JP2014150469A - Equalization device and equalization method - Google Patents

Equalization device and equalization method Download PDF

Info

Publication number
JP2014150469A
JP2014150469A JP2013019052A JP2013019052A JP2014150469A JP 2014150469 A JP2014150469 A JP 2014150469A JP 2013019052 A JP2013019052 A JP 2013019052A JP 2013019052 A JP2013019052 A JP 2013019052A JP 2014150469 A JP2014150469 A JP 2014150469A
Authority
JP
Japan
Prior art keywords
transmission path
physical quantity
component
path characteristic
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013019052A
Other languages
Japanese (ja)
Other versions
JP2014150469A5 (en
JP6021668B2 (en
Inventor
Naosuke Ito
尚祐 伊藤
Hiroyuki Nakayama
裕之 中山
Daisuke Shinpo
大介 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013019052A priority Critical patent/JP6021668B2/en
Publication of JP2014150469A publication Critical patent/JP2014150469A/en
Publication of JP2014150469A5 publication Critical patent/JP2014150469A5/ja
Application granted granted Critical
Publication of JP6021668B2 publication Critical patent/JP6021668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to adaptively perform transmission path estimation even in radio wave environment where a fluctuation frequency is large.SOLUTION: An equalization device comprises: a transmission path characteristic division unit 130 for dividing a transmission path characteristic acting on a pilot carrier into components in a plurality of regions on two axes of a fluctuation frequency axis and a delay time axis; an SP transmission path characteristic distribution calculation unit 140 for calculating a physical quantities of the divided components of the plurality of regions; a desired transmission path characteristic distribution calculation unit 150 for calculating a physical quantity of a desired component including no unnecessary repeating component by using regularity with which pilot carriers are arranged and a statistical characteristic of a transmission path; and a desired transmission path characteristic extraction unit 160 for extracting a component of a region including the desired component from the divided plurality of regions on the basis of the calculated physical quantity of the desired component.

Description

本発明は、等化装置及び等化方法に関する。   The present invention relates to an equalization apparatus and an equalization method.

多くの無線通信システム及び地上デジタル放送は、1つのシンボル内に複数の直交する搬送波(キャリア)を多重化して伝送する直交周波数分割多重(OFDM)伝送方式を用いている。このOFDM信号を、車等の移動体において受信する場合、建物等の障害物による反射、回折、散乱、及び、移動に伴う電波環境の変動等により信号に歪みが生じる。   Many wireless communication systems and terrestrial digital broadcasting use an orthogonal frequency division multiplexing (OFDM) transmission scheme in which a plurality of orthogonal carriers are multiplexed and transmitted in one symbol. When this OFDM signal is received by a moving body such as a car, the signal is distorted due to reflection, diffraction, scattering, and fluctuation of the radio wave environment accompanying movement due to an obstacle such as a building.

上記歪みを補償するために、受信機は、電波環境を推定し、その逆特性を受信信号に乗算する。ここで、電波環境を推定するため、送信機は、有効データの他に既知信号を送信信号に挿入しており、受信機は、その既知信号を用いて伝送路歪みを算出し、キャリア間及びシンボル間に補間することで、データ区間の電波環境の推定(以下、伝送路推定と呼ぶ)を行う。激しい変動を伴う劣悪な電波環境であっても正確な受信を行うためには、伝送路推定技術の向上が必要である。   In order to compensate for the distortion, the receiver estimates the radio wave environment and multiplies the received signal by the inverse characteristic. Here, in order to estimate the radio wave environment, the transmitter inserts a known signal in addition to the effective data into the transmission signal, and the receiver calculates the transmission path distortion using the known signal, By interpolating between symbols, the radio wave environment in the data section is estimated (hereinafter referred to as transmission path estimation). In order to perform accurate reception even in a poor radio wave environment with severe fluctuations, it is necessary to improve transmission path estimation technology.

特許文献1には、パイロットキャリアであるSP(Scattered Pilot)での伝送路特性を算出し、2次元離散フーリエ変換を行い、伝送路を推定する手法が記載されている。この従来技術は、まず、SPで算出した伝送路特性に、キャリア周波数とシンボル時間に対して2次元フーリエ変換を施すことで、遅延時間と変動周波数を変数に持つ伝送路特性を生成する。図1は、2波ライス伝送路(直接波は時間変動なし、遅延波はレイリー波)の場合の2次元フーリエ変換の変換結果を示す概略図である。図1において、符号700は所望の伝送路特性、符号800は不要な繰り返し成分である。なお、図1においては、不要な繰り返し成分800にハッチングが施されている。従来技術は、2次元離散フーリエ変換を行った信号について、予め定められた第1のフィルタ抽出領域900から電力の大きい成分を含むように第2のフィルタ抽出領域901を選択することで、不要な繰り返し成分800を抑圧して、所望の伝送路特性700を抽出する。そして、従来技術は、上記の抽出結果に2次元逆フーリエ変換を施すことで、伝送路特性を推定している。このように、従来技術は、遅延時間領域と変動周波数領域とにおける不要な繰り返し成分800を抑圧することで、SPで算出された伝送路特性をキャリア間及びシンボル間に補間し、SP以外の有効データ区間に対して伝送路推定を行なっている。   Patent Document 1 describes a method of calculating a transmission path characteristic in a pilot carrier SP (Scattered Pilot), performing a two-dimensional discrete Fourier transform, and estimating a transmission path. In this prior art, first, a channel characteristic having a delay time and a variable frequency as variables is generated by performing two-dimensional Fourier transform on the carrier frequency and symbol time on the channel characteristic calculated by SP. FIG. 1 is a schematic diagram illustrating a conversion result of a two-dimensional Fourier transform in the case of a two-wave rice transmission path (a direct wave has no time variation and a delayed wave is a Rayleigh wave). In FIG. 1, reference numeral 700 is a desired transmission line characteristic, and reference numeral 800 is an unnecessary repetitive component. In FIG. 1, unnecessary repeating components 800 are hatched. The prior art eliminates the need for the second filter extraction region 901 by selecting the second filter extraction region 901 from the predetermined first filter extraction region 900 so as to include a component having a large power with respect to the signal subjected to the two-dimensional discrete Fourier transform. The repetitive component 800 is suppressed and a desired transmission line characteristic 700 is extracted. The conventional technique estimates the transmission path characteristics by performing a two-dimensional inverse Fourier transform on the extraction result. As described above, the conventional technique suppresses unnecessary repetitive components 800 in the delay time region and the variable frequency region, thereby interpolating the transmission path characteristics calculated by the SP between the carriers and between the symbols. The transmission path is estimated for the data section.

特許第3802031号公報Japanese Patent No. 3820311

特許文献1に記載された従来技術は、2次元フーリエ変換を用いたフィルタ抽出処理により適応的に繰り返し成分及びガウス雑音の影響を抑圧することができる。しかしながら、この従来技術は、変動周波数が大きい時、注目する領域に繰り返し成分が入り込むため、正確な伝送路特性を得ることができないという課題がある。例えば、図2に示されているように、時間変動が大きい2波ライス伝送路の場合、所望の伝送路特性を抽出するための第1のフィルタ抽出領域902に、不要な繰り返し成分801が含まれるため、特許文献1に記載の従来技術では、正確な伝送路を推定することができない。   The prior art described in Patent Document 1 can adaptively suppress the influence of repetitive components and Gaussian noise by filter extraction processing using two-dimensional Fourier transform. However, this conventional technique has a problem that when the fluctuating frequency is large, a repetitive component enters a region of interest, so that accurate transmission path characteristics cannot be obtained. For example, as shown in FIG. 2, in the case of a two-wave rice transmission line with a large time fluctuation, an unnecessary repetitive component 801 is included in the first filter extraction region 902 for extracting a desired transmission line characteristic. Therefore, the conventional technique described in Patent Document 1 cannot estimate an accurate transmission path.

そこで、本発明は、変動周波数が大きい電波環境であっても適応的に伝送路推定を行うことができるようにすることを目的とする。   Therefore, an object of the present invention is to enable adaptive transmission path estimation even in a radio wave environment with a large fluctuation frequency.

本発明の一態様に係る等化装置は、
パイロットキャリアを含む受信信号を周波数領域の信号に変換するフーリエ変換部と、
前記フーリエ変換部で変換された周波数領域の信号に基づいて、前記パイロットキャリアに作用する伝送路特性を算出する伝送路特性算出部と、
前記伝送路特性算出部で算出された伝送路特性を、変動周波数軸と遅延時間軸との2軸上において、複数の領域の成分に分割する伝送路特性分割部と、
前記伝送路特性分割部で分割された複数の領域の成分の物理量を算出する伝送路特性分布算出部と、
前記伝送路特性分布算出部で算出された物理量から、前記伝送路特性算出部で算出された伝送路特性の繰り返し成分の物理量を、当該繰り返し成分の分布の規則性と、前記伝送路特性算出部で算出された伝送路特性の所望の成分の統計的性質とを用いて削減し、当該所望の成分の物理量を算出する所望伝送路特性分布算出部と、
前記所望伝送路特性分布算出部で算出された所望の成分の物理量に基づいて、前記伝送路特性分割部で分割された複数の領域の成分から、前記所望の成分が含まれる領域の成分を抽出する所望伝送路特性抽出部と、
前記所望伝送路特性抽出部で抽出された成分を結合することで、周波数領域の伝送路特性を生成する伝送路特性結合部と、
前記伝送路特性結合部で生成された周波数領域の伝送路特性を用いて、前記フーリエ変換部で変換された周波数領域の信号の伝送路歪みを補償する等化部と、を備えることを特徴とする。
An equalization apparatus according to one aspect of the present invention is provided.
A Fourier transform unit that converts a received signal including a pilot carrier into a signal in the frequency domain;
Based on the frequency domain signal transformed by the Fourier transform unit, a transmission line characteristic calculation unit for calculating a transmission line characteristic acting on the pilot carrier;
A transmission line characteristic dividing unit that divides the transmission line characteristic calculated by the transmission line characteristic calculation unit into components of a plurality of regions on two axes of a variable frequency axis and a delay time axis;
A transmission path characteristic distribution calculating section that calculates physical quantities of components of a plurality of regions divided by the transmission path characteristic dividing section;
The physical quantity of the repetitive component of the transmission path characteristic calculated by the transmission path characteristic calculation section from the physical quantity calculated by the transmission path characteristic distribution calculation section, the regularity of the distribution of the repetitive component, and the transmission path characteristic calculation section A desired transmission path characteristic distribution calculating unit that calculates the physical quantity of the desired component by using the statistical property of the desired component of the transmission path characteristic calculated in
Based on the physical quantity of the desired component calculated by the desired transmission path characteristic distribution calculating unit, the component of the area including the desired component is extracted from the components of the plurality of areas divided by the transmission path characteristic dividing unit. A desired transmission line characteristic extraction unit,
By combining the components extracted by the desired transmission line characteristic extracting unit, a transmission line characteristic combining unit that generates a transmission line characteristic in the frequency domain;
An equalization unit that compensates for transmission path distortion of the frequency domain signal converted by the Fourier transform unit using the frequency domain transmission path characteristic generated by the transmission path characteristic coupling unit, To do.

本発明の一態様に係る等化方法は、
パイロットキャリアを含む受信信号を周波数領域の信号に変換するフーリエ変換過程と、
前記フーリエ変換過程で変換された周波数領域の信号に基づいて、前記パイロットキャリアに作用する伝送路特性を算出する伝送路特性算出過程と、
前記伝送路特性算出過程で算出された伝送路特性を、変動周波数軸と遅延時間軸との2軸上において、複数の領域の成分に分割する伝送路特性分割過程と、
前記伝送路特性分割過程で分割された複数の領域の成分の物理量を算出する伝送路特性分布算出過程と、
前記伝送路特性分布算出過程で算出された物理量から、前記伝送路特性算出過程で算出された伝送路特性の繰り返し成分の物理量を、当該繰り返し成分の分布の規則性と、前記伝送路特性算出過程で算出された伝送路特性の所望の成分の統計的性質とを用いて削減し、当該所望の成分の物理量を算出する所望伝送路特性分布算出過程と、
前記所望伝送路特性分布算出過程で算出された所望の成分の物理量に基づいて、前記伝送路特性分割過程で分割された複数の領域の成分から、前記所望の成分が含まれる領域の成分を抽出する所望伝送路特性抽出過程と、
前記所望伝送路特性抽出過程で抽出された成分を結合することで、周波数領域の伝送路特性を生成する伝送路特性結合過程と、
前記伝送路特性結合過程で生成された周波数領域の伝送路特性を用いて、前記フーリエ変換過程で変換された周波数領域の信号の伝送路歪みを補償する等化過程と、を有することを特徴とする。
An equalization method according to an aspect of the present invention includes:
A Fourier transform process for transforming a received signal including a pilot carrier into a frequency domain signal;
A transmission path characteristic calculation process for calculating a transmission path characteristic acting on the pilot carrier based on the frequency domain signal transformed in the Fourier transform process;
A transmission line characteristic dividing process of dividing the transmission line characteristic calculated in the transmission line characteristic calculation process into components of a plurality of regions on two axes of a variable frequency axis and a delay time axis;
A transmission line characteristic distribution calculating process for calculating physical quantities of components of a plurality of regions divided in the transmission line characteristic dividing process;
From the physical quantity calculated in the transmission path characteristic distribution calculation process, the physical quantity of the repetitive component of the transmission path characteristic calculated in the transmission path characteristic calculation process, the regularity of the distribution of the repetitive component, and the transmission path characteristic calculation process A desired transmission path characteristic distribution calculating process for calculating the physical quantity of the desired component by using the statistical property of the desired component of the transmission path characteristic calculated in
Based on the physical quantity of the desired component calculated in the desired transmission path characteristic distribution calculating process, the component of the area including the desired component is extracted from the components of the plurality of areas divided in the transmission path characteristic dividing process. A desired transmission line characteristic extraction process,
By combining the components extracted in the desired transmission line characteristic extraction process, a transmission line characteristic combining process for generating a frequency domain transmission line characteristic;
An equalization process for compensating for transmission path distortion of a frequency domain signal transformed in the Fourier transform process using a frequency domain transmission path characteristic generated in the transmission path characteristic coupling process. To do.

本発明の一態様によれば、変動周波数が大きい電波環境であっても適応的に伝送路推定を行うことができる。   According to one embodiment of the present invention, transmission path estimation can be performed adaptively even in a radio wave environment with a large fluctuation frequency.

2波ライス伝送路で時間変動が小さい時の伝送路特性の変動周波数軸と遅延時間軸での電力分布を示す概略図である。It is the schematic which shows the electric power distribution on the fluctuation frequency axis | shaft of a transmission-line characteristic when a time fluctuation is small in a two-wave rice transmission line, and a delay time axis. 2波ライス伝送路で時間変動が大きい時の伝送路特性の変動周波数軸と遅延時間軸での2次元電力分布を示す概略図である。It is the schematic which shows the two-dimensional power distribution in the fluctuation frequency axis | shaft of a transmission-line characteristic when a time fluctuation is large in a two-wave rice transmission line, and a delay time axis. 実施の形態1〜3に係る等化装置の構成を概略的に示す機能ブロック図である。It is a functional block diagram which shows roughly the structure of the equalization apparatus which concerns on Embodiment 1-3. 実施の形態1におけるOFDMシンボルの構成を示す概略図である。3 is a schematic diagram showing a configuration of an OFDM symbol in Embodiment 1. FIG. 実施の形態1におけるパイロットキャリア(SP)の配置を示す概略図である。FIG. 3 is a schematic diagram showing an arrangement of pilot carriers (SP) in the first embodiment. 実施の形態1における伝送路特性の変動周波数軸と遅延時間軸での繰り返し成分の間隔を示す概略図である。FIG. 3 is a schematic diagram showing the interval between repetitive components on the variable frequency axis and delay time axis of the transmission path characteristics in the first embodiment. 実施の形態1における変動周波数軸と遅延時間軸での伝送路特性の分割を示す概略図である。6 is a schematic diagram illustrating division of transmission path characteristics on a variable frequency axis and a delay time axis according to Embodiment 1. FIG. 実施の形態1におけるシンボル時間補間フィルタの通過帯域例を示す概略図である。6 is a schematic diagram illustrating an example of a pass band of a symbol time interpolation filter in Embodiment 1. FIG. 実施の形態1において、変動周波数軸と遅延時間軸での伝送路特性の変動周波数領域での分割を示す概略図である。In Embodiment 1, it is the schematic which shows the division | segmentation in the fluctuation frequency area | region of the transmission-line characteristic in a fluctuation frequency axis | shaft and a delay time axis | shaft. 実施の形態1において、変動周波数軸と遅延時間軸でのSP伝送路特性の2次元電力分布を示す概略図である。In Embodiment 1, it is the schematic which shows the two-dimensional power distribution of SP transmission-line characteristics in a variable frequency axis and a delay time axis. 実施の形態1において、変動周波数軸と遅延時間軸での所望伝送路特性の2次元電力分布を示す概略図である。In Embodiment 1, it is the schematic which shows the two-dimensional power distribution of the desired transmission-line characteristic in a variable frequency axis | shaft and a delay time axis | shaft. 実施の形態1において、変動周波数の符号が逆の領域の電力比mとmを示す概略図である。In Embodiment 1, it is the schematic which shows the power ratio mu and m of the area | region where the code | symbol of a fluctuation frequency is reverse. 実施の形態2において、変動周波数領域の分割数が「5」の時の2次元2次元電力分布を示す概略図である。In Embodiment 2, it is the schematic which shows the two-dimensional two-dimensional power distribution when the division | segmentation number of a fluctuation frequency area | region is "5". 実施の形態2において、変動周波数領域の分割数が「5」の時における、所望成分の2次元2次元電力分布を示す概略図である。In Embodiment 2, it is the schematic which shows the two-dimensional two-dimensional power distribution of a desired component when the division | segmentation number of a fluctuation frequency area | region is "5". 実施の形態4に係る等化装置の構成を概略的に示す機能ブロック図である。FIG. 10 is a functional block diagram schematically showing a configuration of an equalization apparatus according to a fourth embodiment. 実施の形態4において、3波ライス伝送路における変動周波数軸と遅延時間軸でのSP伝送路特性の2次元電力分布を示す概略図である。In Embodiment 4, it is the schematic which shows the two-dimensional power distribution of the SP transmission line characteristic in the fluctuation | variation frequency axis | shaft and delay time axis | shaft in a 3 wave rice transmission line. 実施の形態4において、4波ライス伝送路における変動周波数軸と遅延時間軸でのSP伝送路特性の2次元電力分布を示す概略図である。In Embodiment 4, it is the schematic which shows the two-dimensional power distribution of the SP transmission line characteristic in the fluctuation | variation frequency axis | shaft and delay time axis | shaft in a 4-wave rice transmission line.

実施の形態1.
図3は、実施の形態1に係る等化装置100の構成を概略的に示す機能ブロック図である。等化装置100は、フーリエ変換部110と、SP伝送路特性算出部120と、伝送路特性分割部130と、SP伝送路特性分布算出部140と、所望伝送路特性分布算出部150と、所望伝送路特性抽出部160と、伝送路特性結合部170と、等化部180とを備える。なお、図3の括弧内の符号は、実施の形態2及び3における構成である。
Embodiment 1 FIG.
FIG. 3 is a functional block diagram schematically showing the configuration of the equalization apparatus 100 according to the first embodiment. The equalization apparatus 100 includes a Fourier transform unit 110, an SP transmission line characteristic calculation unit 120, a transmission line characteristic division unit 130, an SP transmission line characteristic distribution calculation unit 140, a desired transmission line characteristic distribution calculation unit 150, A transmission path characteristic extraction unit 160, a transmission path characteristic coupling unit 170, and an equalization unit 180 are provided. The reference numerals in parentheses in FIG. 3 are the configurations in the second and third embodiments.

本実施の形態では、等化装置100を備える受信装置(図示せず)は、図4に示すような、有効シンボルの前にGI(Guard Interval)を挿入したOFDMシンボルSBLを受信するものとする。ここで、図4に示されているように、有効シンボル間隔をTu、シンボル間隔をTs、GI長をTgiとする。また、OFDMシンボルSBLは、NDFTポイント逆離散フーリエ変換することで生成され、図5に示すようなSP配置を持つ。図5に示されているように、SPは、時間方向に4シンボル毎に挿入され、周波数方向に12キャリア毎に挿入される。また、SPは、シンボル毎に3キャリアずつ巡回シフトされる。以降の実施の形態においても、上記信号を受信するものとする。ここで、本実施の形態は、前記受信信号に限るものではないが、SP配置は、シンボル毎に巡回シフトされる必要がある。また、図5で示されているSP配置を持つ場合、SPで算出された伝送路特性は、図6に示されているように、変動周波数領域と遅延時間領域とにおいて、変動周波数方向に1/4Ts及び遅延時間方向にTu/12巡回シフトする繰り返し成分を持ち、さらに、遅延時時間方向にTu/3巡回シフトする繰り返し成分を持つ。 In the present embodiment, a receiving apparatus (not shown) provided with equalization apparatus 100 receives OFDM symbol SBL in which a GI (Guard Interval) is inserted before a valid symbol as shown in FIG. . Here, as shown in FIG. 4, the effective symbol interval is Tu, the symbol interval is Ts, and the GI length is Tgi. Further, the OFDM symbol SBL is generated by performing NDFT point inverse discrete Fourier transform, and has an SP arrangement as shown in FIG. As shown in FIG. 5, the SP is inserted every 4 symbols in the time direction and inserted every 12 carriers in the frequency direction. The SP is cyclically shifted by 3 carriers for each symbol. In the following embodiments, the above signal is received. Here, the present embodiment is not limited to the received signal, but the SP arrangement needs to be cyclically shifted for each symbol. Further, when the SP arrangement shown in FIG. 5 is used, the transmission path characteristic calculated by SP is 1 in the fluctuation frequency direction in the fluctuation frequency region and the delay time region, as shown in FIG. / 4Ts and a repetition component that cyclically shifts Tu / 12 in the delay time direction, and a repetition component that cyclically shifts Tu / 3 in the delay time direction.

図3の説明に戻り、フーリエ変換部110は、パイロットキャリアを含む受信信号を周波数領域の信号に変換する。例えば、フーリエ変換部110は、受信信号に対して1シンボル毎にNDFTポイント離散フーリエ変換を行い、各キャリアの信号を得る。 Returning to the description of FIG. 3, the Fourier transform section 110 transforms a received signal including a pilot carrier into a frequency domain signal. For example, the Fourier transform unit 110 performs NDFT point discrete Fourier transform on the received signal for each symbol to obtain a signal of each carrier.

SP伝送路特性算出部120は、フーリエ変換部110で変換された周波数領域の信号に基づいて、パイロットキャリアに作用する伝送路特性を算出する伝送路特性算出部である。例えば、SP伝送路特性算出部120は、フーリエ変換部110で取得された各キャリアの信号から、SP信号を抽出し、既知の値で除算することで、SPに作用する伝送路特性(以下、SP伝送路特性と呼ぶ)を得る。そして、SP伝送路特性算出部120は、SPが配置されない変調信号が存在するキャリアに関してはゼロ値を挿入する。ここで、SP伝送路特性は、キャリア周波数インデックスkとシンボル時間インデックスlを変数に持つ複素関数h(k,l)として考えることができる。   The SP transmission line characteristic calculation unit 120 is a transmission line characteristic calculation unit that calculates the transmission line characteristic acting on the pilot carrier based on the frequency domain signal converted by the Fourier transform unit 110. For example, the SP transmission line characteristic calculation unit 120 extracts the SP signal from the signal of each carrier acquired by the Fourier transform unit 110, and divides the signal by a known value, so that the transmission line characteristic acting on the SP (hereinafter, referred to as “SP signal characteristic”). Called SP transmission path characteristics). Then, SP transmission path characteristic calculation section 120 inserts a zero value for a carrier in which a modulated signal in which no SP is arranged exists. Here, the SP transmission path characteristic can be considered as a complex function h (k, l) having a carrier frequency index k and a symbol time index l as variables.

以降において、SPで求められた複素関数である伝送路特性を、時間軸及び周波数軸の変換によらず、伝送路特性と呼ぶこととする。   In the following, the transmission path characteristic, which is a complex function obtained by SP, will be referred to as transmission path characteristics regardless of the conversion of the time axis and the frequency axis.

伝送路特性分割部130は、SP伝送路特性算出部120で算出された伝送路特性を、変動周波数軸と遅延時間軸との2軸上において、複数の領域の成分に分割する。例えば、伝送路特性分割部130は、SP伝送路特性算出部120で算出された伝送路特性を、図7に示すように、遅延時間領域でN分割、変動周波数領域でM分割する。ここで、N及びMは、2以上の自然数である。また、伝送路特性分割部130で分割される領域は、遅延時間軸に対して対称に配置されていることが望ましい。これは、特許文献1における2次元フーリエ変換部での処理に対応する。特許文献1と同様に伝送路特性の分割に2次元離散フーリエ変換を用いた場合、伝送路特性分割部130は、SP伝送路特性算出部120で求められた1シンボルあたりNDFTポイントの伝送路特性のMSYMシンボルに対して、キャリア周波数領域で離散逆フーリエ変換(ここで、離散フーリエ変換ではなく、離散逆フーリエ変換を行うのは、変換後の領域に物理的な意味を持たせるためである)を行い、シンボル時間領域で離散フーリエ変換を行うことで、NDFTポイントの遅延時間インデックス及びMSYMポイントの変動周波数インデックスを変数に持つ複素関数の伝送路特性を算出する。つまり、伝送路特性分割部130は、遅延時間領域でN=NDFT分割、変動周波数領域でM=MSYM分割を行う。この場合、後段において、所望伝送路特性抽出部160で所望の伝送路特性を抽出した後、伝送路特性結合部170において2次元逆フーリエ変換、つまり遅延時間領域で離散フーリエ変換、変動周波数領域で離散逆フーリエ変換を行うことで、等化部180での歪み補償に用いるMSYMシンボルの伝送路特性を算出することができる。なお、図7において、符号702は、所望の成分であり、符号802は、不要な繰り返し成分である。 The transmission line characteristic dividing unit 130 divides the transmission line characteristic calculated by the SP transmission line characteristic calculating unit 120 into components of a plurality of regions on two axes of a variable frequency axis and a delay time axis. For example, the transmission line characteristic dividing unit 130 divides the transmission line characteristic calculated by the SP transmission line characteristic calculating unit 120 into N in the delay time domain and M in the variable frequency domain as shown in FIG. Here, N and M are natural numbers of 2 or more. In addition, it is desirable that the areas divided by the transmission line characteristic dividing unit 130 are arranged symmetrically with respect to the delay time axis. This corresponds to the processing in the two-dimensional Fourier transform unit in Patent Document 1. Similarly to Patent Document 1, when the two-dimensional discrete Fourier transform is used to divide the transmission line characteristics, the transmission line characteristic dividing unit 130 transmits the transmission line of NDFT points per symbol obtained by the SP transmission line characteristic calculation unit 120. The discrete inverse Fourier transform is performed on the characteristic MSYM symbol in the carrier frequency domain (in this case, the discrete inverse Fourier transform is performed instead of the discrete Fourier transform in order to make the transformed region have a physical meaning. And a discrete Fourier transform is performed in the symbol time domain, thereby calculating a transmission path characteristic of a complex function having a delay time index of N DFT points and a variable frequency index of M SYM points as variables. That is, the transmission path characteristic dividing unit 130 performs N = N DFT division in the delay time domain and M = M SYM division in the variable frequency domain. In this case, in the subsequent stage, after the desired transmission line characteristic extraction unit 160 extracts the desired transmission line characteristic, the transmission line characteristic coupling unit 170 performs two-dimensional inverse Fourier transform, that is, discrete Fourier transform in the delay time domain, and in the variable frequency domain. By performing the discrete inverse Fourier transform, it is possible to calculate the transmission path characteristic of the MSYM symbol used for distortion compensation in the equalization unit 180. In FIG. 7, reference numeral 702 is a desired component, and reference numeral 802 is an unnecessary repetitive component.

また、伝送路特性分割部130は、複数のフィルタを用いて遅延時間領域もしくは変動周波数領域の分割を行なってもよい。
従来より、SPで求めた伝送路特性をキャリア周波数方向及びシンボル時間方向にフィルタ処理することで、SP以外の変調データの伝送路特性を求める技術が知られている。ここで、キャリア周波数方向のフィルタは、遅延時間領域に通過帯域を持ち、シンボル時間方向のフィルタは、変動周波数領域に通過帯域を持つ。
Further, the transmission line characteristic dividing unit 130 may perform division of the delay time region or the variable frequency region using a plurality of filters.
2. Description of the Related Art Conventionally, a technique for obtaining transmission line characteristics of modulation data other than SP by filtering transmission line characteristics obtained by SP in a carrier frequency direction and a symbol time direction is known. Here, the filter in the carrier frequency direction has a pass band in the delay time domain, and the filter in the symbol time direction has a pass band in the variable frequency domain.

そのため、伝送路特性分割部130は、通過帯域が隣り合うN個のキャリア周波数方向フィルタと、通過帯域が隣り合うM個のシンボル時間方向フィルタとを用いてSPで求めた伝送路特性を演算することで、SP伝送路特性を、図7に示されているように、遅延時間領域でN分割、変動周波数領域でM分割することができる。この場合、キャリア周波数インデックスkと、シンボル時間インデックスlとで規定される各信号点において、N×M点の分割された伝送路特性情報が得られる。言い換えれば、キャリア周波数インデックスkとシンボル時間インデックスlとを変数に持つ複素関数がN×M個得られる。この場合、後段において、所望伝送路特性抽出部160で所望の伝送路特性を抽出した後、伝送路特性結合部170において各キャリア周波数インデックスkと、各シンボル時間インデックスlとで、N×M点の分割された伝送路特性情報を加算し結合することで、等化部180での歪み補償に用いる伝送路特性が算出できる。   Therefore, the transmission line characteristic dividing unit 130 calculates the transmission line characteristic obtained by the SP using N carrier frequency direction filters whose passbands are adjacent and M symbol time direction filters whose passbands are adjacent. Thus, as shown in FIG. 7, the SP transmission path characteristics can be divided into N in the delay time domain and M in the variable frequency domain. In this case, N × M divided transmission path characteristic information is obtained at each signal point defined by the carrier frequency index k and the symbol time index l. In other words, N × M complex functions having carrier frequency index k and symbol time index l as variables are obtained. In this case, in the subsequent stage, after the desired transmission line characteristic extraction unit 160 extracts the desired transmission line characteristic, the transmission line characteristic combination unit 170 uses the N × M points for each carrier frequency index k and each symbol time index l. The transmission path characteristics used for distortion compensation in the equalization unit 180 can be calculated by adding and combining the divided transmission path characteristics information.

また、伝送路特性分割部130は、フーリエ変換と、フィルタとを組み合わせて分割処理を行なってもよい。具体的には、伝送路特性分割部130は、キャリア方向に対してはフーリエ変換を行うことで、遅延時間領域での分割を行い、シンボル時間方向に対してはフィルタ処理を行うことで、変動周波数領域での分割を行うことができる。以下、詳しく説明する。   Further, the transmission line characteristic dividing unit 130 may perform division processing by combining Fourier transform and a filter. Specifically, the transmission path characteristic dividing unit 130 performs division in the delay time domain by performing Fourier transform on the carrier direction, and performs filtering processing on the symbol time direction to perform fluctuations. Division in the frequency domain can be performed. This will be described in detail below.

まず、伝送路特性分割部130は、M個のシンボル時間方向フィルタを、SPで算出された複数シンボルの伝送路特性に施すことで、変動周波数領域でM分割する。   First, transmission path characteristic dividing section 130 performs M division in the variable frequency domain by applying M symbol time direction filters to the transmission path characteristics of a plurality of symbols calculated by SP.

第m(1≦m≦M)のシンボル時間方向フィルタにFIRフィルタを用いた場合、伝送路特性分割部130は、下記の(1)式により、フィルタ処理を行う。

Figure 2014150469
ここで、h(・)は、SPで算出された伝送路特性である。kは、キャリア周波数インデックスである。lは、シンボル時間インデックスである。aは、第mのシンボル時間方向フィルタのフィルタ係数である。g(・)は、第mのシンボル時間方向フィルタの処理結果である。 When an FIR filter is used as the mth (1 ≦ m ≦ M) symbol time direction filter, the transmission path characteristic dividing unit 130 performs filter processing according to the following equation (1).
Figure 2014150469
Here, h (•) is a transmission path characteristic calculated by SP. k is a carrier frequency index. l is the symbol time index. a m is a symbol filter coefficient of the time-direction filter of the m. g m (•) is the processing result of the m-th symbol time direction filter.

ここで、各フィルタの通過帯域の例を図8に示す。最大変動周波数fdmaxと最小変動周波数fdminに挟まれる区間をM分割していることがわかる。また後段において、所望の伝送路特性を抽出後に各フィルタ出力を結合するため、第1〜Mのシンボルフィルタ特性の和が一定になるように係数を設定するのが望ましい。上記特性を持つシンボル時間方向フィルタを用いることで、図9に示すように、遅延時間軸と変動周波数軸において、変動周波数方向にM分割された領域に対応する伝送路特性が得られる。図9において、符号703は、所望の成分であり、符号803は、不要な繰り返し成分である。 Here, an example of the passband of each filter is shown in FIG. It can be seen that the section between the maximum fluctuation frequency fd max and the minimum fluctuation frequency fd min is divided into M parts. In the subsequent stage, in order to combine the filter outputs after extracting the desired transmission path characteristics, it is desirable to set the coefficients so that the sum of the first to M symbol filter characteristics is constant. By using the symbol time direction filter having the above characteristics, as shown in FIG. 9, on the delay time axis and the variable frequency axis, transmission path characteristics corresponding to the region divided into M in the variable frequency direction can be obtained. In FIG. 9, reference numeral 703 is a desired component, and reference numeral 803 is an unnecessary repetitive component.

次に、伝送路特性分割部130は、下記の(2)式に示すように、M個のシンボル時間方向フィルタの出力それぞれに、キャリア周波数に対してN=NDFTポイント逆フーリエ変換を施すことで、変動周波数領域でM分割された伝送路特性それぞれに対して、遅延時間でN分割することができる。 Next, as shown in the following equation (2), the transmission path characteristic dividing unit 130 performs N = N DFT point inverse Fourier transform on the carrier frequency for each of the outputs of the M symbol time direction filters. Thus, each of the transmission path characteristics divided into M in the variable frequency region can be divided into N with a delay time.

Figure 2014150469
ここで、f(・)は、第mのシンボル時間方向フィルタ結果g(・)をキャリア逆フーリエ変換した結果である。τは、遅延時間インデックスである。
Figure 2014150469
Here, f m (•) is the result of carrier inverse Fourier transform of the m-th symbol time direction filter result g m (•). τ is a delay time index.

これらの処理により、各シンボル(l)に対し、遅延時間インデックスτ及び変動周波数に対応するフィルタインデックスm毎の伝送路特性f(・)を算出することができる。 Through these processes, the transmission path characteristic f m (•) for each filter index m corresponding to the delay time index τ and the fluctuation frequency can be calculated for each symbol (l).

ここで分割数Mとしては、対応しようとする伝送路によって予め定められた値が用いられる。分割数を増やすことで、より細かい帯域の制御が可能となり、伝送路特性の所望成分と、繰り返し及びガウス雑音等の不要成分とを詳細に分離して、不要成分を抑圧することができる。また、想定する伝送路の時間変動量に合わせて、予め、fdmax及びfdminを設定すればよい。 Here, as the division number M, a value predetermined by the transmission path to be supported is used. By increasing the number of divisions, it becomes possible to control a finer band, and it is possible to suppress the unnecessary component by separating in detail the desired component of the transmission path characteristics and the unnecessary component such as repetition and Gaussian noise. In addition, fd max and fd min may be set in advance according to the assumed amount of time variation of the transmission path.

以上で示したように、SP伝送路特性算出部120で求められた伝送路特性を、遅延時間領域でN分割、変動周波数領域でM分割する方法は、フーリエ変換とフィルタ処理とのどちらが用いられてもよい。また、フィルタ処理とフーリエ変換の処理とは、逆の順番で行われてもよい。さらに、キャリア周波数方向にフィルタ処理を行い、シンボル時間方向にフーリエ変換を行うことで、分割が行われてもよい。   As described above, either the Fourier transform or the filter processing is used as the method of dividing the transmission line characteristic obtained by the SP transmission line characteristic calculation unit 120 into N divisions in the delay time domain and M divisions in the variable frequency domain. May be. Further, the filtering process and the Fourier transform process may be performed in the reverse order. Furthermore, division may be performed by performing filter processing in the carrier frequency direction and performing Fourier transform in the symbol time direction.

また、伝送路特性分割部130は、SP伝送路特性算出部120で求められた伝送路特性の内、伝送路特性の所望の成分が含まれる予め定められた領域(区間)の成分を分割する。
例えば、図5に示されているようなSP配置の場合、図1に示されているように、遅延時間方向の繰り返し成分は、Tu/3の周期で発生する。このため、所望成分のみが含まれる幅Tu/3の領域(区間)が、伝送路特性分割部130で分割される。なお、伝送路特性分割部130は、Tu/3を超える領域(区間)を分割して、Tu/3を超える領域の成分がゼロ値をとるような処理を行なってもよい。または、伝送路特性分割部130は、想定される遅延時間(Td)がTu/3より小さい環境では、Tdの幅の領域を分割して残りの領域をゼロ値としてもよい。また、遅延時間が負の領域に遅延波(先行波)が存在する場合、伝送路特性分割部130は、分割する領域を負の方向にずらしてもよい。
また、図2に示されているように、変動周波数方向の繰り返し成分は、1/4Ts周期で現れ、さらに変動周波数の広がりが大きい場合、±1/2Tsを超えて隣の繰り返し成分からの影響を受ける。本実施の形態は、±1/2Tsを超えた変動周波数の広がりを判別し除去するものであるため、±1/2Tsよりも大きな範囲(判別に用いる範囲)で分割を行う必要がある。なお、±1/4Tsを超える領域は、変動周波数が小さい場合でも、繰り返し成分が生じるため、伝送路特性分割部130は、分割領域に含めない方が望ましい。
Also, the transmission line characteristic dividing unit 130 divides a component in a predetermined region (section) including a desired component of the transmission line characteristic among the transmission line characteristics obtained by the SP transmission line characteristic calculation unit 120. .
For example, in the case of the SP arrangement as shown in FIG. 5, as shown in FIG. 1, a repetitive component in the delay time direction is generated at a period of Tu / 3. For this reason, a region (section) having a width Tu / 3 containing only the desired component is divided by the transmission path characteristic dividing unit 130. Note that the transmission path characteristic dividing unit 130 may divide a region (section) exceeding Tu / 3 and perform processing such that a component in the region exceeding Tu / 3 takes a zero value. Alternatively, in the environment where the assumed delay time (Td) is smaller than Tu / 3, the transmission line characteristic dividing unit 130 may divide the region having a width of Td and set the remaining regions to zero values. Further, when a delay wave (preceding wave) exists in a region where the delay time is negative, the transmission path characteristic dividing unit 130 may shift the region to be divided in the negative direction.
In addition, as shown in FIG. 2, the repetitive component in the fluctuation frequency direction appears in a period of ¼ Ts, and when the fluctuation frequency spread is large, the influence from the adjacent repetitive component exceeds ± 1/2 Ts. Receive. Since the present embodiment discriminates and removes the spread of the fluctuation frequency exceeding ± 1 / 2Ts, it is necessary to perform division in a range larger than ± 1 / 2Ts (a range used for discrimination). In the region exceeding ± 1/4 Ts, even if the fluctuation frequency is small, a repetitive component is generated. Therefore, it is desirable not to include the transmission path characteristic dividing unit 130 in the divided region.

図3の説明に戻り、次に、SP伝送路特性分布算出部140、所望伝送路特性分布算出部150及び所望伝送路特性抽出部160について説明する。伝送路特性分割部130で得られた伝送路特性には、SPの配置に起因する不要な繰り返し成分が存在する。そのため、所望成分のみを抽出する必要がある。本実施の形態は、所望成分を抽出するために、伝送路の統計的性質に起因する遅延時間が等しく変動周波数の符号が逆となる領域の電力比と、SP配置に起因する所望成分の2次元電力分布が繰り返される規則性とを用いて、伝送路特性のうち、繰り返し成分を含まない所望成分の2次元電力分布を推定する。   Returning to the description of FIG. 3, the SP transmission line characteristic distribution calculating unit 140, the desired transmission line characteristic distribution calculating unit 150, and the desired transmission line characteristic extracting unit 160 will be described next. The transmission line characteristic obtained by the transmission line characteristic dividing unit 130 includes unnecessary repetitive components due to the arrangement of SPs. Therefore, it is necessary to extract only the desired component. In the present embodiment, in order to extract the desired component, the power ratio in the region where the delay time due to the statistical properties of the transmission path is equal and the sign of the fluctuation frequency is reversed, and the desired component due to the SP arrangement are 2 Of the transmission line characteristics, the two-dimensional power distribution of a desired component that does not include a repetitive component is estimated using regularity in which the dimensional power distribution is repeated.

SP伝送路特性分布算出部140は、伝送路特性分割部130で分割された複数の領域の成分の物理量を算出する伝送路特性分布算出部である。例えば、SP伝送路特性分布算出部140は、伝送路特性分割部130により分割された、各分割領域の伝送路特性の電力を求め、変動周波数領域及び遅延時間領域での2次元電力分布を算出する。ここで、電力は、複数シンボルの各分割領域の伝送路特性を用いて求めてもよい。なお、SP伝送路特性分布算出部140は、電力ではなく、振幅又は複数シンボルの振幅を平均した値を用いて、伝送路特性の分布を算出してもよい。以降においても、SP伝送路特性分布算出部140は、電力ではなく、振幅を用いて演算を行なってもよい。言い換えると、SP電伝送路特性分布算出部140で算出される物理量は、電力又は振幅であってもよい。   The SP transmission line characteristic distribution calculation unit 140 is a transmission line characteristic distribution calculation unit that calculates physical quantities of components in a plurality of regions divided by the transmission line characteristic division unit 130. For example, the SP transmission line characteristic distribution calculation unit 140 calculates the power of the transmission line characteristic in each divided region divided by the transmission line characteristic division unit 130, and calculates the two-dimensional power distribution in the variable frequency region and the delay time region. To do. Here, the power may be obtained using the transmission path characteristics of each divided region of a plurality of symbols. Note that the SP transmission path characteristic distribution calculating unit 140 may calculate the transmission path characteristic distribution using a value obtained by averaging the amplitude or the amplitudes of a plurality of symbols instead of the power. In the following, the SP transmission path characteristic distribution calculation unit 140 may perform calculation using amplitude instead of power. In other words, the physical quantity calculated by the SP transmission line characteristic distribution calculating unit 140 may be power or amplitude.

またさらに、SP伝送路特性分布算出部140は、雑音成分が重畳されていることを考慮して、物理量を算出してもよい。例えば、SP伝送路特性分布算出部140は、伝送路特性分割部130で分割された複数の領域の成分の中から選択された領域の成分の物理量を算出することで、雑音成分の物理量を算出して、伝送路特性分割部130で分割された複数の領域の成分の物理量から、算出された雑音成分の物理量を減算してもよい。より詳細には、まず、SP伝送路特性分布算出部140は、電力値が最も小さい領域、又は、電力値が予め定められた閾値よりも小さい領域、つまり所望成分も繰り返し成分も存在しない分割領域の電力値を雑音電力として求める。その後、SP伝送路特性分布算出部140は、各分割領域の伝送路特性に対して求めた電力値から雑音電力を減算することで、雑音成分の含まれない伝送路特性の2次元電力分布を算出して、この雑音成分の含まれない伝送路特性の2次元電力分布を、以降の処理に用いることができる。これは、雑音成分と伝送路特性とが相関を持たないため、検出される電力値が両者の加算となることを利用したものである。以上により、雑音が大きい環境においても、所望成分の2次元電力分布を正確に求めることができる。   Furthermore, the SP transmission path characteristic distribution calculating unit 140 may calculate the physical quantity in consideration of the superimposed noise component. For example, the SP transmission path characteristic distribution calculating unit 140 calculates the physical quantity of the noise component by calculating the physical quantity of the component in the area selected from the components in the plurality of areas divided by the transmission path characteristic dividing unit 130. Then, the calculated physical quantity of the noise component may be subtracted from the physical quantity of the components of the plurality of regions divided by the transmission path characteristic dividing unit 130. More specifically, first, the SP transmission path characteristic distribution calculating unit 140 is a region where the power value is the smallest, or a region where the power value is smaller than a predetermined threshold, that is, a divided region where neither a desired component nor a repeated component exists. Is obtained as noise power. Thereafter, the SP transmission line characteristic distribution calculation unit 140 subtracts the noise power from the power value obtained for the transmission line characteristic of each divided region, thereby obtaining the two-dimensional power distribution of the transmission line characteristic not including the noise component. It is possible to calculate and use the two-dimensional power distribution of the transmission line characteristics not including the noise component for the subsequent processing. This utilizes the fact that the detected power value is the addition of both because the noise component and the transmission path characteristic have no correlation. As described above, the two-dimensional power distribution of the desired component can be accurately obtained even in an environment where the noise is large.

所望伝送路特性分布算出部150は、SP伝送路特性分布算出部140で算出された伝送路特性分布を用いて、伝送路特性の繰り返し成分を含まない所望成分の分布を求める。例えば、所望伝送路特性分布算出部150は、SP伝送路特性分布算出部140で算出された物理量から、SP伝送路特性算出部120で算出された伝送路特性の繰り返し成分の物理量を、当該繰り返し成分の分布の規則性と、SP伝送路特性算出部120で算出された伝送路特性の所望の成分の統計的性質とを用いて削減し、当該所望の成分の物理量を算出する。より詳細には、所望伝送路特性分布算出部150は、SP伝送路特性分布算出部140で算出された物理量が、伝送路特性の所望の成分の物理量と、パイロットキャリアの配置で定まる、遅延時間及び変動周波数において巡回シフトした領域の伝送路特性の所望の成分の物理量との和であること、並びに、遅延時間が等しく、変動周波数の符号が逆となる領域の物理量の比、を用いて、SP伝送路特性分布算出部140で算出された物理量と、伝送路特性の所望の成分の物理量との関係式を算出し、この関係式を用いて、SP伝送路特性分布算出部140で算出された物理量から伝送路特性の所望の成分の物理量を算出する。一例として、本実施の形態においては、所望伝送路特性分布算出部150は、SP伝送路特性分布算出部140で算出された物理量に応じて算出される値を、当該物理量が算出された領域から予め定められた遅延時間巡回シフトされた領域の物理量から減算することで、パイロットキャリアの所望の成分の物理量を算出する。以降において、詳しく説明していく。   The desired transmission line characteristic distribution calculation unit 150 uses the transmission line characteristic distribution calculated by the SP transmission line characteristic distribution calculation unit 140 to obtain a distribution of a desired component that does not include a repetitive component of the transmission line characteristic. For example, the desired transmission path characteristic distribution calculation unit 150 calculates the physical quantity of the repetitive component of the transmission path characteristic calculated by the SP transmission path characteristic calculation unit 120 from the physical quantity calculated by the SP transmission path characteristic distribution calculation unit 140. Reduction is performed using the regularity of the component distribution and the statistical properties of the desired component of the transmission path characteristic calculated by the SP transmission path characteristic calculation unit 120, and the physical quantity of the desired component is calculated. More specifically, the desired transmission path characteristic distribution calculation unit 150 has a delay time in which the physical quantity calculated by the SP transmission path characteristic distribution calculation unit 140 is determined by the physical quantity of the desired component of the transmission path characteristic and the arrangement of pilot carriers. And the ratio of the physical quantity of the desired component of the transmission path characteristics of the region shifted cyclically at the variable frequency, and the ratio of the physical quantity of the region where the delay time is equal and the sign of the variable frequency is reversed, A relational expression between the physical quantity calculated by the SP transmission path characteristic distribution calculating unit 140 and the physical quantity of a desired component of the transmission path characteristic is calculated, and the SP transmission path characteristic distribution calculating part 140 is calculated using this relational expression. The physical quantity of the desired component of the transmission path characteristic is calculated from the obtained physical quantity. As an example, in the present embodiment, desired transmission path characteristic distribution calculation section 150 calculates a value calculated according to the physical quantity calculated by SP transmission path characteristic distribution calculation section 140 from the area where the physical quantity is calculated. A physical quantity of a desired component of the pilot carrier is calculated by subtracting from a physical quantity of a predetermined cyclically shifted delay time. In the following, this will be described in detail.

まず、図10及び図11を用いて、繰り返し成分を含む2次元電力分布と、繰り返し成分を含まない所望成分の2次元電力分布との関係を述べる。   First, the relationship between the two-dimensional power distribution including the repetitive component and the two-dimensional power distribution of the desired component not including the repetitive component will be described with reference to FIGS. 10 and 11.

図10は、SP伝送路特性分布算出部140で求められる繰り返し成分を含む電力分布を示す概略図である。また、図11は、所望伝送路特性分布算出部150で求めようとしている繰り返し成分を含まない所望成分の2次元電力分布を示す概略図である。図10及び図11では、変動周波数が大きい2波ライス伝送路での受信が想定されている。また、図10及び図11は、伝送路特性分割部130で、遅延時間領域でTu/3の区間をN=8で分割し、変動周波数領域で±3/16Tsの区間をM=3で分割した場合である。想定する伝送路において、図10及び図11に示されているように、変動周波数領域をM=3で分割された領域において、変動周波数=0を含む変動周波数に対応する領域には、不要な繰り返し成分が含まれずに所望の成分のみが含まれ、当該領域の両側の領域、言い換えると、分割が行われた領域のうち、変動周波数の絶対値の最大値を含む帯域に対応する領域には、所望の成分及び不要な繰り返し成分が含まれる。   FIG. 10 is a schematic diagram illustrating a power distribution including a repetitive component obtained by the SP transmission path characteristic distribution calculation unit 140. FIG. 11 is a schematic diagram illustrating a two-dimensional power distribution of a desired component that does not include a repetitive component that is to be obtained by the desired transmission path characteristic distribution calculation unit 150. 10 and 11, reception on a two-wave rice transmission line with a large fluctuation frequency is assumed. 10 and 11 show the transmission line characteristic dividing unit 130 that divides the Tu / 3 section in the delay time domain by N = 8 and the ± 3 / 16Ts section in the variable frequency domain by M = 3. This is the case. In the assumed transmission path, as shown in FIGS. 10 and 11, in the region where the variable frequency region is divided by M = 3, the region corresponding to the variable frequency including the variable frequency = 0 is unnecessary. In the region corresponding to the band including the maximum value of the absolute value of the fluctuation frequency among the regions on both sides of the region, in other words, the regions where the division is performed, only the desired component is included without including the repetitive component. Desired components and unnecessary repeating components are included.

図11のPは、下記の(3)式で示され、図11に示されているそれぞれの分割領域の電力値を示す。

Figure 2014150469
また、図11のPは、下記の(4)式で示され、図11に示されているそれぞれの分割領域の電力値を示す。
Figure 2014150469
さらに、図10のrPは、下記の(5)式で示され、図10に示されているそれぞれの分割領域の電力値を示す。
Figure 2014150469
なお、P、P及びrPでは、添字が大きいほど、長遅延の到来波に対応する。但し、pp0よりも先に到来する先行波が存在する場合、遅延時間方向に巡回シフトしていることを考慮すると、添字の大きな成分、例えばpp7が負の遅延時間を持つ到来波、つまり先行波として扱われる。 P p in FIG. 11 is expressed by the following equation (3), and indicates the power value of each divided region shown in FIG.
Figure 2014150469
Moreover, Pn of FIG. 11 is shown by following (4) Formula, and shows the electric power value of each division | segmentation area | region shown by FIG.
Figure 2014150469
Further, rP p in FIG. 10 is expressed by the following equation (5), and indicates the power value of each divided region shown in FIG.
Figure 2014150469
In P p , P n, and rP p , the larger the subscript, the longer the incoming wave corresponds to. However, when there is a preceding wave that arrives before p p0 , in consideration of the cyclic shift in the delay time direction, an incoming wave having a large subscript, for example, p p7, having a negative delay time, that is, Treated as a preceding wave.

また、Pの領域は、変動周波数1/8Tsを中心とする領域であるとする。そして、Pの領域は、Pの領域を変動周波数方向に−1/4Tsシフトした領域であり、さらにPの領域の変動周波数の符号を反転した領域でもあるとする。さらに、rPの領域は、Pの領域と同じ領域である。ここで、Pの領域、Pの領域及びrPの領域は、伝送路特性の所望の成分と不要な繰り返し成分とが含まれる可能性のある変動周波数帯に対応する領域である。なお、Pの領域とPの領域との間に挟まれた領域は、伝送路特性の所望の成分は含まれる可能性が有るが、不要な繰り返し成分は含まれない領域である。 Further, it is assumed that the region of P p is a region centered on the fluctuation frequency 1 / 8Ts. The P n region is a region obtained by shifting the P p region by −1/4 Ts in the direction of the variation frequency, and is also a region obtained by inverting the sign of the variation frequency in the P p region. Further, the rP p region is the same region as the P p region. Here, the P p region, the P n region, and the rP p region are regions corresponding to a variable frequency band in which a desired component of transmission path characteristics and an unnecessary repetitive component may be included. The region sandwiched between the P p region and P n the region is likely there included the desired component of the channel characteristics, unnecessary repetition component is a region not included.

まず、繰り返し成分804が存在する図10のrpp4の分割領域に注目すると、所望の成分704の電力値pp4に繰り返し成分804の電力値としてpn2が重畳された電力値がrpp4として算出される。ここで、所望の成分704と、シフトし重畳される繰り返し成分804には相関がないため、rpp4は、電力値の和として検出される。同様に、他の遅延時間成分についても考えると、下記の(6)式及び(7)式となる関係式が求まる。
rP=P+S×P (6)

Figure 2014150469
ここで、Sは、遅延時間方向にTu/12に巡回シフトする行列である。(7)式は、変動周波数の符号が負の領域を巡回シフトし重畳していることを示している。また、ppiとpniとの比をm(ここでは、iは、0≦i<8を満たす整数)とすると、pniをm×ppiに置き換えることができるため、下記の(8)式の関係式が導かれる。
rP=P+S×R×P
=P+M×P
=(I+M)×P
=C×P (8)
ここで、Iは、単位行列である。Rは、下記の(9)式で算出される。Mは、下記の(10)式及び(11)式で算出される。Cは、下記の(12)式及び(13)式で算出される。
Figure 2014150469
M=S×R (10)
Figure 2014150469
C=I+M (12)
Figure 2014150469
なお、Cは、繰り返し成分を重畳する行列(以下、繰り返し重畳行列と呼ぶ)である。 First, paying attention to the divided region of rp p4 in FIG. 10 where the repetitive component 804 exists, a power value in which pn2 is superimposed on the power value p p4 of the desired component 704 as the power value of the repetitive component 804 is calculated as rp p4 Is done. Here, since there is no correlation between the desired component 704 and the repeated component 804 that is shifted and superimposed, rp p4 is detected as the sum of the power values. Similarly, when considering other delay time components, the following relational expressions (6) and (7) are obtained.
rP p = P p + S × P n (6)
Figure 2014150469
Here, S is a matrix that cyclically shifts to Tu / 12 in the delay time direction. Equation (7) indicates that the region where the sign of the fluctuation frequency is negative is cyclically shifted and superimposed. Further, (here, i is an integer satisfying 0 ≦ i <8) the ratio of p pi and p ni m i When, since it is possible to replace the p ni in m i × p pi, the following ( 8) A relational expression is derived.
rP p = P p + S × R × P p
= P p + M × P p
= (I + M) × P p
= C × P p (8)
Here, I is a unit matrix. R is calculated by the following equation (9). M is calculated by the following equations (10) and (11). C is calculated by the following equations (12) and (13).
Figure 2014150469
M = S × R (10)
Figure 2014150469
C = I + M (12)
Figure 2014150469
C is a matrix that superimposes repeated components (hereinafter referred to as a repeated superposition matrix).

また、mは、伝送路の特性や、アンテナの指向性等により決まる。例えば、指向性のないアンテナで、レイリーフェージング環境下での移動受信を行う際、m=1とすればよい。また、受信機の進行方向に対して感度の高い指向性アンテナを用いた場合、変動周波数が正となるように分布が偏るため、予め、mが「1」よりも小さい値をとるように定めればよい。 In addition, mi is determined by the characteristics of the transmission path, the directivity of the antenna, and the like. For example, in high directivity antennas, when performing mobile reception in Rayleigh Fading may be the m i = 1. In the case of using a highly directional antenna sensitivity with respect to the traveling direction of the receiver, since the biased distribution such fluctuation frequency is positive, in advance, so that m i takes a value smaller than "1" You just have to decide.

さらに、図12に示すように、変動周波数領域の分割数を増やして、変動周波数の絶対値が予め定められた閾値よりも小さい領域で電力比mを算出し、所望の電力比mとして用いてもよい。ここで、変動周波数の絶対値が小さい領域は、繰り返し成分の影響を受けにくいため、所望の成分の変動周波数の符号が逆となる領域の電力比を求めることができる。このように電波環境に合わせてmを算出することで、変動周波数領域での2次元電力分布が偏った場合でも、繰り返し成分を適応的に推定することができる。また、全てのシンボルでmが算出される必要はなく、伝送路特性の2次元電力分布の変化に合わせた時間間隔でmが求められればよい。 Furthermore, as shown in FIG. 12, the power ratio mu is calculated in a region where the absolute value of the variable frequency is smaller than a predetermined threshold by increasing the number of divisions in the variable frequency region, and used as the desired power ratio m. May be. Here, since the region where the absolute value of the fluctuation frequency is small is not easily affected by the repetitive component, the power ratio of the region where the sign of the fluctuation frequency of the desired component is reversed can be obtained. Thus, by calculating m according to the radio wave environment, it is possible to adaptively estimate the repetitive component even when the two-dimensional power distribution in the fluctuation frequency region is biased. Further, it is not necessary to calculate m for all symbols, and it is only necessary to obtain m at a time interval that matches the change in the two-dimensional power distribution of the transmission path characteristics.

このようにmを決定することで繰り返し重畳行列Cが定まる。そして、所望伝送路特性分布算出部150は、(8)式を変形した下記の(14)式を算出することで、検出された繰り返し成分を含む電力分布rPから、所望の成分の電力分布Pを求めることができる。
=C−1×rP (14)
ここで、C−1は、Cの逆行列である。
By determining m in this manner, the repeated superposition matrix C is determined. Then, the desired transmission path characteristic distribution calculation unit 150 calculates a power distribution of a desired component from the power distribution rP p including the detected repetitive component by calculating the following formula (14) obtained by modifying the formula (8). P p can be determined.
P p = C −1 × rP p (14)
Here, C −1 is an inverse matrix of C.

また、Pは、下記の(15)式により算出することができる。
=R×P (15)
P n can be calculated by the following equation (15).
P n = R × P p (15)

つまり、SP伝送路特性分布算出部140で求められた2次元電力分布のうち、繰り返し成分が重畳されうる領域の電力値rPに繰り返し重畳行列Cの逆行列を演算することで、繰り返し成分を含まない電力値Pを求めることができる。ここで、逆行列C−1は、「0」を多く含む行列であるため、分割数Nに比例した演算量で処理することができる。また、各成分で、同様な計算が行われるため、比較的簡単な演算回路を用いて繰り返し処理を行うことで、演算を行うことができる。また、逆行列が存在しない場合は、擬似逆行列が演算されてもよい。 That is, by calculating the inverse matrix of the repeated superposition matrix C to the power value rP p in the region where the repeated component can be superimposed in the two-dimensional power distribution obtained by the SP transmission path characteristic distribution calculation unit 140, the repeated component is calculated. The power value P p not included can be obtained. Here, since the inverse matrix C −1 is a matrix containing many “0” s, it can be processed with a calculation amount proportional to the division number N. In addition, since the same calculation is performed for each component, the calculation can be performed by repeatedly performing processing using a relatively simple arithmetic circuit. Further, when there is no inverse matrix, a pseudo inverse matrix may be calculated.

また、逆行列C−1は、想定される電波環境に対応するようなmを用いて、予め求められていてもよい。また、電波環境に応じて適応的に逆行列を求める場合でも、各シンボルで逆行列演算が行われる必要はなく、伝送路特性の2次元電力分布の変化に合わせた時間間隔で演算が行われればよい。 Further, the inverse matrix C −1 may be obtained in advance using mi that corresponds to the assumed radio wave environment. Even when the inverse matrix is adaptively determined according to the radio wave environment, it is not necessary to perform the inverse matrix calculation for each symbol, and the calculation is performed at time intervals according to the change in the two-dimensional power distribution of the transmission path characteristics. That's fine.

ここまで分割数を指定して説明してきたが、本実施の形態は、分割数を制限するものではない。遅延時間方向をN分割した場合、Pp、rP、Pは、N個からなる列ベクトルとなり、また、R、S、M、Iは、N×Nの行列となる。また、巡回シフト行列Sは、遅延時間方向にTu/12巡回シフトさせる行列となる。変動周波数領域の分割数を増やした場合については、実施の形態2に示す。 Although the description has been made so far specifying the number of divisions, the present embodiment does not limit the number of divisions. If the delay time direction is divided into N, Pp, rP p, P n becomes a column vector of N, also, R, S, M, I is a matrix of N × N. Further, the cyclic shift matrix S is a matrix that undergoes a Tu / 12 cyclic shift in the delay time direction. A case where the number of divisions in the variable frequency region is increased is shown in the second embodiment.

以上のように、所望伝送路特性分布算出部150は、変動周波数の絶対値が予め定められた値以上の変動周波数帯域に対応する領域の所望成分の電力値(図11では、Pp及びPn)については、上記の(14)式及び(15)式により算出する。また、所望伝送路特性分布算出部150は、変動周波数の絶対値が予め定められた値よりも小さい変動周波数帯域に対応する領域の所望成分の電力値については、SP伝送路特性分布算出部140で算出された電力値をそのまま用いる。これらにより、所望伝送路特性分布算出部150は、伝送路特性の所望の成分の2次元電力分布を求めることができる。   As described above, the desired transmission path characteristic distribution calculation unit 150 uses the power value of the desired component in the region corresponding to the fluctuation frequency band in which the absolute value of the fluctuation frequency is equal to or greater than a predetermined value (Pp and Pn in FIG. 11). Is calculated by the above equations (14) and (15). Desired transmission line characteristic distribution calculating section 150 also uses SP transmission line characteristic distribution calculating section 140 for the power value of the desired component in the region corresponding to the variable frequency band in which the absolute value of the variable frequency is smaller than a predetermined value. The power value calculated in is used as it is. As a result, the desired transmission path characteristic distribution calculating unit 150 can obtain the two-dimensional power distribution of the desired component of the transmission path characteristics.

所望伝送路特性抽出部160は、所望伝送路特性分布算出部150で算出された伝送路特性の所望の成分の物理量に基づいて、伝送路特性分割部130で分割された複数の領域の成分から、伝送路特性の所望の成分が含まれる領域の成分を抽出する。例えば、所望伝送路特性抽出部160は、所望伝送路特性分布算出部150で得られた、所望の伝送路特性の2次元電力分布をもとに、伝送路特性分割部130で分割された伝送路特性から、所望成分の電力値が大きい分割領域を抽出する。より詳細には、所望伝送路特性抽出部160は、所望伝送路特性分布算出部150で算出された2次元電力分布において、電力値が予め定められた閾値を超える分割領域には、所望成分が存在すると判断する。そして、所望伝送路特性抽出部160は、伝送路特性分割部130で分割された伝送路特性の内、所望成分が存在すると判断された分割領域の伝送路特性に「1」を乗算する。一方、所望伝送路特性抽出部160は、所望伝送路特性分布算出部150で算出された2次元電力分布において、電力値が予め定められた閾値を超えない場合、所望成分は存在しない、つまり繰り返し成分又は雑音成分しか存在し得ないと判断する。そして、所望伝送路特性抽出部160は、伝送路特性分割部130で分割された伝送路特性の内、所望成分が存在しないと判断された分割領域の伝送路特性に「0」を乗算する。ここで、閾値は、想定される雑音成分の大きさに合わせて設定されればよい。もしくは、SP伝送路特性の2次元電力分布から電力値が最も小さい領域、つまり、所望成分及び繰り返し成分のどちらも存在しない分割領域の電力値を雑音電力として、その雑音電力を上回る値が閾値として設定されてもよい。   Based on the physical quantity of the desired component of the transmission path characteristic calculated by the desired transmission path characteristic distribution calculation unit 150, the desired transmission path characteristic extraction unit 160 uses the components of the plurality of regions divided by the transmission path characteristic division unit 130. Then, the component of the region including the desired component of the transmission path characteristic is extracted. For example, the desired transmission line characteristic extraction unit 160 uses the transmission divided by the transmission line characteristic division unit 130 based on the two-dimensional power distribution of the desired transmission line characteristic obtained by the desired transmission line characteristic distribution calculation unit 150. A divided region having a large power value of the desired component is extracted from the road characteristics. More specifically, the desired transmission line characteristic extraction unit 160 has a desired component in a divided region where the power value exceeds a predetermined threshold in the two-dimensional power distribution calculated by the desired transmission line characteristic distribution calculation unit 150. Judge that it exists. Then, the desired transmission path characteristic extraction unit 160 multiplies “1” by the transmission path characteristic of the divided area in which it is determined that the desired component exists among the transmission path characteristics divided by the transmission path characteristic division unit 130. On the other hand, if the power value does not exceed a predetermined threshold in the two-dimensional power distribution calculated by the desired transmission line characteristic distribution calculation unit 150, the desired transmission line characteristic extraction unit 160 does not exist, that is, repeats. It is determined that only a component or a noise component can be present. Then, the desired transmission path characteristic extraction unit 160 multiplies “0” by the transmission path characteristic of the divided area determined that the desired component does not exist among the transmission path characteristics divided by the transmission path characteristic division unit 130. Here, the threshold value may be set according to the size of the assumed noise component. Alternatively, the power value of the region where the power value is the smallest from the two-dimensional power distribution of the SP transmission line characteristics, that is, the divided region where neither the desired component nor the repetitive component exists is defined as the noise power, and the value exceeding the noise power is set as the threshold value. It may be set.

伝送路特性結合部170は、所望伝送路特性抽出部160で抽出された成分を結合することで、周波数領域の伝送路特性を生成する。例えば、伝送路特性結合部170は、前述した伝送路特性分割部130の分割方法にあわせて、伝送路特性分割部130で分割され、所望伝送路特性抽出部160で所望成分が抽出された伝送路特性を結合し、各シンボルの伝送路特性を算出する。   The transmission line characteristic combining unit 170 combines the components extracted by the desired transmission line characteristic extraction unit 160 to generate a transmission line characteristic in the frequency domain. For example, the transmission line characteristic coupling unit 170 is divided by the transmission line characteristic dividing unit 130 in accordance with the dividing method of the transmission line characteristic dividing unit 130 described above, and the desired component is extracted by the desired transmission line characteristic extracting unit 160. By combining the path characteristics, the transmission path characteristics of each symbol are calculated.

等化部180は、伝送路特性結合部170で生成された周波数領域の伝送路特性を用いて、フーリエ変換部110で変換された周波数領域の信号の伝送路歪みを補償する。例えば、等化部180は、フーリエ変換部110でフーリエ変換されたキャリア周波数領域の受信信号を、伝送路特性結合部170で算出されたキャリア周波数領域の伝送路特性を用いて、対応するシンボル毎に伝送路歪みを補償する。伝送路歪みの補償方法としては、ZF(Zero Forcing)等化やMMSE(Minimum Mean Square Error)等化等が知られている。伝送路歪み補償方法については、既知の技術であるため説明を省略する。   The equalization unit 180 uses the frequency domain transmission path characteristics generated by the transmission path characteristic coupling unit 170 to compensate for transmission path distortion of the frequency domain signal converted by the Fourier transform unit 110. For example, the equalization unit 180 uses the carrier frequency domain transmission path characteristic calculated by the transmission path characteristic coupling unit 170 for the carrier frequency domain received signal Fourier-transformed by the Fourier transform unit 110 for each corresponding symbol. To compensate for transmission path distortion. Known compensation methods for transmission path distortion include ZF (Zero Forcing) equalization, MMSE (Minimum Mean Square Error) equalization, and the like. Since the transmission path distortion compensation method is a known technique, description thereof is omitted.

以上、実施の形態1に係る等化装置100は、伝送路特性の遅延時間軸及び変動周波数軸上での2次元電力分布を算出し、遅延時間が等しく変動周波数の符号が逆となる領域の電力比と、所望成分の2次元電力分布が繰り返される規則性とから、繰り返し成分を含まない領域を推定し、伝送路特性の所望成分のみを抽出する。これにより、伝送路の時間変動が大きい場合においても適応的に伝送路推定することで正確な等化ができる。   As described above, the equalization apparatus 100 according to Embodiment 1 calculates the two-dimensional power distribution on the delay time axis and the variable frequency axis of the transmission path characteristics, and the delay time is equal and the sign of the variable frequency is reversed. From the power ratio and the regularity in which the two-dimensional power distribution of the desired component is repeated, a region not including the repeated component is estimated, and only the desired component of the transmission path characteristic is extracted. Thereby, even when the time variation of the transmission path is large, accurate equalization can be performed by adaptively estimating the transmission path.

実施の形態2.
実施の形態2は、実施の形態1で示した所望伝送路特性分布算出部150の算出方法について、分割数を増やした場合の形態である。
図3に示されているように、実施の形態2に係る等化装置200は、フーリエ変換部110と、SP伝送路特性算出部120と、伝送路特性分割部230と、SP伝送路特性分布算出部140と、所望伝送路特性分布算出部250と、所望伝送路特性抽出部160と、伝送路特性結合部170と、等化部180とを備える。実施の形態2に係る等化装置200は、伝送路特性分割部230及び所望伝送路特性分布算出部250での処理において、実施の形態1に係る等化装置100と異なっている。
Embodiment 2. FIG.
The second embodiment is a form in which the number of divisions is increased for the calculation method of the desired transmission path characteristic distribution calculation unit 150 shown in the first embodiment.
As shown in FIG. 3, the equalization apparatus 200 according to Embodiment 2 includes a Fourier transform unit 110, an SP transmission line characteristic calculation unit 120, a transmission line characteristic division unit 230, and an SP transmission line characteristic distribution. A calculation unit 140, a desired transmission line characteristic distribution calculation unit 250, a desired transmission line characteristic extraction unit 160, a transmission line characteristic combination unit 170, and an equalization unit 180 are provided. The equalization apparatus 200 according to the second embodiment is different from the equalization apparatus 100 according to the first embodiment in processing in the transmission path characteristic dividing unit 230 and the desired transmission path characteristic distribution calculating unit 250.

実施の形態1では、変動周波数領域の分割数を「3」とし、さらに、変動周波数方向に1/4Tsシフトした領域が、変動周波数の符号を反転した領域と等しい場合を想定して、所望成分の2次元電力分布が算出されている。実施の形態2では、分割数を増やした時の、SP伝送路特性の2次元電力分布と所望成分の2次元電力分布との関係を示し、その関係を用いて伝送路特性のうち、所望成分を抽出する方法を示す。   In the first embodiment, assuming that the number of divisions of the variable frequency region is “3” and the region shifted by ¼ Ts in the variable frequency direction is equal to the region where the sign of the variable frequency is inverted, the desired component The two-dimensional power distribution is calculated. In the second embodiment, the relationship between the two-dimensional power distribution of the SP transmission line characteristics and the two-dimensional power distribution of the desired component when the number of divisions is increased is shown. The method of extracting is shown.

伝送路特性分割部230は、SP伝送路特性算出部120で算出された伝送路特性を、遅延時間領域及び変動周波数領域において分割する。実施の形態1における伝送路特性分割部130は、変動周波数領域の分割数を「3」としているが、図13に示されているように、実施の形態2における伝送路特性分割部230は、変動周波数領域の分割数を「6」としている。ここで、rPBpは、rPAnを変動周波数方向に1/4Tsシフトした領域であり、rPApは、rPBnを変動周波数方向に1/4Tsシフトした領域である。なお、図13において、符号705は、所望の成分であり、符号805は、不要な繰り返し成分である。
また、実施の形態2においては、所望伝送路特性分布算出部250で求めようとしている繰り返し成分を含まない所望成分の2次元電力分布は、図14のようになっているものとする。ここで、PApの領域は、rPApの領域と同じ領域である。PBpの領域は、rPBpの領域と同じ領域である。PAnの領域は、rPAnの領域と同じ領域である。PBnの領域は、rPBnの領域と同じ領域である。
The transmission line characteristic dividing unit 230 divides the transmission line characteristic calculated by the SP transmission line characteristic calculating unit 120 in the delay time domain and the variable frequency domain. The transmission line characteristic dividing unit 130 in the first embodiment sets the number of divisions in the variable frequency region to “3”. However, as shown in FIG. 13, the transmission line characteristic dividing unit 230 in the second embodiment The number of divisions in the variable frequency region is “6”. Here, rP Bp is a region obtained by shifting rP An by ¼ Ts in the direction of variation frequency, and rP Ap is a region obtained by shifting rP Bn by ¼ Ts in the direction of variation frequency. In FIG. 13, reference numeral 705 is a desired component, and reference numeral 805 is an unnecessary repetitive component.
Further, in the second embodiment, it is assumed that the two-dimensional power distribution of the desired component not including the repetitive component to be obtained by the desired transmission path characteristic distribution calculating unit 250 is as shown in FIG. Here, the region of P Ap is the same region as the region of rP Ap . The P Bp region is the same region as the rP Bp region. The region of P An is the same region as the region of rP An . The region of P Bn is the same region as the region of rP Bn .

この時、実施の形態1と同様に、図5で示されているように、変動周波数方向に1/4Ts及び遅延時間方向にTu/12巡回シフトして繰り返し成分を持つことと、遅延時間が等しく周波数変動の符号が逆となる領域の電力比とを考慮して、下記の(16)式及び(17)式が得られる。
rPAp=PAp+S×PBn
=PAp+S×R×PBp
=PAp+M×PBp (16)
rPBp=PBp+S×PAn
=PBp+S×R×PAp
=PBp+M×PAp (17)
ここで、SP伝送路特性分布算出部140で算出された電力分布rPApにおいて、所望の成分が含まれているPApとPBpとが重畳された電力値が検出され、電力分布rPBpにおいても、PApとPBpとが重畳された電力値が検出されることがわかる。
At this time, as in the first embodiment, as shown in FIG. 5, it has 1/4 Ts in the variable frequency direction and Tu / 12 cyclic shift in the delay time direction to have a repetitive component, and the delay time. In consideration of the power ratio in the region where the sign of frequency fluctuation is reversed, the following equations (16) and (17) are obtained.
rP Ap = P Ap + S × P Bn
= P Ap + S × R × P Bp
= P Ap + M × P Bp (16)
rP Bp = P Bp + S × P An
= P Bp + S × R × P Ap
= P Bp + M × P Ap (17)
Here, in the power distribution rP Ap calculated by the SP transmission line characteristic distribution calculation unit 140, a power value in which P Ap and P Bp including a desired component are superimposed is detected, and in the power distribution rP Bp It can also be seen that a power value in which P Ap and P Bp are superimposed is detected.

また、rPAp、rPBp、PAp、PBp、I及びMを部分行列として、(16)式及び(17)式を、下記の(18)式及び(19)式と表すことができる。

Figure 2014150469
rP=C×P (19)
ここで、各行列は、下記の(20)式〜(22)式のように表すことができる。
Figure 2014150469
Figure 2014150469
Figure 2014150469
また、rP及びPは、2N個の成分を持つ列ベクトルであり、Cは、2N×2N行列である。 Further, with rP Ap , rP Bp , P Ap , P Bp , I and M as sub-matrices, the equations (16) and (17) can be expressed as the following equations (18) and (19).
Figure 2014150469
rP p = C × P p (19)
Here, each matrix can be expressed as the following equations (20) to (22).
Figure 2014150469
Figure 2014150469
Figure 2014150469
RP p and P p are column vectors having 2N components, and C is a 2N × 2N matrix.

さらに、(19)式を変形することで、下記の(23)式が得られる。
=C−1×rP (23)
Furthermore, the following equation (23) is obtained by modifying equation (19).
P p = C −1 × rP p (23)

所望伝送路特性分布算出部250は、実施の形態1と同様に、(23)式を演算することで、所望成分の電力分布を求めることができる。また、変動周波数が負の領域については、所望伝送路特性分布算出部250は、実施の形態1と同様に、下記の(24)式及び(25)式により、所望成分の電力分布を算出することができる。
An=R×PAp (24)
Bn=R×PBp (25)
The desired transmission line characteristic distribution calculation unit 250 can calculate the power distribution of the desired component by calculating the equation (23), as in the first embodiment. In the region where the fluctuation frequency is negative, the desired transmission path characteristic distribution calculation unit 250 calculates the power distribution of the desired component using the following equations (24) and (25), as in the first embodiment. be able to.
P An = R × P Ap (24)
P Bn = R × P Bp (25)

分割数をさらに増やした場合についても、所望伝送路特性分布算出部250は、ある領域について、遅延時間方向に−12/Tu及び変動周波数方向に−1/4Tsシフトし、さらに変動周波数の符号を反転した領域を考え、上記と同様に両者の関係式を求めることで、所望成分の電力分布を算出することができる。また、変動周波数方向の分割の間隔については、伝送路特性分割部230は、各領域について、−1/4Tsシフトした領域が重なるように分割すればよい。さらに、所望伝送路特性分布算出部250は、想定される電波環境において、繰り返し成分が重畳されうる変動周波数の領域のみ、上記逆行列演算を行えばよい。   Even when the number of divisions is further increased, the desired transmission path characteristic distribution calculation unit 250 shifts −12 / Tu in the delay time direction and −1/4 Ts in the variable frequency direction for a certain region, and further changes the sign of the variable frequency. Considering the inverted region, the power distribution of the desired component can be calculated by obtaining the relational expression between them in the same manner as described above. In addition, with respect to the division interval in the variable frequency direction, the transmission path characteristic division unit 230 may divide each region so that the regions shifted by −1/4 Ts overlap. Furthermore, the desired transmission path characteristic distribution calculation unit 250 may perform the above inverse matrix calculation only in the region of the variable frequency where the repetitive component can be superimposed in the assumed radio wave environment.

以上のように、実施の形態2に係る等化装置200は、変動周波数領域での分割数Mが大きい場合でも、伝送路特性の遅延時間軸及び変動周波数軸上での2次元電力分布を算出し、遅延時間が等しく変動周波数の符号が逆となる領域の電力比と、所望成分の2次元電力分布が繰り返される規則性とから、繰り返し成分を含まない領域を推定し、伝送路特性の所望成分のみを抽出することができる。これにより、伝送路の時間変動が大きい場合においても、適応的に伝送路推定することで正確な等化ができる。   As described above, the equalization apparatus 200 according to Embodiment 2 calculates the two-dimensional power distribution on the delay time axis and the variable frequency axis of the transmission path characteristics even when the division number M in the variable frequency region is large. Then, from the power ratio in the region where the delay time is equal and the sign of the variable frequency is reversed and the regularity in which the two-dimensional power distribution of the desired component is repeated, the region not including the repetitive component is estimated, and the desired transmission path characteristics are obtained. Only the components can be extracted. Thereby, even when the time variation of the transmission path is large, accurate equalization can be performed by adaptively estimating the transmission path.

実施の形態3.
本実施の形態では、実施の形態1及び2で示した所望伝送路特性分布算出部150の算出方法について、逆行列演算処理を削減するものである。また、所望伝送路特性分布算出部150以外の機能は、実施の形態1と同様であるため、説明を省略する。
Embodiment 3 FIG.
In the present embodiment, the inverse matrix calculation process is reduced with respect to the calculation method of the desired transmission path characteristic distribution calculation unit 150 shown in the first and second embodiments. Further, functions other than the desired transmission path characteristic distribution calculation unit 150 are the same as those in the first embodiment, and thus description thereof is omitted.

実施の形態1及び2では、所望成分の電力分布が、遅延時間領域Tu/3にわたって、存在しうるとして、所望伝送路特性分布算出部150、250は計算を行なっている。実施の形態3では、想定される最大の遅延時間がTu/3より短い電波環境を考慮して、逆行列演算処理をより簡易にする方法を示す。   In Embodiments 1 and 2, it is assumed that the power distribution of the desired component can exist over the delay time region Tu / 3, and the desired transmission line characteristic distribution calculation units 150 and 250 perform calculations. In the third embodiment, a method of simplifying the inverse matrix calculation process in consideration of a radio wave environment in which the maximum delay time assumed is shorter than Tu / 3 will be described.

図3に示されているように、実施の形態3に係る等化装置300は、フーリエ変換部110と、SP伝送路特性算出部120と、伝送路特性分割部130と、SP伝送路特性分布算出部140と、所望伝送路特性分布算出部350と、所望伝送路特性抽出部160と、伝送路特性結合部170と、等化部180とを備える。実施の形態3に係る等化装置300は、所望伝送路特性分布算出部350での処理において、実施の形態1に係る等化装置100と異なっている。   As shown in FIG. 3, the equalization apparatus 300 according to the third embodiment includes a Fourier transform unit 110, an SP transmission line characteristic calculation unit 120, a transmission line characteristic division unit 130, and an SP transmission line characteristic distribution. A calculation unit 140, a desired transmission line characteristic distribution calculation unit 350, a desired transmission line characteristic extraction unit 160, a transmission line characteristic coupling unit 170, and an equalization unit 180 are provided. The equalization apparatus 300 according to the third embodiment is different from the equalization apparatus 100 according to the first embodiment in the processing in the desired transmission path characteristic distribution calculating unit 350.

実施の形態1において、所望伝送路特性分布算出部150は、P及びPが分割された全ての遅延時間で値を持つとして演算を行なったが、想定される最大の遅延時間がTu/3よりも短いような電波環境が考えられる。このような環境において、Pのうち、絶えずゼロ値をとる遅延時間の成分に乗算される繰り返し重畳行列Cのうち、行列Mに起因する成分のみを「0」にすることで、逆行列の演算量を削減することができる。 In the first embodiment, the desired transmission path characteristic distribution calculation unit 150 performs the calculation assuming that P p and P n have values at all the divided delay times, but the expected maximum delay time is Tu /. A radio wave environment shorter than 3 is conceivable. In such an environment, by setting only the component due to the matrix M out of the repeated superposition matrix C multiplied by the delay time component that constantly takes a zero value of P p to “0”, the inverse matrix of The amount of calculation can be reduced.

例えば、(8)式において、Pp6及びPp7が絶えずゼロ値をとる電波環境を考える。この時、繰り返し重畳行列Cの6列目及び7列目は、ゼロ値との乗算となるので、任意の値に置き換えても問題ない。そのため、演算量を減らすためにCの6列目及び7列目の値をゼロとしても、(6)式は成り立つ。しかし、一方で、対角成分をゼロにすると、逆行列を求めることができない。よって、Mに起因する成分、つまり、m及びmのみをゼロ値にし、繰り返し重畳行列Cを、下記の(26)式とすることで、逆行列C−1の演算量を削減することができる。

Figure 2014150469
For example, in the equation (8), consider a radio wave environment in which P p6 and P p7 constantly take zero values. At this time, the sixth and seventh columns of the repeated superposition matrix C are multiplied by zero values, so there is no problem even if they are replaced with arbitrary values. Therefore, even if the values in the 6th and 7th columns of C are set to zero in order to reduce the amount of calculation, equation (6) holds. However, on the other hand, if the diagonal component is zero, the inverse matrix cannot be obtained. Therefore, only the components caused by M, that is, m 6 and m 7 are set to zero values, and the repeated superposition matrix C is set to the following equation (26), thereby reducing the amount of computation of the inverse matrix C −1. Can do.
Figure 2014150469

このように、所望伝送路特性分布算出部350において、想定される電波環境において無視できる遅延時間に対応する繰り返し重畳行列Cの成分をゼロ値として逆行列を算出することで、所望成分の2次元電力分布を求める際の演算量を大幅に削減することができる。   In this way, the desired transmission path characteristic distribution calculating unit 350 calculates the inverse matrix with the repetition matrix C component corresponding to the delay time that can be ignored in the assumed radio wave environment as a zero value, thereby obtaining the two-dimensional desired component. The amount of calculation for obtaining the power distribution can be greatly reduced.

実施の形態4.
実施の形態4では、実施の形態1、2及び3で示した所望伝送路特性抽出部160の抽出方法に対して、繰り返し成分の含有割合を考慮に入れた抽出方法を説明する。実施の形態1、2及び3では、所望伝送路特性分布算出部150、250、350で求められた電力分布のみを用いて抽出領域を決めていたが、実施の形態4では、所望伝送路特性分布算出部460は、SP伝送路特性分布算出部140で求められた電力分布も用いることで、繰り返し成分の2次元電力分布を算出し、各分割領域における所望成分と繰り返し成分の割合をもとに伝送路特性の抽出割合を決定する。
Embodiment 4 FIG.
In the fourth embodiment, an extraction method that takes into consideration the content ratio of the repetitive components is described with respect to the extraction method of the desired transmission path characteristic extraction unit 160 shown in the first, second, and third embodiments. In the first, second, and third embodiments, the extraction region is determined using only the power distribution obtained by the desired transmission path characteristic distribution calculating units 150, 250, and 350. However, in the fourth embodiment, the desired transmission path characteristic is determined. The distribution calculation unit 460 also uses the power distribution obtained by the SP transmission path characteristic distribution calculation unit 140 to calculate the two-dimensional power distribution of the repetitive component, and based on the ratio of the desired component and the repetitive component in each divided region. Next, determine the extraction ratio of the transmission path characteristics.

図15は、実施の形態4に係る等化装置400の構成を概略的に示す機能ブロック図である。等化装置400は、フーリエ変換部110と、SP伝送路特性算出部120と、伝送路特性分割部130と、SP伝送路特性分布算出部140と、所望伝送路特性分布算出部150と、所望伝送路特性抽出部460と、伝送路特性結合部170と、等化部180とを備える。実施の形態4に係る等化装置400は、所望伝送路特性抽出部460での処理において、実施の形態1に係る等化装置100と異なっている。なお、実施の形態4においては、SP伝送路特性分布算出部140は、算出された伝送路特性の分布を所望伝送路特性抽出部460にも与える。   FIG. 15 is a functional block diagram schematically showing the configuration of the equalization apparatus 400 according to the fourth embodiment. The equalization apparatus 400 includes a Fourier transform unit 110, an SP transmission line characteristic calculation unit 120, a transmission line characteristic division unit 130, an SP transmission line characteristic distribution calculation unit 140, a desired transmission line characteristic distribution calculation unit 150, a desired transmission line A transmission path characteristic extraction unit 460, a transmission path characteristic coupling unit 170, and an equalization unit 180 are provided. The equalization apparatus 400 according to the fourth embodiment is different from the equalization apparatus 100 according to the first embodiment in processing in the desired transmission path characteristic extraction unit 460. In the fourth embodiment, SP transmission path characteristic distribution calculating section 140 also provides the calculated transmission path characteristic distribution to desired transmission path characteristic extracting section 460.

所望伝送路特性抽出部460は、複数の領域の各々において、伝送路特性分布算出部140で算出された物理量から、伝送路特性の所望の成分の物理量を差し引くことで、伝送路特性の繰り返し成分の物理量を算出する。例えば、所望伝送路特性抽出部460は、所望伝送路特性分布算出部150で得られた所望の伝送路特性の電力分布と、SP伝送路特性分布算出部140で得られた繰り返し成分を含む伝送路特性の電力分布とをもとに、伝送路特性分割部130で分割された伝送路特性から、繰り返し成分の電力値と比較して所望成分の電力値が大きい分割領域を抽出する。   The desired transmission line characteristic extraction unit 460 subtracts the physical quantity of the desired component of the transmission path characteristic from the physical quantity calculated by the transmission path characteristic distribution calculation unit 140 in each of the plurality of regions, thereby repeating the transmission path characteristic repetitive component. The physical quantity of is calculated. For example, the desired transmission line characteristic extraction unit 460 includes a transmission including the power distribution of the desired transmission line characteristic obtained by the desired transmission line characteristic distribution calculation unit 150 and the repetitive component obtained by the SP transmission line characteristic distribution calculation unit 140. Based on the power distribution of the path characteristics, a segment area having a power value of the desired component larger than the power value of the repetitive component is extracted from the transmission path characteristics divided by the transmission path characteristic divider 130.

ここで、各分割領域において、所望成分と繰り返し成分との間に相関がないため、繰り返し成分の2次元電力分布は、SP伝送路特性分布算出部140で求められた2次元電力分布から、所望伝送路特性分布算出部150で求められた2次元電力分布を、各分割領域毎に減算することで、求められる。もしくは、SP伝送路特性分布算出部140で求められた2次元電力分布を用いずに、所望伝送路特性分布算出部150で求められた2次元電力分布を変動周波数方向に1/4Tsの整数倍、遅延時間方向にTu/12の整数倍シフトさせることで、繰り返し成分の2次元電力分布が求められてもよい。   Here, since there is no correlation between the desired component and the repetitive component in each divided region, the two-dimensional power distribution of the repetitive component is obtained from the two-dimensional power distribution obtained by the SP transmission path characteristic distribution calculating unit 140. It is obtained by subtracting the two-dimensional power distribution obtained by the transmission line characteristic distribution calculation unit 150 for each divided region. Alternatively, instead of using the two-dimensional power distribution obtained by the SP transmission line characteristic distribution calculation unit 140, the two-dimensional power distribution obtained by the desired transmission line characteristic distribution calculation unit 150 is converted to an integral multiple of 1/4 Ts in the variable frequency direction. The two-dimensional power distribution of the repetitive component may be obtained by shifting the integral multiple of Tu / 12 in the delay time direction.

そして、所望伝送路特性抽出部460は、複数の領域の各々において、伝送路特性の繰り返し成分の物理量に対する伝送路特性の所望の成分の物理量の割合が高いほど、伝送路特性分割部130で分割された複数の領域の成分から、伝送路特性の所望の成分が含まれる領域の成分を抽出する抽出割合を高くする。例えば、所望伝送路特性抽出部460は、各分割領域において所望成分の電力値と繰り返し成分の電力値とを用いて抽出割合を決定すればよい。この時、所望伝送路特性抽出部460は、繰り返し成分の電力値と比べて所望成分の電力値が大きい時、抽出割合が大きくなるように、つまり「1」に近い係数を分割された伝送路特性に乗算すればよい。また、所望伝送路特性抽出部460は、繰り返し成分の電力値と比べて所望成分の電力値が小さい時、抽出割合が小さくなるように、つまり「0」に近い係数を分割された伝送路特性に乗算すればよい。乗算する係数は、両者の比若しくは差、又はその両方を用いて算出されればよい。例えば、(所望成分の電力値)/(所望成分の電力値+繰り返し成分の電力値)を用いればよい。言い換えると、両者の比若しくは差、又はその両方により、繰り返し成分の電力値と比べて所望成分の電力値が大きいほど、抽出割合が大きくなる(乗算する係数が「1」に近くなる)ようにすればよい。一方、両者の比若しくは差、又はその両方により、繰り返し成分の電力値と比べて所望成分の電力値が小さいほど、抽出割合が小さくなる(乗算する係数が「0」に近くなる)ようにすればよい。   Then, in each of the plurality of regions, the desired transmission line characteristic extraction unit 460 performs division by the transmission line characteristic division unit 130 as the ratio of the physical quantity of the desired component of the transmission line characteristic to the physical quantity of the repetitive component of the transmission line characteristic increases. The extraction ratio for extracting the component of the region including the desired component of the transmission path characteristic is increased from the plurality of regions. For example, the desired transmission path characteristic extraction unit 460 may determine the extraction ratio using the power value of the desired component and the power value of the repetitive component in each divided region. At this time, the desired transmission line characteristic extraction unit 460 divides the transmission line obtained by dividing the coefficient close to “1” so that the extraction ratio increases when the power value of the desired component is larger than the power value of the repetitive component. Multiply the characteristics. Further, the desired transmission line characteristic extraction unit 460 transmits the transmission line characteristic obtained by dividing the coefficient close to “0” so that the extraction ratio becomes smaller when the power value of the desired component is smaller than the power value of the repetitive component. Multiply by. The coefficient to be multiplied may be calculated using the ratio or difference between the two, or both. For example, (power value of desired component) / (power value of desired component + power value of repetitive component) may be used. In other words, due to the ratio or difference between the two, or both, the extraction ratio increases (the multiplication coefficient is closer to “1”) as the power value of the desired component is larger than the power value of the repetitive component. do it. On the other hand, due to the ratio or difference between the two, or both, the extraction ratio becomes smaller (the multiplication coefficient is closer to “0”) as the power value of the desired component is smaller than the power value of the repetitive component. That's fine.

実施の形態1では、所望成分の電力値が大きい分割領域の伝送路特性を抽出する。図16に示されているような伝送路の場合、所望成分の伝送路特性と、繰り返し成分の伝送路特性とが重なる領域aにおいて、所望成分の電力値が大きくなるため、所望成分だけでなく繰り返し成分も含めて抽出されてしまう。一方、実施の形態4では、所望成分の電力値と、繰り返し成分の電力値との両方を用いて抽出割合を変化させることにより、可能な限り繰り返し成分を抑圧することができるので、図16のような所望成分と繰り返し成分とを完全に分割できない伝送路であっても、等化精度の低下を抑えることができる。   In the first embodiment, the transmission path characteristics of the segmented region where the power value of the desired component is large are extracted. In the case of the transmission path as shown in FIG. 16, the power value of the desired component increases in a region a where the transmission path characteristic of the desired component and the transmission path characteristic of the repetitive component overlap. It will be extracted including repeated components. On the other hand, in the fourth embodiment, the repetition component can be suppressed as much as possible by changing the extraction ratio using both the power value of the desired component and the power value of the repetition component. Even in such a transmission line that cannot completely divide the desired component and the repetitive component, a decrease in equalization accuracy can be suppressed.

また、実施の形態4に係る等化装置400は、図17に示されているように、変動周波数が正の領域aにも、負の領域bにも繰り返し成分が所望成分に重畳されている場合でも、所望成分と繰り返し成分との電力値を算出することができ、同様に所望成分を抽出することができる。   In addition, in the equalization apparatus 400 according to the fourth embodiment, as illustrated in FIG. 17, the repetitive component is superimposed on the desired component in both the positive region a and the negative region b of the fluctuation frequency. Even in this case, the power values of the desired component and the repetitive component can be calculated, and the desired component can be extracted similarly.

100,200,300,400 等化装置、 110 フーリエ変換部、 120 SP伝送路特性算出部、 130,230 伝送路特性分割部、 140 SP伝送路特性分布算出部、 150,250,350 所望伝送路特性分布算出部、 160 所望伝送路特性抽出部、 170 伝送路特性結合部、 180 等化部。   100, 200, 300, 400 Equalizer, 110 Fourier transform unit, 120 SP transmission line characteristic calculation part, 130, 230 transmission line characteristic division part, 140 SP transmission line characteristic distribution calculation part, 150, 250, 350 Desired transmission line A characteristic distribution calculation unit, 160 a desired transmission line characteristic extraction unit, 170 a transmission line characteristic coupling unit, and 180 an equalization unit.

Claims (14)

パイロットキャリアを含む受信信号を周波数領域の信号に変換するフーリエ変換部と、
前記フーリエ変換部で変換された周波数領域の信号に基づいて、前記パイロットキャリアに作用する伝送路特性を算出する伝送路特性算出部と、
前記伝送路特性算出部で算出された伝送路特性を、変動周波数軸と遅延時間軸との2軸上において、複数の領域の成分に分割する伝送路特性分割部と、
前記伝送路特性分割部で分割された複数の領域の成分の物理量を算出する伝送路特性分布算出部と、
前記伝送路特性分布算出部で算出された物理量から、前記伝送路特性算出部で算出された伝送路特性の繰り返し成分の物理量を、当該繰り返し成分の分布の規則性と、前記伝送路特性算出部で算出された伝送路特性の所望の成分の統計的性質とを用いて削減し、当該所望の成分の物理量を算出する所望伝送路特性分布算出部と、
前記所望伝送路特性分布算出部で算出された所望の成分の物理量に基づいて、前記伝送路特性分割部で分割された複数の領域の成分から、前記所望の成分が含まれる領域の成分を抽出する所望伝送路特性抽出部と、
前記所望伝送路特性抽出部で抽出された成分を結合することで、周波数領域の伝送路特性を生成する伝送路特性結合部と、
前記伝送路特性結合部で生成された周波数領域の伝送路特性を用いて、前記フーリエ変換部で変換された周波数領域の信号の伝送路歪みを補償する等化部と、を備えること
を特徴とする等化装置。
A Fourier transform unit that converts a received signal including a pilot carrier into a signal in the frequency domain;
Based on the frequency domain signal transformed by the Fourier transform unit, a transmission line characteristic calculation unit for calculating a transmission line characteristic acting on the pilot carrier;
A transmission line characteristic dividing unit that divides the transmission line characteristic calculated by the transmission line characteristic calculation unit into components of a plurality of regions on two axes of a variable frequency axis and a delay time axis;
A transmission path characteristic distribution calculating section that calculates physical quantities of components of a plurality of regions divided by the transmission path characteristic dividing section;
The physical quantity of the repetitive component of the transmission path characteristic calculated by the transmission path characteristic calculation section from the physical quantity calculated by the transmission path characteristic distribution calculation section, the regularity of the distribution of the repetitive component, and the transmission path characteristic calculation section A desired transmission path characteristic distribution calculating unit that calculates the physical quantity of the desired component by using the statistical property of the desired component of the transmission path characteristic calculated in
Based on the physical quantity of the desired component calculated by the desired transmission path characteristic distribution calculating unit, the component of the area including the desired component is extracted from the components of the plurality of areas divided by the transmission path characteristic dividing unit. A desired transmission line characteristic extraction unit,
By combining the components extracted by the desired transmission line characteristic extracting unit, a transmission line characteristic combining unit that generates a transmission line characteristic in the frequency domain;
An equalization unit that compensates for transmission path distortion of the frequency domain signal transformed by the Fourier transform unit using the transmission path characteristic of the frequency domain generated by the transmission path characteristic coupling unit. Equalizing device.
前記所望伝送路特性分布算出部は、
前記伝送路特性分布算出部で算出された物理量が、前記所望の成分の物理量と、前記パイロットキャリアの配置で定まる、遅延時間及び変動周波数において巡回シフトした領域の前記所望の成分の物理量との和であること、並びに、遅延時間が等しく、変動周波数の符号が逆となる領域の物理量の比、を用いて、前記伝送路特性分布算出部で算出された物理量と、前記所望の成分の物理量との関係式を算出し、
前記算出された関係式を用いて、前記伝送路特性分布算出部で算出された物理量から前記所望の成分の物理量を算出すること
を特徴とする請求項1に記載の等化装置。
The desired transmission path characteristic distribution calculating unit
The physical quantity calculated by the transmission path characteristic distribution calculating unit is the sum of the physical quantity of the desired component and the physical quantity of the desired component in a region that is cyclically shifted in delay time and variable frequency, which is determined by the arrangement of the pilot carriers. And the physical quantity calculated by the transmission path characteristic distribution calculating unit using the ratio of the physical quantities of the regions where the delay times are equal and the sign of the variable frequency is reversed, and the physical quantity of the desired component Is calculated,
The equalization apparatus according to claim 1, wherein the physical quantity of the desired component is calculated from the physical quantity calculated by the transmission path characteristic distribution calculation unit using the calculated relational expression.
前記所望伝送路特性分布算出部は、
第1の領域の成分の物理量と、当該第1の領域に対して、遅延時間が等しく変動周波数の符号が逆となる第2の領域の成分の物理量と、の間の比を算出し、
前記値を、前記伝送路特性分布算出部で算出された物理量に当該算出された比を用いて算出すること
を特徴とする請求項1又は2に記載の等化装置。
The desired transmission path characteristic distribution calculating unit
Calculating the ratio between the physical quantity of the component in the first area and the physical quantity of the component in the second area in which the delay time is equal and the sign of the variable frequency is opposite for the first area,
The equalization apparatus according to claim 1 or 2, wherein the value is calculated using the calculated ratio to the physical quantity calculated by the transmission path characteristic distribution calculation unit.
前記第1の領域は、変動周波数の絶対値が予め定められた閾値よりも小さい領域であること
を特徴とする請求項3に記載の等化装置。
The equalization apparatus according to claim 3, wherein the first region is a region in which an absolute value of a fluctuation frequency is smaller than a predetermined threshold value.
前記所望伝送路特性抽出部は、
前記複数の領域の各々において、前記伝送路特性分布算出部で算出された物理量から、前記所望の成分の物理量を差し引くことで、前記繰り返し成分の物理量を算出し、
前記複数の領域の各々において、前記繰り返し成分の物理量に対する前記所望の成分の物理量の割合が高いほど、前記伝送路特性分割部で分割された複数の領域の成分から、前記所望の成分が含まれる領域の成分を抽出する抽出割合を高くすること
を特徴とする請求項1から4の何れか一項に記載の等化装置。
The desired transmission line characteristic extraction unit includes:
In each of the plurality of regions, the physical quantity of the repetitive component is calculated by subtracting the physical quantity of the desired component from the physical quantity calculated by the transmission path characteristic distribution calculation unit,
In each of the plurality of regions, as the ratio of the physical quantity of the desired component to the physical quantity of the repetitive component is higher, the desired component is included from the components of the plurality of regions divided by the transmission path characteristic dividing unit. The equalization apparatus according to any one of claims 1 to 4, wherein an extraction ratio for extracting a component of a region is increased.
前記伝送路特性分布算出部は、
前記伝送路特性分割部で分割された複数の領域の成分の中から選択された領域の成分の物理量を算出することで、雑音成分の物理量を算出し、
前記伝送路特性分割部で分割された複数の領域の成分の物理量から、前記雑音成分の物理量を減算し、
前記所望伝送路特性分布算出部は、前記雑音成分の物理量が減算された後の物理量を用いて、前記所望の成分の物理量を算出すること
を特徴とする請求項1から5の何れか一項に記載の等化装置。
The transmission line characteristic distribution calculation unit
By calculating the physical quantity of the component of the area selected from the components of the plurality of areas divided by the transmission path characteristic dividing unit, the physical quantity of the noise component is calculated,
Subtracting the physical quantity of the noise component from the physical quantity of the component of the plurality of regions divided by the transmission path characteristic dividing unit,
The desired transmission path characteristic distribution calculation unit calculates the physical quantity of the desired component using the physical quantity after the physical quantity of the noise component is subtracted. The equalization apparatus described in 1.
前記物理量は、電力又は振幅であること
を特徴とする請求項1から6の何れか一項に記載の等化装置。
The equalization apparatus according to any one of claims 1 to 6, wherein the physical quantity is power or amplitude.
パイロットキャリアを含む受信信号を周波数領域の信号に変換するフーリエ変換過程と、
前記フーリエ変換過程で変換された周波数領域の信号に基づいて、前記パイロットキャリアに作用する伝送路特性を算出する伝送路特性算出過程と、
前記伝送路特性算出過程で算出された伝送路特性を、変動周波数軸と遅延時間軸との2軸上において、複数の領域の成分に分割する伝送路特性分割過程と、
前記伝送路特性分割過程で分割された複数の領域の成分の物理量を算出する伝送路特性分布算出過程と、
前記伝送路特性分布算出過程で算出された物理量から、前記伝送路特性算出過程で算出された伝送路特性の繰り返し成分の物理量を、当該繰り返し成分の分布の規則性と、前記伝送路特性算出過程で算出された伝送路特性の所望の成分の統計的性質とを用いて削減し、当該所望の成分の物理量を算出する所望伝送路特性分布算出過程と、
前記所望伝送路特性分布算出過程で算出された所望の成分の物理量に基づいて、前記伝送路特性分割過程で分割された複数の領域の成分から、前記所望の成分が含まれる領域の成分を抽出する所望伝送路特性抽出過程と、
前記所望伝送路特性抽出過程で抽出された成分を結合することで、周波数領域の伝送路特性を生成する伝送路特性結合過程と、
前記伝送路特性結合過程で生成された周波数領域の伝送路特性を用いて、前記フーリエ変換過程で変換された周波数領域の信号の伝送路歪みを補償する等化過程と、を有すること
を特徴とする等化方法。
A Fourier transform process for transforming a received signal including a pilot carrier into a frequency domain signal;
A transmission path characteristic calculation process for calculating a transmission path characteristic acting on the pilot carrier based on the frequency domain signal transformed in the Fourier transform process;
A transmission line characteristic dividing process of dividing the transmission line characteristic calculated in the transmission line characteristic calculation process into components of a plurality of regions on two axes of a variable frequency axis and a delay time axis;
A transmission line characteristic distribution calculating process for calculating physical quantities of components of a plurality of regions divided in the transmission line characteristic dividing process;
From the physical quantity calculated in the transmission path characteristic distribution calculation process, the physical quantity of the repetitive component of the transmission path characteristic calculated in the transmission path characteristic calculation process, the regularity of the distribution of the repetitive component, and the transmission path characteristic calculation process A desired transmission path characteristic distribution calculating process for calculating the physical quantity of the desired component by using the statistical property of the desired component of the transmission path characteristic calculated in
Based on the physical quantity of the desired component calculated in the desired transmission path characteristic distribution calculating process, the component of the area including the desired component is extracted from the components of the plurality of areas divided in the transmission path characteristic dividing process. A desired transmission line characteristic extraction process,
By combining the components extracted in the desired transmission line characteristic extraction process, a transmission line characteristic combining process for generating a frequency domain transmission line characteristic;
An equalization process for compensating for transmission path distortion of the frequency domain signal transformed in the Fourier transform process using the frequency domain transmission path characteristics generated in the transmission path characteristic coupling process. How to equalize.
前記所望伝送路特性分布算出過程は、
前記伝送路特性分布算出過程で算出された物理量が、前記所望の成分の物理量と、前記パイロットキャリアの配置で定まる、遅延時間及び変動周波数において巡回シフトした領域の前記所望の成分の物理量との和であること、並びに、遅延時間が等しく、変動周波数の符号が逆となる領域の物理量の比、を用いて、前記伝送路特性分布算出過程で算出された物理量と、前記所望の成分の物理量との関係式を算出し、
前記算出された関係式を用いて、前記伝送路特性分布算出過程で算出された物理量から前記所望の成分の物理量を算出すること
を特徴とする請求項8に記載の等化方法。
The desired transmission path characteristic distribution calculating process includes:
The physical quantity calculated in the transmission path characteristic distribution calculation process is the sum of the physical quantity of the desired component and the physical quantity of the desired component in a region that is cyclically shifted in delay time and variable frequency, which is determined by the arrangement of the pilot carriers. And the physical quantity calculated in the transmission path characteristic distribution calculation process using the ratio of the physical quantities in the region where the delay times are equal and the sign of the variable frequency is reversed, and the physical quantity of the desired component Is calculated,
The equalization method according to claim 8, wherein the physical quantity of the desired component is calculated from the physical quantity calculated in the transmission path characteristic distribution calculation process using the calculated relational expression.
前記所望伝送路特性分布算出過程は、
第1の領域の成分の物理量と、当該第1の領域に対して、遅延時間が等しく変動周波数の符号が逆となる第2の領域の成分の物理量と、の間の比を算出し、
前記値を、前記伝送路特性分布算出過程で算出された物理量に当該算出された比を用いて算出すること
を特徴とする請求項8又は9に記載の等化方法。
The desired transmission path characteristic distribution calculating process includes:
Calculating the ratio between the physical quantity of the component in the first area and the physical quantity of the component in the second area in which the delay time is equal and the sign of the variable frequency is opposite for the first area,
The equalization method according to claim 8 or 9, wherein the value is calculated using the calculated ratio to the physical quantity calculated in the transmission path characteristic distribution calculation process.
前記第1の領域は、変動周波数の絶対値が予め定められた閾値よりも小さい領域であること
を特徴とする請求項10に記載の等化方法。
The equalization method according to claim 10, wherein the first region is a region in which an absolute value of a fluctuation frequency is smaller than a predetermined threshold value.
前記所望伝送路特性抽出過程は、
前記複数の領域の各々において、前記伝送路特性分布算出過程で算出された物理量から、前記所望の成分の物理量を差し引くことで、前記繰り返し成分の物理量を算出し、
前記複数の領域の各々において、前記繰り返し成分の物理量に対する前記所望の成分の物理量の割合が高いほど、前記伝送路特性分割過程で分割された複数の領域の成分から、前記所望の成分が含まれる領域の成分を抽出する抽出割合を高くすること
を特徴とする請求項8から11の何れか一項に記載の等化方法。
The desired transmission line characteristic extraction process includes:
In each of the plurality of regions, the physical quantity of the repetitive component is calculated by subtracting the physical quantity of the desired component from the physical quantity calculated in the transmission path characteristic distribution calculation process,
In each of the plurality of regions, as the ratio of the physical quantity of the desired component to the physical quantity of the repetitive component is higher, the desired component is included from the components of the plurality of regions divided in the transmission path characteristic dividing process. The equalization method according to any one of claims 8 to 11, wherein an extraction ratio for extracting a component of a region is increased.
前記伝送路特性分布算出過程は、
前記伝送路特性分割過程で分割された複数の領域の成分の中から選択された領域の成分の物理量を算出することで、雑音成分の物理量を算出し、
前記伝送路特性分割過程で分割された複数の領域の成分の物理量から、前記雑音成分の物理量を減算し、
前記所望伝送路特性分布算出過程は、前記雑音成分の物理量が減算された後の物理量を用いて、前記所望の成分の物理量を算出すること
を特徴とする請求項8から12の何れか一項に記載の等化方法。
The transmission path characteristic distribution calculation process includes:
By calculating the physical quantity of the component of the area selected from the components of the plurality of areas divided in the transmission path characteristic dividing process, the physical quantity of the noise component is calculated,
Subtracting the physical quantity of the noise component from the physical quantity of the components of the plurality of regions divided in the transmission path characteristic division process,
13. The desired transmission path characteristic distribution calculating step calculates a physical quantity of the desired component using a physical quantity after the physical quantity of the noise component is subtracted. The equalization method described in 1.
前記物理量は、電力又は振幅であること
を特徴とする請求項8から13の何れか一項に記載の等化方法。
The equalization method according to any one of claims 8 to 13, wherein the physical quantity is power or amplitude.
JP2013019052A 2013-02-04 2013-02-04 Equalizer and equalization method Active JP6021668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019052A JP6021668B2 (en) 2013-02-04 2013-02-04 Equalizer and equalization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019052A JP6021668B2 (en) 2013-02-04 2013-02-04 Equalizer and equalization method

Publications (3)

Publication Number Publication Date
JP2014150469A true JP2014150469A (en) 2014-08-21
JP2014150469A5 JP2014150469A5 (en) 2015-10-15
JP6021668B2 JP6021668B2 (en) 2016-11-09

Family

ID=51573108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019052A Active JP6021668B2 (en) 2013-02-04 2013-02-04 Equalizer and equalization method

Country Status (1)

Country Link
JP (1) JP6021668B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528041A (en) * 2014-07-21 2017-09-21 コヒア テクノロジーズ, インコーポレイテッドCohere Technologies, Inc. OTFS method and use thereof for characterizing data channels
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
US10892547B2 (en) 2015-07-07 2021-01-12 Cohere Technologies, Inc. Inconspicuous multi-directional antenna system configured for multiple polarization modes
US11831391B2 (en) 2018-08-01 2023-11-28 Cohere Technologies, Inc. Airborne RF-head system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229466A (en) * 2004-02-16 2005-08-25 Pioneer Electronic Corp Receiver and receiving method
JP2007151097A (en) * 2005-10-25 2007-06-14 Nippon Hoso Kyokai <Nhk> Delay profile analysis circuit and device using the same
WO2009125502A1 (en) * 2008-04-12 2009-10-15 パイオニア株式会社 Receiver and reception method
WO2009125500A1 (en) * 2008-04-12 2009-10-15 パイオニア株式会社 Receiver and reception method
JP2014132744A (en) * 2012-12-03 2014-07-17 Mitsubishi Electric Corp Equalization device and equalization method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229466A (en) * 2004-02-16 2005-08-25 Pioneer Electronic Corp Receiver and receiving method
JP2007151097A (en) * 2005-10-25 2007-06-14 Nippon Hoso Kyokai <Nhk> Delay profile analysis circuit and device using the same
WO2009125502A1 (en) * 2008-04-12 2009-10-15 パイオニア株式会社 Receiver and reception method
WO2009125500A1 (en) * 2008-04-12 2009-10-15 パイオニア株式会社 Receiver and reception method
JP2014132744A (en) * 2012-12-03 2014-07-17 Mitsubishi Electric Corp Equalization device and equalization method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016022807; 伊藤 尚祐 et al.: '時変マルチパス環境下のOFDMにおけるパイロットキャリアを用いた伝送路推定手法' 第36回情報理論とその応用シンポジウム予稿集 [CD-ROM] 第36回情報理論とその応用シンポジウ , 20131129 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528041A (en) * 2014-07-21 2017-09-21 コヒア テクノロジーズ, インコーポレイテッドCohere Technologies, Inc. OTFS method and use thereof for characterizing data channels
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
US10892547B2 (en) 2015-07-07 2021-01-12 Cohere Technologies, Inc. Inconspicuous multi-directional antenna system configured for multiple polarization modes
US11831391B2 (en) 2018-08-01 2023-11-28 Cohere Technologies, Inc. Airborne RF-head system

Also Published As

Publication number Publication date
JP6021668B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
EP2462726B1 (en) Equalization for ofdm communication
CN101267421B (en) An OFDM time shift channel measuring method
JP6021668B2 (en) Equalizer and equalization method
JP2011223546A (en) Reception device
CN102130871A (en) Channel estimation method and device
JP4903026B2 (en) Delay profile analysis circuit and apparatus using the same
JP5093343B2 (en) MIMO receiving apparatus and method
TWI427957B (en) Channel estimation method and device using the same
US8385438B1 (en) System and method for adaptive synchronization
CN115552851A (en) Channel estimation and equalization in OFDM systems
JP6005008B2 (en) Equalizer and equalization method
JP2015136026A (en) Receiver and reception method
CN101795249B (en) Receiving apparatus with frequency domain equalizer
JP6028572B2 (en) Receiver
CN108206718B (en) Testing device and testing method for multi-input multi-output mode system
Lien et al. Extended Kalman filter for channel and carrier frequency offset estimation
JPWO2009125502A1 (en) Receiving apparatus and receiving method
JP6192857B2 (en) Equalizer, equalization method, and receiver
JP5995703B2 (en) Equalizer, equalization method, and receiver
JP6266128B2 (en) Equalizer, equalization method, and receiver
CN109525521A (en) A kind of channel estimation methods
JP7233569B2 (en) Receiving device and receiving method
Kapoor et al. Channel Estimation based on Kalman Filtering with BER Reduction in MIMO-OFDM Systems
CN108259399B (en) Time domain equalizer and control method thereof
JP5896393B2 (en) Receiving apparatus and receiving method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250