満の短繊維4を用い、長繊維3の平均繊維長が比較的短い5mm以上10mm以下の場合は、平均繊維長が2mm以上3mm以下の短繊維4を用いることが好ましい。   In addition, about the combination of the long fiber 3 and the short fiber 4, when the average fiber length of the long fiber 3 is comparatively long 40 mm or more and 50 mm or less, the short fiber 4 whose average fiber length is 3 mm or more and less than 5 mm is used, and long fiber When the average fiber length of 3 is relatively short and is 5 mm or more and 10 mm or less, it is preferable to use short fibers 4 having an average fiber length of 2 mm or more and 3 mm or less.

長繊維3と短繊維4を混合する際の質量比は、特に限定はされないが、繊維板の強度や耐久性、寸法安定性等の基本性能を考慮すると、長繊維3の質量比率が10質量%以上90質量%以下の範囲とするのが好ましい。より好ましくは25質量%以上75質量%以下の範囲であり、さらに好ましくは50質量%以上75質量%以下の範囲である。   The mass ratio when mixing the long fiber 3 and the short fiber 4 is not particularly limited, but considering the basic performance such as the strength, durability, and dimensional stability of the fiberboard, the mass ratio of the long fiber 3 is 10 mass. % Or more and 90% by mass or less is preferable. More preferably, it is the range of 25 mass% or more and 75 mass% or less, More preferably, it is the range of 50 mass% or more and 75 mass% or less.

長繊維3同士の接着に用いる接着剤である液状の熱硬化性樹脂6の種類は、繊維板の製造に用いられる熱硬化性樹脂であれば特に限定されない。例えば、ユリア系樹脂、メラミン系樹脂、フェノール系樹脂、レゾルシノール系樹脂、エポキシ系樹脂、ウレタン系樹脂、フルフラール系樹脂、イソシアネート系樹脂等のように液状であり、かつ加熱硬化する熱硬化性樹脂が例示される。これらは、単体または2種類以上を混合して用いることができる。   The kind of the liquid thermosetting resin 6 that is an adhesive used for bonding the long fibers 3 is not particularly limited as long as it is a thermosetting resin used for manufacturing a fiber board. For example, thermosetting resins that are liquid and heat-cured such as urea resins, melamine resins, phenol resins, resorcinol resins, epoxy resins, urethane resins, furfural resins, isocyanate resins, etc. Illustrated. These can be used alone or in combination of two or more.

長繊維3と短繊維4の合計質量に対する液状の熱硬化性樹脂6の添加量は、固形分換算で2質量%以上30質量%以下、好ましくは8質量%以上15質量%以下の範囲が例示される。   The addition amount of the liquid thermosetting resin 6 with respect to the total mass of the long fibers 3 and the short fibers 4 is in the range of 2% by mass to 30% by mass, preferably 8% by mass to 15% by mass in terms of solid content. Is done.

被接着物には、長繊維3と短繊維4以外に、必要に応じて、サイズ剤等を添加することができる。   In addition to the long fibers 3 and the short fibers 4, a sizing agent or the like can be added to the adherend as needed.

長繊維3と短繊維4を含む被接着物に、液状の熱硬化性樹脂6を分散させる際には以下のとおりに行うことができる。   When the liquid thermosetting resin 6 is dispersed in the adherend including the long fibers 3 and the short fibers 4, it can be performed as follows.

予め、長繊維3と短繊維4を含む被接着物を、機械式の攪拌機構を有する攪拌機の接着剤塗布容器1内に投入後、被接着物を攪拌子2により混合攪拌することによって、長繊維3と短繊維4が凝集や偏析することなく均一な状態の集合体の状態とする。この状態を維持させながら、液状の熱硬化性樹脂6をスプレー塗布することにより、長繊維3と短繊維4の表面に接着剤を均一に分散させる。   First, an object to be bonded including long fibers 3 and short fibers 4 is put into an adhesive applicator container 1 of a stirrer having a mechanical stirring mechanism, and then the object to be bonded is mixed and stirred by a stirrer 2. The fiber 3 and the short fiber 4 are in a uniform state without aggregation or segregation. While maintaining this state, the liquid thermosetting resin 6 is spray-coated to uniformly disperse the adhesive on the surfaces of the long fibers 3 and the short fibers 4.

図2は、本発明の繊維板の製造方法における気流搬送による攪拌方式の接着剤供給工程を示す概略断面図である。
図2に示すように、予め混合した長繊維3と短繊維4を含む被接着物を、中空パイプ7内で気流搬送するとともに、乱流により攪拌させながら、スプレーノズル5から液状の熱硬化性樹脂6を噴霧する。このような気流搬送による搬送方式であれば、機械的に攪拌する機構がないため、長繊維3の攪拌子2への絡みつき付着を起こすことなく、接着剤である液状の熱硬化性樹脂6の分散が可能である。また、より一層、長繊維3同士の絡み合いや凝集形成を抑制する効果が働き、液状の熱硬化性樹脂6をスプレーした際に、長繊維3および短繊維4の表面に均一に液状の熱硬化性樹脂6を分散させて、長繊維3同士の接着性を強固にすることができる。
FIG. 2 is a schematic cross-sectional view showing an agitation-type adhesive supply step by airflow conveyance in the fiberboard manufacturing method of the present invention.
As shown in FIG. 2, an object to be bonded containing premixed long fibers 3 and short fibers 4 is conveyed in air through a hollow pipe 7 and stirred by turbulent flow while being liquid thermosetting from a spray nozzle 5. Resin 6 is sprayed. Since there is no mechanism that mechanically stirs in such a transport method by airflow transport, the liquid thermosetting resin 6 that is an adhesive does not cause entanglement and adhesion of the long fibers 3 to the stirrer 2. Dispersion is possible. In addition, the effect of suppressing the entanglement and agglomeration between the long fibers 3 works, and when the liquid thermosetting resin 6 is sprayed, the surface of the long fibers 3 and the short fibers 4 is uniformly liquid thermoset. The adhesive resin 6 can be dispersed to strengthen the adhesion between the long fibers 3.

以上のように長繊維3および短繊維4を含む被接着物に、接着剤である液状の熱硬化性樹脂6を分散させた後、必要に応じて乾燥させることによって、所定の含水率となるように調整することができる。乾燥は、長繊維3および短繊維4の集合体に常温風や熱風を送風したり、長繊維3および短繊維4を含む被接着物を加熱炉に導入して加熱したりすることによって行なうことができる。このような乾燥は、長繊維3および短繊維4の集合体中の水分が15質量%以下になるように行なうことが望ましい。   As described above, the liquid thermosetting resin 6 as the adhesive is dispersed in the adherend including the long fibers 3 and the short fibers 4, and then dried as necessary to obtain a predetermined moisture content. Can be adjusted as follows. Drying is performed by blowing normal temperature air or hot air to the aggregate of the long fibers 3 and the short fibers 4, or introducing an object to be bonded including the long fibers 3 and the short fibers 4 into a heating furnace and heating it. Can do. Such drying is desirably performed so that the water content in the aggregate of long fibers 3 and short fibers 4 is 15% by mass or less.

そして、長繊維3および短繊維4を含む被接着物をマット状に成形した後に、このマットを加熱加圧成形し、液状の熱硬化性樹脂6を硬化させることによって、繊維板を作製することができる。   And after forming the to-be-adhered object containing the long fiber 3 and the short fiber 4 in the shape of a mat, this mat is heated and pressure-molded, and the liquid thermosetting resin 6 is cured to produce a fiberboard. Can do.

加熱加圧成形工程では、例えば、加熱した一対のスチールベルトの隙間に圧力を加えながらマットを搬送させる連続プレス装置や、加熱した複数の熱板間にマットを挟んで加圧する多段プレス装置等を用いることができる。成形条件は、特に限定されるものではないが、例えば、成形温度120℃〜190℃、成形圧力1MPa〜4MPaの範囲が例示される。圧縮時間は、板厚や加熱温度等を考慮して適宜設定することができる。   In the heat and pressure molding process, for example, a continuous press device that conveys the mat while applying pressure to a gap between a pair of heated steel belts, a multistage press device that presses with the mat sandwiched between a plurality of heated hot plates, etc. Can be used. The molding conditions are not particularly limited, but examples include a molding temperature of 120 ° C. to 190 ° C. and a molding pressure of 1 MPa to 4 MPa. The compression time can be appropriately set in consideration of the plate thickness, heating temperature, and the like.

繊維板の厚みは、特に制限はなく、例えば、1mm〜20mmが例示される。繊維板の強度特性、寸法安定性等を考慮すると、2mm以上とするのが好ましい。   There is no restriction | limiting in particular in the thickness of a fiber board, For example, 1-20 mm is illustrated. Considering the strength characteristics, dimensional stability, etc. of the fiberboard, it is preferably 2 mm or more.

このようにして製造される繊維板は、密度を600kg/m〜900kg/mの範囲、より好ましくは700kg/m〜850kg/mの範囲になるように設定することができる。密度の設定は、繊維板の作製時において液状の熱硬化性樹脂6の含有量を調整することや、マットの面質量の調整等によって行なうことができる。繊維板の密度が、上記の範囲にあれば、長繊維3同士の接着が十分となり、強度や寸法安定性に優れ、成形時に発生しやすいパンク等を抑制することができ、しかも、コスト面で有利となる。 Thus fiberboard is manufactured in a range of density of 600kg / m 3 ~900kg / m 3 , more preferably it is set to be in the range of 700kg / m 3 ~850kg / m 3 . The density can be set by adjusting the content of the liquid thermosetting resin 6 at the time of producing the fiber board, adjusting the surface mass of the mat, or the like. If the density of the fiberboard is in the above range, the long fibers 3 can be sufficiently bonded to each other, excellent in strength and dimensional stability, can be prevented from being punctured during molding, and in terms of cost. It will be advantageous.

本発明の繊維板の製造方法で得られる繊維板は、従来の短繊維4からなる繊維板に比べ、強度や寸法安定性の向上が図られ、床材、壁材、天井材等の建築部材、扉部材、巾木、廻り縁等の造作部材、家具用材料等の幅広い分野で利用することができる。   The fiberboard obtained by the fiberboard manufacturing method of the present invention is improved in strength and dimensional stability compared to a conventional fiberboard made of short fibers 4, and is a building member such as a flooring material, wall material, ceiling material, etc. It can be used in a wide range of fields, such as door members, baseboards, framed edges, furniture materials, and the like.

以下に実施例を示すが、本発明の繊維板の製造方法と繊維板は、実施例に限定されるものではない。
<実施例>
(実施例1)
ジュートの長繊維束(幅:1cm〜2cm、長さ:2cm〜4m)を機械的に解繊処理することによって、平均繊維長が25mmで平均径が100μmであるジュート長繊維を得た。
Although an Example is shown below, the manufacturing method and fiberboard of the fiberboard of this invention are not limited to an Example.
<Example>
Example 1
A jute long fiber bundle (width: 1 cm to 2 cm, length: 2 cm to 4 m) was mechanically defibrated to obtain jute long fibers having an average fiber length of 25 mm and an average diameter of 100 μm.

また、スギチップを加圧リファイナーで解繊することにより、平均繊維長が約3mmで平均径が50μmのスギ短繊維を得た。   Also, cedar chips were defibrated with a pressure refiner to obtain cedar short fibers having an average fiber length of about 3 mm and an average diameter of 50 μm.

次に、このジュート長繊維とスギ短繊維の質量比率が75:25となるように混合したものに、図2に示すような気流搬送式のブレンダー装置を用いて、液状のフェノール樹脂接着剤を所定量添加した。その際、樹脂固形分の添加率が15質量%となるように塗布量の調整を行った。   Next, a liquid phenol resin adhesive is added to the mixture of the jute long fibers and the cedar short fibers so that the mass ratio is 75:25, using an air-flow conveying blender device as shown in FIG. A predetermined amount was added. At that time, the coating amount was adjusted so that the addition rate of the resin solid content was 15% by mass.

次に、液状のフェノール樹脂接着剤を塗布した長繊維と短繊維の集合体を、20cm角の木製型枠内に撒布し、上蓋で軽く圧締めすることにより、厚さ約50mmの、ケナフ長繊維とスギ短繊維を複合した繊維マットを製造した。   Next, an aggregate of long fibers and short fibers coated with a liquid phenolic resin adhesive is spread in a 20 cm square wooden formwork and lightly clamped with an upper lid to make a kenaf length of about 50 mm. A fiber mat in which fibers and cedar short fibers were combined was produced.

この後、この繊維マットを180℃、3MPa、3分間の条件で加熱加圧成形し、厚さ2mmのケナフ-スギ複合繊維板を得た。この繊維板の密度は約800kg/mであった。
(実施例2)
攪拌方法として、気流搬送式ではなく、攪拌子が回転する機械攪拌式の機械式ブレンダー装置を用いて機械攪拌したこと以外は実施例1と同様にして、繊維板を製造した。
(実施例3)
短繊維として、スギ繊維のかわりにサトウキビの搾りかすであるバガスを解繊したバガス短繊維を用い、ジュート長繊維とバガス短繊維の質量比率を75:25としたこと以外は実施例1と同様にして、繊維板を製造した。
(実施例4)
長繊維として、紡績工程での屑繊維であるカディス繊維を所定長さに切断して得られた、繊維長が10mm以上50mm以下のカディス繊維を用い、カディス繊維とバガス短繊維の質量比率を50:50としたこと以外は実施例3と同様にして、繊維板を製造した。
(実施例5)
カディス繊維とスギ短繊維の質量比率を90:10としたこと以外は実施例1と同様にして、繊維板を製造した。
(実施例6)
カディス繊維とスギ短繊維の質量比率を50:50としたこと以外は実施例1と同様にして、繊維板を製造した。
(実施例7)
カディス繊維とスギ短繊維の質量比率を25:75としたこと以外は実施例1と同様にして、繊維板を製造した。
(比較例1)
ケナフ長繊維だけを用いること以外は実施例1と同様にして、ケナフ長繊維のみからなる繊維板を得た。
(比較例2)
実施例1に示した、ジュート長繊維とスギ短繊維を、ニードルパンチによって、長繊維と短繊維の質量比率が90:10となるように複合した繊維マットを得た。次に、この繊維マットをフェノール樹脂接着剤中に含浸した後、絞りローラーに通して絞ることによって、フェノール樹脂接着剤の添加率が15質量%となるように調整した。
Thereafter, the fiber mat was heat-pressed under conditions of 180 ° C., 3 MPa, and 3 minutes to obtain a kenaf-cedar composite fiber plate having a thickness of 2 mm. The density of this fiberboard was about 800 kg / m 3 .
(Example 2)
A fiberboard was produced in the same manner as in Example 1 except that mechanical stirring was performed using a mechanical stirring type mechanical blender device in which a stirring bar rotates instead of the air flow conveying method.
Example 3
As the short fiber, a bagasse short fiber obtained by defusing bagasse, which is squeezed sugar cane, is used instead of the cedar fiber, and the mass ratio of the jute long fiber to the bagasse short fiber is 75:25. Thus, a fiberboard was manufactured.
Example 4
As a long fiber, a Cadiz fiber having a fiber length of 10 mm or more and 50 mm or less obtained by cutting a Cadiz fiber, which is a scrap fiber in a spinning process, into a predetermined length, a mass ratio of Cadiz fiber and Bagasse short fiber is 50. A fiberboard was produced in the same manner as in Example 3 except that the ratio was 50.
(Example 5)
A fiberboard was produced in the same manner as in Example 1 except that the mass ratio of the Cadiz fibers and the cedar short fibers was 90:10.
(Example 6)
A fiberboard was produced in the same manner as in Example 1 except that the mass ratio of the Cadiz fibers and the cedar short fibers was 50:50.
(Example 7)
A fiberboard was produced in the same manner as in Example 1 except that the mass ratio of the Cadiz fibers and the cedar short fibers was 25:75.
(Comparative Example 1)
A fiberboard made of only kenaf long fibers was obtained in the same manner as in Example 1 except that only kenaf long fibers were used.
(Comparative Example 2)
A fiber mat in which jute long fibers and cedar short fibers shown in Example 1 were combined by needle punching so that the mass ratio of long fibers to short fibers was 90:10 was obtained. Next, the fiber mat was impregnated in a phenol resin adhesive, and then squeezed through a squeeze roller to adjust the addition rate of the phenol resin adhesive to 15% by mass.

次に、フェノール樹脂接着剤を含有する繊維マットを、含水率が約10質量%となるように80℃で乾燥した。この後、この繊維マットを180℃、3MPa、3分間の条件で加熱加圧成形し、厚さ2mmのケナフ-スギ複合繊維板を得た。この繊維板の密度は約800kg/mであった。 Next, the fiber mat containing the phenol resin adhesive was dried at 80 ° C. so that the water content was about 10% by mass. Thereafter, the fiber mat was heat-pressed under conditions of 180 ° C., 3 MPa, and 3 minutes to obtain a kenaf-cedar composite fiber plate having a thickness of 2 mm. The density of this fiberboard was about 800 kg / m 3 .

実施例および比較例で得られた繊維板について、繊維板の寸法安定性として吸湿時の長さ変化率、強度特性として曲げ強度を測定し、物性を評価した。評価の基準は下記の通りである。
<寸法安定性評価>
寸法安定性の測定は、繊維板から切り出した厚さ2mm、100mm角サイズのサンプルの両辺の中央に標線を引き、長さ計測点を予め定め、サンプルを温度20℃、相対湿度65%に設定した恒温恒湿槽内に4日間以上設置し、質量変化がほぼ変化がないことを確認し、吸湿試験に供した。
About the fiber board obtained by the Example and the comparative example, the length change rate at the time of moisture absorption was measured as a dimensional stability of a fiber board, bending strength was measured as a strength characteristic, and the physical property was evaluated. The evaluation criteria are as follows.
<Dimensional stability evaluation>
Dimensional stability is measured by drawing a standard line at the center of both sides of a 2 mm thick, 100 mm square sample cut from a fiberboard, pre-determining length measurement points, and setting the sample to a temperature of 20 ° C. and a relative humidity of 65%. It was installed in a set temperature and humidity chamber for 4 days or more, confirmed that there was almost no change in mass, and subjected to a moisture absorption test.

吸湿試験前に、上記標点間の距離をノギスで計測し、試験前寸法とした。その後、温度40℃、相対湿度90%に設定した恒温恒湿槽内に4日間以上設置し、質量変化がないことを確認後、同様にノギスで標点間距離を計測し、下記の式により長さ変化率を計測した。   Prior to the moisture absorption test, the distance between the above marks was measured with a caliper to obtain a pre-test dimension. After that, after installing for 4 days or more in a constant temperature and humidity chamber set at a temperature of 40 ° C. and a relative humidity of 90%, and confirming that there is no mass change, measure the distance between the gauge points with calipers in the same way, The length change rate was measured.

吸湿時の長さ変化率〔%〕=(吸湿後の寸法/試験前寸法−1)×100
◎: 長さ変化率が0.04%未満を◎とした。
○: 長さ変化率が0.04%以上0.07%未満の範囲を○とした。
△: 長さ変化率が0.07%以上0.10%未満の範囲を△とした。
×: 長さ変化率が0.10%以上を×とした。
<強度特性評価>
得られた繊維板において、JIS A 5905(繊維板)に基づく曲げ強さ試験を行うことによって曲げ強度を測定した。
◎: 曲げ強度が40MPa以上を◎とした。
○: 曲げ強度が30MPa以上40MPa未満の範囲を○とした。
△: 曲げ強度が20MPa以上30MPa未満の範囲を△とした。
×: 曲げ強度が20MPa未満を×とした。
Length change rate during moisture absorption [%] = (dimension after moisture absorption / dimension before test-1) x 100
A: The rate of change in length is less than 0.04%.
◯: A range where the length change rate was 0.04% or more and less than 0.07% was defined as ◯.
Δ: A range where the rate of change in length is 0.07% or more and less than 0.10% is defined as Δ.
X: A rate of change in length of 0.10% or more was evaluated as x.
<Strength characteristic evaluation>
In the obtained fiberboard, the bending strength was measured by performing a bending strength test based on JIS A 5905 (fiberboard).
A: A bending strength of 40 MPa or more was evaluated as A.
○: The range where the bending strength was 30 MPa or more and less than 40 MPa was taken as ○.
Δ: A range where the bending strength is 20 MPa or more and less than 30 MPa is defined as Δ.
X: A bending strength of less than 20 MPa was evaluated as x.

評価結果を表1に示す。   The evaluation results are shown in Table 1.

表1に示されるように、比較例1、2の製造方法で得られた繊維板では、強度、寸法安定性ともに十分でなかったのに対し、実施例1〜7については、いずれの場合にでも、強度および寸法安定性が向上していることが確認された。   As shown in Table 1, the fiberboards obtained by the production methods of Comparative Examples 1 and 2 were insufficient in both strength and dimensional stability, whereas Examples 1 to 7 were in any case. However, it was confirmed that the strength and dimensional stability were improved.

中でも、実施例1、3、4、6に示すように、気流搬送式で液状樹脂をスプレー塗布し、かつ長繊維の比率が50質量%以上75質量%以下(短繊維の比率が25質量%以上50質量%以下)の場合には、強度40MPa以上、寸法変化率が0.04%未満と、極めて優れた物性を示すことが確認された。   Among them, as shown in Examples 1, 3, 4, and 6, the liquid resin is spray-coated by an air flow conveyance type, and the ratio of long fibers is 50% by mass to 75% by mass (the ratio of short fibers is 25% by mass). In the case of 50% by mass or less), it was confirmed that the strength was 40 MPa or more and the dimensional change rate was less than 0.04%, indicating extremely excellent physical properties.

実施例1〜7と比較例2の対比から、強度および寸法安定性に優れた繊維板をより簡便に製造することができることが確認された。繊維板の低コストでの製造が図られる。   From the comparison between Examples 1 to 7 and Comparative Example 2, it was confirmed that a fiberboard excellent in strength and dimensional stability can be produced more easily. The fiberboard can be manufactured at a low cost.

実施例1、2の比較からは、攪拌状態が気流搬送式の方が、機械攪拌式にくらべ、より優れた物性を示すことが確認された。   From the comparison between Examples 1 and 2, it was confirmed that the stirring state in the air flow type showed better physical properties than the mechanical stirring type.

3 長繊維
4 短繊維
6 液状の熱硬化性樹脂
3 Long fiber 4 Short fiber 6 Liquid thermosetting resin

Claims (5)

平均繊維長5mm以上50mm以下の長繊維と、平均繊維長2mm以上5mm未満の短繊維とを含む被接着物を攪拌した状態で、この被接着物に液状の熱硬化性樹脂をスプレーして供給した後、加熱加圧成形し、繊維板を製造することを特徴とする繊維板の製造方法。   In a state where an adherend including a long fiber having an average fiber length of 5 mm to 50 mm and a short fiber having an average fiber length of 2 mm to less than 5 mm is stirred, a liquid thermosetting resin is sprayed and supplied to the adherend. After that, a method for producing a fiberboard, which is produced by heating and pressing to produce a fiberboard. 前記被接着物における前記長繊維の混合割合が10質量%以上90質量%以下であることを特徴とする請求項1に記載の繊維板の製造方法。   The method for producing a fiberboard according to claim 1, wherein a mixing ratio of the long fibers in the adherend is 10% by mass or more and 90% by mass or less. 気流搬送により攪拌することを特徴とする請求項1または2に記載の繊維板の製造方法。   The method for producing a fiberboard according to claim 1, wherein stirring is performed by airflow conveyance. 機械攪拌することを特徴とする請求項1または2に記載の繊維板の製造方法。   The fiberboard manufacturing method according to claim 1 or 2, wherein mechanical stirring is performed. 平均繊維長5mm以上50mm以下の長繊維と、平均繊維長2mm以上5mm未満の短繊維とを含む被接着物の表面に熱硬化性樹脂が均一に分散し、この熱硬化性樹脂が硬化して板状に成形されていることを特徴とする繊維板。
The thermosetting resin is uniformly dispersed on the surface of the adherend including long fibers having an average fiber length of 5 mm to 50 mm and short fibers having an average fiber length of 2 mm to less than 5 mm, and the thermosetting resin is cured. A fiberboard formed into a plate shape.
JP2013022714A 2013-02-07 2013-02-07 Method for manufacturing fiber board and fiber board Pending JP2014151542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022714A JP2014151542A (en) 2013-02-07 2013-02-07 Method for manufacturing fiber board and fiber board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022714A JP2014151542A (en) 2013-02-07 2013-02-07 Method for manufacturing fiber board and fiber board

Publications (1)

Publication Number Publication Date
JP2014151542A true JP2014151542A (en) 2014-08-25

Family

ID=51573884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022714A Pending JP2014151542A (en) 2013-02-07 2013-02-07 Method for manufacturing fiber board and fiber board

Country Status (1)

Country Link
JP (1) JP2014151542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322750A (en) * 2016-07-21 2017-11-07 Gce德国有限公司 The manufacture method of fiberboard

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922550B1 (en) * 1969-04-21 1974-06-10
JPS62135304A (en) * 1985-12-09 1987-06-18 Toyota Motor Corp Manufacture of wooden series molded body
JPH11333986A (en) * 1997-12-25 1999-12-07 Matsushita Electric Works Ltd Fibrous board and manufacture thereof
JP2000153512A (en) * 1998-11-19 2000-06-06 Kimura Chem Plants Co Ltd Method and apparatus for manufacturing fiberboard
JP2003025313A (en) * 2001-07-19 2003-01-29 Daiken Trade & Ind Co Ltd Lightweight wood fiberboard
JP2012236368A (en) * 2011-05-12 2012-12-06 Daiken Corp Wood fiberboard, wood composite board and floor member using the wood fiberboard, and methods of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922550B1 (en) * 1969-04-21 1974-06-10
JPS62135304A (en) * 1985-12-09 1987-06-18 Toyota Motor Corp Manufacture of wooden series molded body
JPH11333986A (en) * 1997-12-25 1999-12-07 Matsushita Electric Works Ltd Fibrous board and manufacture thereof
JP2000153512A (en) * 1998-11-19 2000-06-06 Kimura Chem Plants Co Ltd Method and apparatus for manufacturing fiberboard
JP2003025313A (en) * 2001-07-19 2003-01-29 Daiken Trade & Ind Co Ltd Lightweight wood fiberboard
JP2012236368A (en) * 2011-05-12 2012-12-06 Daiken Corp Wood fiberboard, wood composite board and floor member using the wood fiberboard, and methods of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322750A (en) * 2016-07-21 2017-11-07 Gce德国有限公司 The manufacture method of fiberboard

Similar Documents

Publication Publication Date Title
EP1325083B1 (en) Fibrous composite articles
CN101138856A (en) Technique for producing medium density fiberboard by using modified bulrush
JPH0839521A (en) Composition for producing strand board
CN105082302A (en) Manufacturing method of high-strength chipboard
EP3135811B1 (en) Production method of pulp derived from biomass for producing composite boards
US20210308899A1 (en) Method of manufacturing a wood-based panel
JP5303421B2 (en) WOODY COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP3515099B2 (en) Method for producing wood-based composite material
WO2014057655A1 (en) Fiberboard and manufacturing method therefor
JP2014151542A (en) Method for manufacturing fiber board and fiber board
WO2013118531A1 (en) Particle board
Akbulut et al. Some advantages of three-layer medium-density fibreboard as compared to the traditional single-layer one
WO2015118814A1 (en) Method for producing wooden board
JP2014205268A (en) Manufacturing method of woody board
KR101243489B1 (en) Structure of composite core for wood flooring
JP2020534194A (en) Binder for cellulose-containing materials
US6471897B1 (en) Composite article and method of making same
JP2004314593A (en) Method for manufacturing fiber board
JP4630608B2 (en) Manufacturing method of wood-based composite material
JP7148771B2 (en) materials
JP2013223954A (en) Method of manufacturing woody composite material and woody composite material
JP4012419B2 (en) Wood chip oriented laminate
Ukey et al. Role of resin content in MDF board fabricated from lignocellulosic fibre of Bambusa polymorpha Munro
JP6273596B2 (en) Manufacturing method of fiber board
JP2014054762A (en) Method for producing fiberboard

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206