JP2014123301A - White line detection device - Google Patents

White line detection device Download PDF

Info

Publication number
JP2014123301A
JP2014123301A JP2012279829A JP2012279829A JP2014123301A JP 2014123301 A JP2014123301 A JP 2014123301A JP 2012279829 A JP2012279829 A JP 2012279829A JP 2012279829 A JP2012279829 A JP 2012279829A JP 2014123301 A JP2014123301 A JP 2014123301A
Authority
JP
Japan
Prior art keywords
white line
image
region
edge
brightness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012279829A
Other languages
Japanese (ja)
Inventor
Yusuke Kataoka
祐介 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012279829A priority Critical patent/JP2014123301A/en
Publication of JP2014123301A publication Critical patent/JP2014123301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a white line detection device capable of more effectively detecting a white line.SOLUTION: A white line detection device 1 comprises: division means 3a that divides an image captured from a vehicle into a plurality of areas; determination means 3b that determines a degree of brightness in each area; and determining means 3c that determines an edge threshold for each area so that the edge threshold is made greater as the degree of brightness is higher.

Description

本発明は、乗用車、トラック、バス等の車両に適用して、操舵支援や運転支援に供されて好適な白線検出装置に関するものである。   The present invention relates to a white line detection device that is suitable for steering assistance and driving assistance when applied to vehicles such as passenger cars, trucks, and buses.

車両の前方を撮像した画像から道路の白線を検出する装置としては、例えば特許文献1に記載のものがある。特許文献1においては、画像から取得される二値化データと閾値との比較において、白線を除く路面の領域の輝度に基づいて閾値を設定して、白線の検出精度を高めることが提案されている。   As an apparatus for detecting a white line on a road from an image obtained by imaging the front of a vehicle, for example, there is one described in Patent Document 1. In Patent Document 1, it is proposed that the threshold value is set based on the luminance of the road surface area excluding the white line in the comparison between the binarized data acquired from the image and the threshold value, thereby improving the detection accuracy of the white line. Yes.

特開2005−157670号公報JP 2005-157670 A

ところが、このような装置においては、夜間等のヘッドライトがあたる近傍とヘッドライトがあたらない遠方との輝度差や、トンネル内の近傍とトンネル外の遠方との輝度差を考慮すると、明暗度の差が大きく異なる白線のエッジの輝度差に差が生じる。このため、輝度差を考慮すると必ずしも効果的に白線を検出できないという問題が生じる。   However, in such a device, the brightness difference between the vicinity where the headlight hits at night and the distance where the headlight does not hit and the brightness difference between the vicinity inside the tunnel and the distance outside the tunnel are considered. A difference occurs in the luminance difference between the edges of the white lines that are greatly different. For this reason, when a luminance difference is taken into consideration, there arises a problem that a white line cannot always be detected effectively.

本発明は、上記問題に鑑み、より効果的に白線を検出することができる白線検出装置を提供することを目的とする。   An object of this invention is to provide the white line detection apparatus which can detect a white line more effectively in view of the said problem.

上記の問題を解決するため、本発明に係る白線検出装置は、車両から撮像された画像を複数の領域に分割する分割手段と、各々の前記領域内の明暗度を判定する判定手段と、前記明暗度が明るいほど前記エッジ閾値を大きくするよう前記領域毎のエッジ閾値を決定する決定手段を含むことを特徴とする。ここで、前記分割手段は前記車両の少なくとも前後方向において前記画像を分割することとしてもよく、前記判定手段は前記明暗度を前記領域内の平均輝度を用いて判定することとしてもよい。なお、前記分割手段は前記画像内の白線の消失点を基準として画像を左右に分割し消失点と画像下縁とを距離が等しいように前後方向に画像を分割するものとしてもよい。   In order to solve the above problem, a white line detection device according to the present invention includes a dividing unit that divides an image captured from a vehicle into a plurality of regions, a determination unit that determines the brightness in each of the regions, And determining means for determining an edge threshold value for each of the regions so that the edge threshold value is increased as the brightness becomes brighter. Here, the dividing unit may divide the image at least in the front-rear direction of the vehicle, and the determination unit may determine the brightness using an average luminance in the region. The dividing unit may divide the image into left and right with reference to the vanishing point of the white line in the image, and divide the image in the front-rear direction so that the distance between the vanishing point and the lower edge of the image is equal.

本発明によれば、領域毎の明暗度の差違に係わらずより効率的に白線を検出することができる。   According to the present invention, it is possible to detect a white line more efficiently regardless of the difference in brightness for each region.

本発明に係る実施例1の白線検出装置1の一実施形態を示す模式ブロック図である。It is a schematic block diagram which shows one Embodiment of the white line detection apparatus 1 of Example 1 which concerns on this invention. 実施例1の白線検出装置1の一実施形態における画像の分割態様を示す模式図である。It is a schematic diagram which shows the division | segmentation aspect of the image in one Embodiment of the white line detection apparatus 1 of Example 1. FIG. 実施例1の白線検出装置1の制御内容を探索と白線パラメータ算出を含んで示すフローチャートである。It is a flowchart which shows the control content of the white line detection apparatus 1 of Example 1 including a search and white line parameter calculation. 実施例1の白線検出装置1においてエッジ閾値の決定根拠となる画像内の路面と白線の輝度の横方向の分布態様を示す模式図である。FIG. 6 is a schematic diagram illustrating a horizontal distribution pattern of luminance of a road surface and a white line in an image that is a basis for determining an edge threshold value in the white line detection device 1 of the first embodiment. 実施例1の白線検出装置1における直線近似と遠方探索と近傍探索の態様を示す模式図である。It is a schematic diagram which shows the aspect of the straight line approximation in a white line detection apparatus 1 of Example 1, a distant search, and a neighborhood search. 実施例1の白線検出装置1におけるエッジ検出の範囲拡大を従来技術との比較に基づいて示す模式図である。It is a schematic diagram which shows the range expansion of the edge detection in the white line detection apparatus 1 of Example 1 based on a comparison with a prior art. 実施例2の白線検出装置1の一実施形態における画像の分割態様を示す模式図である。It is a schematic diagram which shows the division | segmentation aspect of the image in one Embodiment of the white line detection apparatus 1 of Example 2. FIG. 実施例2の白線検出装置1の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the white line detection apparatus 1 of Example 2. FIG.

以下、本発明を実施するための形態について、添付図面を参照しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

本実施例1の白線検出装置1は、図1に示すように、車両に備えられて車両の前方の路面を撮像する前方カメラ2と、前方カメラ2の撮像した画像を処理する画像ECU3(Electronic Control Unit)により構成される。   As shown in FIG. 1, a white line detection device 1 according to the first embodiment includes a front camera 2 that is provided in a vehicle and images a road surface in front of the vehicle, and an image ECU 3 (Electronic that processes an image captured by the front camera 2). Control Unit).

画像ECU3は、例えばCPU、ROM、RAMおよびそれらを相互に接続するデータバスと入出力インターフェースから構成され、ROMに格納されたプログラムに従い、以下に述べるそれぞれの制御を行うことにより、分割手段3a、判定手段3b、決定手段3c、エッジ検出手段3d、統合手段3e、探索手段3f、算出手段3gとして機能するものである。   The image ECU 3 is composed of, for example, a CPU, a ROM, a RAM, a data bus that connects them to each other, and an input / output interface. According to a program stored in the ROM, the image ECU 3 performs each control described below, thereby dividing the unit 3a, It functions as determination means 3b, determination means 3c, edge detection means 3d, integration means 3e, search means 3f, and calculation means 3g.

分割手段3aは前方カメラ2により車両から撮像された画像を複数の領域に分割する。より具体的には図2に示すように、分割手段3aは画像内の白線消失点LPを基準として左右に分割して左側を領域Left、右側を領域Rightとし、白線消失点LPと画像下縁とを距離が等しいように前後方向に分割して遠方側を領域Far、近傍側を領域Nearとしている。   The dividing unit 3a divides an image captured from the vehicle by the front camera 2 into a plurality of regions. More specifically, as shown in FIG. 2, the dividing means 3a divides the white line vanishing point LP in the image into the left and right, the left side is the region Left, the right side is the region Right, and the white line vanishing point LP and the lower edge of the image Are divided in the front-rear direction so that the distances are equal, and the far side is the region Far and the near side is the region Near.

実施例1においては、白線消失点LPは画像ECU3の処理周期毎に更新せず固定するものとする。これに伴い領域Nearと領域Farの実距離も固定される。例えば、白線消失点の実距離を100mとした場合、領域Nearは0〜50m、領域Farは50〜100mとなる。実距離から画像上での位置への変換には、一般的な射影変換を用いる。白線消失点LPの横位置は常に画像幅の中心(中央)となるように固定する。この結果、領域Leftと領域Rightの画像上での幅は常に等しくなる。なお、路面の勾配や曲線の有無による補正は適宜行う。   In the first embodiment, the white line vanishing point LP is fixed without being updated every processing cycle of the image ECU 3. Accordingly, the actual distance between the area Near and the area Far is also fixed. For example, when the actual distance of the white line vanishing point is 100 m, the area Near is 0 to 50 m, and the area Far is 50 to 100 m. A general projective transformation is used for the conversion from the actual distance to the position on the image. The horizontal position of the white line vanishing point LP is always fixed so as to be the center (center) of the image width. As a result, the width of the region Left and the region Right on the image is always equal. It should be noted that correction based on the presence or absence of a road gradient or a curve is performed as appropriate.

判定手段3bは、上述した画像内の前後左右の各々の領域内の明暗度を領域内の平均輝度を用いて判定し、決定手段3cは、平均輝度が高い(明暗度が明るい)ほど白線検出用のエッジ閾値を大きくするよう領域毎のエッジ閾値を決定する。図3に示すように画像内のX方向における輝度分布は路面に比べて白線がオフセットされて上がりエッジと下がりエッジを一対又は二対(図3では二対)有する矩形波の形態をなし、輝度に応じて矩形波全体がY軸方向に上下することとなるが、その上下に応じて白線と路面を区別できる範囲に、決定手段3cはエッジ閾値を決定する。   The determination unit 3b determines the brightness in each of the front, rear, left, and right regions in the image using the average brightness in the region, and the determination unit 3c detects a white line as the average brightness is higher (the brightness is brighter). The edge threshold value for each region is determined so as to increase the edge threshold value. As shown in FIG. 3, the luminance distribution in the X direction in the image is in the form of a rectangular wave in which the white line is offset relative to the road surface and has one or two pairs of rising and falling edges (two pairs in FIG. 3). The entire rectangular wave moves up and down in the Y-axis direction according to the above, but the determining means 3c determines the edge threshold within a range in which the white line and the road surface can be distinguished according to the vertical movement.

続いて本実施例1の白線検出装置1の全体の制御内容を図4に示すフローチャートを用いて説明する。ステップS1に示すように、画像ECU3は前方カメラ2の撮像した画像を取得し、ステップS2において上述した手法により分割手段3aは、画像を白線消失点LPよりも下縁側で四分割する。ステップS3において、判定手段3bは、領域毎に明暗度を平均輝度を用いて判定して、さらにステップS4において、ステップS3で判定された領域毎の明暗度つまり平均輝度が明るいほどエッジ閾値を大きく、暗いほどエッジ閾値を小さくするように、領域毎にエッジ閾値を決定する。   Next, the entire control content of the white line detection device 1 of the first embodiment will be described with reference to the flowchart shown in FIG. As shown in step S1, the image ECU 3 acquires an image captured by the front camera 2, and the dividing unit 3a divides the image into four parts on the lower edge side from the white line vanishing point LP by the method described above in step S2. In step S3, the determination unit 3b determines the brightness for each region using the average brightness, and in step S4, the edge threshold is increased as the brightness, that is, the average brightness for each region determined in step S3 is brighter. The edge threshold value is determined for each region so that the darker the edge threshold value is, the darker the edge threshold value is.

ステップS5からステップS11においては、ステップS4までで決定したエッジ閾値を用いて、エッジ検出手段3dは、分割した領域毎に画像を水平方向に走査して、エッジ閾値を超える上がりエッジと下がりエッジを検出する。ステップS6において、統合手段3eは、ステップS5で検出した領域毎のエッジの三次元座標を元に、これらを統合して路面平面上に投影する処理を行う。   In step S5 to step S11, using the edge threshold value determined in step S4, the edge detection unit 3d scans the image in the horizontal direction for each divided region, and detects rising and falling edges exceeding the edge threshold value. To detect. In step S6, the integration unit 3e performs a process of integrating these and projecting them onto the road surface plane based on the three-dimensional coordinates of the edges for each region detected in step S5.

ステップS7において、探索手段3fは、ステップS6で投影した路面平面上の直線近似領域として設定した範囲のエッジ群に対してエッジ線分を抽出して、その後、前回処理の前フレームの白線位置や上がり、下がりエッジ線分の幅から白線エッジ線分を選択する。   In step S7, the search means 3f extracts edge line segments from the edge group in the range set as the linear approximation region on the road surface plane projected in step S6, and then the white line position of the previous frame of the previous process or the like. The white line edge line segment is selected from the width of the rising and falling edge line segments.

ステップS8において、探索手段3fは、前回処理の前フレームの白線位置から一定の範囲内に存在する図5の直線近似領域Lの手前の近傍領域LNの白線エッジを抽出する。   In step S8, the search means 3f extracts the white line edge of the neighboring area LN before the straight line approximation area L in FIG. 5 existing within a certain range from the white line position of the previous frame of the previous process.

ステップS9において、探索手段3fは、ステップS7、ステップS8で検出した白線エッジ群に対して、左右白線別々にクロソイドモデルを当てはめる。ステップS10において、探索手段3fは、ステップS9で推定したクロソイドを遠方に延長した図5の直線近似領域Lの遠方側の遠方領域LF内の白線エッジを検出する。   In step S9, the search means 3f applies the clothoid model separately for the left and right white lines to the white line edge group detected in steps S7 and S8. In step S10, the search means 3f detects a white line edge in the far region LF on the far side of the linear approximation region L in FIG. 5 obtained by extending the clothoid estimated in step S9 far.

ステップS11において、算出手段3gは、ステップS7、ステップS8、ステップS10で検出した白線エッジ群に対して、左右白線別々にクロソイドモデルを当てはめて、白線を抽出する。   In step S11, the calculation unit 3g applies a clothoid model to the white line edge group detected in steps S7, S8, and S10 separately to extract a white line.

以上の制御により実行される本実施例1の白線検出装置1によれば、以下のような作用効果を得ることができる。つまり、図6(a)の楕円LC内に示す、遠方のコントラストが低い白線についての破線で示すエッジについて、図6(a)に示すように従来技術では検出が困難であった所を、図6(b)に示すように本実施例1では検出することが可能となる。   According to the white line detection device 1 of the first embodiment executed by the above control, the following operational effects can be obtained. That is, as shown in FIG. 6 (a), it is difficult to detect the edge indicated by the broken line for the white line with low contrast in the distance shown in the ellipse LC in FIG. 6 (a). As shown in FIG. 6B, detection can be performed in the first embodiment.

また本実施例1では予め固定した白線消失点LPに基づいて画像の分割を行うため、分割のために予め白線を検出する必要がない。このため、分割にあたっての処理負担を軽減し、コントラストの低い遠方と近傍の分割をより容易なものとすることができる。   Further, in the first embodiment, since the image is divided based on the white line vanishing point LP fixed in advance, it is not necessary to detect the white line in advance for the division. For this reason, it is possible to reduce the processing load in the division, and to make it easier to divide the distant and neighboring areas with low contrast.

上述した実施例1においては、白線消失点LPを固定する形態を示したが、白線消失点LPを画像ECU3の処理周期毎に更新することもできる。以下それについての実施例2について述べる。   In the above-described first embodiment, the form in which the white line vanishing point LP is fixed is shown. However, the white line vanishing point LP can be updated every processing cycle of the image ECU 3. The second embodiment will be described below.

本実施例2の白線検出装置1は上述した実施例1の図1に示したものと同様であり、処理内容についても実施例1の図4に示したものとステップS11までは同様であるため、相違点を主に説明する。   The white line detection device 1 of the second embodiment is the same as that shown in FIG. 1 of the first embodiment described above, and the processing content is the same as that shown in FIG. 4 of the first embodiment up to step S11. The difference will be mainly described.

図7に示すフローチャートの最後に示すように、本実施例2の白線検出装置1では、画像ECU3は、白線消失点LPを前回処理の結果から算出する。画像内の左右両側に白線が検出される場合には、両側白線パラメータの交点を白線消失点LPとする。   As shown at the end of the flowchart shown in FIG. 7, in the white line detection device 1 of the second embodiment, the image ECU 3 calculates the white line vanishing point LP from the result of the previous process. When white lines are detected on both the left and right sides in the image, the intersection of the white line parameters on both sides is set as the white line vanishing point LP.

図8に示すように、求めた白線消失点LPを基準に左側を領域Left、右側を領域Rightとし、白線消失点LPより手前の領域を実距離が等しくなるように二分割し、近傍側を領域Near、遠方側を領域Farとする。この結果、領域Leftと領域Rightの画像上の幅は可変となる。   As shown in FIG. 8, the left side is the region Left and the right side is the region Right based on the obtained white line vanishing point LP, and the region in front of the white line vanishing point LP is divided into two so that the actual distance is equal, A region Near is set, and a far side is set as a region Far. As a result, the width of the region Left and the region Right on the image is variable.

以上の制御により実行される本実施例2の白線検出装置1によっても、実施例1と同様に以下のような作用効果を得ることができる。すなわち、図6(a)の楕円LC内に示す、遠方のコントラストが低い白線のエッジについて、図6(a)に示すように従来技術では検出が困難であった所を、図6(b)に示すように本実施例2では検出することができる。   Also by the white line detection device 1 of the second embodiment that is executed by the above control, the following operational effects can be obtained as in the first embodiment. That is, as shown in FIG. 6 (a), the edge of the white line shown in the ellipse LC shown in FIG. As shown in FIG. 4, it can be detected in the second embodiment.

本実施例2の白線検出装置1によれば、遠方のコントラストが低い領域の白線のエッジをより容易に検出することができるので、特に自動運転を視野に入れた車両に適用する場合に、白線検出装置1に要求される白線検出の範囲はより遠方の領域を含むことが要請されることに対して、この要請により確実に応えることができる。   According to the white line detection device 1 of the second embodiment, since the edge of the white line in the region with low contrast in the distance can be detected more easily, the white line is particularly applied to a vehicle with automatic driving in view. The white line detection range required for the detection apparatus 1 is required to include a farther region, and this request can be reliably met.

また本実施例2では演算周期毎に算出される白線消失点LPに基づいて画像の分割を行うため、分割の精度をより高めることができる。このため、分割後のエッジ検出、直線近似領域探索、近傍領域探索、白線モデルフィッティング、遠方領域探索、白線パラメータ算出の精度を高め、特に遠方領域探索での精度、フィッティング性、ロバスト性を高めることができる。   In the second embodiment, since the image is divided based on the white line vanishing point LP calculated every calculation cycle, the accuracy of the division can be further improved. For this reason, the accuracy of edge detection, straight line approximation area search, neighborhood area search, white line model fitting, far area search, white line parameter calculation after division is improved, especially in the far area search, accuracy, fitting performance, and robustness are improved. Can do.

以上本発明の好ましい実施例について詳細に説明したが、本発明は上述した実施例に制限されることなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形および置換を加えることができる。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions are made to the above-described embodiments without departing from the scope of the present invention. be able to.

例えば上述した実施例では前後方向の分割数を二分割としているが、この分割数については必要に応じてより大きな数とすることができる。同様に左右方向の分割数も二分割には限られず、より大きな数による多分割とすることもできる。   For example, in the above-described embodiment, the number of divisions in the front-rear direction is divided into two, but the number of divisions can be increased as necessary. Similarly, the number of divisions in the left-right direction is not limited to two divisions, and can be divided into multiple divisions with a larger number.

また上述した実施例では画像内の明暗度(露光)を判定するパラメータとして平均輝度を用いたが、それ以外のパラメータを用いることももちろん可能である。   In the embodiment described above, the average luminance is used as a parameter for determining the brightness (exposure) in the image, but other parameters can be used as a matter of course.

本発明の白線検出装置、より効果的に白線を検出でき、特に遠方のコントラストの低い白線を検出できるので、自動運転やより予測性の高い操舵支援(LKA、LDW)や衝突防止(PCS)を考慮した、乗用車、トラック、バス等の様々な車両に適用して有益なものである。   The white line detection device of the present invention can detect a white line more effectively, and in particular, can detect a white line with a low contrast in the distance, so that automatic driving, more predictive steering assistance (LKA, LDW) and collision prevention (PCS) can be performed. It is useful when applied to various vehicles such as passenger cars, trucks, and buses.

1 白線検出装置
2 前方カメラ
3 画像ECU
3a 分割手段
3b 判定手段
3c 決定手段
3d エッジ検出手段
3e 統合手段
3f 探索手段
3g 算出手段
1 White line detection device 2 Front camera 3 Image ECU
3a Division means 3b Determination means 3c Determination means 3d Edge detection means 3e Integration means 3f Search means 3g Calculation means

Claims (3)

車両から撮像された画像を複数の領域に分割する分割手段と、各々の前記領域内の明暗度を判定する判定手段と、前記明暗度が明るいほど前記エッジ閾値を大きくするよう前記領域毎のエッジ閾値を決定する決定手段を含むことを特徴とする白線検出装置。   A dividing unit that divides an image captured from a vehicle into a plurality of regions, a determination unit that determines the brightness in each of the regions, and an edge for each region so that the edge threshold is increased as the brightness is brighter A white line detecting apparatus comprising a determining means for determining a threshold value. 前記分割手段は前記車両の少なくとも前後方向において前記画像を分割することを特徴とする請求項1に記載の白線検出装置。   The white line detection device according to claim 1, wherein the dividing unit divides the image in at least a front-rear direction of the vehicle. 前記判定手段は前記明暗度を前記領域内の平均輝度を用いて判定することを特徴とする請求項2に記載の白線検出装置。   The white line detection apparatus according to claim 2, wherein the determination unit determines the brightness using an average luminance in the region.
JP2012279829A 2012-12-21 2012-12-21 White line detection device Pending JP2014123301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279829A JP2014123301A (en) 2012-12-21 2012-12-21 White line detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279829A JP2014123301A (en) 2012-12-21 2012-12-21 White line detection device

Publications (1)

Publication Number Publication Date
JP2014123301A true JP2014123301A (en) 2014-07-03

Family

ID=51403714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279829A Pending JP2014123301A (en) 2012-12-21 2012-12-21 White line detection device

Country Status (1)

Country Link
JP (1) JP2014123301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206881A (en) * 2015-04-21 2016-12-08 本田技研工業株式会社 Lane detection device and method thereof, and lane display device and method thereof
JP2019185535A (en) * 2018-04-13 2019-10-24 株式会社Soken Travel path recognition device of vehicle and travel controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167239A (en) * 1995-12-18 1997-06-24 Hitachi Ltd Traveling road surface monitoring device applying image processing and method therefor
JP2010055377A (en) * 2008-08-28 2010-03-11 Denso Corp Drive dividing section detection device and program for drive dividing section detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167239A (en) * 1995-12-18 1997-06-24 Hitachi Ltd Traveling road surface monitoring device applying image processing and method therefor
JP2010055377A (en) * 2008-08-28 2010-03-11 Denso Corp Drive dividing section detection device and program for drive dividing section detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206881A (en) * 2015-04-21 2016-12-08 本田技研工業株式会社 Lane detection device and method thereof, and lane display device and method thereof
JP2019185535A (en) * 2018-04-13 2019-10-24 株式会社Soken Travel path recognition device of vehicle and travel controller
JP7068017B2 (en) 2018-04-13 2022-05-16 株式会社Soken Vehicle travel path recognition device and travel control device

Similar Documents

Publication Publication Date Title
US9771080B2 (en) Road surface gradient detection device
JP6163453B2 (en) Object detection device, driving support device, object detection method, and object detection program
JP5906224B2 (en) Outside environment recognition device
JP6457278B2 (en) Object detection apparatus and object detection method
CN107750213B (en) Front vehicle collision warning device and warning method
JP2016016681A (en) Parking frame recognition device
JP2014096005A (en) Object detection device and object detection method
JP2015069379A (en) Vehicle exterior environment recognition device
JP2012243051A (en) Environment recognition device and environment recognition method
JP2011090556A (en) Far-infrared pedestrian detection device
JP2018060422A (en) Object detection device
JP2016218539A (en) Vehicle runway recognition device
JP2010020710A (en) Device for detecting road side fixed object
CN109522779B (en) Image processing apparatus and method
JP2012164275A (en) Image recognition apparatus
KR101263158B1 (en) Method and apparatus for detecting vehicle
JP2014123301A (en) White line detection device
JP7229032B2 (en) External object detection device
JP6174960B2 (en) Outside environment recognition device
JP5958368B2 (en) White line detector
US9519833B2 (en) Lane detection method and system using photographing unit
JP6378547B2 (en) Outside environment recognition device
JP7261006B2 (en) External environment recognition device
JP2010018223A (en) Device for detecting vehicle traveling road surface
WO2021094801A1 (en) Traffic signal recognition method and traffic signal recognition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119