JP2014081279A - Three-dimensional shape measuring apparatus and three-dimensional shape measuring method - Google Patents

Three-dimensional shape measuring apparatus and three-dimensional shape measuring method Download PDF

Info

Publication number
JP2014081279A
JP2014081279A JP2012229305A JP2012229305A JP2014081279A JP 2014081279 A JP2014081279 A JP 2014081279A JP 2012229305 A JP2012229305 A JP 2012229305A JP 2012229305 A JP2012229305 A JP 2012229305A JP 2014081279 A JP2014081279 A JP 2014081279A
Authority
JP
Japan
Prior art keywords
dimensional shape
workpiece
measurement object
support shaft
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012229305A
Other languages
Japanese (ja)
Inventor
Takashi Teranishi
崇 寺西
Yoshihiro Nishiyama
義浩 西山
Kazuhide Sanada
和英 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012229305A priority Critical patent/JP2014081279A/en
Publication of JP2014081279A publication Critical patent/JP2014081279A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring apparatus configured to reliably capture at least three reference spheres within a field of view regardless of angles of imaging a measuring object, so as to reduce the time for measuring a three-dimensional shape, and a three-dimensional shape measuring method.SOLUTION: A three-dimensional shape measuring apparatus includes: a workpiece support part 3 for supporting a workpiece 10; reference spheres 9, 9... provided in the workpiece support part 3; cameras 2b, 2b for capturing images including the workpiece 10 and the reference spheres 9, 9... from a plurality of angles, while capturing the workpiece 10 and the reference spheres 9, 9... within a field of view; and an arithmetic operation part 2c for arithmetically operating a three-dimensional shape of the workpiece 10 on the basis of the images. The workpiece support part 3 includes a support shaft 7 for supporting the workpiece 10, a rotation part 6 which supports the support shaft 7 so as to be rotated around an axis of the support shaft 7, and a base part 4 for supporting the rotation part 6 so as to be turned around a horizontal axis. Three or more (eight in this case) reference spheres 9, 9... are attached to an outer periphery part of the rotation part 6 (an outer periphery part of a disc member 8).

Description

本発明は、三次元形状測定装置および三次元形状測定方法の技術に関する。   The present invention relates to a technique of a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method.

従来、測定対象物たる物体の三次元形状を測定するための装置である三次元形状測定装置が知られており、例えば、以下に示す特許文献1にその技術が開示され公知となっている。
特許文献1に開示されている三次元形状測定装置においては、測定対象物を固定するための測定治具に、測定対象物の三次元形状を測定する上で必要なデータム(基準となる点、線および面)を取得するための部材である基準部材を備える構成としている。
また、特許文献1に係る三次元形状測定装置においては、基準部材として基準球を採用しており、また、基準球の個数を3個以上とする構成としている。
2. Description of the Related Art Conventionally, a three-dimensional shape measuring device that is a device for measuring a three-dimensional shape of an object that is a measurement target is known. For example, the technique is disclosed in Patent Document 1 shown below and is publicly known.
In the three-dimensional shape measuring apparatus disclosed in Patent Document 1, a datum (a point serving as a reference, which is necessary for measuring the three-dimensional shape of a measurement object is measured on a measurement jig for fixing the measurement object. A reference member which is a member for obtaining a line and a surface) is provided.
Moreover, in the three-dimensional shape measuring apparatus according to Patent Document 1, a reference sphere is adopted as a reference member, and the number of reference spheres is three or more.

そして、特許文献1に係る三次元形状測定装置においては、該測定装置の視野に少なくとも3個の基準球が含まれる角度(視線方向)から、測定対象物の三次元形状の撮影を行って、測定対象物の三次元形状とともに、少なくとも3個の基準球の三次元形状を同時に撮影する構成としている。   And in the three-dimensional shape measuring apparatus according to Patent Document 1, from the angle (line-of-sight direction) in which at least three reference spheres are included in the visual field of the measuring apparatus, the three-dimensional shape of the measurement object is photographed, In addition to the three-dimensional shape of the measurement object, the three-dimensional shape of at least three reference spheres is simultaneously photographed.

そして、各基準球の撮影データを画像処理等して、各基準球の中心位置を算出することによって、各基準球の中心位置(基準点)を取得することができ、また、3つ以上の基準球の中心位置が求められれば、各中心位置を通る平面(基準面)を取得することができる。
特許文献1に係る三次元形状測定装置では、このようにして取得した基準点および基準面を基準として、複数の角度(視線方向)から撮影した各三次元形状を合成することによって、測定対象物の全体的な三次元形状を精度よく測定できる構成としている。
The center position (reference point) of each reference sphere can be obtained by calculating the center position of each reference sphere by performing image processing or the like on the shooting data of each reference sphere. If the center position of the reference sphere is obtained, a plane (reference plane) passing through each center position can be acquired.
In the three-dimensional shape measuring apparatus according to Patent Document 1, a measurement object is obtained by synthesizing each three-dimensional shape taken from a plurality of angles (line-of-sight directions) with reference to the reference point and the reference plane acquired in this way The overall three-dimensional shape is measured with high accuracy.

特開2000−258150号公報JP 2000-258150 A

しかしながら、特許文献1に係る三次元形状測定装置に示す如く、従来は、測定治具に基準球が固定され、基準球と測定対象物の絶対的な位置関係が固定されている構成であるため、測定対象物を撮影する角度によっては、測定対象物や測定治具の影に基準球が位置して、3個以上の基準球を視野に捉えることができない場合があった。
基準球を2個以下しか捉えられない場合には、基準面を形成することができず、三次元形状を形成できないため、従来は、測定治具に対する測定対象物の固定状態(姿勢)を何度が修正する段取り替えの作業が必要になり、三次元形状の測定に要する時間が長くなる要因となっていた。
However, as shown in the three-dimensional shape measuring apparatus according to Patent Document 1, conventionally, the reference sphere is fixed to the measurement jig, and the absolute positional relationship between the reference sphere and the measurement object is fixed. Depending on the angle at which the measurement object is photographed, the reference sphere is located in the shadow of the measurement object or the measurement jig, and it may be impossible to capture three or more reference spheres in the field of view.
If only two or less reference spheres can be captured, a reference plane cannot be formed and a three-dimensional shape cannot be formed. Therefore, conventionally, what is the fixed state (posture) of the measurement object with respect to the measurement jig? A setup change operation to correct the degree is required, which is a factor in increasing the time required to measure the three-dimensional shape.

本発明は、斯かる現状の課題を鑑みてなされたものであり、三次元形状の測定時間の短縮を図るべく、測定対象物をどの角度から撮影する場合であっても、確実に3個以上の基準球を視野に捉えることを可能にする三次元形状測定装置および三次元形状測定方法を提供することを目的としている。   The present invention has been made in view of such a problem of the present situation, and in order to shorten the measurement time of the three-dimensional shape, even if the measurement object is photographed from any angle, it is surely three or more. It is an object of the present invention to provide a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method that make it possible to capture the reference sphere in the field of view.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、測定対象物を、所定の位置において所定の姿勢で保持するための保持治具と、前記保持治具に付設される、前記測定対象物の位置および姿勢を検出するための基準となる基準部材と、前記測定対象物と前記基準部材を視野に捉えつつ、複数の角度から前記測定対象物と前記基準部材を含む画像を撮影するカメラと、前記画像に基づき、前記測定対象物の三次元形状を演算する演算部と、を備える三次元形状測定装置であって、前記保持治具は、前記測定対象物を支持するための軸部である支持軸と、前記支持軸を、該支持軸の軸回りに回転可能に支持するための回転部と、前記回転部を水平軸回りに回動可能に支持するための基台部と、を備え、前記回転部の外周部に、3個以上の前記基準部材が付設されるものである。   That is, according to the first aspect of the present invention, a holding jig for holding the measurement object in a predetermined position at a predetermined position and a position and an attitude of the measurement object attached to the holding jig are detected. A reference member for a reference, a camera for capturing an image including the measurement object and the reference member from a plurality of angles while capturing the measurement object and the reference member in a visual field, and based on the image, A three-dimensional shape measuring apparatus comprising: a calculation unit that calculates a three-dimensional shape of the measurement object, wherein the holding jig is a support shaft that is a shaft part for supporting the measurement object; and the support A rotating portion for supporting the shaft so as to be rotatable around the axis of the support shaft; and a base portion for supporting the rotating portion so as to be rotatable around a horizontal axis, and an outer periphery of the rotating portion. Three or more reference members are attached to the part A.

請求項2においては、前記基準部材は、基準球であるものである。   In the present invention, the reference member is a reference sphere.

請求項3においては、測定対象物を支持するための軸部である支持軸と、前記支持軸を、該支持軸の軸回りに回転可能に支持するための部位であって、その外周部に前記測定対象物の位置および姿勢を検出するための基準となる基準部材を3個以上付設した回転部と、前記回転部を水平軸回りに回動可能に支持するための基台部と、を備える、前記測定対象物を所定の位置において所定の姿勢で保持するための保持治具と、前記測定対象物と前記基準部材を視野に捉えつつ、複数の角度から前記測定対象物と前記基準部材を含む画像を撮影するカメラと、を備える三次元形状測定装置を用いて、前記水平軸回りの回動位置と前記支持軸の軸回りの回転位置の、少なくとも一方を変更して、前記所定の姿勢を変更する第一の工程と、前記支持軸によって所定の姿勢に支持される前記測定対象物を、前記3個以上の基準部材を視野に捉えつつ撮影する第二の工程と、を備え、前記第一の工程および前記第二の工程を、交互に複数回繰り返すことにより得られる複数の画像に基づき、前記測定対象物の三次元形状を測定するものである。   In Claim 3, it is a site | part for supporting the support shaft which is a shaft part for supporting a measurement object, and the said support shaft rotatably around the axis | shaft of this support shaft, Comprising: A rotating part provided with three or more reference members serving as a reference for detecting the position and orientation of the measurement object; and a base part for supporting the rotating part so as to be rotatable about a horizontal axis. A holding jig for holding the measurement object in a predetermined position at a predetermined position, and the measurement object and the reference member from a plurality of angles while capturing the measurement object and the reference member in a field of view. Using a three-dimensional shape measuring device comprising a camera that captures an image including the image, and changing at least one of a rotation position around the horizontal axis and a rotation position around the support shaft. A first step of changing the posture and the support shaft; Therefore, the second step of photographing the measurement object supported in a predetermined posture while capturing the three or more reference members in the field of view, the first step and the second step, The three-dimensional shape of the measurement object is measured based on a plurality of images obtained by alternately repeating a plurality of times.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1ないし請求項3においては、測定対象物をどの角度から撮影する場合であっても、確実に3個以上の基準球を測定対象物とともに視野に捉えることができる。
これにより、測定対象物の段取り替えを行う必要がなくなり、三次元形状測定装置による測定時間の短縮を図ることができる。
In any one of claims 1 to 3, it is possible to reliably capture three or more reference spheres together with the measurement object in the field of view, regardless of the angle at which the measurement object is photographed.
Thereby, it is not necessary to change the setup of the measurement object, and the measurement time by the three-dimensional shape measuring apparatus can be shortened.

本発明の一実施形態に係る三次元形状測定装置の全体構成を示す模式図。The schematic diagram which shows the whole structure of the three-dimensional shape measuring apparatus which concerns on one Embodiment of this invention. ワークの一例である複雑な三次元形状を有するインペラを示す斜視模式図。The perspective schematic diagram which shows the impeller which has a complicated three-dimensional shape which is an example of a workpiece | work. 本発明の一実施形態に係る三次元形状測定装置に備えられるワーク支持部を示す模式図、(a)正面模式図、(b)側面模式図。The schematic diagram which shows the workpiece | work support part with which the three-dimensional shape measuring apparatus which concerns on one Embodiment of this invention is equipped, (a) Front schematic diagram, (b) Side surface schematic diagram. 本発明の一実施形態に係る三次元形状測定装置に備えられるワーク支持部の平面模式図。The plane schematic diagram of the workpiece | work support part with which the three-dimensional shape measuring apparatus which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係る三次元形状測定方法の流れを示すフロー図。The flowchart which shows the flow of the three-dimensional shape measuring method which concerns on one Embodiment of this invention. ワーク支持部によるワークの姿勢の変更状況を示す模式図。The schematic diagram which shows the change condition of the attitude | position of the workpiece | work by a workpiece | work support part. カメラの視野におけるワークおよび基準球の見え方を示す図、(a)支持軸が鉛直方向を向いている場合、(b)支持軸が鉛直および水平方向から傾斜している場合、(c)支持軸が水平方向を向いている場合。The figure which shows the appearance of the workpiece | work and reference | standard sphere in the visual field of a camera, (a) When a support shaft has faced the vertical direction, (b) When a support shaft inclines from the vertical and horizontal direction, (c) Support When the axis is oriented horizontally.

次に、発明の実施の形態を説明する。
まず始めに、本発明の一実施形態に係る三次元形状測定装置の全体構成について、図1および図2を用いて説明をする。
図1に示す如く、本発明の一実施形態に係る三次元形状測定装置1は、測定対象物たるワーク10の三次元形状を測定するための装置であり、測定部2、ワーク支持部3等を備える構成としている。
Next, embodiments of the invention will be described.
First, the overall configuration of a three-dimensional shape measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, a three-dimensional shape measuring apparatus 1 according to an embodiment of the present invention is an apparatus for measuring a three-dimensional shape of a workpiece 10 that is a measurement object, such as a measuring unit 2, a workpiece supporting unit 3, and the like. It is set as the structure provided with.

本実施形態で示す三次元形状測定装置1の測定対象とするワーク10は、図2に示すような回転翼(インペラ)であり、主翼10a・10a・・・と副翼10b・10b・・・が複雑に入り組んだ形状を有している。
測定対象物が、回転翼のように複雑な三次元形状を有している場合には、できる限り多くの角度から三次元形状を撮影することによって、より精度よく三次元形状を測定することが可能になる。
尚、本実施形態では、三次元形状測定装置1の測定対象物を複雑な三次元形状を有するワーク10とする場合を例示しているが、本発明に係る三次元形状測定装置の測定対象物をこれに限定するものではない。
The workpiece 10 to be measured by the three-dimensional shape measuring apparatus 1 shown in the present embodiment is a rotary blade (impeller) as shown in FIG. 2, and the main wings 10a, 10a,. Has a complicated and intricate shape.
When the object to be measured has a complicated three-dimensional shape such as a rotor blade, it is possible to measure the three-dimensional shape with higher accuracy by photographing the three-dimensional shape from as many angles as possible. It becomes possible.
In the present embodiment, the measurement object of the three-dimensional shape measurement apparatus 1 is exemplified as a workpiece 10 having a complicated three-dimensional shape. However, the measurement object of the three-dimensional shape measurement apparatus according to the present invention is illustrated. However, the present invention is not limited to this.

図1に示す如く、測定部2は、所謂、非接触3次元光学式デジタイザと呼ばれる装置であり、三次元形状の測定対象物たるワーク10に対して干渉縞を投影するための光(以下、測定補助光と呼ぶ)を照射するとともに、ワーク10で反射した測定補助光を2箇所のカメラで撮影して、当該対象物の3次元形状を測定することができる汎用的な装置である。
尚、ワーク10に対して照射する光としては、レーザー光、LED照明光等を採用することができる。
As shown in FIG. 1, the measurement unit 2 is a so-called non-contact three-dimensional optical digitizer, which is a light for projecting interference fringes onto a workpiece 10 that is a three-dimensional shape measurement object (hereinafter, referred to as a “contactless three-dimensional optical digitizer”). This is a general-purpose apparatus that can measure the three-dimensional shape of the object by irradiating the measurement auxiliary light reflected by the workpiece 10 with two cameras.
Note that laser light, LED illumination light, or the like can be employed as the light applied to the workpiece 10.

測定部2は、ワーク10に測定補助光を照射するための部位である照射部2aや、ワーク10で反射した測定補助光(より詳しくは、干渉縞)を受光(撮影)するための部位である一対のカメラ2b・2b等を備えている。
また、測定部2は、一対のカメラ2b・2bにより異なった角度から撮影した複数の干渉縞の撮影データに基づいて、ワーク10の三次元形状を演算するための部位である演算部2cを備えている。
尚、本実施形態では、測定部2が、ワーク支持部3に対する鉛直上方に配置し、カメラ2b・2bの角度(視線方向)を鉛直下方に向けて、ワーク10を撮影する場合を例示しているが、照射部2aやカメラ2b・2bの角度は変更可能な構成として、ワーク10の姿勢に合わせて、照射部2aやカメラ2b・2bの角度を適宜変更する構成としてもよい。
The measurement unit 2 is a unit for receiving (imaging) the irradiation unit 2a that is a part for irradiating the work 10 with measurement auxiliary light or the measurement auxiliary light (more specifically, interference fringes) reflected by the work 10. A pair of cameras 2b and 2b are provided.
The measurement unit 2 also includes a calculation unit 2c that is a part for calculating the three-dimensional shape of the workpiece 10 based on shooting data of a plurality of interference fringes shot from different angles by the pair of cameras 2b and 2b. ing.
In this embodiment, the measurement unit 2 is arranged vertically above the workpiece support unit 3, and the case where the workpiece 10 is photographed with the angles (line-of-sight directions) of the cameras 2b and 2b directed vertically downward is illustrated. However, the angle of the irradiation unit 2a and the cameras 2b and 2b may be changed, and the angle of the irradiation unit 2a and the cameras 2b and 2b may be appropriately changed according to the posture of the workpiece 10.

ワーク支持部3は、カメラ2b・2bの視野において、ワーク10を支持するための部位であり、基台部4、支持基部5、回転部6、支持軸7等を備える構成としている。
また、ワーク支持部3は、カメラ2b・2bに対するワーク10の姿勢を変更可能としつつ支持することができるように構成されている。
そして、本発明の一実施形態に係る三次元形状測定装置1は、従来の三次元形状測定装置に比して、このワーク支持部3の構成が相違している点に特徴を有している。
The work support part 3 is a part for supporting the work 10 in the field of view of the cameras 2b and 2b, and includes a base part 4, a support base part 5, a rotation part 6, a support shaft 7, and the like.
Further, the work support unit 3 is configured to be able to support the work 2 while changing the posture of the work 10 relative to the cameras 2b and 2b.
And the three-dimensional shape measuring apparatus 1 which concerns on one Embodiment of this invention has the characteristics in the point from which the structure of this workpiece | work support part 3 is different compared with the conventional three-dimensional shape measuring apparatus. .

ワーク支持部3の構成について、図3〜図5を用いて、さらに詳細に説明をする。
図3(a)(b)に示す如く、基台部4は、ワーク支持部3を、測定部2の直下における所定位置に固定するための部位であり(図1参照)、躯体や作業台の上面等に対して、図示しないボルト等を用いて、変位不能な状態で固定されている。
基台部4の上部には、支持孔4a・4aを形成しており、該支持孔4a・4aにおいて、軸部材4bを水平に保持しつつ、軸支する構成としている。
The configuration of the work support unit 3 will be described in more detail with reference to FIGS.
As shown in FIGS. 3A and 3B, the base part 4 is a part for fixing the work support part 3 at a predetermined position directly below the measuring part 2 (see FIG. 1). It is fixed to the upper surface of the plate in such a manner that it cannot be displaced by using a bolt or the like (not shown).
Support holes 4a and 4a are formed in the upper part of the base part 4, and the shaft holes 4a and 4a are supported in the support holes 4a and 4a while being supported horizontally.

支持基部5は、ワーク10を支持するための軸部である支持軸7を支持するための部位である。
支持基部5は、基台部4に軸支されている軸部材4bによって、該軸部材4bを軸心として回動可能な状態で支持されている。
また、支持基部5と支持軸7の間には、回転部6を介設する構成としている。
The support base portion 5 is a portion for supporting a support shaft 7 that is a shaft portion for supporting the workpiece 10.
The support base 5 is supported by a shaft member 4b that is pivotally supported by the base portion 4 so as to be rotatable about the shaft member 4b.
In addition, a rotation unit 6 is interposed between the support base 5 and the support shaft 7.

回転部6は、支持軸7を軸心回りに回転可能な状態で支持するための部材であって、支持基部5の回動軸たる軸部材4bの軸心方向に対して直交する方向に向けた回転軸(図示せず)を有している。
そして、支持軸7を、回転部6の回転軸と支持軸7の軸心を一致させた状態で、回転部6に対して付設する構成としている。
The rotating portion 6 is a member for supporting the support shaft 7 in a state in which the support shaft 7 can rotate about the axis, and is directed in a direction orthogonal to the axial direction of the shaft member 4b which is the rotation shaft of the support base 5. And a rotating shaft (not shown).
The support shaft 7 is configured to be attached to the rotation unit 6 with the rotation axis of the rotation unit 6 and the axis of the support shaft 7 aligned.

このような構成により、支持軸7は、回転部6が軸心回りに回転するのに伴って、該支持軸7の軸心回りに回転し、また、支持軸7は、支持基部5が軸部材4bを軸心として回動するのに伴って、軸部材4bを軸心として回動する。   With such a configuration, the support shaft 7 rotates about the axis of the support shaft 7 as the rotating portion 6 rotates about the axis, and the support base 7 has the support base 5 as the axis. As the member 4b rotates about the axis, the shaft member 4b rotates about the axis.

また、図3(a)(b)および図4に示す如く、回転部6には、円盤状の部材である円盤部材8を付設している。
円盤部材8は、複数の基準球9・9・・・をワーク支持部3に付設するための部材であり、該円盤部材8の中心軸を回転部6の回転軸(即ち、支持軸7の軸心)に一致させた状態で、回転部6および支持軸7と一体となるように固定されている。
そして、ワーク支持部3では、円盤部材8の外周部8aに沿って、支持軸7の軸心を中心とする放射状に複数の基準球9・9・・・を配置する構成としている。
Further, as shown in FIGS. 3A and 3B and FIG. 4, the rotating portion 6 is provided with a disk member 8 which is a disk-shaped member.
The disk member 8 is a member for attaching a plurality of reference spheres 9, 9... To the work support part 3, and the center axis of the disk member 8 is the rotation axis of the rotation part 6 (that is, the support shaft 7). It is fixed so as to be integrated with the rotating portion 6 and the support shaft 7 in a state of being aligned with the axis.
In the work support portion 3, a plurality of reference spheres 9, 9... Are arranged radially along the outer peripheral portion 8 a of the disk member 8 with the axis of the support shaft 7 as the center.

尚、本実施形態では、回転部6の周囲に基準球9を付設するための部位として円盤部材8を設ける構成としているが、回転部6の周囲に基準球9を付設するための部位の態様を円盤状に限定するものではなく、回転部6と一体的に構成される部位であって、回転部6の周囲に基準球9・9・・・を付設できる態様であればよい。   In the present embodiment, the disk member 8 is provided as a part for attaching the reference sphere 9 around the rotating part 6. However, the aspect of the part for attaching the reference sphere 9 around the rotating part 6 is described. Is not limited to a disk shape, and may be any part that is configured integrally with the rotating unit 6 and that can be provided with reference spheres 9, 9,.

そして、ワーク支持部3では、図5に示す如く、各基準球9・9・・・は、回転部6が軸心回りに回転するのに伴って、回転部6(即ち、支持軸7)と一体的に回転し、また、支持基部5が軸部材4bを軸心として回動するのに伴って、軸部材4bを軸心として支持軸7と一体的に回動する。   In the workpiece support portion 3, as shown in FIG. 5, each reference ball 9, 9... Is rotated by the rotation portion 6 (that is, the support shaft 7) as the rotation portion 6 rotates about the axis. In addition, as the support base 5 rotates about the shaft member 4b as an axis, the support base 5 rotates integrally with the support shaft 7 about the shaft member 4b.

基準球9は、所定の直径を有する球体状の部材であって、測定部2によって三次元形状の測定をするときに、ワーク10の位置決め基準となるデータムを取得するための部材である。
基準球9は、測定部2によってワーク10の三次元形状を撮影するときに同時に撮影され、演算部2cによって、その球の中心位置の三次元座標を求めて、基準球9の基準座標を取得するとともに、3個以上の基準球9・9・9の基準座標を取得することによって、その3点を通過する基準面を取得する用途に用いられる。
尚、本実施形態では、ワーク10のデータムを取得するための基準部材として、基準球を採用した場合を例示しているが、本発明に係る三次元形状測定装置における基準部材の態様をこれに限定するものではなく、球形以外の形状を有する各種のマーカーを採用する構成としてもよい。
The reference sphere 9 is a spherical member having a predetermined diameter, and is a member for obtaining a datum serving as a positioning reference for the workpiece 10 when the measurement unit 2 measures a three-dimensional shape.
The reference sphere 9 is photographed at the same time when the measurement unit 2 captures the three-dimensional shape of the work 10, and the calculation unit 2c obtains the three-dimensional coordinates of the center position of the sphere and acquires the reference coordinates of the reference sphere 9. In addition, by acquiring the reference coordinates of three or more reference spheres 9, 9, 9, it is used for the purpose of acquiring a reference plane passing through the three points.
In the present embodiment, the case where a reference sphere is adopted as the reference member for acquiring the datum of the workpiece 10 is illustrated, but the aspect of the reference member in the three-dimensional shape measuring apparatus according to the present invention is illustrated here. However, the present invention is not limited thereto, and various markers having shapes other than a spherical shape may be employed.

次に、本発明の一実施形態に係る三次元形状測定方法の流れについて、図5を用いて、説明をする。
図5に示す如く、本発明の一実施形態に係る三次元形状測定方法は、三次元形状測定装置1を用いて実現することができ、ワーク10の姿勢を調整する姿勢調整工程(STEP−1)、ワーク10の画像を撮影する撮影工程(STEP−2)、撮影した画像を画像処理し三次元形状を演算する画像処理工程(STEP−4)等を備える構成としている。
Next, the flow of the three-dimensional shape measurement method according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 5, the three-dimensional shape measuring method according to the embodiment of the present invention can be realized by using the three-dimensional shape measuring apparatus 1, and the posture adjusting step (STEP-1) for adjusting the posture of the workpiece 10. ), A photographing step (STEP-2) for photographing an image of the workpiece 10, an image processing step (STEP-4) for processing the photographed image and calculating a three-dimensional shape, and the like.

姿勢調整工程(STEP−1)は、ワーク支持部3を調整して、ワーク10の姿勢を調整する工程である。
より具体的には、姿勢調整工程(STEP−1)では、支持軸7の軸心回りの回転位置を調整する操作と、支持軸7の軸部材4bを軸心とする回動位置を調整する操作、いずれか一方、あるいは、両方の操作によって、支持軸7に固定されるワーク10の姿勢を調整する。
The posture adjusting step (STEP-1) is a step of adjusting the posture of the workpiece 10 by adjusting the workpiece support 3.
More specifically, in the posture adjustment step (STEP-1), an operation for adjusting the rotational position around the axis of the support shaft 7 and a rotation position about the shaft member 4b of the support shaft 7 are adjusted. The posture of the workpiece 10 fixed to the support shaft 7 is adjusted by the operation, one or both of the operations.

また、姿勢調整工程(STEP−1)では、支持軸7に固定されるワーク10の姿勢を調整するとともに、円盤部材8の外周部8aに沿って設けられている複数の基準球9・9・・・の姿勢についても、併せて調整することができる。   In the posture adjustment step (STEP-1), the posture of the workpiece 10 fixed to the support shaft 7 is adjusted, and a plurality of reference balls 9, 9, provided along the outer peripheral portion 8 a of the disk member 8.・ ・ The posture can also be adjusted.

撮影工程(STEP−2)は、カメラ2b・2bによって、所定の姿勢に調整されたワーク10の画像を撮影する工程である。
より具体的には、撮影工程(STEP−2)では、ワーク10の姿勢に対応して姿勢が調整された複数の基準球9・9・・・をカメラ2b・2bの視野に捉えつつ、所定の姿勢に調整されたワーク10の画像を撮影する。
The photographing step (STEP-2) is a step of photographing an image of the workpiece 10 adjusted to a predetermined posture by the cameras 2b and 2b.
More specifically, in the photographing step (STEP-2), a plurality of reference spheres 9, 9,..., Whose postures are adjusted in accordance with the posture of the workpiece 10 are captured in the visual field of the cameras 2b, 2b, and predetermined. An image of the workpiece 10 adjusted to the posture is taken.

そして、本発明の一実施形態に係る三次元測定方法では、姿勢調整工程(STEP−1)と撮影工程(STEP−2)を、ワーク10の三次元形状を特定するために必要な全ての姿勢における画像を撮影し終わるまで、交互に繰り返して(即ち、(STEP−1)〜(STEP−3)を繰り返して)、複数のワーク10の画像を撮影する構成としている。   In the three-dimensional measurement method according to an embodiment of the present invention, the posture adjustment step (STEP-1) and the photographing step (STEP-2) are all postures necessary for specifying the three-dimensional shape of the workpiece 10. In this configuration, the images of a plurality of workpieces 10 are captured by repeating alternately (that is, by repeating (STEP-1) to (STEP-3)) until the image is completely captured.

本発明の一実施形態に係る三次元測定方法では、複数のワーク10の画像を撮影するときに、ワーク10を支持軸7に対して付け替えたりする工程(所謂、段取り替え)を行わなくても、ワーク支持部3によって、ワーク10の姿勢を容易に変更することができるため、複数の姿勢におけるワーク10の画像を短時間で撮影することができる。   In the three-dimensional measurement method according to the embodiment of the present invention, when taking images of a plurality of workpieces 10, it is not necessary to perform a step of changing the workpieces 10 relative to the support shaft 7 (so-called step change). Since the posture of the workpiece 10 can be easily changed by the workpiece support unit 3, images of the workpiece 10 in a plurality of postures can be taken in a short time.

そして、本発明の一実施形態に係る三次元測定方法では、(STEP−1)〜(STEP−3)において撮影したワーク10の複数の姿勢における複数の画像に基づき、演算部2cで画像処理を行うことによって(STEP−4)、ワーク10の三次元形状を取得する構成としている。   And in the three-dimensional measuring method which concerns on one Embodiment of this invention, based on the several image in the several attitude | position of the workpiece | work 10 image | photographed in (STEP-1)-(STEP-3), an image process is performed by the calculating part 2c. By carrying out (STEP-4), it is set as the structure which acquires the three-dimensional shape of the workpiece | work 10. FIG.

ここで、撮影工程(STEP−2)におけるカメラ2b・2bによる基準球9・9・・・の見え方について、図6および図7を用いて説明をする。
図6に示す如く、ワーク支持部3は、支持基部5を、基台部4に対して軸部材4bを中心として回動させることができるため、姿勢調整工程(STEP−1)において、ワーク10を軸部材4b回りに回転させつつ、撮影工程(STEP−2)において、測定部2によって、種々の角度から、ワーク10の三次元形状を測定することができる。
Here, how the reference spheres 9, 9,... Are viewed by the cameras 2b, 2b in the photographing step (STEP-2) will be described with reference to FIGS.
As shown in FIG. 6, the work support portion 3 can rotate the support base 5 around the shaft member 4 b with respect to the base portion 4. Therefore, in the posture adjustment step (STEP-1), the work 10 In the photographing process (STEP-2), the three-dimensional shape of the workpiece 10 can be measured from various angles by the measuring unit 2 while rotating the shaft member 4b.

また、図6に示す如く、ワーク支持部3は、支持軸7および円盤部材8を、回転部6の軸心回りに回転させることができるため、姿勢調整工程(STEP−1)において、ワーク10を回転部6の軸心回りに回転させつつ、撮影工程(STEP−2)において、測定部2によって、種々の角度から、ワーク10の三次元形状を測定することができる。   Further, as shown in FIG. 6, the work support unit 3 can rotate the support shaft 7 and the disk member 8 about the axis of the rotation unit 6, and thus in the posture adjustment step (STEP-1), the work 10 In the imaging step (STEP-2), the measurement unit 2 can measure the three-dimensional shape of the workpiece 10 from various angles while rotating the axis around the axis of the rotation unit 6.

例えば、姿勢調整工程(STEP−1)において、支持軸7の軸心方向が鉛直方向を向くようにワーク10の姿勢を調整するとき、複数の基準球9・9・・・は、図7(a)に示すように、支持軸7の軸心を中心とする放射状に配置されるように構成している。
そして、このとき、カメラ2b・2bの視野において、ワーク10の影に位置する基準球9は存在しないため、撮影工程(STEP−2)においては、全ての基準球9・9・・・をカメラ2b・2bの視野に捉えることができる。
For example, in the posture adjustment step (STEP-1), when the posture of the workpiece 10 is adjusted so that the axial center direction of the support shaft 7 faces the vertical direction, the plurality of reference spheres 9, 9. As shown to a), it is comprised so that it may arrange | position radially with the axial center of the support shaft 7 as a center.
At this time, since there is no reference sphere 9 located in the shadow of the workpiece 10 in the field of view of the cameras 2b and 2b, all the reference spheres 9, 9. 2b and 2b can be captured.

また、例えば、姿勢調整工程(STEP−1)において、支持軸7の軸心方向から鉛直方向から所定の角度だけ傾斜した方向を向くようにワーク10の姿勢を調整するとき、複数の基準球9・9・・・は、図7(b)に示すように、支持軸7の軸心を中心とする楕円形の軌道状に配置されるように構成している。
そして、このとき、カメラ2b・2bの視野において、ワーク10や支持軸7の影に基準球9が位置する可能性があるが、円盤部材8の支持軸7回りの回転角度を調整することによって、撮影工程(STEP−2)において、容易に全ての基準球9・9・・・をカメラ2b・2bの視野に捉えることができる。
Further, for example, in the posture adjustment step (STEP-1), when the posture of the workpiece 10 is adjusted so as to face a direction inclined by a predetermined angle from the vertical direction from the axial direction of the support shaft 7, a plurality of reference balls 9 are used. ... Are configured to be arranged in an elliptical track centered on the axis of the support shaft 7 as shown in FIG.
At this time, there is a possibility that the reference sphere 9 is located in the shadow of the workpiece 10 or the support shaft 7 in the field of view of the cameras 2b and 2b, but by adjusting the rotation angle of the disk member 8 around the support shaft 7 In the photographing step (STEP-2), all the reference spheres 9, 9... Can be easily captured in the field of view of the cameras 2b, 2b.

さらに、例えば、姿勢調整工程(STEP−1)において、支持軸7の軸心方向が水平方向を向くようにワーク10の姿勢を調整するとき、複数の基準球9・9・・・は、図7(c)に示すように、側面視における円盤部材8の上に一列に並ぶように配置される構成としている。
そして、このとき、カメラ2b・2bの視野において、ワーク10や支持軸7の影に基準球9が位置する可能性があるが、円盤部材8の支持軸7回りの回転角度を調整することによって、撮影工程(STEP−2)において、容易に全ての基準球9・9・・・をカメラ2b・2bの視野に捉えることができる。
Further, for example, in the posture adjustment step (STEP-1), when the posture of the workpiece 10 is adjusted so that the axial center direction of the support shaft 7 faces the horizontal direction, a plurality of reference spheres 9, 9. As shown in FIG. 7 (c), it is configured to be arranged in a line on the disk member 8 in a side view.
At this time, there is a possibility that the reference sphere 9 is located in the shadow of the workpiece 10 or the support shaft 7 in the field of view of the cameras 2b and 2b, but by adjusting the rotation angle of the disk member 8 around the support shaft 7 In the photographing step (STEP-2), all the reference spheres 9, 9... Can be easily captured in the field of view of the cameras 2b, 2b.

さらに、ワーク支持部3では、支持軸7の軸心を中心として放射状に複数の基準球9・9・・・を配置しているため、ワーク10を軸部材4bおよび回転部6の軸心回りに回転しても、撮影工程(STEP−2)において、測定部2のカメラ2b・2bの視野には、常に3個以上の基準球9・9・・・を確実に捉えることができる。
このため、ワーク支持部3に対してワーク10の段取り替えをしなくても、回転部6の回転角度と軸部材4b回りの支持基部5の回転角度を調整することによって、容易に3個以上の基準球9・9・・・を視野に捉える姿勢とすることができる。
Further, in the workpiece support portion 3, a plurality of reference spheres 9, 9... Are arranged radially around the axis of the support shaft 7, so that the workpiece 10 is rotated around the axis of the shaft member 4b and the rotating portion 6. Even in the imaging step (STEP-2), three or more reference spheres 9, 9,... Can always be reliably captured in the field of view of the cameras 2b, 2b of the measuring unit 2 in the photographing step (STEP-2).
For this reason, even if the workpiece 10 is not replaced with respect to the workpiece support 3, the rotation angle of the rotation unit 6 and the rotation angle of the support base 5 around the shaft member 4b can be easily adjusted to three or more. Of the reference spheres 9, 9...

尚、本実施形態では、円盤部材8の周囲に合計8個の基準球9・9・・・を設ける構成を例示しているが、円盤部材8の周囲に設ける基準球9の個数は3個以上であればよい。
即ち、ワーク支持部3において、円盤部材8の周囲に少なくとも3個の基準球9・9・9が付設されていれば、ワーク10を軸部材4bおよび回転部6の軸心回りに回転させることによって、カメラ2b・2bの視野に3個の基準球9・9・9を捉えることができるように、ワーク10の姿勢を修正することが可能である。
In the present embodiment, a configuration in which a total of eight reference spheres 9, 9... Are provided around the disk member 8 is illustrated, but the number of reference spheres 9 provided around the disk member 8 is three. That is all you need.
That is, if at least three reference spheres 9, 9, 9 are attached around the disk member 8 in the work support portion 3, the work 10 is rotated around the shaft center of the shaft member 4 b and the rotating portion 6. Thus, the posture of the workpiece 10 can be corrected so that the three reference spheres 9, 9, 9 can be captured in the field of view of the cameras 2b, 2b.

そして、基準球9の個数を増やせば、姿勢調整工程(STEP−1)において、ワーク10の姿勢を変更させる(支持軸7を回動、あるいは、回転させる)回数が少なくて済むため、基準球9の大きさ、円盤部材8の大きさ、カメラ2b・2bの視野の広さ、ワーク10の形状の複雑さ度合等を適宜考慮して、基準球9の個数を決定することができる。   If the number of reference spheres 9 is increased, the number of times of changing the posture of the workpiece 10 (rotating or rotating the support shaft 7) in the posture adjustment step (STEP-1) can be reduced. The number of reference spheres 9 can be determined by appropriately considering the size of 9, the size of the disk member 8, the wide field of view of the cameras 2 b and 2 b, the degree of complexity of the shape of the workpiece 10, and the like.

即ち、三次元形状測定装置1による三次元形状測定方法では、姿勢調整工程(STEP−1)において、支持軸7を軸部材4b回りに回動させ、あるいは、支持軸7を軸心回りに回転させることによって、段取り替えをすることなく、撮影工程(STEP−2)において、容易に多くの角度から三次元形状を撮影することが可能である。
またこのような三次元形状測定装置1は、ワーク10(即ち、回転翼)のように、複雑な三次元形状を有する測定対象物の三次元形状の測定する用途に用いるのに特に好適である。
That is, in the three-dimensional shape measuring method using the three-dimensional shape measuring apparatus 1, in the posture adjustment step (STEP-1), the support shaft 7 is rotated around the shaft member 4b or the support shaft 7 is rotated about the axis. By doing so, it is possible to easily photograph a three-dimensional shape from many angles in the photographing step (STEP-2) without changing the setup.
Such a three-dimensional shape measuring apparatus 1 is particularly suitable for use in measuring a three-dimensional shape of a measurement object having a complicated three-dimensional shape, such as a workpiece 10 (that is, a rotating blade). .

即ち、本発明の一実施形態に係る三次元形状測定装置1は、測定対象物たるワーク10を、所定の位置において所定の姿勢で保持するための保持治具たるワーク支持部3と、ワーク支持部3に付設される、ワーク10の位置および姿勢を検出するための基準となる基準部材たる基準球9・9・・・と、ワーク10と基準球9・9・・・を視野に捉えつつ、複数の角度からワーク10と基準球9・9・・・を含む画像を撮影するカメラ2b・2bと、前記画像に基づき、ワーク10の三次元形状を演算する演算部2cと、を備えるものであって、ワーク支持部3は、ワーク10を支持するための軸部である支持軸7と、支持軸7を、該支持軸7の軸回りに回転可能に支持するための回転部6と、回転部6を水平軸回りに回動可能に支持するための基台部4と、を備え、回転部6の外周部(より詳しくは、回転部6と一体的に構成される円盤部材8の外周部8a)に、3個以上(本実施形態では8個)の基準球9・9・・・が付設されるものである。   That is, the three-dimensional shape measuring apparatus 1 according to one embodiment of the present invention includes a workpiece support 3 that is a holding jig for holding a workpiece 10 as a measurement object in a predetermined posture at a predetermined position, and a workpiece support. The reference spheres 9, 9... Serving as a reference member for detecting the position and posture of the work 10 attached to the unit 3, and the work 10 and the reference spheres 9, 9. A camera 2b 2b that captures an image including the workpiece 10 and the reference spheres 9, 9 ... from a plurality of angles, and a calculation unit 2c that calculates the three-dimensional shape of the workpiece 10 based on the image The work support unit 3 includes a support shaft 7 that is a shaft part for supporting the work 10, and a rotation unit 6 that supports the support shaft 7 so as to be rotatable about the axis of the support shaft 7. In order to support the rotating part 6 so as to be rotatable around a horizontal axis. Three or more (in this embodiment, eight in the present embodiment) on the outer peripheral portion of the rotating portion 6 (more specifically, the outer peripheral portion 8a of the disk member 8 configured integrally with the rotating portion 6). ) Reference spheres 9, 9...

また、本発明の一実施形態に係る三次元形状測定方法は、測定対象物たるワーク10を支持するための軸部である支持軸7と、支持軸7を、該支持軸7の軸回りに回転可能に支持するための部位であって、その外周部(より詳しくは、回転部6と一体的に構成される円盤部材8の外周部8a)にワーク10の位置および姿勢を検出するための基準となる基準部材たる基準球9を3個以上(本実施形態では8個)付設した回転部6と、回転部6を水平軸回りに回動可能に支持するための基台部4と、を備える、ワーク10を所定の位置において所定の姿勢で保持するための保持治具たるワーク支持部3と、ワーク10と基準球9・9・・・を視野に捉えつつ、複数の角度からワーク10と基準球9・9・・・を含む画像を撮影するカメラ2b・2bと、を備える三次元形状測定装置1を用いて、回転部6の水平軸回りの回動位置と支持軸7の軸回りの回転位置の、少なくとも一方を変更して、前記所定の姿勢を変更する第一の工程たる姿勢調整工程(STEP−1)と、支持軸7によって所定の姿勢に支持されるワーク10を、3個以上の基準球9・9・・・を視野に捉えつつ撮影する第二の工程たる撮影工程(STEP−2)と、を備え、姿勢調整工程(STEP−1)および撮影工程(STEP−2)を、交互に複数回繰り返すことにより得られる複数の画像に基づき、ワーク10の三次元形状を測定するものである。   Further, in the three-dimensional shape measuring method according to the embodiment of the present invention, the support shaft 7 that is a shaft portion for supporting the workpiece 10 that is a measurement object and the support shaft 7 are arranged around the axis of the support shaft 7. It is a part for supporting rotatably, and is for detecting the position and posture of the workpiece 10 on its outer peripheral part (more specifically, the outer peripheral part 8a of the disk member 8 configured integrally with the rotating part 6). A rotating portion 6 provided with three or more reference balls 9 (8 in this embodiment) as reference members serving as a reference; a base portion 4 for supporting the rotating portion 6 so as to be rotatable about a horizontal axis; The work support unit 3 that is a holding jig for holding the work 10 in a predetermined position at a predetermined position, and the work 10 and the reference spheres 9, 9. 10 and a reference sphere 9... b is used to change the at least one of the rotational position around the horizontal axis of the rotating unit 6 and the rotational position around the axis of the support shaft 7 using the three-dimensional shape measuring apparatus 1 provided with b. The posture adjustment step (STEP-1), which is the first step to be changed, and the workpiece 10 supported in a predetermined posture by the support shaft 7 while photographing three or more reference spheres 9, 9. A second imaging step (STEP-2), and based on a plurality of images obtained by alternately repeating the posture adjustment step (STEP-1) and the imaging step (STEP-2) a plurality of times. The three-dimensional shape of the workpiece 10 is measured.

このような構成により、ワーク10をどの角度から撮影する場合であっても、確実に3個以上の基準球9・9・・・をワーク10とともに測定部2におけるカメラ2b・2bの視野に捉えることができる。
これにより、三次元形状測定装置1によれば、ワーク10の段取り替えを行う必要がなくなり、三次元形状の測定時間の短縮を図ることができる。
With such a configuration, regardless of the angle at which the workpiece 10 is photographed, the three or more reference spheres 9, 9... Are reliably captured in the field of view of the cameras 2 b and 2 b in the measurement unit 2 together with the workpiece 10. be able to.
Thereby, according to the three-dimensional shape measuring apparatus 1, it is not necessary to perform the setup change of the workpiece 10, and the measurement time of the three-dimensional shape can be shortened.

1 三次元形状測定装置
2 測定部
2c 演算部
3 ワーク支持部
4 基台部
4b 軸部材
5 支持基部
6 回転部
7 支持軸
8 円盤部材
8a 外周部
9 基準球
10 ワーク
DESCRIPTION OF SYMBOLS 1 Three-dimensional shape measuring apparatus 2 Measuring part 2c Calculation part 3 Work support part 4 Base part 4b Shaft member 5 Support base part 6 Rotating part 7 Support shaft 8 Disc member 8a Outer peripheral part 9 Reference ball 10 Workpiece

Claims (3)

測定対象物を、所定の位置において所定の姿勢で保持するための保持治具と、
前記保持治具に付設される、前記測定対象物の位置および姿勢を検出するための基準となる基準部材と、
前記測定対象物と前記基準部材を視野に捉えつつ、複数の角度から前記測定対象物と前記基準部材を含む画像を撮影するカメラと、
前記画像に基づき、前記測定対象物の三次元形状を演算する演算部と、
を備える三次元形状測定装置であって、
前記保持治具は、
前記測定対象物を支持するための軸部である支持軸と、
前記支持軸を、該支持軸の軸回りに回転可能に支持するための回転部と、
前記回転部を水平軸回りに回動可能に支持するための基台部と、
を備え、
前記回転部の外周部に、
3個以上の前記基準部材が付設される、
ことを特徴とする三次元形状測定装置。
A holding jig for holding the measurement object in a predetermined posture at a predetermined position;
A reference member attached to the holding jig and serving as a reference for detecting the position and orientation of the measurement object;
While capturing the measurement object and the reference member in the field of view, a camera that captures an image including the measurement object and the reference member from a plurality of angles;
Based on the image, a calculation unit that calculates a three-dimensional shape of the measurement object;
A three-dimensional shape measuring apparatus comprising:
The holding jig is
A support shaft that is a shaft portion for supporting the measurement object;
A rotating part for supporting the support shaft so as to be rotatable about the axis of the support shaft;
A base part for supporting the rotating part so as to be rotatable around a horizontal axis;
With
On the outer periphery of the rotating part,
Three or more reference members are attached.
A three-dimensional shape measuring apparatus.
前記基準部材は、
基準球である、
ことを特徴とする請求項1に記載の三次元形状測定装置。
The reference member is
A reference sphere,
The three-dimensional shape measuring apparatus according to claim 1.
測定対象物を支持するための軸部である支持軸と、
前記支持軸を、該支持軸の軸回りに回転可能に支持するための部位であって、その外周部に前記測定対象物の位置および姿勢を検出するための基準となる基準部材を3個以上付設した回転部と、
前記回転部を水平軸回りに回動可能に支持するための基台部と、
を備える、前記測定対象物を所定の位置において所定の姿勢で保持するための保持治具と、
前記測定対象物と前記基準部材を視野に捉えつつ、複数の角度から前記測定対象物と前記基準部材を含む画像を撮影するカメラと、
を備える三次元形状測定装置を用いて、
前記水平軸回りの回動位置と前記支持軸の軸回りの回転位置の、少なくとも一方を変更して、前記所定の姿勢を変更する第一の工程と、
前記支持軸によって所定の姿勢に支持される前記測定対象物を、前記3個以上の基準部材を視野に捉えつつ撮影する第二の工程と、
を備え、
前記第一の工程および前記第二の工程を、交互に複数回繰り返すことにより得られる複数の画像に基づき、前記測定対象物の三次元形状を測定する、
ことを特徴とする三次元形状測定方法。
A support shaft that is a shaft portion for supporting the measurement object;
Three or more reference members serving as a reference for detecting the position and posture of the measurement object on the outer periphery of the support shaft that is rotatably supported around the support shaft. An attached rotating part;
A base part for supporting the rotating part so as to be rotatable around a horizontal axis;
A holding jig for holding the measurement object in a predetermined posture at a predetermined position;
While capturing the measurement object and the reference member in the field of view, a camera that captures an image including the measurement object and the reference member from a plurality of angles;
Using a three-dimensional shape measuring apparatus comprising
A first step of changing the predetermined posture by changing at least one of a rotation position around the horizontal axis and a rotation position around the support shaft;
A second step of photographing the measurement object supported in a predetermined posture by the support shaft while capturing the three or more reference members in a field of view;
With
Measuring the three-dimensional shape of the measurement object based on a plurality of images obtained by alternately repeating the first step and the second step a plurality of times.
A three-dimensional shape measuring method characterized by the above.
JP2012229305A 2012-10-16 2012-10-16 Three-dimensional shape measuring apparatus and three-dimensional shape measuring method Pending JP2014081279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229305A JP2014081279A (en) 2012-10-16 2012-10-16 Three-dimensional shape measuring apparatus and three-dimensional shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229305A JP2014081279A (en) 2012-10-16 2012-10-16 Three-dimensional shape measuring apparatus and three-dimensional shape measuring method

Publications (1)

Publication Number Publication Date
JP2014081279A true JP2014081279A (en) 2014-05-08

Family

ID=50785589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229305A Pending JP2014081279A (en) 2012-10-16 2012-10-16 Three-dimensional shape measuring apparatus and three-dimensional shape measuring method

Country Status (1)

Country Link
JP (1) JP2014081279A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528714A (en) * 2014-09-10 2017-09-28 ファロ テクノロジーズ インコーポレーテッド Method for optical measurement of three-dimensional coordinates and control of a three-dimensional measuring device
JP2018179975A (en) * 2017-04-14 2018-11-15 一般財団法人電力中央研究所 Measurement method of three-dimensional shape
CN110044296A (en) * 2018-01-17 2019-07-23 株式会社三丰 The automatic tracking method and measuring machine of 3D shape
US10401143B2 (en) 2014-09-10 2019-09-03 Faro Technologies, Inc. Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
US10499040B2 (en) 2014-09-10 2019-12-03 Faro Technologies, Inc. Device and method for optically scanning and measuring an environment and a method of control
KR102081085B1 (en) * 2018-11-22 2020-02-25 주식회사 나노시스템 Device and method for measuring shape of 3D free-form surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528714A (en) * 2014-09-10 2017-09-28 ファロ テクノロジーズ インコーポレーテッド Method for optical measurement of three-dimensional coordinates and control of a three-dimensional measuring device
US10401143B2 (en) 2014-09-10 2019-09-03 Faro Technologies, Inc. Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device
US10499040B2 (en) 2014-09-10 2019-12-03 Faro Technologies, Inc. Device and method for optically scanning and measuring an environment and a method of control
JP2018179975A (en) * 2017-04-14 2018-11-15 一般財団法人電力中央研究所 Measurement method of three-dimensional shape
JP7007967B2 (en) 2017-04-14 2022-01-25 一般財団法人電力中央研究所 3D shape measurement method
CN110044296A (en) * 2018-01-17 2019-07-23 株式会社三丰 The automatic tracking method and measuring machine of 3D shape
KR102081085B1 (en) * 2018-11-22 2020-02-25 주식회사 나노시스템 Device and method for measuring shape of 3D free-form surface
WO2020105978A1 (en) * 2018-11-22 2020-05-28 주식회사 나노시스템 Three-dimensional free curved surface shape measuring apparatus and method

Similar Documents

Publication Publication Date Title
JP2014081279A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
CN104779191B (en) Mark detection method
JP5123932B2 (en) Camera-equipped 6-degree-of-freedom target measurement device and target tracking device with a rotating mirror
JP5571007B2 (en) Sphere shape measuring device
JP2007327771A5 (en)
JP5057489B2 (en) Alignment apparatus and alignment method
TWI592252B (en) Angular error correction device and method for machine tools
KR20170087996A (en) Calibration apparatus and the method for robot
JP2021193400A (en) Method for measuring artefact
JP2017150993A (en) Inner wall measurement device and offset amount calculation method
CN104154885B (en) A kind of small circle ring part micro-warpage detection method
JP2010117345A (en) Optical wave interference measuring apparatus
JP2005195335A (en) Three-dimensional image photographing equipment and method
JP6460670B2 (en) Spherical shape measuring method and apparatus
JP5270138B2 (en) Calibration jig and calibration method
JP2005116766A5 (en)
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP5101955B2 (en) Shape measuring method and shape measuring apparatus
JP2005116765A5 (en)
TWI769869B (en) Method for measuring the center position of the rotating shaft of a machine tool
TWI442167B (en) Circular motion images capturing device with multi image captures
JP2006125893A (en) Measuring jig
JP2016053524A (en) Device and method for measuring surface roughness of raceway in rolling bearing
US10885368B2 (en) Six-dimensional smart target
KR20150108323A (en) Method and apparatus for determining the distance of a light beam from a point on a surface of an object by means of a light sensor