JP2014079387A - Brain function measurement apparatus and brain function measurement method - Google Patents

Brain function measurement apparatus and brain function measurement method Download PDF

Info

Publication number
JP2014079387A
JP2014079387A JP2012229419A JP2012229419A JP2014079387A JP 2014079387 A JP2014079387 A JP 2014079387A JP 2012229419 A JP2012229419 A JP 2012229419A JP 2012229419 A JP2012229419 A JP 2012229419A JP 2014079387 A JP2014079387 A JP 2014079387A
Authority
JP
Japan
Prior art keywords
skull
unit
brain
subject
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012229419A
Other languages
Japanese (ja)
Other versions
JP6089568B2 (en
Inventor
Takashi Tokuda
崇 徳田
Atsushi Ota
淳 太田
Kiyotaka Sasagawa
清隆 笹川
Toshihiko Noda
俊彦 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2012229419A priority Critical patent/JP6089568B2/en
Publication of JP2014079387A publication Critical patent/JP2014079387A/en
Application granted granted Critical
Publication of JP6089568B2 publication Critical patent/JP6089568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a brain function measurement apparatus capable of eliminating the need for large-scaled surgical operation during extended measurement, reducing the burden on a subject and a risk of developing an infection disease, and ensuring long-term stabilized measurement even when a failure occurs in the apparatus.SOLUTION: A plurality of electrode bodies 1 are attached such that the electrode bodies 1 penetrate the skull 102 of a subject 100, tips 12 are brought into contact with brain surfaces, and base parts 13 are exposed to the outside of the skull 102. A supracranial unit 2A, which is integrated with an electric circuit part 22 to communicate signals by radio with an extracorporeal unit 3 disposed outside the subject 100, is provided with contact parts 21 each coming into contact with the base part 13 of each electrode body 1 on the entire under surface thereof, and is fixed to the skull 102 in an easily detachable manner. In the event that leak of a hazardous liquid is caused by a failure of a supracranial unit 2A, the liquid will not reach the brain. When a supracranial unit 2A is exchanged, only a part of the scalp 101 needs to be incised by a simple operation; no complicated operation is needed.

Description

本発明は、各種の実験動物や人間(ヒト)などの被検体の様々な脳活動や脳機能を反映した脳機能関連情報を収集するための脳機能計測装置及び計測方法に関する。   The present invention relates to a brain function measuring apparatus and a measuring method for collecting brain function related information reflecting various brain activities and brain functions of subjects such as various experimental animals and humans (humans).

近年の脳科学や医療用計測技術の進展は目覚ましく、脳機能関連情報を収集するための各種のセンシングデバイスや新しい脳機能イメージング技術が実現されている。脳機能関連情報計測用のデバイスは、大別して侵襲型と非侵襲型とに区分される。侵襲型とは電極などを直接的に脳に接触させるために、被検体の頭皮や頭蓋骨の切開など、何らかの外科的手術をも伴うものである。これに対し、非侵襲型とは被検体の頭部の外側から間接的に(つまり頭皮や頭蓋骨などを通して)脳にアクセスし、何らかの脳機能関連情報を取得するものである。   Recent advances in brain science and medical measurement technologies have been remarkable, and various sensing devices and new brain function imaging technologies have been realized to collect information related to brain functions. Devices for measuring brain function-related information are roughly classified into invasive types and non-invasive types. The invasive type involves some kind of surgical operation such as incision of the scalp or skull of a subject in order to bring an electrode or the like into direct contact with the brain. On the other hand, the non-invasive type accesses the brain indirectly from the outside of the subject's head (that is, through the scalp, skull, etc.) and acquires some brain function related information.

非侵襲型脳機能計測としては、f−MRI(functional magnetic resonance imaging) や光トポグラフィなどの優れた計測技術が開発され、診断や研究の分野で大きな成果を挙げている。しかしながら、こうした計測はあくまでも間接的な計測であるという制約があるために、分解能や感度などの性能を高めるのが難しい。また、医療施設に備えられた非可搬型である大型の装置により計測を行うので、通常の活動を行っている状態の被検体に対し長時間に亘り計測を行うことはできない。そのため、高精度、高分解能の脳機能関連情報を得るため、或いは、通常の活動を行っている状態の被検体の脳機能関連情報を或る程度長期間に亘り取得するためには、少なくとも装置の一部を被検体の頭部に装着した侵襲型脳計測が必要である。   As noninvasive brain function measurement, excellent measurement techniques such as f-MRI (functional magnetic resonance imaging) and optical topography have been developed, and have achieved great results in the field of diagnosis and research. However, it is difficult to improve performance such as resolution and sensitivity because such measurement is limited to indirect measurement. In addition, since measurement is performed by a large non-portable device provided in a medical facility, measurement cannot be performed for a long time on a subject in a normal activity state. Therefore, in order to obtain brain function related information with high accuracy and high resolution, or to acquire brain function related information of a subject in a normal activity state for a certain long period of time, at least the device An invasive brain measurement in which a part of the head is attached to the subject's head is necessary.

従来の侵襲型脳機能計測デバイスとしては、大別して、脳表型計測を行うものと脳刺入型計測を行うものとがある。後者の脳刺入型のデバイスは文字通り、針状電極を脳内に刺入して脳内の比較的深い部分の電気信号を取得可能としたものであり、例えば米国ミシガン大学で開発されたいわゆるミシガン電極や、米国ユタ大学で開発されたいわゆるユタ電極(非特許文献1参照)といったものが古くから報告されている。こうした電極は、針状電極を高密度で配置した剣山状の構造をとることで、或る程度の広い範囲に亘る脳内の情報を収集することができる。しかしながら、脳刺入型は脳を傷付けるために脳に対するダメージが大きい。また、脳の免疫反応等により電極性能の経時劣化があるため、長期間に亘り安定的な計測を行うことは難しい。   Conventional invasive brain function measuring devices are roughly classified into those that perform brain surface type measurement and those that perform brain insertion type measurement. The latter type of brain insertion device literally has a needle electrode inserted into the brain and can acquire an electrical signal in a relatively deep part of the brain. For example, the so-called device developed at the University of Michigan in the United States Michigan electrodes and so-called Utah electrodes developed at the University of Utah (see Non-Patent Document 1) have been reported for a long time. Such an electrode has a sword mountain-like structure in which needle-like electrodes are arranged at a high density, whereby information in the brain over a certain wide range can be collected. However, since the brain insertion type damages the brain, damage to the brain is great. In addition, since electrode performance deteriorates with time due to an immune reaction of the brain, it is difficult to perform stable measurement over a long period of time.

一方、前者の脳表型デバイスとしてはいわゆるECoG電極と呼ばれるものが知られている。例えば、我が国において、てんかんなどの臨床治療用として認可されているユニークメディカル社の頭蓋内電極がある(非特許文献2参照)。また、ECoG電極を利用した長期間の計測技術としては非特許文献3に記載のものがある。こうした脳表型デバイスは脳刺入型と比べると空間分解能は劣るものの、脳に与えるダメージが少なく性能の経時劣化も小さくて済む。また、広範囲の計測にも向いている。こうしたことから、被検体の自由な活動を阻害せずに、比較的長期間に亘り安定した脳機能関連情報を取得するには、脳表型計測が有利である。   On the other hand, as the former brain surface type device, what is called an ECoG electrode is known. For example, there is a unique medical intracranial electrode approved for clinical treatment of epilepsy in Japan (see Non-Patent Document 2). Non-patent document 3 discloses a long-term measurement technique using an ECoG electrode. Such a brain surface type device is inferior in spatial resolution to the brain insertion type, but has little damage to the brain and little deterioration in performance over time. It is also suitable for a wide range of measurements. For these reasons, brain surface type measurement is advantageous for acquiring stable brain function-related information for a relatively long period of time without hindering the free activity of the subject.

上述したように被検体の自由な活動を阻害することなく比較的長期間計測を継続するには、被検体の体内と外部との接続は無線方式があることが望ましい。こうした観点から、本願発明者らは特許文献1において、脳内に刺入される電極が一体化された体内装着部で得られた電気信号を体外計測部に無線で送信する脳内情報計測装置を提案している。該文献では、故障が起こりにくく低コストな構成として体内装着部に能動的回路を有さないパッシブ型も提案しているが、高度な計測を行うためには、CMOS集積回路などの電気回路を体内装着部に内蔵したアクティブ型の構成とすることが必要になる。しかしながら、そうすると、故障が起こり易くなるし、また機能向上のためにCMOS集積回路などを交換する必要性が生じることもある。   As described above, in order to continue measurement for a relatively long period of time without hindering the free activity of the subject, it is desirable that the connection between the inside and outside of the subject be a wireless system. From this point of view, the inventors of this application disclosed in Patent Document 1 an in-brain information measurement device that wirelessly transmits an electrical signal obtained by an in-body wearing unit in which an electrode inserted into the brain is integrated to an in-vitro measuring unit. Has proposed. In this document, a passive type which does not have an active circuit in the in-vivo mounting portion as a low-cost configuration that is unlikely to fail is proposed. However, in order to perform advanced measurement, an electric circuit such as a CMOS integrated circuit is used. It is necessary to adopt an active configuration built in the body mounting portion. However, if it does so, a failure is likely to occur, and it may be necessary to replace a CMOS integrated circuit or the like in order to improve the function.

特許文献1に記載の構成において、故障したり機能が古くなったりした体内装着部を交換する必要が生じた場合、頭蓋骨を切開する必要はないものの、頭蓋骨の貫通孔に挿通され脳内に刺入されている電極を抜かなければならない。そうなると、やはり被検体に対して大きな負担を与えることになり、感染症などのリスクも高くなる。   In the configuration described in Patent Document 1, when it is necessary to replace a body-mounted part that has failed or has an old function, it is not necessary to incise the skull, but it is inserted into the through-hole of the skull and inserted into the brain. The inserted electrode must be removed. If it becomes so, it will also give a big burden with respect to a test subject, and the risk of infection etc. will also become high.

国際公開WO2010/038393号International Publication WO2010 / 038393

クレイグ(Craig T. Nordhausen)ほか2名、「オプティマイジング・レコーディング・ケイパビリティーズ・オブ・ザ・ユタ・イントラコーティカル・エレクトロード・アレイ(Optimaizing recordiong capabilities of the Utah Intracortical Electrode Array)」、Craig T. Nordhausen and 2 others, “Optimizing recording capabilities of the Utah Intracortical Electrode Array”, 「頭蓋内電極」、[online]、株式会社ユニークメディカル、[平成24年9月24日検索]、インターネット<URL http://www.mmjp.or.jp/unique-medical/newuzncatNo1018b.pdf>“Intracranial electrode”, [online], Unique Medical Co., Ltd. [searched September 24, 2012], Internet <URL http://www.mmjp.or.jp/unique-medical/newuzncatNo1018b.pdf> 「長期安定性を誇るブレインマシンインターフェイス(BMI)技術を確立」、独立行政法人理化学研究所、2010年4月6日、[平成24年9月24日検索]、インターネット<URL: http://www.riken.go.jp/r-world/research/results/2010/100406/image/100406.pdf>“Established Brain Machine Interface (BMI) technology with long-term stability”, RIKEN, April 6, 2010 [Search September 24, 2012], Internet <URL: http: // www.riken.go.jp/r-world/research/results/2010/100406/image/100406.pdf>

本発明は上記課題に鑑みて成されたものであり、その主な目的は、装着に大掛かりな外科的手術を必要とせず、長期間使用する場合でも被検体への負担や感染症のリスクの少ない簡単な手術で装置のメンテナンスが可能であり、被検体の自由な活動を妨げず長期間に亘り安定的な脳機能関連情報を収集することができる脳機能計測装置及び計測方法を提供することにある。   The present invention has been made in view of the above problems, and its main purpose is that it does not require a large surgical operation for mounting, and even when used for a long period of time, the burden on the subject and the risk of infectious diseases are reduced. To provide a brain function measuring device and a measuring method capable of maintaining the device with a few simple operations and collecting stable brain function-related information over a long period of time without disturbing the free activity of a subject. It is in.

上記目的を達成するために成された本発明は、各種の実験動物やヒトを含む被検体の脳機能に関連した情報を収集するための脳機能計測装置であって、
a)被検体の頭蓋骨又は該頭蓋骨の一部に代えて被検体に装着される人工頭蓋骨に穿孔された貫通孔に挿設され、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出してなる複数の電極と、
b)前記頭蓋骨又は人工頭蓋骨の外側に着脱可能に固定され、該頭蓋骨又は人工頭蓋骨の外側に露出している前記複数の電極の基部と接触するコンタクト部と、該コンタクト部を介して前記電極から得られた電気信号又は該コンタクト部を介して該電極へ与える電気信号を、無線で当該被検体の頭皮の外側に送信する又は外側から受信する信号中継部と、を含む頭蓋上ユニットと、
c)当該被検体の頭皮の外側に設けられ、前記頭蓋上ユニットの信号中継部から無線で送出される信号を受信する又は該信号中継部に無線で信号を送信する体外ユニットと、
を備えることを特徴としている。
The present invention made to achieve the above object is a brain function measuring device for collecting information related to brain functions of subjects including various experimental animals and humans,
a) It is inserted into a through-hole drilled in a skull of a subject or an artificial skull attached to the subject instead of a part of the skull, and a distal end portion is exposed to the inside of the skull or the artificial skull. A plurality of electrodes in contact with a membrane covering the brain, while a base is exposed to the outside of the skull or artificial skull;
b) a contact part that is detachably fixed to the outside of the skull or artificial skull and that is exposed to the outside of the skull or artificial skull; and a contact part that contacts the base part of the plurality of electrodes; A signal relay unit that wirelessly transmits the electrical signal obtained or the electrical signal applied to the electrode via the contact part to the outside of the subject's scalp, or receives from the outside, a skull unit,
c) an extracorporeal unit that is provided outside the scalp of the subject, receives a signal transmitted wirelessly from the signal relay unit of the above-cranial unit, or transmits a signal wirelessly to the signal relay unit;
It is characterized by having.

また、本発明に係る脳機能計測方法は、上述の脳機能計測装置を用い、各種の実験動物やヒトを含む被検体の脳機能に関連した情報を収集する脳機能計測方法であって、
a)被検体の頭蓋骨又は該頭蓋骨の一部に代えて被検体に装着される人工頭蓋骨に複数の貫通孔を穿孔し、各貫通孔にそれぞれ、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出するように電極を挿設し、
b)さらに、前記頭蓋骨又は人工頭蓋骨の外側に露出している前記複数の電極の基部とそれぞれ接触するコンタクト部と、該コンタクト部を介して前記電極から得られた電気信号又は該コンタクト部を介して該電極へ与える電気信号を、無線で当該被検体の頭皮の外側に送信する又は外側から受信する信号中継部と、を含む頭蓋上ユニットを、前記コンタクト部が前記複数の電極の基部とそれぞれ接触するように、前記頭蓋骨又は人工頭蓋骨の外側に着脱可能に固定した上で、
被検体の脳又は脳を被覆する膜に前記先端部がそれぞれ接触した前記電極で得られる電気信号を、該電極の基部に接触した前記コンタクト部を介して前記頭蓋上ユニットの信号中継部へと送り、該信号中継部において無線で送出される信号を被検体の体外に設けられた体外ユニットにより受信することにより脳機能関連情報を取得するようにしたことを特徴としている。
A brain function measurement method according to the present invention is a brain function measurement method that collects information related to the brain function of a subject including various experimental animals and humans, using the above-described brain function measurement device,
a) A plurality of through holes are drilled in the skull of the subject or an artificial skull to be attached to the subject instead of a part of the skull, and the tip of each through hole is exposed inside the skull or the artificial skull. And the electrode is inserted so that the base is exposed to the outside of the skull or artificial skull while contacting the brain or the membrane covering the brain,
b) Further, contact portions that respectively contact the base portions of the plurality of electrodes that are exposed to the outside of the skull or the artificial skull, and electrical signals obtained from the electrodes via the contact portions or via the contact portions A signal relay unit that wirelessly transmits an electrical signal to be applied to the electrode to the outside of the subject's scalp or receives from the outside, and the contact unit is a base of the plurality of electrodes, respectively. After detachably fixing to the outside of the skull or artificial skull so as to contact,
An electrical signal obtained by the electrode whose tip is in contact with the subject's brain or a membrane covering the brain is transmitted to the signal relay unit of the above-cranial unit via the contact part in contact with the base of the electrode. The brain function-related information is acquired by receiving the signal transmitted wirelessly in the signal relay unit by an extracorporeal unit provided outside the subject's body.

本発明に係る脳機能計測装置及び計測方法では、その先端部が脳硬膜及びくも膜を貫通して脳に直接的に接触する(ただし、脳表面に張り付いている脳軟膜は貫通しない場合、脳軟膜を貫通して脳本体に刺入される場合、も含む)又は脳硬膜を貫通せずに脳に間接的に接触する導電性の電極と、該電極で得られた電気信号を無線で当該被検体の頭皮の外側に送信したり逆に外側から到来した制御信号などを受信したりする機能を有する頭蓋上ユニットとを、完全に別体とし、頭蓋上ユニットが備えるコンタクト部と、各電極の基部との間で、それぞれの電気的接触を確保する。   In the cerebral function measuring device and the measuring method according to the present invention, the tip of the cerebral dura mater and the arachnoid membrane directly contact the brain (however, the cerebral buffy coat attached to the brain surface does not penetrate, Including the case of penetrating into the brain body through the cerebral buffy coat) or the conductive signal that is indirectly in contact with the brain without penetrating the cerebral dura mater and the electrical signal obtained from the electrode wirelessly And the above-mentioned skull unit having a function of transmitting the outside of the subject's scalp or receiving the control signal etc. coming from the outside, completely separate, and the contact unit provided in the above-cranial unit; Each electrical contact is ensured with the base of each electrode.

複数の電極は、典型的には能動的な機能を持たない略細長形状の金属等の導電体からなる単一部材、又は導電体を基体とし、先端部や基部など周囲との間の導電性が要求される部位以外については基体の周囲を絶縁体で被覆した単一部材であり、頭蓋骨又は人工頭蓋骨にほぼ半永久的に固着される。電極の導電体は耐腐食性を有する安定的な金属が好ましく、例えばプラチナなどが好適である。また、頭蓋骨又は人工頭蓋骨に設けられた貫通孔は電極が挿通された状態で液封される、つまりは、貫通孔の内壁面と電極の外周面との間隙を通した液体の流通が充分に阻止されることが望ましい。他方、能動的機能を実現する電気回路等を含む頭蓋上ユニットは、頭蓋骨又は人工頭蓋骨の外側に配置され、頭蓋骨又は人工頭蓋骨に対し着脱可能で、且つ電極とも単に接しているだけであるので、取り外しが容易である。   A plurality of electrodes typically have a single member made of a conductor such as a substantially elongated metal that does not have an active function, or a conductor as a base, and conductivity between the tip and the base, etc. Other than the required portion, a single member in which the periphery of the base is covered with an insulator and is almost permanently fixed to the skull or the artificial skull. The electrode conductor is preferably a stable metal having corrosion resistance, such as platinum. In addition, the through hole provided in the skull or artificial skull is liquid-sealed with the electrode inserted, that is, the flow of liquid through the gap between the inner wall surface of the through hole and the outer peripheral surface of the electrode is sufficient. It is desirable to be prevented. On the other hand, the supracranial unit including an electric circuit or the like that realizes an active function is disposed outside the skull or artificial skull, is detachable from the skull or artificial skull, and is simply in contact with the electrode. Easy to remove.

頭蓋上ユニットは電気回路等を内蔵しているため、比較的故障が起き易く、またバッテリを内蔵している場合にはバッテリ交換(又は本体自体の交換)も必要になるが、上述した構成であるために、被検体の頭皮さえ切開すれば簡単に取り外したり交換したりすることができる。一方、電極はほぼ半永久的に使用可能であるので、長期間に亘り脳機能関連情報を計測する場合でも、その期間中に被検体の頭皮を切開する外科的手術さえ行えばよく、被検体に大きな負担となり感染症等のリスクも高い頭蓋骨を切開したり穿孔したりする外科的手術を回避することができる。なお、上述したように電極の液封を充分にしておくことで、仮に頭蓋上ユニットが故障して有害な液状物質が該ユニットから漏出したとしても、そうした液状物質が頭蓋骨又は人工頭蓋骨の内側の脳にまで到達することを防止することができる。   Since the above-the-cranial unit has an electric circuit and the like, it is relatively easy to break down, and if it has a built-in battery, it is necessary to replace the battery (or replace the main body itself). For this reason, it is possible to easily remove or replace the subject by cutting the scalp of the subject. On the other hand, since the electrodes can be used almost semipermanently, even when measuring brain function-related information over a long period of time, it is only necessary to perform a surgical operation incising the scalp of the subject during that period. Surgical operations such as incising or perforating the skull with high burden and high risk of infection can be avoided. As described above, by sufficiently sealing the electrode, even if the above-cranial unit breaks down and a harmful liquid substance leaks out of the unit, such a liquid substance may be present inside the skull or artificial skull. Reaching the brain can be prevented.

また本発明に係る脳機能計測装置及び計測方法では、脳波などの電気的計測のみならず、光トポグラフィ(NIRS計測)、IOS計測、蛍光イメージング計測などの光学的計測を行えるようにすることが好ましい。   In addition, in the brain function measuring apparatus and the measuring method according to the present invention, it is preferable to be able to perform optical measurements such as optical topography (NIRS measurement), IOS measurement, fluorescence imaging measurement as well as electrical measurement such as brain waves. .

そこで、本発明に係る脳機能計測装置は、好ましくは、前記複数の電極と同様に、被検体の頭蓋骨又は人工頭蓋骨に穿孔された貫通孔に挿設され、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出してなる導光体、をさらに備え、
前記頭蓋上ユニットは、前記頭蓋骨又は人工頭蓋骨の外側に露出している前記導光体の基部と光学的に結合された光学結合部と、該光学結合部及び前記導光体を通して脳に光信号を与える発光部と、前記導光体及び前記光学結合部を経て得られた光信号を受光して電気信号に変換する受光部と、をさらに含む構成とするとよい。
Therefore, the brain function measuring apparatus according to the present invention is preferably inserted into a through-hole drilled in the skull or artificial skull of the subject, and the tip portion of the skull or artificial skull is similar to the plurality of electrodes. A light guide body that is exposed to the inside and contacts the brain or a membrane covering the brain, while a base is exposed to the outside of the skull or artificial skull, further comprising:
The upper skull unit includes an optical coupling unit optically coupled to a base of the light guide exposed outside the skull or the artificial skull, and an optical signal to the brain through the optical coupling unit and the light guide. And a light receiving unit that receives an optical signal obtained through the light guide and the optical coupling unit and converts it into an electrical signal.

即ち、頭蓋骨又は人工頭蓋骨を貫通するように設けられた導光体は、頭蓋骨又は人工頭蓋骨の外側と内側との間の光学窓の機能を果たし、例えば脳に照射した近赤外光に対し、脳表面近くで反射、散乱又は通過した光を効率的に捉えることができる。また、頭蓋上ユニットに内蔵したLEDなどの発光部からごく短距離の導光体を通して脳に光を照射することができるので、脳に対する強い光刺激を与えることができる。   That is, the light guide provided so as to penetrate the skull or artificial skull serves as an optical window between the outside and inside of the skull or artificial skull.For example, for near infrared light irradiated to the brain, Light reflected, scattered or passed near the brain surface can be efficiently captured. Moreover, since light can be irradiated to the brain from a light emitting part such as an LED built in the above-cranial unit through a light guide of a very short distance, strong light stimulation to the brain can be given.

こうした構成によれば、電気的情報のみならず、光学的情報も脳から取り出すことができる。さらにまた、逆に電極を利用して脳に電気的刺激を加えたり、導光体を通して脳に光学的刺激を加えたりすることができる。これを組み合わせることにより、光学的刺激を加えたときの脳波の変化などを電気的情報として取得したり、反対に、電気的刺激を加えたときの血流の変化などを光学的情報として取得したりすることもできる。   According to such a configuration, not only electrical information but also optical information can be extracted from the brain. Furthermore, conversely, electrical stimulation can be applied to the brain using the electrodes, or optical stimulation can be applied to the brain through the light guide. By combining this, it is possible to acquire changes in the electroencephalogram when an optical stimulus is applied as electrical information, and conversely, acquire changes in the blood flow when an electrical stimulus is applied as optical information. You can also.

また本発明に係る脳機能計測装置及び計測方法においては、脳の所定範囲に対する計測を行う場合に、適宜の密度で以て頭蓋骨又は人工頭蓋骨に電極や導光体を配置する必要があるが、頭蓋上ユニットのコンタクト部及び/又は光学結合部も当該ユニットの筐体の一面に2次元的に配置するようにし、1個の頭蓋上ユニットで適宜の2次元範囲内の電極や導光体との結合を行うようにするとよい。   Further, in the brain function measuring device and the measuring method according to the present invention, when measuring a predetermined range of the brain, it is necessary to dispose electrodes or light guides on the skull or artificial skull with an appropriate density. The contact part and / or the optical coupling part of the unit on the skull are arranged two-dimensionally on one surface of the casing of the unit, and an electrode or a light guide within an appropriate two-dimensional range can be obtained with one unit on the skull. It is recommended to perform the combination.

また、頭蓋骨又は人工頭蓋骨への頭蓋上ユニットの固定方法は脱着可能であれば特に問わないが、該ユニット自体をネジなどの固定用部材を用いて取り付けるのは煩わしく、また固定用部材の取付忘れや脱落などのおそれもある。そこで、本発明に係る脳機能計測装置及び計測方法では、被検体の頭蓋骨又は該被検体に装着される人工頭蓋骨の外側に、前記頭蓋上ユニットの筐体外形形状に応じた凹部を形成し、該凹部に頭蓋上ユニットを嵌着するとよい。   The method of fixing the upper skull unit to the skull or artificial skull is not particularly limited as long as it is detachable, but it is troublesome to attach the unit itself using a fixing member such as a screw, and forget to attach the fixing member. There is also a risk of falling off. Therefore, in the brain function measuring device and the measuring method according to the present invention, a concave portion corresponding to the outer shape of the case of the above-cranial unit is formed outside the skull of the subject or the artificial skull attached to the subject, A unit on the skull may be fitted into the recess.

具体的には、頭蓋骨又は人工頭蓋骨の外側の一部をその強度に問題がない程度に切削することで頭蓋上ユニットの筐体外形形状に応じた凹部を形成するとよい。或いは、被検体の頭蓋骨又は該被検体に装着される人工頭蓋骨の外側に、頭蓋上ユニットの筐体外形形状に応じた凹部を形成できるような枠部材を固定してもよい。いずれにしても、凹部に頭蓋上ユニットを嵌め込むことで該ユニットを取り付けることができ、逆に、凹部に嵌合されている頭蓋上ユニットを引き剥がすことで該ユニットを取り外すことができる。したがって、頭蓋上ユニットの交換や修理は容易である。   Specifically, it is preferable to form a recess according to the outer shape of the housing of the upper skull unit by cutting a part of the outer side of the skull or the artificial skull to such an extent that there is no problem in its strength. Or you may fix the frame member which can form the recessed part according to the housing | casing external shape of an upper skull unit in the outer side of the skull of a test subject, or the artificial skull with which this test subject is mounted | worn. In any case, the unit can be attached by fitting the upper skull unit in the recess, and conversely, the unit can be removed by peeling off the upper skull unit fitted in the recess. Therefore, replacement and repair of the skull unit is easy.

なお、本発明に係る脳機能計測方法において、脳の広い2次元範囲に亘る計測を行いたい場合には、被検体の頭蓋骨又は該被検体に装着される人工頭蓋骨の外側に頭蓋上ユニットを複数固定するとよい。特に、頭蓋骨又は人工頭蓋骨に取り付ける複数の電極や導光体の配置やピッチを予め規格化し、それに合わせて頭蓋上ユニットの形状やサイズも規格化しておくことで、使用する頭蓋上ユニットの数を増やして計測対象の範囲の拡大に対応することができる。   In the brain function measurement method according to the present invention, when it is desired to perform measurement over a wide two-dimensional range of the brain, a plurality of upper skull units are provided outside the skull of the subject or the artificial skull attached to the subject. It is good to fix. In particular, by standardizing the arrangement and pitch of multiple electrodes and light guides attached to the skull or artificial skull in advance, and by standardizing the shape and size of the skull unit accordingly, the number of skull units to be used can be reduced. It can be increased to cope with the expansion of the measurement target range.

本発明に係る脳機能計測装置及び計測方法によれば、次のような効果を達成することができる。
(1)長期間の使用の途中で交換や修理が必要となる可能性のある頭蓋上ユニットは被検体の頭蓋骨又は被検体に装着された人工頭蓋骨の外側に配置されており、しかも頭蓋骨や人工頭蓋骨を貫通している電極とは別体であるので、簡単な外科的手術によって頭蓋上ユニットを交換したり取り出したりすることができる。また、計測のために電極や導光体を被検体の頭蓋骨に装着する際にも、細長形状の電極や導光体が貫通可能な程度の細径の孔を頭蓋骨に穿設すればよいので、頭蓋骨を大きく切開するのに比べれば比較的簡単な外科的手術で済む。こうしたことから、長期に亘る計測の期間中にも、被検体に与える負担を軽減することができる。それにより、装着時における被検体の生体活動の円滑さを損ないにくく、計測の安定性、正確性が向上する。
According to the brain function measuring device and the measuring method according to the present invention, the following effects can be achieved.
(1) The cranial unit that may need to be replaced or repaired during long-term use is placed outside the skull of the subject or the artificial skull attached to the subject. Since it is a separate body from the electrode penetrating the skull, the supracranial unit can be exchanged or removed by a simple surgical operation. In addition, when attaching electrodes or light guides to the skull of the subject for measurement, it is only necessary to drill holes in the skull so that the elongated electrodes and light guides can penetrate. Compared to a large incision in the skull, a relatively simple surgical operation is sufficient. For this reason, the burden on the subject can be reduced even during a long-term measurement period. Thereby, it is difficult to impair the smoothness of the biological activity of the subject at the time of wearing, and the stability and accuracy of measurement are improved.

(2)被検体の頭蓋骨の内側には、電気配線や電気回路などのハイリスク因子が存在せず、そうしたリスク因子は頭蓋骨の外側に配設される。また、頭蓋骨や人工頭蓋骨を貫通する電極や導光体の液封を充分に行うことで、仮に頭蓋上ユニットに故障や破損が生じた場合でも、脳への直接的な影響を回避することができ、頭蓋上ユニットを交換するだけで計測を継続させることが可能となる。   (2) There are no high-risk factors such as electrical wiring or electrical circuits inside the skull of the subject, and such risk factors are arranged outside the skull. In addition, if the electrodes or light guides penetrating the skull or artificial skull are sufficiently sealed, even if the above-the-cranial unit breaks down or is damaged, the direct influence on the brain can be avoided. It is possible to continue measurement by simply replacing the skull unit.

(3)頭蓋上ユニットと体外ユニットとの間では無線による信号伝送が行われるため、被検体の行動の自由度が高く、そうした自由な行動の下での有意義な計測が可能となる。
(4)脳の計測範囲を広げたい場合には、頭蓋骨又は人工頭蓋骨に取り付ける電極や導光体を増やすともに外側に設ける頭蓋上ユニットを増やせばよいので、拡張性、柔軟性が高い。
(3) Since signal transmission by radio is performed between the skull unit and the extracorporeal unit, the subject has a high degree of freedom of action, and meaningful measurement under such free action is possible.
(4) In order to expand the measurement range of the brain, the number of electrodes and light guides attached to the skull or artificial skull can be increased, and the number of on-cranial units provided outside can be increased. Therefore, the expandability and flexibility are high.

本発明の一実施例である脳機能計測装置の基本構成を示す外観平面図。1 is an external plan view showing a basic configuration of a brain function measuring apparatus according to an embodiment of the present invention. 本実施例の脳機能計測装置を実験動物等の被検体に装着した状態を示す概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a state in which the brain function measuring device according to the present embodiment is attached to a subject such as a laboratory animal. 本実施例の脳機能計測装置における電極体の構造例を示す外観斜視図。The external appearance perspective view which shows the structural example of the electrode body in the brain function measuring apparatus of a present Example. 本実施例の脳機能計測装置における頭蓋上ユニット装着時の概略斜視図。The schematic perspective view at the time of mounting on the skull unit in the brain function measuring apparatus of a present Example. 本実施例の脳機能計測装置における頭蓋上ユニットの回路ブロック構成図。The circuit block block diagram of the unit on the skull in the brain function measuring apparatus of a present Example. 本実施例の脳機能計測装置における体外ユニットの回路ブロック構成図。The circuit block block diagram of the extracorporeal unit in the brain function measuring apparatus of a present Example. 頭蓋骨への頭蓋上ユニットの取付構造の他の例を示す概略断面図。The schematic sectional drawing which shows the other example of the attachment structure of the unit on the skull to the skull. 頭蓋骨へ複数の頭蓋上ユニットを取り付ける場合の構造例を示す概略平面図。The schematic plan view which shows the structural example in the case of attaching a some skull unit to a skull.

以下、本発明に係る脳機能測装置及び計測方法の一実施例について、添付図面を参照して詳細に説明する。
図1は本実施例の脳機能計測装置の基本構成要素を示す外観斜視図、図2は本実施例の脳機能計測装置を実験動物等の被検体に装着した状態を示す概略断面図、図3は図1中の電極体の構造例を示す外観斜視図、図4は図1中の頭蓋上ユニット装着時の概略斜視図である。
Hereinafter, an embodiment of a brain function measuring device and a measuring method according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an external perspective view showing basic components of the brain function measuring apparatus of the present embodiment, and FIG. 2 is a schematic sectional view showing a state in which the brain function measuring apparatus of the present embodiment is mounted on a subject such as a laboratory animal. 3 is an external perspective view showing an example of the structure of the electrode body in FIG. 1, and FIG. 4 is a schematic perspective view when the upper skull unit in FIG. 1 is mounted.

本実施例による脳機能計測装置は、図1(a)に示すように、細長い略円柱形状の軸部11の一端に先端部12、他端に基部13が設けられた複数本の電極体1と、導電性である複数のコンタクト部21が扁平形状の筐体の一面に配設され、後述する電気回路部22が内蔵された頭蓋上ユニット2Aと、任意の形状の体外ユニット3と、を基本構成要素とする。図1(b)に示すように、電極体1に類似した形状の、軸部41、先端部42、基部43を有する導光体4が使用される場合もあり、そのときには、複数のコンタクト部21の一部が光学結合部23に置き換えられた頭蓋上ユニット2Bが使用される。   As shown in FIG. 1 (a), the brain function measuring apparatus according to the present embodiment has a plurality of electrode bodies 1 in which a distal end portion 12 is provided at one end of a shaft portion 11 having an elongated and substantially cylindrical shape, and a base portion 13 is provided at the other end. A plurality of conductive contact portions 21 disposed on one surface of a flat housing, and an upper skull unit 2A in which an electric circuit portion 22 described later is incorporated, and an extracorporeal unit 3 having an arbitrary shape. It is a basic component. As shown in FIG. 1B, a light guide body 4 having a shaft portion 41, a tip portion 42, and a base portion 43 having a shape similar to that of the electrode body 1 may be used. In that case, a plurality of contact portions are used. The above-cranial unit 2B in which a part of 21 is replaced with the optical coupling unit 23 is used.

上記の基本構成要素のうち、電極体1及び導光体4は被検体100の頭蓋骨102(又は被検体100の頭蓋骨の一部に置換される人工頭蓋骨:なお、以下の説明では「頭蓋骨102」が明らかに人工頭蓋骨を含むことができる場合には、特に「人工頭蓋骨」と記載しない)を貫通するように設けられ、頭蓋上ユニット2A、2Bは被検体100の頭蓋骨102と頭皮101との間に配置され、体外ユニット3は被検体100の外部、つまり頭皮101のさらに外側、に配置される。   Among the above basic components, the electrode body 1 and the light guide 4 are the skull 102 of the subject 100 (or an artificial skull that is replaced with a part of the skull of the subject 100: In the following description, “skull 102”. Is clearly provided so as to penetrate the artificial skull (not described as “artificial skull”), and the upper skull units 2A and 2B are provided between the skull 102 and the scalp 101 of the subject 100. The extracorporeal unit 3 is disposed outside the subject 100, that is, further outside the scalp 101.

電極体1は基本的にはその全体が金属等の導電体、好ましくは、腐食しにくく且つ長期間に亘り安定的である金属、例えばプラチナなどから成る。そして、図3(a)に示すように、先端部12は後述するように軸部11よりやや径が大きい程度の孔に挿通される際(つまりは外側から荷重を受けている際)には内方に窪み、該孔から出て外側からの荷重がない状態では外側に拡がるばね性を有した構造を有する。ただし、外側に露出している部分で導電性が必要であるのは、先端部12の下部及び基部13の上部だけであるので、図3(b)に示すように、こうした導電性が必要である部分を除いて導電体の周囲を絶縁性被膜14で被覆した構造としてもよい。このような構造によれば、脳において目的とする部位以外の信号を拾いにくくなり、信号のSN比向上に有利である。   The electrode body 1 is basically made of a conductor such as a metal, preferably a metal which is not easily corroded and is stable over a long period of time, such as platinum. As shown in FIG. 3A, when the distal end portion 12 is inserted into a hole having a slightly larger diameter than the shaft portion 11 (that is, when receiving a load from the outside) as will be described later. It has a structure having a spring property that is recessed inward and expands outward when there is no load from the outside through the hole. However, only the lower part of the tip part 12 and the upper part of the base part 13 need electrical conductivity in the part exposed to the outside. Therefore, as shown in FIG. It is good also as a structure which covered the circumference | surroundings of the conductor with the insulating film 14 except for a certain part. According to such a structure, it becomes difficult to pick up signals other than the target region in the brain, which is advantageous in improving the signal-to-noise ratio of the signal.

一方、導光体4は、石英ガラス等、長期間に亘り安定的に高い透明性が得られる材料からなる。また、導光体4は光ファイババンドルなどを用いてよい。また、先端部12や基部13をレンズ作用を有する構成とすることで、光の収集効率や集束性を高めるようにしてもよい。   On the other hand, the light guide 4 is made of a material such as quartz glass that can stably obtain high transparency over a long period of time. The light guide 4 may be an optical fiber bundle or the like. Further, the light collection efficiency and the convergence may be enhanced by configuring the tip portion 12 and the base portion 13 to have a lens action.

図2に示すように、電極体1はその軸部11が、被検体100の頭蓋骨(又は人工頭蓋骨)102を貫通して設けられた軸部11の外径よりも若干径が大きい程度の貫通孔に挿通され、先端部12は頭蓋骨(又は人工頭蓋骨)102の内側、基部13は頭蓋骨(又は人工頭蓋骨)102の外側に露出するように取り付けられる。図2の例では、先端部12は頭蓋骨102の内側に張り付いている脳硬膜103を貫通し、大脳皮質(厳密には脳軟膜)105を被覆しているくも膜104の表面に接しているが、先端部12は脳硬膜103を貫通することなく脳硬膜103の表面に接するようにしてもよい。或いは、先端部12がくも膜104及び脳軟膜を貫通し、大脳皮質105に刺入されるようにしてもよい。導光体4についても電極体1と同様である。また、上記のような電極体1及び導光体4を取り付ける際に、必要に応じて、人工硬膜や他の動物から採取した硬膜を利用してもよい。   As shown in FIG. 2, the electrode body 1 has a shaft portion 11 having a diameter slightly larger than the outer diameter of the shaft portion 11 provided through the skull (or artificial skull) 102 of the subject 100. The distal end 12 is attached to the inside of the skull (or artificial skull) 102, and the base 13 is attached to be exposed to the outside of the skull (or artificial skull) 102. In the example of FIG. 2, the distal end portion 12 penetrates the cerebral dura 103 attached to the inside of the skull 102, and is in contact with the surface of the arachnoid membrane 104 that covers the cerebral cortex (strictly the cerebral puffy coat) 105. However, the distal end portion 12 may contact the surface of the dura mater 103 without penetrating the dura mater 103. Alternatively, the distal end portion 12 may penetrate the arachnoid membrane 104 and the cerebral buffy coat and be inserted into the cerebral cortex 105. The light guide 4 is the same as the electrode 1. Moreover, when attaching the electrode body 1 and the light guide 4 as described above, an artificial dura mater or a dura mater collected from another animal may be used as necessary.

なお、図1〜図3では、電極体1や導光体4の軸部11、41を直線形状としており、それによって頭蓋骨102上に露出している先端部13、43の直下が計測対象又は刺激対象の部位となっているが、軸部11、41は適宜屈曲した形状であってもよい。つまり、頭蓋骨102に穿設する貫通孔の形状を屈曲形状とし、その形状に沿って電極体1や導光体4を挿通するようにしてもよい。この場合、頭蓋骨102上に露出している先端部13、43の直下が計測対象又は刺激対象の部位とはならないから、逆に、頭蓋上ユニット2A、2Bを装着することが困難である頭蓋骨102上の部位の直下の計測や刺激を行いたい場合に有用である。   In FIG. 1 to FIG. 3, the shaft portions 11 and 41 of the electrode body 1 and the light guide body 4 are linearly shaped, so that the portion immediately below the distal end portions 13 and 43 exposed on the skull 102 is a measurement target or Although it is a site to be stimulated, the shaft portions 11 and 41 may be appropriately bent. That is, the shape of the through hole formed in the skull 102 may be a bent shape, and the electrode body 1 and the light guide 4 may be inserted along the shape. In this case, since the portion immediately below the distal end portions 13 and 43 exposed on the skull 102 does not become a site to be measured or stimulated, on the contrary, it is difficult to mount the skull unit 2A or 2B. This is useful when you want to measure or stimulate directly below the upper part.

また、被検体100が有する頭蓋骨102に電極体1や導光体4が取り付けられるのではなく、被検体100の頭蓋骨102の一部を置換するように該被検体100の頭部に装着される人工頭蓋骨に電極体1や導光体4が取り付けられるようにしてもよい。この場合、予め、つまりは人工頭蓋骨を被検体100の頭部に装着する前に、人工頭蓋骨に複数の電極体1や導光体4を取り付け、電極体1や導光体4が取り付けられた状態の人工頭蓋骨を外科的手術により被検体100の頭部に装着するようにしてもよいし、外科的手術により人工頭蓋骨を被検体100の頭部に装着したあとに該人工頭蓋骨に複数の電極体1や導光体4を取り付けるようにしてもよい。   In addition, the electrode body 1 and the light guide 4 are not attached to the skull 102 of the subject 100, but are attached to the head of the subject 100 so as to replace a part of the skull 102 of the subject 100. The electrode body 1 and the light guide 4 may be attached to the artificial skull. In this case, before attaching the artificial skull to the head of the subject 100 in advance, a plurality of electrode bodies 1 and light guide bodies 4 are attached to the artificial skull, and the electrode body 1 and light guide body 4 are attached. The artificial skull in a state may be attached to the head of the subject 100 by surgical operation, or a plurality of electrodes may be attached to the artificial skull after the artificial skull is attached to the head of the subject 100 by surgical operation. The body 1 and the light guide 4 may be attached.

また、頭蓋骨102に穿設された貫通孔に電極体1や導光体4を挿設した状態で、電極体1や導光体4の外周面と貫通孔の内周面との間が液密状態であることが好ましい。そこで、例えば電極体1や導光体4を挿通する際に間に無害なシール材を充填する等の方法によって、液密性を確保するとよい。これにより、例えば後述するように頭蓋上ユニット2A、2Bが故障して有害な液体が該ユニット2A、2Bから漏出した場合でも、貫通孔と電極体1や導光体4との間の間隙を通して有害な液体な頭蓋骨102内側に浸入することを防止することができる。   In addition, in a state where the electrode body 1 and the light guide 4 are inserted into the through hole formed in the skull 102, a liquid is provided between the outer peripheral surface of the electrode body 1 and the light guide 4 and the inner peripheral surface of the through hole. A dense state is preferred. Therefore, for example, when the electrode body 1 or the light guide body 4 is inserted, the liquid-tightness may be ensured by a method such as filling a harmless sealant between them. As a result, for example, as will be described later, even if the overhead skull units 2A and 2B break down and harmful liquid leaks from the units 2A and 2B, the gap between the through hole and the electrode body 1 or the light guide 4 is passed. It is possible to prevent the harmful liquid from entering the inside of the skull 102.

頭蓋上ユニット2A、2Bのコンタクト部21は、頭蓋骨102の外側に露出している複数の電極体1の基部13の位置に対応して2次元的に設けられ、また頭蓋上ユニット2Bの光学結合部23は、頭蓋骨102の外側に露出している複数の導光体4の基部43の位置に対応して2次元的に設けられている。したがって、図4に示すように、複数の電極体1が取り付けられている頭蓋骨102の外側の所定位置に頭蓋上ユニット2Aが取り付けられると、該頭蓋上ユニット2Aの各コンタクト部21は各電極体1の基部13にそれぞれ接触し、両者の間の電気的導通が確保される。また、複数の電極体1及び導光体4が取り付けられている頭蓋骨102の外側の所定位置に頭蓋上ユニット2Bが取り付けられると、該頭蓋上ユニット2Bの各コンタクト部21は各電極体1の基部13にそれぞれ接触して両者の間の電気的導通が確保されるとともに、各光学結合部23は各導光体4の基部43にそれぞれ密着し、両者の間の光学的結合、つまり光の相互伝搬が確保される。   The contact portions 21 of the upper skull units 2A and 2B are provided two-dimensionally corresponding to the positions of the base portions 13 of the plurality of electrode bodies 1 exposed to the outside of the skull 102, and are optically coupled to the upper skull unit 2B. The portion 23 is provided two-dimensionally corresponding to the position of the base portion 43 of the plurality of light guides 4 exposed to the outside of the skull 102. Therefore, as shown in FIG. 4, when the upper skull unit 2A is attached at a predetermined position outside the skull 102 to which the plurality of electrode bodies 1 are attached, each contact portion 21 of the upper skull unit 2A is connected to each electrode body. 1 is in contact with the base 13 and electrical continuity between the two is ensured. Further, when the upper skull unit 2B is attached to a predetermined position outside the skull 102 to which the plurality of electrode bodies 1 and the light guide 4 are attached, each contact portion 21 of the upper skull unit 2B is connected to each electrode body 1. Each of the optical coupling portions 23 is brought into close contact with the base portion 43 of each light guide 4 and is in contact with the base portion 13 to ensure electrical continuity between them. Mutual propagation is ensured.

図2の例では、ネジ25で頭蓋骨102外側に保持部材24が固定され、この保持部材24により形成された保持空間に頭蓋上ユニット2A、2Bを嵌め込むことで該ユニット2A、2Bは脱着容易に固定されている。もちろん、頭蓋骨102への頭蓋上ユニット2A、2Bの取付方法はこれに限らない。   In the example of FIG. 2, the holding member 24 is fixed to the outside of the skull 102 with a screw 25, and the units 2 </ b> A and 2 </ b> B can be easily detached by fitting the upper skull units 2 </ b> A and 2 </ b> B into the holding space formed by the holding member 24. It is fixed to. Of course, the method of attaching the skull units 2A and 2B to the skull 102 is not limited to this.

例えば取り付けるべき頭蓋上ユニット2A、2Bの数が少ない場合には、図7(a)に示すように、該ユニット2A、2Bの筐体に一体に形成されたフランジ26のネジ孔に挿入したネジ27を頭蓋骨102に螺入することで、該ユニット2A、2Bを固定するようにしてもよい。   For example, when the number of the skull units 2A and 2B to be attached is small, as shown in FIG. 7A, the screws inserted into the screw holes of the flange 26 formed integrally with the housings of the units 2A and 2B. The units 2A and 2B may be fixed by screwing 27 into the skull 102.

或いは、図7(b)に示すように、頭蓋骨102の外面の一部を切削加工して形成した凹部(又は保持空間)110に頭蓋上ユニット2A、2Bを嵌め込むことで固定するようにしてもよい。もちろん、頭蓋骨や人工頭蓋骨を切削加工する際には、その強度を大きく損なうことがないようにする必要がある。特に、頭蓋骨又は人工頭蓋骨自体を固定方法によれば、ネジなどの別部材を用いる必要がないので、取付け・取外しが容易なだけでなく、ネジが被検体の体内で脱落して例えば頭皮などを損傷したり、或いはネジを被検体の体内に置き忘れる等の作業ミスが発生したりすることを防止できる。
いずれにしても、頭蓋上ユニット2A、2Bが頭蓋骨又は人工頭蓋骨上で安定的に保持されつつ、必要な場合には簡単に交換や取外しが容易であるような取付方法を採用することが好ましい。
Alternatively, as shown in FIG. 7 (b), the upper skull units 2A and 2B are fixed by being fitted into a recess (or holding space) 110 formed by cutting a part of the outer surface of the skull 102. Also good. Of course, when cutting a skull or an artificial skull, it is necessary not to greatly impair the strength. In particular, according to the method of fixing the skull or the artificial skull itself, it is not necessary to use a separate member such as a screw, so that not only is it easy to attach and remove, but the screw may fall off in the body of the subject, for example, the scalp. It is possible to prevent the occurrence of work mistakes such as damage or misplacement of screws in the body of the subject.
In any case, it is preferable to adopt an attachment method in which the upper skull units 2A and 2B are stably held on the skull or the artificial skull and can be easily replaced or removed when necessary.

頭蓋上ユニット2A、2Bの筐体の平面形状が略六角形状で、図7(b)に示したように頭蓋骨102に形成された凹部110に頭蓋上ユニット2A、2Bを嵌め込んで取り付ける構成において、複数の頭蓋上ユニット2A、2Bを取り付けたい場合には、図8に示すように、略蜂の巣形状に凹部110を形成し、各凹部110にそれぞれ頭蓋上ユニット2A、2Bを嵌め込むようにするとよい。   In the structure in which the planar shape of the casings of the upper skull units 2A and 2B is substantially hexagonal and the upper skull units 2A and 2B are fitted and attached to the recesses 110 formed in the skull 102 as shown in FIG. 7B. When it is desired to attach a plurality of upper skull units 2A and 2B, as shown in FIG. 8, the concave portions 110 are formed in a substantially honeycomb shape, and the upper skull units 2A and 2B are fitted into the concave portions 110, respectively. Good.

図5は頭蓋上ユニット2Bに内蔵されている電気回路部22の概略ブロック構成図、図6は体外ユニット3に内蔵されている電気回路部の概略ブロック構成図である。
頭蓋上ユニット2Bの電気回路部22は、内蔵されたアンテナ220と、アンテナ駆動部221と、変調部222と、復調部223と、電力供給部224と、制御部225と、信号処理部226と、ID記憶部227と、LED228と、光センサ229と、を含む。複数の頭蓋上ユニット2Bはそれぞれ固有の識別情報(ID)を有しており、その識別情報がID記憶部227に予め格納されている。
FIG. 5 is a schematic block configuration diagram of the electric circuit unit 22 built in the skull unit 2 </ b> B, and FIG. 6 is a schematic block configuration diagram of the electric circuit unit built in the extracorporeal unit 3.
The electrical circuit unit 22 of the skull unit 2B includes a built-in antenna 220, an antenna drive unit 221, a modulation unit 222, a demodulation unit 223, a power supply unit 224, a control unit 225, and a signal processing unit 226. ID storage unit 227, LED 228, and optical sensor 229. Each of the plurality of skull units 2 </ b> B has unique identification information (ID), and the identification information is stored in the ID storage unit 227 in advance.

なお、脳との間で光学的な刺激や情報のやり取りを行わない頭蓋上ユニット2Aの場合には、LED228、光センサ229を備えず、制御部225や信号処理部226がLED228の駆動制御や受光信号の処理などの機能を有さない点が異なるだけであり、それ以外の点は頭蓋上ユニット2Bと共通である。したがって、以下の説明の多くは、頭蓋上ユニット2Aにも適用可能である。   In the case of the cranial unit 2A that does not exchange optical stimuli or information with the brain, the LED 228 and the optical sensor 229 are not provided, and the control unit 225 and the signal processing unit 226 control the driving of the LED 228. The only difference is that it does not have functions such as processing of the received light signal, and the other points are the same as those of the upper skull unit 2B. Accordingly, much of the following description is applicable to the skull unit 2A.

また、体外ユニット3は、アンテナ31と、アンテナ駆動部32と、変調部33と、復調部34と、電力供給部35と、制御部36と、信号処理部37と、を備える。   The extracorporeal unit 3 includes an antenna 31, an antenna driving unit 32, a modulation unit 33, a demodulation unit 34, a power supply unit 35, a control unit 36, and a signal processing unit 37.

図2に示すように、電極体1、導光体4、及び頭蓋上ユニット2A、2Bが被検体100の内部に設置され、被検体100の外部で頭蓋上ユニット2A、2Bと通信可能な範囲に体外ユニット3が設置されている状態で、これら構成要素から成る脳機能計測装置は以下のような動作により、被検体100の脳の活動等を反映した脳機能関連情報を収集する。   As shown in FIG. 2, the electrode body 1, the light guide 4, and the upper skull units 2 </ b> A and 2 </ b> B are installed inside the subject 100 and can communicate with the upper skull units 2 </ b> A and 2 </ b> B outside the subject 100. In the state where the extracorporeal unit 3 is installed, the brain function measuring apparatus including these components collects brain function related information reflecting the brain activity of the subject 100 by the following operation.

体外ユニット3において電力供給部35は、所定周波数の電磁波をアンテナ31から放射するように、アンテナ駆動部32を介してアンテナ31を駆動する。頭蓋上ユニット2A、2Bにおいて電力供給部224はアンテナ220を介して上記電磁波を受けて電力を生成し、これを回路各部に供給する。即ち、この例において頭蓋上ユニット2A、2Bはバッテリなどの電源を内蔵せず、外部からアンテナ220を介して受ける電磁波に基づいて必要な電力を生成する、いわゆるパッシブ型ICタグと同様の回路を有している。もちろん、頭蓋上ユニット2Bにバッテリを内蔵する構成としてもよい。   In the extracorporeal unit 3, the power supply unit 35 drives the antenna 31 via the antenna driving unit 32 so as to radiate electromagnetic waves having a predetermined frequency from the antenna 31. In the skull units 2A and 2B, the power supply unit 224 receives the electromagnetic wave via the antenna 220 to generate power, and supplies this to each part of the circuit. In other words, in this example, the cranial units 2A and 2B do not have a built-in power source such as a battery, and generate a necessary power based on electromagnetic waves received from the outside via the antenna 220. Have. Of course, it is good also as a structure which incorporates a battery in the skull unit 2B.

体外ユニット3において、制御部36は例えば外部から与えられた指示に基づき、脳機能計測のための各種制御信号を生成する。この制御信号は変調部33で所定形式(アンテナ31、220を通した電波伝送に適した周波数帯域など)に変調され、アンテナ駆動部32を介してアンテナ31から送出される。頭蓋上ユニット2では、アンテナ220を介して上記信号を受信し、復調部223で復調を施すことで元の制御信号を抽出し、制御部225はこの制御信号に基づいて信号処理部226やID記憶部227などの動作を制御する。基本的には、ID記憶部227から読み出されたIDが変調部222により所定形式に変調され、アンテナ駆動部221を介してアンテナ220から送出される。   In the extracorporeal unit 3, the control unit 36 generates various control signals for brain function measurement based on, for example, instructions given from the outside. This control signal is modulated by the modulation unit 33 into a predetermined format (such as a frequency band suitable for radio wave transmission through the antennas 31 and 220), and is transmitted from the antenna 31 via the antenna drive unit 32. The above-cranial unit 2 receives the above-mentioned signal via the antenna 220 and demodulates it by the demodulator 223 to extract the original control signal, and the controller 225 determines the signal processor 226 and the ID based on this control signal. The operation of the storage unit 227 and the like is controlled. Basically, the ID read from the ID storage unit 227 is modulated into a predetermined format by the modulation unit 222 and sent out from the antenna 220 via the antenna drive unit 221.

上述したように被検体100の脳表面に接触する電極体1を通して脳に電気的刺激を与える場合には、制御部225から出力された刺激用の電流信号がコンタクト部21を経て電極体1に送られ、該電極体1の先端部12から脳に対して電流信号が流される。また、被検体100の脳表面に接触する導光体4を通して脳に光学的刺激を与える場合には、制御部225から出力された刺激用信号に応じてLED228が発光し、例えば近赤外光である発光光が光学結合部23を経て導光体4に送られ、該導光体4の先端部42から脳に対し近赤外光が照射される。   As described above, when an electrical stimulus is applied to the brain through the electrode body 1 that contacts the brain surface of the subject 100, the stimulation current signal output from the control unit 225 passes through the contact unit 21 to the electrode body 1. The current signal is sent from the distal end portion 12 of the electrode body 1 to the brain. When optical stimulation is given to the brain through the light guide 4 that contacts the brain surface of the subject 100, the LED 228 emits light according to the stimulation signal output from the control unit 225, for example, near infrared light. Is transmitted to the light guide 4 through the optical coupling portion 23, and near-infrared light is irradiated from the distal end portion 42 of the light guide 4 to the brain.

一方、被検体100の脳表面に接触する1本の電極体1は、その接触部位付近の皮質フィールドポテンシャルや神経組織のアクションポテンシャルなどによる微弱な信号を拾う。この電気信号はコンタクト部21を経て頭蓋上ユニット2Bに入力される。また、被検体100の脳表面に接触する1本の導光体4は、例えば別の導光体4から上述したように照射された近赤外光に応じて脳表面や脳溝などで反射した光、散乱した光、或いは励起されることで放出された光を収集する。この光は導光体4中を案内され光学結合部23を経て、光センサ229に到達し、該光センサ229で光電変換されて受光強度に応じた電気信号が生成される。これら電気信号はいずれも信号処理部226で増幅され、必要に応じて周波数多重、時分割多重などの多重化が行われる。そして、変調部222により所定形式に変調され、アンテナ駆動部221を介してアンテナ220から送出される。   On the other hand, one electrode body 1 that contacts the brain surface of the subject 100 picks up a weak signal due to the cortical field potential near the contact site or the action potential of nerve tissue. This electric signal is input to the skull unit 2B via the contact portion 21. In addition, one light guide 4 in contact with the brain surface of the subject 100 is reflected by the brain surface, cerebral groove, or the like according to near infrared light irradiated from another light guide 4 as described above, for example. Collected light, scattered light, or light emitted by excitation. This light is guided through the light guide 4 and reaches the optical sensor 229 via the optical coupling unit 23, and is photoelectrically converted by the optical sensor 229 to generate an electrical signal corresponding to the received light intensity. All of these electrical signals are amplified by the signal processing unit 226, and multiplexing such as frequency multiplexing and time division multiplexing is performed as necessary. Then, the signal is modulated into a predetermined format by the modulation unit 222 and transmitted from the antenna 220 via the antenna driving unit 221.

体外ユニット3では、上記のように頭蓋上ユニット2のアンテナ220から送出され、被検体100の頭皮101を通過して到来する電波をアンテナ31で受信する。そして、この受信信号を復調部34で復調した後に信号処理部37で処理して、頭蓋上ユニット2B固有のIDや、各電極体1でそれぞれ得られた電気信号や各導光体4で収集された光信号に由来する電気信号を分離して取り出す。2次元的に配置された多数の電極体1でそれぞれ得られた電気信号は、脳の活動に関する重要な情報を含む。また、例えば、上述したように脳表面に照射された近赤外光に応じて、2次元的に配置された多数の導光体4でそれぞれ得られた反射光や散乱光は、脳内の血流などに関する重要な情報を含む。したがって、本実施例の脳機能計測装置によれば、脳の2次元的な所定範囲に亘る脳波等の電気的情報の収集と光トポグラフィなどの光学的情報の収集とを並行してリアルタイムで行うことができる。もちろん、光学的計測を行うことなく、電気的計測のみを行うようにしてもよい。   In the extracorporeal unit 3, the antenna 31 receives radio waves that are transmitted from the antenna 220 of the upper skull unit 2 and arrive through the scalp 101 of the subject 100 as described above. Then, the received signal is demodulated by the demodulator 34 and then processed by the signal processor 37, and collected by the ID unique to the upper skull unit 2 </ b> B, the electrical signal obtained by each electrode body 1, and each light guide 4. The electrical signal derived from the optical signal is separated and extracted. The electrical signals respectively obtained by the many electrode bodies 1 arranged two-dimensionally include important information regarding brain activity. In addition, for example, as described above, reflected light and scattered light respectively obtained by a large number of light guides 4 arranged two-dimensionally in response to near-infrared light irradiated on the brain surface Contains important information about blood flow. Therefore, according to the brain function measuring apparatus of this embodiment, the collection of electrical information such as brain waves over a two-dimensional predetermined range of the brain and the collection of optical information such as optical topography are performed in real time in parallel. be able to. Of course, only electrical measurement may be performed without performing optical measurement.

以上のように、本実施例の脳機能計測装置では、被検体100の外部の体外ユニットと無線で信号のやり取りを行う頭蓋上ユニット2A、2Bは頭蓋骨102の外側に着脱容易に取り付けられ、この頭蓋上ユニット2A、2Bと少なくとも一部が脳に接触する電極体1や導光体4とは単に接触等により電気信号や光信号のやり取りが行われる構成となっている。上述したように頭蓋上ユニット2A、2Bには複雑な電気回路部22が内蔵されており、故障が起こったり、或いは機能が古くなって更新が必要になったりすることがよくある。こうした場合に、被検体100の頭皮101を切開しさえすれば、頭蓋上ユニット2A、2Bを容易に交換したり取り外したりすることができる。一方、頭蓋骨102や人工頭蓋骨に埋め込まれた電極体1や導光体4は殆ど半永久的に使用可能であるから、頭蓋骨102を切開するような外科的手術は基本的に必要なく、被検者に与える負担を最小限に抑えるとともに感染症のリスクを抑えて、長期間に亘り安定的な計測が可能である。   As described above, in the brain function measuring apparatus according to the present embodiment, the upper skull units 2A and 2B that exchange signals wirelessly with an external unit outside the subject 100 are easily attached to and detached from the skull 102. The upper skull units 2A and 2B and the electrode body 1 and the light guide body 4 at least partially in contact with the brain are configured to exchange electrical signals and optical signals simply by contact. As described above, the above-mentioned skull units 2A and 2B have a complicated electric circuit section 22 built in, and often fail or the function becomes old and needs to be updated. In such a case, as long as the scalp 101 of the subject 100 is incised, the above-cranial units 2A and 2B can be easily replaced or removed. On the other hand, since the electrode body 1 and the light guide body 4 embedded in the skull 102 or the artificial skull can be used almost semi-permanently, there is basically no need for a surgical operation such as incising the skull 102. Stable measurement over a long period of time is possible by minimizing the burden on the patient and reducing the risk of infectious diseases.

なお、ここでは、頭蓋上ユニット2A、2Bと体外ユニット3とを一対一で設けていたが、1個の体外ユニット3が複数の頭蓋上ユニット2A、2Bと相互通信を行って、制御信号や計測データのやり取りを行う構成としてもよい。即ち、多点の計測を行う場合でも、体外ユニット3は少なくとも一つあればよい。   Here, the skull units 2A and 2B and the extracorporeal unit 3 are provided in a one-to-one relationship, but one extracorporeal unit 3 communicates with a plurality of the skull units 2A and 2B to control signals and It is good also as composition which exchanges measurement data. That is, at least one extracorporeal unit 3 is sufficient even when multipoint measurement is performed.

また、複数の頭蓋上ユニット2A、2B同士で相互に通信が可能な構成としておき、複数の頭蓋上ユニット2A、2Bが連携した計測を行えるようにしてもよい。例えば、全ての頭蓋上ユニット2A、2Bで同時に計測を行うほか、脳全体をカバーするように配置した多数の頭蓋上ユニット2A、2Bを所定のパターンで時間をずらして計測を行うようなことも可能である。このように複数の頭蓋上ユニット2A、2Bをネットワーク化した計測を行うことにより、従来のデバイスでは達成し得ない複雑で高度な計測が可能となる。   Moreover, it is set as the structure which can mutually communicate between several cranium units 2A and 2B, and you may enable it to perform the measurement which several cranium units 2A and 2B cooperated. For example, in addition to performing simultaneous measurements on all the skull units 2A and 2B, it is also possible to measure a number of the skull units 2A and 2B arranged so as to cover the entire brain by shifting the time in a predetermined pattern. Is possible. As described above, by performing a measurement in which the plurality of overhead units 2A and 2B are networked, it is possible to perform a complicated and advanced measurement that cannot be achieved by a conventional device.

また、上記実施例は本発明の単なる一例であって、本発明の趣旨の範囲で適宜変形や修正、又は追加を行っても、本願特許請求の範囲に包含されることは明らかである。   Further, the above-described embodiment is merely an example of the present invention, and it is apparent that the present invention is encompassed by the claims of the present application even if appropriate modifications, corrections, or additions are made within the scope of the present invention.

1…電極体
11…軸部
12…先端部
13…基部
14…絶縁性被膜
100…被検体
101…頭皮
102…頭蓋骨
103…脳硬膜
104…くも膜
105…大脳皮質
110…凹部
2A、2B…頭蓋上ユニット
21…コンタクト部
22…電気回路部
220…アンテナ
221…アンテナ駆動部
222…変調部
223…復調部
224…電力供給部
225…制御部
226…信号処理部
227…ID記憶部
228…LED
229…光センサ
23…光学結合部
24…保持部材
25、27…ネジ
26…フランジ
3…体外ユニット
31…アンテナ
32…アンテナ駆動部
33…変調部
34…復調部
35…電力供給部
36…制御部
37…信号処理部
4…導光体
41…軸部
42…先端部
43…基部
DESCRIPTION OF SYMBOLS 1 ... Electrode body 11 ... Shaft part 12 ... Tip part 13 ... Base part 14 ... Insulating coating 100 ... Subject 101 ... Scalp 102 ... Skull 103 ... Brain dura 104 ... Arachnoid 105 ... Cerebral cortex 110 ... Recess 2A, 2B ... Skull Upper unit 21 ... contact part 22 ... electric circuit part 220 ... antenna 221 ... antenna drive part 222 ... modulation part 223 ... demodulation part 224 ... power supply part 225 ... control part 226 ... signal processing part 227 ... ID storage part 228 ... LED
229 ... Optical sensor 23 ... Optical coupling unit 24 ... Holding member 25, 27 ... Screw 26 ... Flange 3 ... Extracorporeal unit 31 ... Antenna 32 ... Antenna drive unit 33 ... Modulation unit 34 ... Demodulation unit 35 ... Power supply unit 36 ... Control unit 37 ... Signal processing unit 4 ... Light guide 41 ... Shaft part 42 ... Tip part 43 ... Base

Claims (8)

各種の実験動物やヒトを含む被検体の脳機能に関連した情報を収集するための脳機能計測装置であって、
a)被検体の頭蓋骨又は該頭蓋骨の一部に代えて被検体に装着される人工頭蓋骨に穿孔された貫通孔に挿設され、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出してなる複数の電極と、
b)前記頭蓋骨又は人工頭蓋骨の外側に着脱可能に固定され、該頭蓋骨又は人工頭蓋骨の外側に露出している前記複数の電極の基部と接触するコンタクト部と、該コンタクト部を介して前記電極から得られた電気信号又は該コンタクト部を介して該電極へ与える電気信号を、無線で当該被検体の頭皮の外側に送信する又は外側から受信する信号中継部と、を含む頭蓋上ユニットと、
c)当該被検体の頭皮の外側に設けられ、前記頭蓋上ユニットの信号中継部から無線で送出される信号を受信する又は該信号中継部に無線で信号を送信する体外ユニットと、
を備えることを特徴とする脳機能計測装置。
A brain function measuring device for collecting information related to brain functions of subjects including various experimental animals and humans,
a) It is inserted into a through-hole drilled in a skull of a subject or an artificial skull attached to the subject instead of a part of the skull, and a distal end portion is exposed to the inside of the skull or the artificial skull. A plurality of electrodes in contact with a membrane covering the brain, while a base is exposed to the outside of the skull or artificial skull;
b) a contact part that is detachably fixed to the outside of the skull or artificial skull and that is exposed to the outside of the skull or artificial skull; and a contact part that contacts the base part of the plurality of electrodes; A signal relay unit that wirelessly transmits the electrical signal obtained or the electrical signal applied to the electrode via the contact part to the outside of the subject's scalp, or receives from the outside, a skull unit,
c) an extracorporeal unit that is provided outside the scalp of the subject, receives a signal transmitted wirelessly from the signal relay unit of the above-cranial unit, or transmits a signal wirelessly to the signal relay unit;
A brain function measuring device comprising:
請求項1に記載の脳機能計測装置であって、
前記複数の電極と同様に、被検体の頭蓋骨又は人工頭蓋骨に穿孔された貫通孔に挿設され、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出してなる導光体、をさらに備え、
前記頭蓋上ユニットは、前記頭蓋骨又は人工頭蓋骨の外側に露出している前記導光体の基部と光学的に結合された光学結合部と、該光学結合部及び前記導光体を通して脳に光信号を与える発光部と、前記導光体及び前記光学結合部を経て得られた光信号を受光して電気信号に変換する受光部と、をさらに含むことを特徴とする脳機能計測装置。
The brain function measuring device according to claim 1,
Similar to the plurality of electrodes, it is inserted into a through-hole drilled in the skull or artificial skull of the subject, and the tip is exposed to the inside of the skull or artificial skull to contact the brain or a membrane covering the brain On the other hand, a light guide formed by exposing a base portion to the outside of the skull or artificial skull,
The upper skull unit includes an optical coupling unit optically coupled to a base of the light guide exposed outside the skull or the artificial skull, and an optical signal to the brain through the optical coupling unit and the light guide. And a light receiving unit that receives an optical signal obtained through the light guide and the optical coupling unit and converts it into an electrical signal.
請求項1又は2に記載の脳機能計測装置であって、
前記頭蓋上ユニットのコンタクト部及び/又は光学結合部は、当該ユニットの筐体の一面に2次元的に配置されてなることを特徴とする脳機能計測装置。
The brain function measuring device according to claim 1 or 2,
The brain function measuring device, wherein the contact part and / or the optical coupling part of the above-cranial unit are two-dimensionally arranged on one surface of the casing of the unit.
請求項1〜3のいずれかに記載の脳機能計測装置であって、
前記頭蓋上ユニットは、被検体の頭蓋骨又は該被検体に装着される人工頭蓋骨の外側に形成された凹部に嵌着されることを特徴とする脳機能測装置。
The brain function measuring device according to any one of claims 1 to 3,
The brain function measuring device, wherein the upper skull unit is fitted into a concave portion formed outside a skull of a subject or an artificial skull attached to the subject.
各種の実験動物やヒトを含む被検体の脳機能に関連した情報を収集する脳機能計測方法であって、
a)被検体の頭蓋骨又は該頭蓋骨の一部に代えて被検体に装着される人工頭蓋骨に複数の貫通孔を穿孔し、各貫通孔にそれぞれ、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出するように電極を挿設し、
b)さらに、前記頭蓋骨又は人工頭蓋骨の外側に露出している前記複数の電極の基部とそれぞれ接触するコンタクト部と、該コンタクト部を介して前記電極から得られた電気信号又は該コンタクト部を介して該電極へ与える電気信号を、無線で当該被検体の頭皮の外側に送信する又は外側から受信する信号中継部と、を含む頭蓋上ユニットを、前記コンタクト部が前記複数の電極の基部とそれぞれ接触するように、前記頭蓋骨又は人工頭蓋骨の外側に着脱可能に固定した上で、
被検体の脳又は脳を被覆する膜に前記先端部がそれぞれ接触した前記電極で得られる電気信号を、該電極の基部に接触した前記コンタクト部を介して前記頭蓋上ユニットの信号中継部へと送り、該信号中継部において無線で送出される信号を被検体の体外に設けられた体外ユニットにより受信することにより脳機能関連情報を取得するようにしたことを特徴とする脳機能計測方法。
A brain function measuring method for collecting information related to the brain function of subjects including various experimental animals and humans,
a) A plurality of through holes are drilled in the skull of the subject or an artificial skull to be attached to the subject instead of a part of the skull, and the tip of each through hole is exposed inside the skull or the artificial skull. And the electrode is inserted so that the base is exposed to the outside of the skull or artificial skull while contacting the brain or the membrane covering the brain,
b) Further, contact portions that respectively contact the base portions of the plurality of electrodes that are exposed to the outside of the skull or the artificial skull, and electrical signals obtained from the electrodes via the contact portions or via the contact portions A signal relay unit that wirelessly transmits an electrical signal to be applied to the electrode to the outside of the subject's scalp or receives from the outside, and the contact unit is a base of the plurality of electrodes, respectively. After detachably fixing to the outside of the skull or artificial skull so as to contact,
An electrical signal obtained by the electrode whose tip is in contact with the subject's brain or a membrane covering the brain is transmitted to the signal relay unit of the above-cranial unit via the contact part in contact with the base of the electrode. A brain function measuring method characterized in that the brain function related information is acquired by receiving a signal transmitted wirelessly in the signal relay unit by an extracorporeal unit provided outside the body of the subject.
請求項5に記載の脳機能計測方法であって、
前記複数の電極と同様に、被検体の頭蓋骨又は人工頭蓋骨に穿孔された貫通孔に、先端部が前記頭蓋骨又は人工頭蓋骨の内側に露出して脳又は脳を被覆する膜に接触する一方、基部が前記頭蓋骨又は人工頭蓋骨の外側に露出するように導光体を挿設し、
前記頭蓋骨又は人工頭蓋骨の外側に露出している前記導光体の基部と光学的に結合された光学結合部と、該光学結合部及び前記導光体を通して脳に光信号を与える発光部と、前記導光体及び前記光学結合部を経て得られた光信号を受光して電気信号に変換する受光部と、をさらに含む前記頭蓋上ユニットにより、脳に対する光信号の刺激を与える、及び/又は、脳から光学情報を収集するようにしたことを特徴とする脳機能計測方法。
The brain function measuring method according to claim 5,
Similarly to the plurality of electrodes, the base portion is exposed to the inside of the skull or artificial skull and contacts the brain or a membrane covering the brain, in the through hole drilled in the skull or artificial skull of the subject. Inserted a light guide so that is exposed to the outside of the skull or artificial skull,
An optical coupling unit optically coupled to the base of the light guide exposed outside the skull or artificial skull, and a light emitting unit for providing an optical signal to the brain through the optical coupling unit and the light guide; A light receiving unit that receives an optical signal obtained through the light guide and the optical coupling unit and converts the received optical signal into an electrical signal, and provides stimulation of the optical signal to the brain, and / or The method for measuring brain function, characterized in that optical information is collected from the brain.
請求項5又は6に記載の脳機能計測方法であって、
被検体の頭蓋骨又は該被検体に装着される人工頭蓋骨の外側に、前記頭蓋上ユニットの筐体外形形状に応じた凹部を形成し、該凹部に前記頭蓋上ユニットを嵌着するようにしたことを特徴とする脳機能計測方法。
The brain function measuring method according to claim 5 or 6,
A concave portion corresponding to the outer shape of the casing of the upper skull unit is formed outside the skull of the subject or the artificial skull attached to the subject, and the upper skull unit is fitted into the concave portion. A brain function measuring method characterized by the above.
請求項5〜7のいずれかに記載の脳機能計測方法であって、
被検体の頭蓋骨又は該被検体に装着される人工頭蓋骨の外側に前記頭蓋上ユニットを複数固定することで、脳機能関連情報を収集可能な範囲を拡大するようにしたことを特徴とする脳機能計測方法。
The brain function measuring method according to any one of claims 5 to 7,
A brain function characterized in that the range in which brain function-related information can be collected is expanded by fixing a plurality of the above-mentioned skull units on the outside of the skull of the subject or the artificial skull attached to the subject. Measurement method.
JP2012229419A 2012-10-17 2012-10-17 Brain function measuring device and measuring method Active JP6089568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229419A JP6089568B2 (en) 2012-10-17 2012-10-17 Brain function measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229419A JP6089568B2 (en) 2012-10-17 2012-10-17 Brain function measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2014079387A true JP2014079387A (en) 2014-05-08
JP6089568B2 JP6089568B2 (en) 2017-03-08

Family

ID=50784192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229419A Active JP6089568B2 (en) 2012-10-17 2012-10-17 Brain function measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP6089568B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101676577B1 (en) * 2015-08-17 2016-11-15 한양대학교 산학협력단 Measurement system and method for measureing of electrocorticogram and cerebral blood flow information
JP2017531483A (en) * 2014-10-03 2017-10-26 ウッドウェルディング・アクチェンゲゼルシャフト Medical device, apparatus, and surgical method
WO2019130248A1 (en) * 2017-12-28 2019-07-04 Inner Cosmos Llc Intracalvarial bci systems and methods for their making, implantation and use
WO2020095396A1 (en) * 2018-11-07 2020-05-14 特定非営利活動法人ニューロクリアティブ研究会 Electrode and signal measurement device
US11467665B2 (en) 2018-06-14 2022-10-11 Meron Gribetz Virtual user interface system and methods for use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798640B1 (en) 2016-08-31 2017-11-16 주식회사 유메딕스 Apparatus for acquiring brain wave and behavioral pattern experiment device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006264A1 (en) * 2001-11-20 2004-01-08 Mojarradi Mohammad M. Neural prosthetic micro system
JP2007524463A (en) * 2003-06-24 2007-08-30 ノーススター ニューロサイエンス インコーポレイテッド Method and apparatus for achieving sustained changes in a patient's neural function
WO2010038393A1 (en) * 2008-09-30 2010-04-08 国立大学法人奈良先端科学技術大学院大学 Intracerebral information measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040006264A1 (en) * 2001-11-20 2004-01-08 Mojarradi Mohammad M. Neural prosthetic micro system
JP2007524463A (en) * 2003-06-24 2007-08-30 ノーススター ニューロサイエンス インコーポレイテッド Method and apparatus for achieving sustained changes in a patient's neural function
WO2010038393A1 (en) * 2008-09-30 2010-04-08 国立大学法人奈良先端科学技術大学院大学 Intracerebral information measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531483A (en) * 2014-10-03 2017-10-26 ウッドウェルディング・アクチェンゲゼルシャフト Medical device, apparatus, and surgical method
US11317869B2 (en) 2014-10-03 2022-05-03 Woodwelding Ag Medical device, apparatus, and surgical method
KR101676577B1 (en) * 2015-08-17 2016-11-15 한양대학교 산학협력단 Measurement system and method for measureing of electrocorticogram and cerebral blood flow information
WO2019130248A1 (en) * 2017-12-28 2019-07-04 Inner Cosmos Llc Intracalvarial bci systems and methods for their making, implantation and use
US11467665B2 (en) 2018-06-14 2022-10-11 Meron Gribetz Virtual user interface system and methods for use thereof
WO2020095396A1 (en) * 2018-11-07 2020-05-14 特定非営利活動法人ニューロクリアティブ研究会 Electrode and signal measurement device

Also Published As

Publication number Publication date
JP6089568B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6089568B2 (en) Brain function measuring device and measuring method
JP5224482B2 (en) Brain information measuring device
Sawan et al. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices
RU2736841C2 (en) Wearable device and method for determining electric activity of skin of a subject
ES2720127T3 (en) Automated speed and amplitude conduction measuring instrument of the sural nerve
US10376175B2 (en) Sensor, system, and holder arrangement for biosignal activity measurement
US11241187B2 (en) Electromagnetic wave sensing and modulating of neuronal activities
Vivekananda et al. Optically pumped magnetoencephalography in epilepsy
US20050107716A1 (en) Methods and apparatus for positioning and retrieving information from a plurality of brain activity sensors
TW201538126A (en) Biomedical device, systems and methods having conductive elements
KR101465046B1 (en) Medical sensor mounting apparatus
JP2004097590A (en) Probe for somatometry, and probe holder for somatometry
KR101791038B1 (en) Apparatus and method for measuring electroencephalograms using ear-wearable electroencephalography equipment
EA032664B1 (en) Method for connecting a medical instrument to a position-detecting system
BR112022013533B1 (en) IMPLANTABLE STIMULATION DEVICE
JP6590277B2 (en) Biological information acquisition device
KR20120077652A (en) Near infrared spectroscopy detection unit, apparatus having the same unit and method for controlling the same apparatus
JP5416283B2 (en) Device for measuring spinal activity of vertebrae
JP6391372B2 (en) Biological tissue imaging device and method for operating biological tissue imaging device
US20190223837A1 (en) Disposable probe
CN103040457A (en) Biosignal processing apparatus, electroencephalograph, and biosignal processing method
KR101676577B1 (en) Measurement system and method for measureing of electrocorticogram and cerebral blood flow information
RU2767895C1 (en) Optical-surgical device for detection and recognition of neurovascular structures in the volume of biological tissue
CN217219890U (en) Head ring device of transcranial direct current stimulation closed-loop system
US20230108715A1 (en) Method and system for the non-invasive recording of marine mammal sleep in the wild

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6089568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250