JP2014141356A - Production method of crystallized glass bent plate - Google Patents

Production method of crystallized glass bent plate Download PDF

Info

Publication number
JP2014141356A
JP2014141356A JP2013008956A JP2013008956A JP2014141356A JP 2014141356 A JP2014141356 A JP 2014141356A JP 2013008956 A JP2013008956 A JP 2013008956A JP 2013008956 A JP2013008956 A JP 2013008956A JP 2014141356 A JP2014141356 A JP 2014141356A
Authority
JP
Japan
Prior art keywords
plate
bent
bent plate
crystalline glass
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013008956A
Other languages
Japanese (ja)
Inventor
Hajime Minowa
元 蓑輪
Akihiro Iritani
晃弘 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Nichiden Glass Kako KK
Original Assignee
Nippon Electric Glass Co Ltd
Nichiden Glass Kako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Nichiden Glass Kako KK filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013008956A priority Critical patent/JP2014141356A/en
Priority to PCT/JP2013/082919 priority patent/WO2014115432A1/en
Publication of JP2014141356A publication Critical patent/JP2014141356A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • C03B23/0352Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet
    • C03B23/0357Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet by suction without blowing, e.g. with vacuum or by venturi effect
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing, at high form accuracy, a crystallized glass bent plate having a small radius of curvature of a bent part.SOLUTION: A crystalline glass bent plate production step is performed, in which a crystalline glass bent plate 2 having a bent part with a bending angle smaller than θ by deforming a part in one direction x on a crystalline glass flat plate in the locally heated and softened state. Further, a crystallization step is performed, in which the crystalline glass bent plate 2 is placed on a recessed part 3c of a molding tool 3 having the recessed part 3c having the angle of θ and a triangular cross section, and heated so that the crystalline glass bent plate 2 is deformed and crystallized along the recessed part 3c, to thereby obtain a crystallized glass bent plate 2.

Description

本発明は、結晶化ガラス屈曲板の製造方法に関する。   The present invention relates to a method for producing a crystallized glass bent plate.

結晶化ガラス板は、高い耐熱性を有すると共に、熱膨張率を小さくできるという利点を有する。このため、従来、例えばストーブや暖炉などの暖房装置の熱線透過部品や、調理器用トッププレートなどとして結晶化ガラス板が広く用いられている。   The crystallized glass plate has an advantage that it has high heat resistance and a low coefficient of thermal expansion. For this reason, conventionally, a crystallized glass plate has been widely used as a heat ray transmitting component of a heating device such as a stove or a fireplace or a top plate for a cooking appliance.

このような用途に使用される結晶化ガラス板には、製品の意匠性を向上させるために、製品に応じた形状に成形されていることが求められている。例えば、屈曲部を有する結晶化ガラス屈曲板が求められることもある。   In order to improve the designability of a product, the crystallized glass plate used for such applications is required to be molded into a shape corresponding to the product. For example, a crystallized glass bent plate having a bent portion may be required.

例えば特許文献1には、結晶化ガラス屈曲板の製造方法の一例として、次のような方法が記載されている。まず、裏面に溝部が形成された結晶化ガラス板を横断面が略三角形状の凹部を有する成形型の上に載置する。その状態で結晶化ガラス板を加熱して軟化させることにより溝部が形成された部分を成形時の凹部に沿って屈曲させることにより、溝部が形成された部分が屈曲部となった結晶化ガラス屈曲板を得る。   For example, Patent Document 1 describes the following method as an example of a method for producing a crystallized glass bent plate. First, a crystallized glass plate having a groove formed on the back surface is placed on a mold having a recess having a substantially triangular cross section. In that state, the crystallized glass plate is bent by heating and softening the crystallized glass plate so that the part where the groove is formed is bent along the recess during molding. Get a board.

特開平5−116973号公報Japanese Patent Laid-Open No. 5-116973

しかしながら、特許文献1に記載の結晶化ガラス屈曲板の製造方法では、屈曲部の曲率半径が小さな結晶化ガラス屈曲板を高い形状精度で製造することが困難である。   However, in the method for manufacturing a crystallized glass bent plate described in Patent Document 1, it is difficult to manufacture a crystallized glass bent plate having a small curvature radius of the bent portion with high shape accuracy.

本発明の目的は、屈曲部の曲率半径が小さな結晶化ガラス屈曲板を高い形状精度で製造し得る方法を提供することにある。   An object of the present invention is to provide a method capable of manufacturing a crystallized glass bent plate having a small curvature radius of a bent portion with high shape accuracy.

本発明に係る結晶化ガラス屈曲板の製造方法は、第1の平板部と、第2の平板部と、第1及び第2の平板部を接続している屈曲部とを有し、第1の平板部と第2の平板部との成す角の大きさがθである結晶化ガラス屈曲板の製造方法に関する。本発明に係る結晶化ガラス屈曲板の製造方法では、結晶性ガラス平板の一の方向における一部を局所的に加熱して軟化させた状態で変形させることにより、屈曲角の大きさがθよりも小さな屈曲部を有する結晶性ガラス屈曲板を作製する結晶性ガラス屈曲板作製工程を行う。角度がθである横断面三角形状の凹部を有する成形型の凹部の上に結晶性ガラス屈曲板を載置し、加熱することにより結晶性ガラス屈曲板を凹部に沿って変形させると共に結晶化させることにより結晶化ガラス屈曲板を得る結晶化工程を行う。   The method for manufacturing a crystallized glass bent plate according to the present invention includes a first flat plate portion, a second flat plate portion, and a bent portion connecting the first and second flat plate portions. The present invention relates to a method for manufacturing a crystallized glass bent plate in which the angle between the flat plate portion and the second flat plate portion is θ. In the method for producing a crystallized glass bent plate according to the present invention, a part of the crystalline glass flat plate in one direction is locally heated and deformed to be deformed, so that the bend angle is larger than θ. A crystalline glass bent plate manufacturing step for manufacturing a crystalline glass bent plate having a small bent portion is also performed. A crystalline glass bent plate is placed on a concave portion of a mold having a triangular concave portion with an angle of θ, and the crystalline glass bent plate is deformed and crystallized along the concave portion by heating. Thus, a crystallization step for obtaining a crystallized glass bent plate is performed.

本発明において、「結晶性ガラス」とは、熱処理により結晶化し、結晶化ガラスとなり得るガラスのことをいう。   In the present invention, “crystalline glass” refers to glass that can be crystallized by heat treatment to become crystallized glass.

「結晶性ガラス平板」とは、結晶性ガラスからなる平板をいう。   “Crystalline glass flat plate” refers to a flat plate made of crystalline glass.

「三角形状」には、角部がR面取りまたは面取りされた三角形状が含まれるものとする。   The “triangular shape” includes a triangular shape whose corners are rounded or chamfered.

本発明に係る結晶化ガラス屈曲板の製造方法は、結晶化工程に先立って、結晶性ガラス屈曲板を、屈曲部が他の部材に接触しない状態で熱処理し、屈曲部の歪みを低減させる歪み低減工程をさらに備えていることが好ましい。   The method for producing a crystallized glass bent plate according to the present invention is a strain that reduces the distortion of the bent part by heat-treating the crystalline glass bent plate in a state where the bent part does not contact other members prior to the crystallization step. It is preferable to further include a reduction step.

歪み低減工程において、結晶性ガラス屈曲板の一の方向における両端部が基盤に接触する一方、屈曲部が基盤から離間するように結晶性ガラス屈曲板を基盤の上に載置した状態で熱処理を行ってもよい。   In the strain reduction process, heat treatment is performed with the crystalline glass bent plate placed on the substrate so that both ends in one direction of the crystalline glass bent plate are in contact with the substrate while the bent portion is separated from the substrate. You may go.

θは90°以下であることが好ましい。   θ is preferably 90 ° or less.

結晶性ガラス屈曲板の屈曲部の外表面における曲率半径が10mm以下となるように結晶性ガラス屈曲板作製工程を行うことが好ましい。   It is preferable to perform the crystalline glass bent plate manufacturing step so that the radius of curvature at the outer surface of the bent portion of the crystalline glass bent plate is 10 mm or less.

結晶化工程において、結晶性ガラス屈曲板と成形型との間にセラミックペーパーを配置することが好ましい。   In the crystallization step, it is preferable to dispose ceramic paper between the crystalline glass bent plate and the mold.

成形型は、セラミックペーパーに臨む貫通孔を有することが好ましい。   The mold preferably has a through hole facing the ceramic paper.

本発明によれば、屈曲部の曲率半径が小さな結晶化ガラス屈曲板を高い形状精度で製造し得る方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can manufacture the crystallized glass bending plate with a small curvature radius of a bending part with high shape accuracy can be provided.

本発明に係る一実施形態における結晶性ガラス平板の略図的斜視図である。1 is a schematic perspective view of a crystalline glass flat plate according to an embodiment of the present invention. 本発明に係る一実施形態における歪み低減工程を説明するための略図的側面図である。It is a schematic side view for demonstrating the distortion reduction process in one Embodiment which concerns on this invention. 本発明に係る一実施形態における歪み低減工程実施後の結晶性ガラス屈曲板の略図的側面図である。It is a schematic side view of the crystalline glass bent plate after the distortion reduction process in one embodiment according to the present invention. 本発明に係る一実施形態における結晶化工程を説明するための略図的側面図である。It is a schematic side view for demonstrating the crystallization process in one Embodiment which concerns on this invention. 本発明に係る一実施形態における製造された結晶化ガラス屈曲板の略図的側面図である。1 is a schematic side view of a manufactured crystallized glass bent plate according to an embodiment of the present invention. 変形例における結晶化工程を説明するための略図的側面図である。It is a schematic side view for demonstrating the crystallization process in a modification.

以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, an example of the preferable form which implemented this invention is demonstrated. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。   Moreover, in each drawing referred in embodiment etc., the member which has a substantially the same function shall be referred with the same code | symbol. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.

本実施形態では、図5に示す結晶化ガラス屈曲板5の製造方法について説明する。本実施形態において製造する結晶化ガラス屈曲板5は、結晶化ガラスからなる。結晶化ガラス屈曲板5を構成している結晶化ガラスの種類は特に限定されない。結晶化ガラス屈曲板5の構成材料として好ましく用いられる結晶化ガラスの具体例としては、例えば、β−石英固溶体や、β−スポジュメン固溶体を主結晶とする結晶化ガラスなどが挙げられる。   In the present embodiment, a method for manufacturing the crystallized glass bent plate 5 shown in FIG. 5 will be described. The crystallized glass bent plate 5 manufactured in the present embodiment is made of crystallized glass. The kind of the crystallized glass constituting the crystallized glass bent plate 5 is not particularly limited. Specific examples of the crystallized glass preferably used as a constituent material of the crystallized glass bent plate 5 include, for example, β-quartz solid solution and crystallized glass having a β-spodumene solid solution as a main crystal.

結晶化ガラス屈曲板5は、第1の平板部5aと、第2の平板部5bと、屈曲部5cとを有する。第1の平板部5aと第2の平板部5bとは屈曲部5cによって接続されている。屈曲部5cの屈曲角、すなわち、第1の平板部5aと第2の平板部5bとの成す角の大きさθは、90°以下であることが好ましい。θは、例えば60°〜90°とすることができる。屈曲部5cの外表面における曲率半径は、10mm以下であることが好ましく、8mm以下であることがより好ましい。また、屈曲部5cの内表面における曲率半径は、6mm以下であることが好ましく、4mm以下であることがより好ましい。   The crystallized glass bent plate 5 has a first flat plate portion 5a, a second flat plate portion 5b, and a bent portion 5c. The first flat plate portion 5a and the second flat plate portion 5b are connected by a bent portion 5c. The bending angle of the bent portion 5c, that is, the angle θ between the first flat plate portion 5a and the second flat plate portion 5b is preferably 90 ° or less. θ can be set to 60 ° to 90 °, for example. The curvature radius on the outer surface of the bent portion 5c is preferably 10 mm or less, and more preferably 8 mm or less. Further, the radius of curvature at the inner surface of the bent portion 5c is preferably 6 mm or less, and more preferably 4 mm or less.

結晶化ガラス屈曲板5の厚みは、例えば3mm〜8mm程度とすることができる。結晶化ガラス屈曲板5の、図5に記載のy方向に沿った寸法は、例えば50mm〜1500mm程度とすることができる。結晶化ガラス屈曲板5の第1の平面部5aの表面のy方向に対して垂直な方向の長さと、第2の平面部5bの表面のy方向に対して垂直な方向の長さと、屈曲部5cの表面のy方向に対して垂直な方向の長さとの合計は、例えば100mm〜1500mm程度とすることができる。   The thickness of the crystallized glass bent plate 5 can be, for example, about 3 mm to 8 mm. The dimension of the crystallized glass bent plate 5 along the y direction shown in FIG. 5 can be, for example, about 50 mm to 1500 mm. The length of the surface of the first plane portion 5a of the crystallized glass bent plate 5 in the direction perpendicular to the y direction, the length of the surface of the second plane portion 5b in the direction perpendicular to the y direction, and the bending The total of the length of the surface of the part 5c in the direction perpendicular to the y direction can be, for example, about 100 mm to 1500 mm.

(結晶性ガラス平板1の用意工程)
結晶化ガラス屈曲板5の製造に際しては、まず、図1に示す結晶性ガラス平板1を用意する。結晶性ガラス平板1の材質は、製造しようとする結晶化ガラス屈曲板5の材質に応じて適宜選択することができる。また、結晶性ガラス平板1の形状及び寸法は、結晶化ガラス屈曲板5の形状及び寸法に応じて適宜設定することができる。
(Preparation process of crystalline glass flat plate 1)
In producing the crystallized glass bent plate 5, first, a crystalline glass flat plate 1 shown in FIG. 1 is prepared. The material of the crystalline glass flat plate 1 can be appropriately selected according to the material of the crystallized glass bent plate 5 to be manufactured. Further, the shape and size of the crystalline glass flat plate 1 can be appropriately set according to the shape and size of the crystallized glass bent plate 5.

(結晶性ガラス屈曲板作製工程)
次に、結晶性ガラス屈曲板作製工程を行う。具体的には、結晶性ガラス平板1の一の方向(x方向)における一部であって、一の方向に対して垂直な他の方向(y方向)の一方側端部から他方側端部にわたって位置する加工部1aを両面から局所的に加熱して軟化させた状態で変形させる。これにより、図2に示す結晶性ガラス屈曲板2を作製する。結晶性ガラス屈曲板2は、一対の平板部2a、2bと、平板部2a、2bを接続している屈曲部2cとを有する。平板部2aは、結晶化ガラス屈曲板5の第1の平板部5aを構成するための部分である。平板部2bは、結晶化ガラス屈曲板5の第2の平板部5bを構成するための部分である。屈曲部2cは、結晶化ガラス屈曲板5の屈曲部5cを構成するための部分である。
(Crystalline glass bent plate manufacturing process)
Next, a crystalline glass bent plate manufacturing process is performed. Specifically, it is a part in one direction (x direction) of the crystalline glass flat plate 1 and the other side end part from one side end part in the other direction (y direction) perpendicular to the one direction. The processed portion 1a located over the surface is locally heated from both sides and deformed in a softened state. Thereby, the crystalline glass bending plate 2 shown in FIG. 2 is produced. The crystalline glass bent plate 2 has a pair of flat plate portions 2a and 2b and a bent portion 2c connecting the flat plate portions 2a and 2b. The flat plate portion 2 a is a portion for constituting the first flat plate portion 5 a of the crystallized glass bent plate 5. The flat plate portion 2 b is a portion for constituting the second flat plate portion 5 b of the crystallized glass bent plate 5. The bent portion 2 c is a portion for constituting the bent portion 5 c of the crystallized glass bent plate 5.

この結晶性ガラス屈曲板作製工程においては、屈曲部5cの屈曲角の大きさ、すなわち、平板部2aと平板部2bとの成す角の大きさθがθよりも小さくなるように結晶性ガラス平板1を屈曲させる。θは、θよりも0.1°以上小さいことが好ましく、1.0°以上小さいことがより好ましい。但し、θが小さすぎると屈曲部5cの形状精度が低くなってしまう場合があるため、θは、θよりも5.0°以下小さいことが好ましく、3.0°以下小さいことがより好ましい。 In the crystallizable glass bent plate manufacturing process, the size of the bending angle of the bent portion 5c, i.e., crystalline glass such that the magnitude theta 1 of the angle between the flat plate portion 2a and the flat plate portion 2b is smaller than theta The flat plate 1 is bent. θ 1 is preferably smaller than θ by 0.1 ° or more, and more preferably 1.0 ° or more. However, if θ 1 is too small, the shape accuracy of the bent portion 5c may be lowered. Therefore, θ 1 is preferably smaller than θ by 5.0 ° or less, more preferably by 3.0 ° or less. preferable.

また、結晶性ガラス屈曲板作製工程においては、屈曲部2cの外表面における曲率半径が10mm以下となるように結晶性ガラス平板1を変形させることが好ましく、屈曲部2cの外表面における曲率半径が8mm以下となるように結晶性ガラス平板1を変形させることがより好ましい。このようにすることにより、屈曲部5cの外表面における曲率半径が小さな結晶化ガラス屈曲板5を得ることができる。   Further, in the crystalline glass bent plate manufacturing step, it is preferable to deform the crystalline glass flat plate 1 so that the radius of curvature on the outer surface of the bent portion 2c is 10 mm or less, and the radius of curvature on the outer surface of the bent portion 2c is More preferably, the crystalline glass flat plate 1 is deformed so as to be 8 mm or less. By doing in this way, the crystallized glass bending plate 5 with a small curvature radius in the outer surface of the bending part 5c can be obtained.

結晶性ガラス屈曲板作製工程においては、屈曲部2cの内表面における曲率半径が6mm以下となるように結晶性ガラス平板1を変形させることが好ましく、屈曲部2cの内表面における曲率半径が4mm以下となるように結晶性ガラス平板1を変形させることがより好ましい。このようにすることにより、屈曲部5cの内表面における曲率半径が小さな結晶化ガラス屈曲板5を得ることができる。   In the crystalline glass bent plate manufacturing step, the crystalline glass flat plate 1 is preferably deformed so that the radius of curvature on the inner surface of the bent portion 2c is 6 mm or less, and the radius of curvature on the inner surface of the bent portion 2c is 4 mm or less. More preferably, the crystalline glass flat plate 1 is deformed so that By doing in this way, the crystallized glass bending plate 5 with a small curvature radius in the inner surface of the bending part 5c can be obtained.

なお、結晶性ガラス平板1の加工部1aの加熱は、例えば、バーナー、抵抗加熱器、高周波加熱器、レーザー加熱器などの加熱手段を用いて行うことができる。結晶性ガラス平板1の変形は、例えば、結晶性ガラス平板1のx方向における両端部を握持し、両端部を互いに近づけることにより行うことができる。   In addition, the process part 1a of the crystalline glass flat plate 1 can be heated using heating means, such as a burner, a resistance heater, a high frequency heater, a laser heater, for example. The deformation of the crystalline glass flat plate 1 can be performed, for example, by gripping both end portions in the x direction of the crystalline glass flat plate 1 and bringing both end portions close to each other.

(歪み低減工程)
結晶性ガラス屈曲板作製工程においては、結晶性ガラス平板1の加工部1aを局所的に加熱するため、屈曲部2cには歪みが残存する。このため、次に、屈曲部2cの歪み低減工程を行う。具体的には、図2に示すように、結晶性ガラス屈曲板2を、屈曲部2cが他の部材に接触しない状態で熱処理することにより、屈曲部2cの歪みを低減する。より具体的には、本実施形態では、結晶性ガラス屈曲板2のx方向における両端部2a1,2b1が基盤10に接触する一方、屈曲部2cが基盤10から離間するように結晶性ガラス屈曲板2を基盤10の法線方向に突出するように載置した状態で熱処理を行う。なお、歪み低減工程により平板部2aと平板部2bとの成す角の大きさθが僅かながら変化するが、歪み低減工程後においても、平板部2aと平板部2bとの成す角の大きさがθよりも小さくなるようにしておくことが好ましい。歪み低減工程において、平板部2aと平板部2bとの成す角の大きさは、θよりも0.1°以上小さいことが好ましく、1.0°以上小さいことがより好ましい。但し、平板部2aと平板部2bとの成す角の大きさが小さすぎると屈曲部2cの形状精度が低くなってしまう場合があるため、平板部2aと平板部2bとの成す角の大きさは、θよりも5.0°以下小さいことが好ましく、3.0°以下小さいことがより好ましい。
(Distortion reduction process)
In the crystalline glass bent plate manufacturing step, the processed portion 1a of the crystalline glass flat plate 1 is locally heated, so that strain remains in the bent portion 2c. For this reason, next, the distortion reduction process of the bending part 2c is performed. Specifically, as shown in FIG. 2, the crystalline glass bent plate 2 is heat-treated in a state where the bent portion 2c does not contact other members, thereby reducing the distortion of the bent portion 2c. More specifically, in this embodiment, both ends 2a1 and 2b1 in the x direction of the crystalline glass bent plate 2 are in contact with the base 10 while the bent portion 2c is separated from the base 10. Heat treatment is performed in a state where 2 is placed so as to protrude in the normal direction of the substrate 10. In addition, although the magnitude | size (theta) 1 which the flat plate part 2a and the flat plate part 2b make changes slightly by a distortion reduction process, the magnitude | size of the angle which the flat plate part 2a and the flat plate part 2b make also after a distortion reduction process. Is preferably smaller than θ. In the distortion reduction step, the angle formed by the flat plate portion 2a and the flat plate portion 2b is preferably smaller than θ by 0.1 ° or more, and more preferably 1.0 ° or more. However, if the angle between the flat plate portion 2a and the flat plate portion 2b is too small, the shape accuracy of the bent portion 2c may be lowered. Therefore, the size of the angle formed between the flat plate portion 2a and the flat plate portion 2b may be reduced. Is preferably smaller than θ by 5.0 ° or less, more preferably 3.0 ° or less.

歪み低減工程における熱処理は、例えば、結晶性ガラス屈曲板2の軟化温度よりも100℃低い温度以上、軟化温度よりも100℃高い温度以下の温度範囲で10分〜20分程度の時間保持した後に、例えば、30℃/分〜50℃/分程度の冷却速度で徐冷することにより行うことができる。   The heat treatment in the strain reducing step is performed, for example, after holding for about 10 to 20 minutes in a temperature range of 100 ° C. higher than the softening temperature of the crystalline glass bent plate 2 and 100 ° C. higher than the softening temperature. For example, it can be carried out by slow cooling at a cooling rate of about 30 ° C./min to 50 ° C./min.

このように、歪み低減工程により結晶性ガラス屈曲板2の屈曲部2cの歪みを低減するためには、結晶性ガラス屈曲板2を結晶性ガラス屈曲板2の軟化温度近傍または軟化温度よりも高い温度にまで加熱する必要がある。このため、図3に示すように、歪み低減工程を行うことにより、平板部2a、2bは、下方(基盤側)に向かって凸状に湾曲する。   Thus, in order to reduce the distortion of the bent portion 2c of the crystalline glass bent plate 2 by the distortion reduction step, the crystalline glass bent plate 2 is set near the softening temperature of the crystalline glass bent plate 2 or higher than the softening temperature. It is necessary to heat to temperature. For this reason, as shown in FIG. 3, the flat plate portions 2a and 2b are curved in a convex shape toward the lower side (the base side) by performing the distortion reducing step.

(結晶化工程)
次に、結晶化工程を行う。具体的には、まず、図4に示す、凹部3cを有する成形型3を用意する。凹部3cの横断面形状は、結晶化ガラス屈曲板5の形状に対応した形状であり、具体的には、三角形状である。凹部3cは平面部3a、3bにより構成されている。平板部3aと平板部3bとの成す角の大きさはθである。
(Crystallization process)
Next, a crystallization process is performed. Specifically, first, a mold 3 having a recess 3c shown in FIG. 4 is prepared. The cross-sectional shape of the recess 3c is a shape corresponding to the shape of the crystallized glass bent plate 5, and specifically, a triangular shape. The recess 3c is composed of flat portions 3a and 3b. The size of the angle formed by the flat plate portion 3a and the flat plate portion 3b is θ.

次に、成形型3の凹部3cの上に結晶性ガラス屈曲板2を載置する。ここで、凹部3cの角度がθである一方、結晶性ガラス屈曲板2の屈曲部2cの屈曲角θは、θよりも小さい。このため、平板部2a、2b(成形型3の上に載置した時においては、平板部2a、2bは、厳密には平面形状を有しておらず、湾曲形状を有している。)の少なくとも一方は、平面部3a、3bとは離間している。 Next, the crystalline glass bending plate 2 is placed on the concave portion 3 c of the mold 3. Wherein one angle of the recess 3c is theta, bending angle theta 1 of the bent portion 2c of the crystallizable glass bent plate 2 is smaller than theta. For this reason, the flat plate portions 2a and 2b (when placed on the mold 3, the flat plate portions 2a and 2b do not strictly have a planar shape but have a curved shape). At least one of these is separated from the plane portions 3a and 3b.

次に、成形型3に載置した結晶性ガラス屈曲板2を加熱することにより結晶性ガラス屈曲板2を凹部3cに沿って変形させると共に結晶化させることにより図5に示す結晶化ガラス屈曲板5を得る。より具体的には、結晶性ガラス屈曲板2の平板部2aは、成形型3の凹部3cの平板部3aに倣うように変形する。また、結晶性ガラス屈曲板2の平板部2bは、成形型3の凹部3cの平板部3bに倣うように変形する。そのため、屈曲部2cの屈曲角θは、θまで拡がる。この結晶化工程における結晶性ガラス屈曲板2の加熱条件は、結晶性ガラス屈曲板2の結晶化が好適に進行するような条件である限りにおいて特に限定されない。結晶化工程における結晶性ガラス屈曲板2の加熱は、例えば、結晶性ガラス屈曲板2の軟化温度〜軟化点+150℃の温度で行うことができる。 Next, the crystallized glass bent plate 2 shown in FIG. 5 is formed by heating the crystalline glass bent plate 2 placed on the mold 3 to deform the crystallized glass bent plate 2 along the recesses 3c and crystallizing it. Get 5. More specifically, the flat plate portion 2 a of the crystalline glass bent plate 2 is deformed so as to follow the flat plate portion 3 a of the concave portion 3 c of the mold 3. Further, the flat plate portion 2 b of the crystalline glass bent plate 2 is deformed so as to follow the flat plate portion 3 b of the concave portion 3 c of the mold 3. Therefore, the bending angle θ 1 of the bent portion 2 c extends to θ. The heating conditions for the crystalline glass bent plate 2 in this crystallization step are not particularly limited as long as the crystallization of the crystalline glass bent plate 2 proceeds suitably. The heating of the crystalline glass bending plate 2 in the crystallization step can be performed, for example, at a temperature from the softening temperature of the crystalline glass bending plate 2 to the softening point + 150 ° C.

以上説明したように、本実施形態では、まず、加工部1aを局所加熱した状態で変形させることにより、結晶化ガラス屈曲板5の屈曲部5cを構成するための屈曲部2cを結晶性ガラス屈曲板2に形成する。また、結晶性ガラス屈曲板2の屈曲部2cの屈曲角をθより小さくしておく。その後、結晶化工程において角度がθである横断面三角形状の凹部3cを有する成形型3の上で結晶性ガラス屈曲板2を変形させながら結晶化させる。このため、まず、局所加熱により屈曲部2cを形成することにより、曲率半径が小さな屈曲部5cを作製することができる。また、屈曲部2cの角度をθよりも小さくしておき、結晶化工程において屈曲角を拡げることにより、屈曲部5cの形状精度を高めることができる。その結果、屈曲部5cの曲率半径が小さな結晶化ガラス屈曲板5を高い形状精度で製造することができる。屈曲部5cの屈曲角θが小さい場合ほど、高い形状精度で結晶化ガラス屈曲板5を製造することが困難となるため、本実施形態の製造方法は、屈曲部5cの屈曲角θが90°以下のときにより好適に用いられ、屈曲角θが85°以下のときにさらに好適に用いられる。また、本実施形態の製造方法は、屈曲部5cの外表面における曲率半径が10mm以下のときにより好適に用いられ、屈曲部5cの外表面における曲率半径が8mm以下のときにさらに好適に用いられる。   As described above, in the present embodiment, first, the bent portion 2c for forming the bent portion 5c of the crystallized glass bent plate 5 is formed by bending the crystalline glass bent by deforming the processed portion 1a in a locally heated state. Form on the plate 2. Further, the bending angle of the bent portion 2c of the crystalline glass bent plate 2 is set smaller than θ. Thereafter, in the crystallization step, the crystalline glass bent plate 2 is crystallized while being deformed on the mold 3 having the triangular recess 3c having an angle θ. For this reason, the bending part 5c with a small curvature radius can be produced first by forming the bending part 2c by local heating. In addition, by making the angle of the bent portion 2c smaller than θ and widening the bent angle in the crystallization step, the shape accuracy of the bent portion 5c can be increased. As a result, the crystallized glass bent plate 5 having a small radius of curvature of the bent portion 5c can be manufactured with high shape accuracy. As the bending angle θ of the bent portion 5c is smaller, it becomes more difficult to manufacture the crystallized glass bent plate 5 with higher shape accuracy. Therefore, in the manufacturing method of this embodiment, the bending angle θ of the bent portion 5c is 90 °. It is more preferably used in the following cases, and more preferably when the bending angle θ is 85 ° or less. The manufacturing method of the present embodiment is more preferably used when the radius of curvature on the outer surface of the bent portion 5c is 10 mm or less, and more preferably when the radius of curvature on the outer surface of the bent portion 5c is 8 mm or less. .

また、歪み低減工程を行うことにより、屈曲部2cの歪みを低減できるため、結晶化工程等において結晶性ガラス屈曲板2が残留歪みに起因して破損することを効果的に抑制することができる。   In addition, since the distortion of the bent portion 2c can be reduced by performing the distortion reducing process, the crystalline glass bent plate 2 can be effectively prevented from being damaged due to the residual distortion in the crystallization process or the like. .

上記実施形態では、2つの平板部とひとつの屈曲部とを有する結晶化ガラス屈曲板を製造する例について説明した。但し、本発明は、この構成に限定されない。本実施形態において説明した製造方法は、複数の屈曲部を有する結晶化ガラス屈曲板の製造にも適用することができる。   In the above embodiment, an example of manufacturing a crystallized glass bent plate having two flat plate portions and one bent portion has been described. However, the present invention is not limited to this configuration. The manufacturing method described in the present embodiment can also be applied to the manufacture of a crystallized glass bent plate having a plurality of bent portions.

(変形例)
図6に示されるように、結晶化工程において、成形型3の上に、セラミックペーパー11を載置し、セラミックペーパー11の上に結晶性ガラス屈曲板2を載置してもよい。セラミックペーパー11を配することにより、成形型3の表面の凹凸形状や、成形型3の表面上に位置していた異物の形状が転写することを抑制することができる。また、成形型3と結晶性ガラス屈曲板2との融着を抑制することもできる。
(Modification)
As shown in FIG. 6, in the crystallization step, the ceramic paper 11 may be placed on the mold 3, and the crystalline glass bent plate 2 may be placed on the ceramic paper 11. By arranging the ceramic paper 11, it is possible to suppress the uneven shape on the surface of the mold 3 and the shape of the foreign matter located on the surface of the mold 3 from being transferred. Further, the fusion of the mold 3 and the crystalline glass bent plate 2 can be suppressed.

ところで、セラミックペーパー11は、セラミック繊維を有機バインダーと共に抄紙することにより製造されたものであり、加熱前においては有機バインダーを含む。通常であれば、有機バインダーは、結晶化工程において燃焼し、二酸化炭素となって発散する。しかしながら、成形型3の上に配されたセラミックペーパーには、酸素を含む空気が供給されにくいため、有機バインダーの一部が炭化する場合がある。バインダーの炭化物が結晶性ガラス屈曲板の表面に付着するという問題が発生し得る。   By the way, the ceramic paper 11 is manufactured by paper-making ceramic fibers together with an organic binder, and includes an organic binder before heating. Usually, the organic binder burns in the crystallization process and emits as carbon dioxide. However, since the ceramic paper disposed on the mold 3 is difficult to be supplied with air containing oxygen, a part of the organic binder may be carbonized. There may be a problem that the carbide of the binder adheres to the surface of the crystalline glass bent plate.

そこで、本変形例では、成形型3にセラミックペーパー11に臨む少なくともひとつの貫通孔3Aが形成されている。この貫通孔3Aを経由することで、セラミックペーパー11に酸素が供給されやすくなる。よって、セラミックペーパー11に含まれる有機バインダーの炭化が生じにくい。従って、バインダーの炭化物が表面に付着するという問題が生じにくい。   Therefore, in the present modification, at least one through hole 3 </ b> A that faces the ceramic paper 11 is formed in the mold 3. By passing through the through-hole 3A, oxygen is easily supplied to the ceramic paper 11. Therefore, carbonization of the organic binder contained in the ceramic paper 11 is difficult to occur. Therefore, the problem that the carbide of the binder adheres to the surface hardly occurs.

貫通孔3Aは、結晶性ガラス屈曲板2が配される領域において、5面積%〜10面積%で設けられていることが好ましい。貫通孔3Aの直径は、例えば、5mm〜50mm程度とすることができる。複数の貫通孔3Aを設ける場合、隣り合う貫通孔3Aの中心間距離は、100mm〜500mm程度とすることができる。   It is preferable that 3 A of through-holes are provided by 5 area%-10 area% in the area | region where the crystalline glass bending plate 2 is distribute | arranged. The diameter of 3 A of through-holes can be about 5 mm-50 mm, for example. When providing several through-hole 3A, the distance between centers of adjacent through-hole 3A can be about 100 mm-500 mm.

結晶性ガラス屈曲板2は、結晶化工程において、体積変化する。このため、結晶性ガラス屈曲板2は、結晶化工程において、収縮かつ膨張する。結晶性ガラス屈曲板2の収縮かつ膨張時において、結晶性ガラス屈曲板2がセラミックペーパー11を噛み込み、結晶性ガラス屈曲板2がセラミックペーパー11に対して引っかかると、結晶性ガラス屈曲板2と成形型3との間に隙間が生じる場合がある。   The crystalline glass bent plate 2 changes in volume in the crystallization process. For this reason, the crystalline glass bending plate 2 contracts and expands in the crystallization process. When the crystalline glass bent plate 2 contracts and expands, the crystalline glass bent plate 2 bites the ceramic paper 11 and the crystalline glass bent plate 2 is caught by the ceramic paper 11. There may be a gap between the mold 3.

結晶性ガラス屈曲板2と成形型3との間に隙間が生じると、結晶性ガラス屈曲板2の結晶化工程において、結晶性ガラス屈曲板2が不所望に変形してしまう場合がある。このため、セラミックペーパー11と屈曲板2との間に潤滑剤を塗布しておくことが好ましい。そうすることにより、結晶性ガラス屈曲板2の収縮かつ膨張時において、結晶性ガラス屈曲板2がセラミックペーパー11を噛み込みにくくなり、その結果、高い形状精度を有する結晶化ガラス屈曲板5を得ることができる。潤滑剤としては、例えば、窒化ホウ素粉末等が好適に用いられる。   If a gap is generated between the crystalline glass bent plate 2 and the mold 3, the crystalline glass bent plate 2 may be undesirably deformed in the crystallization process of the crystalline glass bent plate 2. For this reason, it is preferable to apply a lubricant between the ceramic paper 11 and the bent plate 2. By doing so, the crystalline glass bent plate 2 becomes difficult to bite the ceramic paper 11 when the crystalline glass bent plate 2 contracts and expands, and as a result, the crystallized glass bent plate 5 having high shape accuracy is obtained. be able to. As the lubricant, for example, boron nitride powder is preferably used.

結晶性ガラス屈曲板2の結晶化工程は、温度勾配が形成された加熱炉内を通過させることにより行うことが好ましい。結晶性ガラス屈曲板2を加熱炉に投入する際に、相対的に短く、水平方向に対する傾斜角が相対的に大きな平板部2a側から結晶性ガラス屈曲板2を投入するか、相対的に長く、水平方向に対する傾斜角が相対的に小さな平板部2b側から結晶性ガラス屈曲板2を投入するかが問題となる。本発明者らが鋭意研究した結果、相対的に長く、水平方向に対する傾斜角が相対的に小さな平板部2b側から結晶性ガラス屈曲板2を加熱炉に投入すると、結晶化工程において、結晶性ガラス屈曲板2と成形型3との間に隙間が生じやすく、得られる結晶化ガラス屈曲板5の形状精度が低くなることが見出された。また、本発明者らが鋭意研究した結果、相対的に短く、水平方向に対する傾斜角が相対的に大きな平板部2a側から結晶性ガラス屈曲板2を加熱炉に投入すると、結晶化工程において、結晶性ガラス屈曲板2と成形型3との間に隙間が生じにくく、得られる結晶化ガラス屈曲板5の形状精度が高くなることが見出された。これは、平板部2bの端部2b1から加熱した場合、先に加熱される端部2b1から屈曲部2cに向って収縮することとなる。平板部2bの端部2b1と屈曲部2cとの距離が長い場合、平板部2bの端部2b1の収縮が、屈曲部2cの収縮よりも相当早く起こるため、平板部2bの収縮時において、結晶性ガラス屈曲板2がセラミックペーパー11を噛み込み易くなる。一方、平板部2aの端部2a1と屈曲部2cとの距離は、平板部2bと屈曲部2cとの距離が短く、平板部2bの端部2b1の収縮が、屈曲部2cの膨張開始タイミングが略同時となるため、結晶性ガラス屈曲板2がセラミックペーパー11を噛み込み難くなるためと考えられる。従って、高い形状精度を有する結晶化ガラス屈曲板5を得る観点から、相対的に短く、水平方向に対する傾斜角が相対的に大きな平板部2a側から結晶性ガラス屈曲板2を加熱炉に投入することが好ましい。   The crystallization process of the crystalline glass bent plate 2 is preferably performed by passing through a heating furnace in which a temperature gradient is formed. When the crystalline glass bent plate 2 is put into the heating furnace, the crystalline glass bent plate 2 is thrown from the side of the flat plate portion 2a which is relatively short and has a relatively large inclination angle with respect to the horizontal direction, or is relatively long. The problem is whether to insert the crystalline glass bent plate 2 from the flat plate portion 2b side having a relatively small inclination angle with respect to the horizontal direction. As a result of intensive studies by the present inventors, when the crystalline glass bent plate 2 is put into the heating furnace from the flat plate portion 2b side which is relatively long and has a relatively small inclination angle with respect to the horizontal direction, It has been found that a gap is likely to occur between the glass bending plate 2 and the mold 3 and the shape accuracy of the obtained crystallized glass bending plate 5 is lowered. In addition, as a result of intensive studies by the present inventors, when the crystalline glass bent plate 2 is put into the heating furnace from the flat plate portion 2a side which is relatively short and has a relatively large inclination angle with respect to the horizontal direction, It has been found that a gap is hardly generated between the crystalline glass bent plate 2 and the mold 3, and the shape accuracy of the obtained crystallized glass bent plate 5 is increased. When this is heated from the end 2b1 of the flat plate portion 2b, it contracts from the end 2b1 that is heated first toward the bent portion 2c. When the distance between the end portion 2b1 of the flat plate portion 2b and the bent portion 2c is long, the contraction of the end portion 2b1 of the flat plate portion 2b occurs much earlier than the contraction of the bent portion 2c. The flexible glass bent plate 2 is easy to bite the ceramic paper 11. On the other hand, the distance between the end portion 2a1 of the flat plate portion 2a and the bent portion 2c is such that the distance between the flat plate portion 2b and the bent portion 2c is short, and the contraction of the end portion 2b1 of the flat plate portion 2b causes the expansion start timing of the bent portion 2c. It is considered that the crystalline glass bent plate 2 becomes difficult to bite the ceramic paper 11 because it is almost the same time. Therefore, from the viewpoint of obtaining the crystallized glass bent plate 5 having high shape accuracy, the crystalline glass bent plate 2 is put into the heating furnace from the flat plate portion 2a side having a relatively short inclination angle with respect to the horizontal direction. It is preferable.

1…結晶性ガラス平板
1a…加工部
2…結晶性ガラス屈曲板
2a、2b…平板部
2a1、2b1…端部
2c…屈曲部
3…成形型
3a、3b…平板部
3c…凹部
3A…貫通孔
5…結晶化ガラス屈曲板
5a…第1の平板部
5b…第2の平板部
5c…屈曲部
10…基盤
11…セラミックペーパー
DESCRIPTION OF SYMBOLS 1 ... Crystalline glass flat plate 1a ... Processed part 2 ... Crystalline glass bending plate 2a, 2b ... Flat plate part 2a1, 2b1 ... End part 2c ... Bending part 3 ... Mold 3a, 3b ... Flat plate part 3c ... Recess 3A ... Through-hole 5 ... Crystallized glass bent plate 5a ... First flat plate portion 5b ... Second flat plate portion 5c ... Bent portion 10 ... Base plate 11 ... Ceramic paper

Claims (7)

第1の平板部と、第2の平板部と、前記第1及び第2の平板部を接続している屈曲部とを有し、前記第1の平板部と前記第2の平板部との成す角の大きさがθである結晶化ガラス屈曲板の製造方法であって、
結晶性ガラス平板の一の方向における一部を局所的に加熱して軟化させた状態で変形させることにより、屈曲角の大きさがθよりも小さな屈曲部を有する結晶性ガラス屈曲板を作製する結晶性ガラス屈曲板作製工程と、
角度がθである横断面三角形状の凹部を有する成形型の前記凹部の上に前記結晶性ガラス屈曲板を載置し、加熱することにより前記結晶性ガラス屈曲板を前記凹部に沿って変形させると共に結晶化させることにより前記結晶化ガラス屈曲板を得る結晶化工程と、
を備える、結晶化ガラス屈曲板の製造方法。
A first flat plate portion; a second flat plate portion; and a bent portion connecting the first and second flat plate portions. The first flat plate portion and the second flat plate portion. A method for producing a crystallized glass bent plate having an angle formed by θ,
A crystalline glass bent plate having a bent portion whose bending angle is smaller than θ is produced by deforming a crystalline glass flat plate partially in one direction in a softened state. Crystalline glass bending plate manufacturing process;
The crystalline glass bent plate is placed on the concave portion of the mold having a triangular cross section with an angle θ and heated to deform the crystalline glass bent plate along the concave portion. A crystallization step of obtaining the crystallized glass bent plate by crystallization with
A method for producing a crystallized glass bent plate.
前記結晶化工程に先立って、前記結晶性ガラス屈曲板を、前記屈曲部が他の部材に接触しない状態で熱処理し、前記屈曲部の歪みを低減させる歪み低減工程をさらに備える、請求項1に記載の結晶化ガラス屈曲板の製造方法。   Prior to the crystallization step, the crystalline glass bent plate is further heat treated in a state where the bent portion does not contact other members, and further includes a strain reducing step of reducing distortion of the bent portion. The manufacturing method of the crystallized glass bending plate of description. 前記歪み低減工程において、前記結晶性ガラス屈曲板の前記一の方向における両端部が基盤に接触する一方、前記屈曲部が前記基盤から離間するように前記結晶性ガラス屈曲板を前記基盤の上に載置した状態で前記熱処理を行う、請求項2に記載の結晶化ガラス屈曲板の製造方法。   In the strain reducing step, the crystalline glass bent plate is placed on the base so that both ends of the crystalline glass bent plate in the one direction are in contact with the base while the bent portion is separated from the base. The method for producing a crystallized glass bent plate according to claim 2, wherein the heat treatment is performed in a mounted state. 前記θが90°以下である、請求項1〜3のいずれか一項に記載の結晶化ガラス屈曲板の製造方法。   The manufacturing method of the crystallized glass bending plate as described in any one of Claims 1-3 whose said (theta) is 90 degrees or less. 前記結晶性ガラス屈曲板の屈曲部の外表面における曲率半径が10mm以下となるように前記結晶性ガラス屈曲板作製工程を行う、請求項1〜4のいずれか一項に記載の結晶化ガラス屈曲板の製造方法。   The crystallized glass bend according to any one of claims 1 to 4, wherein the crystalline glass bend plate producing step is performed so that a radius of curvature at an outer surface of a bend of the crystalline glass bend plate is 10 mm or less. A manufacturing method of a board. 前記結晶化工程において、前記結晶性ガラス屈曲板と前記成形型との間にセラミックペーパーを配置する、請求項1〜5のいずれか一項に記載の結晶化ガラス屈曲板の製造方法。   The method for producing a crystallized glass bent plate according to any one of claims 1 to 5, wherein ceramic paper is disposed between the crystalline glass bent plate and the mold in the crystallization step. 前記成形型は、前記セラミックペーパーに臨む貫通孔を有する、請求項6に記載の結晶化ガラス屈曲板の製造方法。   The said shaping | molding die is a manufacturing method of the crystallized glass bending plate of Claim 6 which has a through-hole which faces the said ceramic paper.
JP2013008956A 2013-01-22 2013-01-22 Production method of crystallized glass bent plate Pending JP2014141356A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013008956A JP2014141356A (en) 2013-01-22 2013-01-22 Production method of crystallized glass bent plate
PCT/JP2013/082919 WO2014115432A1 (en) 2013-01-22 2013-12-09 Method for manufacturing crystallized glass flexed plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008956A JP2014141356A (en) 2013-01-22 2013-01-22 Production method of crystallized glass bent plate

Publications (1)

Publication Number Publication Date
JP2014141356A true JP2014141356A (en) 2014-08-07

Family

ID=51227235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008956A Pending JP2014141356A (en) 2013-01-22 2013-01-22 Production method of crystallized glass bent plate

Country Status (2)

Country Link
JP (1) JP2014141356A (en)
WO (1) WO2014115432A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512842A (en) * 2018-02-09 2021-05-20 ショット アクチエンゲゼルシャフトSchott AG Bent glass plate or glass ceramic plate and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6454911B2 (en) * 2015-03-25 2019-01-23 日本電気硝子株式会社 Bending method for plate
DE102019126928A1 (en) * 2019-10-08 2021-04-08 Schott Ag Glass ceramic component and method for producing a glass ceramic component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414132B2 (en) * 1974-02-25 1979-06-05
JPS517010A (en) * 1974-07-09 1976-01-21 Nippon Sheet Glass Co Ltd Garasuitano wankyokuhoho
JPH05116973A (en) * 1991-10-30 1993-05-14 Nippon Electric Glass Co Ltd Method for bending crystallized glass plate
JP2000327349A (en) * 1999-05-24 2000-11-28 China Glaze Co Ltd Method for bending crystallized glass plate
JP2004309021A (en) * 2003-04-08 2004-11-04 Nippon Electric Glass Co Ltd Transparent glass pane for stove, and its manufacturing method
KR101497886B1 (en) * 2007-05-09 2015-03-04 가부시키가이샤 니콘 Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
DE102009036164B4 (en) * 2009-05-28 2011-06-09 Schott Ag Method for bending and thermally tempering radiation protection glass
JP2011173781A (en) * 2010-01-26 2011-09-08 Nippon Electric Glass Co Ltd Setter for producing crystalline glass plate and method for producing the crystalline glass plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021512842A (en) * 2018-02-09 2021-05-20 ショット アクチエンゲゼルシャフトSchott AG Bent glass plate or glass ceramic plate and its manufacturing method
JP7379349B2 (en) 2018-02-09 2023-11-14 ショット アクチエンゲゼルシャフト Bent glass plate or glass ceramic plate and its manufacturing method

Also Published As

Publication number Publication date
WO2014115432A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5435166B1 (en) Manufacturing method of glass plate having bent portion and glass plate having bent portion
JP5886980B2 (en) Method and apparatus for local heating and deformation of glass sheets
JP6310393B2 (en) Reforming thin glass sheets
JP2017165648A (en) Device and method for bending thin glass sheet without slack
JP5472521B1 (en) Manufacturing method of cover glass for mobile display
CN105307990A (en) Method for molding sheet glass, and mold
WO2014132715A1 (en) Method for manufacturing curved crystallized glass plate
WO2014115432A1 (en) Method for manufacturing crystallized glass flexed plate
JP2014139121A (en) Method and device for manufacturing cover glass for display
JP2012091995A (en) Method for manufacturing curved glass plate
JP5647572B2 (en) Method for producing arcuate glass curved plate
JP5819156B2 (en) Press bending apparatus and press bending method for performing V bending of Mg alloy plate
JP6458567B2 (en) Molding method of plate
JP5699193B2 (en) Stainless steel foil warm working method and warm working mold
JP2016037424A (en) Heat-treatment method and molding method of glass plate
JP3135098B2 (en) Optical element molding equipment
JP2011173781A (en) Setter for producing crystalline glass plate and method for producing the crystalline glass plate
WO2014141790A1 (en) Method for manufacturing curved glass plate
JP2014001090A (en) Method for manufacturing glass casing for housing panel-shaped mobile display device and glass casing for housing panel-shaped mobile display device
JP2012041212A (en) Method for producing crystallized glass molded product and crystallized glass molded product
JP2016037425A (en) Heat-treatment method for glass plate having bent part
KR101734384B1 (en) Apparatus of radiant tube for annealing furnace
JP7117976B2 (en) Forming method of glass plate
JP2013256423A (en) Method for producing glass plate having bent portion
TWI667207B (en) Heating and heating field device for molding stereoscopic glass continuous forming device