JP2014047931A - Temperature set value control device and temperature set value control method - Google Patents

Temperature set value control device and temperature set value control method Download PDF

Info

Publication number
JP2014047931A
JP2014047931A JP2012188438A JP2012188438A JP2014047931A JP 2014047931 A JP2014047931 A JP 2014047931A JP 2012188438 A JP2012188438 A JP 2012188438A JP 2012188438 A JP2012188438 A JP 2012188438A JP 2014047931 A JP2014047931 A JP 2014047931A
Authority
JP
Japan
Prior art keywords
temperature
heat
flow rate
heat medium
supply air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012188438A
Other languages
Japanese (ja)
Other versions
JP5977622B2 (en
Inventor
Hiroko Matsuo
裕子 松尾
Hideta Sekine
秀太 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2012188438A priority Critical patent/JP5977622B2/en
Publication of JP2014047931A publication Critical patent/JP2014047931A/en
Application granted granted Critical
Publication of JP5977622B2 publication Critical patent/JP5977622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature set value control device and a temperature set value control method capable of achieving energy saving at a low cost.SOLUTION: A temperature difference acquisition section 123 acquires a temperature difference between a supply water temperature and a supply air temperature on the basis of a target cold water flow rate set by a user and a relation of a cold water flow rate to the temperature difference between the supply water temperature and the supply air temperature. A temperature setting section 124 sets a target value of the supply water temperature by adding the temperature difference to the supply air temperature. Thus, because the target value of the supply water temperature can be set by a simple calculation without requiring a high performance calculation device, a temperature control device can be realized at a low cost. Energy saving can also be achieved because a flow rate of a heat medium is not extremely increased.

Description

本発明は、空調システムにおける熱源の温度設定値制御装置および温度設定値制御方法に関するものである。   The present invention relates to a temperature set value control device and a temperature set value control method for a heat source in an air conditioning system.

従来より、冷温水を熱媒体とする空調制御システムでは、熱源機器で冷温水を生成し、この熱源機器で生成した冷温水をポンプを介して負荷機器に送るようにしている。   Conventionally, in an air conditioning control system using cold / hot water as a heat medium, cold / hot water is generated by a heat source device, and the cold / warm water generated by the heat source device is sent to a load device via a pump.

このような空調制御システムでは、熱源機から負荷機器への冷温水の送水温度の設定次第で、冷凍機や熱源機の使用エネルギー量が変化する。例えば、熱源機を冷凍機とした場合、送水温度の設定が低ければ、冷凍機の使用エネルギー量が上がる分、ポンプの使用エネルギー量が下がる。送水温度の設定が高ければ、冷凍機の使用エネルギー量が下がる分、ポンプの使用エネルギー量は上がる。すなわち、冷凍機とポンプの使用エネルギー量がトレードオフになる。熱源機器を温熱機とした場合でも同じことが言える。   In such an air conditioning control system, the amount of energy used by the refrigerator and the heat source device changes depending on the setting of the temperature of the cold / hot water supplied from the heat source device to the load device. For example, when the heat source device is a refrigerator, if the water supply temperature is set low, the amount of energy used by the pump decreases as the amount of energy used by the refrigerator increases. If the water supply temperature is set higher, the amount of energy used by the pump increases as the amount of energy used by the refrigerator decreases. That is, the energy consumption of the refrigerator and the pump is a trade-off. The same can be said when the heat source device is a heat machine.

そこで、熱源機器の使用エネルギー量とポンプの使用エネルギー量の合計を算出し、この値が最小となるよう送水温度を設定することにより省エネルギー化を図ることが提案されている(例えば、特許文献1,2参照。)。   Therefore, it has been proposed to save energy by calculating the sum of the amount of energy used by the heat source device and the amount of energy used by the pump, and setting the water supply temperature so that this value is minimized (for example, Patent Document 1). , 2).

例えば、特許文献1では、送水温度、還水温度、冷温水の流量などの現在の負荷状況に関連する各種パラメータの値を収集し、この収集したパラメータの値を予め定められている関数モデルに代入することによって現在の熱源機器とポンプの合計使用エネルギー量を算出し、この算出に用いた関数モデルにおいて送水温度を少しずつ変えて行くことによって、熱源機器とポンプの合計使用エネルギー量が最小となる送水温度を求め、この送水温度を現在の最適送水温度として決定するようにしている。また、引用文献2では、熱源機器の使用エネルギー量、ポンプの使用エネルギー量、熱源機器からの冷温水の送水温度、外気温度などの関連パラメータの実績値を3次元空間または4次元空間にプロットし、RSM−S(Response Surface Method by Spline)技術により応答曲面モデル作成し、この応答曲面モデルにより現在の最適送水温度を決定するようにしている。   For example, in Patent Document 1, the values of various parameters related to the current load situation such as the water supply temperature, the return water temperature, and the flow rate of cold / hot water are collected, and the collected parameter values are converted into a predetermined function model. By substituting, the current total energy consumption of the heat source device and the pump is calculated, and the total energy consumption of the heat source device and the pump is minimized by gradually changing the water supply temperature in the function model used for this calculation. And the water supply temperature is determined as the current optimum water supply temperature. In Cited Document 2, the actual values of related parameters such as the amount of energy used by the heat source device, the amount of energy used by the pump, the temperature of the cold / hot water supplied from the heat source device, and the outside air temperature are plotted in a three-dimensional space or a four-dimensional space. A response surface model is created by RSM-S (Response Surface Method by Spline) technology, and the current optimum water supply temperature is determined by this response surface model.

特開2003−262384号公報JP 2003-262384 A 特開2010−236786号公報JP 2010-236786 A

しかしながら、上述した方法は何れも複雑な演算が必要となるので高性能の演算装置を用いなければならず、このような演算装置が一般的に高価であるので、その演算装置を備えた温度設定値制御装置の低コスト化を実現することが困難であった。このため、低コストで省エネルギー化を実現できる温度設定値制御装置が望まれていた。   However, since all of the above methods require complicated computations, a high-performance computing device must be used, and since such a computing device is generally expensive, the temperature setting provided with the computing device. It has been difficult to reduce the cost of the value control device. For this reason, a temperature setpoint control device that can realize energy saving at low cost has been desired.

そこで、本発明は、低コストで省エネルギーを実現することができる温度設定値制御装置および温度設定値制御方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a temperature set value control device and a temperature set value control method that can realize energy saving at low cost.

上述したような課題を解決するために、本発明に係る温度設定値制御装置は、熱媒体に熱を付加する熱源機と、この熱源機から供給される熱媒体と周囲の空気との間で熱交換を行い、この熱交換された空気を給気として供給する負荷機器と、熱源機と負荷機器との間を循環する熱媒体に圧力を付加するポンプとを備えた空調システムにおいて、熱源機から供給される熱媒体の温度設定値制御装置であって、給気の温度を取得する温度取得部と、熱媒体の流量目標値を取得する流量取得部と、流量取得部により取得された流量目標値と、熱源機から供給される熱媒体の温度と給気の温度との温度差と熱媒体の流量の関係とに基づいて、熱媒体の温度と給気の温度との温度差を取得する温度差取得部と、温度取得部により取得された給気の温度に、温度差取得部により取得された温度差を付加することにより熱媒体の温度の目標値を設定する温度設定部とを備えることを特徴とするものである。   In order to solve the above-described problems, a temperature setting value control device according to the present invention includes a heat source device that adds heat to a heat medium, a heat medium supplied from the heat source device, and ambient air. In an air conditioning system including a load device that performs heat exchange and supplies the heat-exchanged air as supply air, and a pump that applies pressure to a heat medium that circulates between the heat source device and the load device. The temperature setting value control device for the heat medium supplied from the temperature acquisition unit that acquires the temperature of the supply air, the flow rate acquisition unit that acquires the flow rate target value of the heat medium, and the flow rate acquired by the flow rate acquisition unit Obtains the temperature difference between the temperature of the heat medium and the temperature of the supply air based on the target value, the temperature difference between the temperature of the heat medium supplied from the heat source unit and the temperature of the supply air, and the flow rate of the heat medium The temperature difference acquisition unit that performs and the temperature of the supply air acquired by the temperature acquisition unit It is characterized in further comprising a temperature setter for setting a target value of the temperature of the heat medium by adding the temperature difference acquired by the temperature difference obtaining unit.

上記温度設定値制御装置において、負荷機器は、複数設けられ、温度設定部は、複数の負荷機器における給気の温度に基づいて熱媒体の温度を設定とするようにしてもよい。ここで、その給気温度としては、複数の負荷機器の平均値や複数の負荷機器のうちの最小値などを用いるようにしてもよい。   In the temperature setting value control apparatus, a plurality of load devices may be provided, and the temperature setting unit may set the temperature of the heat medium based on the temperature of the supply air in the plurality of load devices. Here, as the supply air temperature, an average value of a plurality of load devices, a minimum value of the plurality of load devices, or the like may be used.

また、本発明に係る温度設定値制御方法は、熱媒体に熱を付加する熱源機と、この熱源機から供給される熱媒体と周囲の空気との間で熱交換を行い、この熱交換された空気を給気として供給する負荷機器と、熱源機と負荷機器との間を循環する熱媒体に圧力を付加するポンプとを備えた空調システムにおいて、熱源機から供給される熱媒体の温度設定値制御方法であって、給気の温度を取得する温度取得ステップと、熱媒体の流量目標値を取得する流量取得ステップと、流量取得ステップにより取得された流量目標値と、熱源機から供給される熱媒体の温度と給気の温度との温度差と熱媒体の流量の関係とに基づいて、熱媒体の温度と給気の温度との温度差を取得する温度差取得ステップと、温度取得ステップにより取得された給気の温度に、温度差取得ステップにより設定された温度差を付加することにより熱媒体の温度の目標値を設定する温度設定ステップとを有することを特徴とするものである。   Also, the temperature setpoint control method according to the present invention performs heat exchange between a heat source device that adds heat to the heat medium, the heat medium supplied from the heat source device, and the surrounding air, and this heat exchange is performed. Temperature setting of a heat medium supplied from a heat source device in an air conditioning system including a load device that supplies fresh air as supply air and a pump that applies pressure to the heat medium circulating between the heat source device and the load device The value control method is a temperature acquisition step for acquiring the temperature of the supply air, a flow rate acquisition step for acquiring a flow rate target value of the heat medium, a flow rate target value acquired by the flow rate acquisition step, and a heat source device. A temperature difference acquisition step for acquiring a temperature difference between the temperature of the heating medium and the temperature of the supply air based on the relationship between the temperature difference between the temperature of the heating medium and the supply air and the flow rate of the heating medium; To the temperature of the air supply obtained by the step It is characterized in that it has a temperature setting step of setting a target value of the temperature of the heat medium by adding the temperature difference set by the temperature difference obtaining step.

本発明によれば、熱媒体の流量目標値と、熱源機から供給される熱媒体の温度と給気の温度との温度差と熱媒体の流量の関係とに基づいて、熱媒体の温度の目標値を設定することにより、簡単な演算で熱媒体の温度の目標値を設定できるので、その演算に高性能の演算装置を必要としないため、温度設定値制御装置の低コスト化を実現することができる。また、熱媒体の流量が極端に増加することがないので、省エネルギー化を実現することができる。   According to the present invention, based on the target flow rate of the heat medium, the temperature difference between the temperature of the heat medium supplied from the heat source unit and the temperature of the supply air, and the relationship between the flow rate of the heat medium, By setting the target value, the target value of the temperature of the heat medium can be set with a simple calculation, so a high-performance arithmetic device is not required for the calculation, and the temperature setting value control device can be reduced in cost. be able to. Moreover, since the flow rate of the heat medium does not increase extremely, energy saving can be realized.

図1は、本発明に係る空調システムの構成を模式的に示す図である。FIG. 1 is a diagram schematically showing a configuration of an air conditioning system according to the present invention. 図2は、温度設定値制御装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the temperature set value control apparatus. 図3は、温度差と流量との関係を示す図である。FIG. 3 is a diagram showing the relationship between the temperature difference and the flow rate. 図4は、温度設定値制御装置の動作を説明するフローチャートである。FIG. 4 is a flowchart for explaining the operation of the temperature set value control apparatus.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[空調システムの構成]
図1に示すように、本実施の形態に係る空調システムは、冷温水発生機、ヒートポンプ、冷凍機、ボイラー等の冷水および温水の少なくとも一方(以下、「冷温水」と言う。)を生成する熱源機1−1、1−2と、対応する熱源機1−1,1−2の駆動に連動するポンプ2−1,2−2と、往路ヘッダー3と、送水管路4と、ファンコイルユニットや空調機等からなり被制御空間に配設される負荷機器5と、還水管路6と、還路ヘッダー7と、熱源機1−1,1−2からの送水の温度を計測する送水温度計8−1,8−2と、往路ヘッダー3からの送水の温度を計測する往路温度計9と、負荷機器5から供給される給気の温度(以下、「給気温度」と言う。)を計測する給気温度計10と、環水の流量を計測する流量計11と、送水温度を設定する温度設定値制御装置12とを備えている。
[Configuration of air conditioning system]
As shown in FIG. 1, the air conditioning system according to the present embodiment generates at least one of cold water and hot water (hereinafter referred to as “cold / warm water”) such as a cold / hot water generator, a heat pump, a refrigerator, and a boiler. Heat source units 1-1 and 1-2, pumps 2-1 and 2-2 interlocking with driving of corresponding heat source units 1-1 and 1-2, forward header 3, water supply conduit 4, and fan coil Water supply for measuring the temperature of the water supply from the load device 5, the return water pipe 6, the return path header 7, and the heat source units 1-1 and 1-2, which are composed of units, air conditioners, etc. Thermometers 8-1, 8-2, an outward path thermometer 9 for measuring the temperature of water supplied from the forward path header 3, and the temperature of the supply air supplied from the load device 5 (hereinafter referred to as “supply air temperature”). ), A flow meter 11 for measuring the flow rate of the circulating water, and a water supply temperature. And a temperature setting value control unit 12.

このような空調システムにおいて、ポンプ2−1,2−2により圧送された水は、熱源機1−1,1−2に供給され、この熱源機1−1,1−2により熱量が付加されて冷温水(送水)となる。この冷温水は、往路ヘッダー3を経て送水管路4に供給され、負荷機器5に送出される。この負荷機器5では、周辺空気と送水との間で熱交換が行われ、この熱交換が行われた周辺空気が給気として負荷機器5外部に供給される。これにより、負荷機器5が配設された被制御空間の空気調和が図られる。負荷機器5により熱交換が行われた冷温水は、還水管路6により還水としてヘッダー7に至り、再びポンプ2−1,2−2によって圧送され、以上の経路を循環する。   In such an air conditioning system, the water pumped by the pumps 2-1 and 2-2 is supplied to the heat source devices 1-1 and 1-2, and heat is added by the heat source devices 1-1 and 1-2. It becomes cold and hot water (water supply). The cold / hot water is supplied to the water supply line 4 via the forward header 3 and sent to the load device 5. In the load device 5, heat exchange is performed between the ambient air and the water supply, and the ambient air subjected to the heat exchange is supplied to the outside of the load device 5 as supply air. Thereby, the air conditioning of the to-be-controlled space where the load apparatus 5 is arrange | positioned is achieved. The cold / hot water subjected to heat exchange by the load device 5 reaches the header 7 as return water through the return water pipe 6, is again pumped by the pumps 2-1, 2-2, and circulates through the above paths.

ここで、温度設定値制御装置12は、図2に示すように、温度取得部121と、流量取得部122と、温度差取得部123と、送水温度設定部124とを備えている。   Here, as shown in FIG. 2, the temperature setting value control device 12 includes a temperature acquisition unit 121, a flow rate acquisition unit 122, a temperature difference acquisition unit 123, and a water supply temperature setting unit 124.

温度取得部121は、給気温度計10により測定された各測定値を取得する。給気温度計10からは、給気温度を取得する。   The temperature acquisition unit 121 acquires each measurement value measured by the supply air thermometer 10. From the supply air thermometer 10, the supply air temperature is acquired.

流量取得部122は、ユーザによる任意の操作入力に基づいて、冷水の流量の目標値を取得する。   The flow rate acquisition unit 122 acquires a target value of the flow rate of cold water based on an arbitrary operation input by the user.

温度差取得部123は、ユーザによる任意の操作入力に基づいて、給気温度と、熱源機1−1,1−2により熱量が付加された送水の温度(以下、「送水温度」と言う。)との差(以下、「温度差」と言う。)と冷水の流量との関係を予め取得して記憶する。このような温度差を記憶する理由について、図3を参照して説明する。なお、図3は、熱源機が冷凍機からなる一般的な空調システムにおける給気温度と送水温度の温度差と、冷水の流量との関係を示すグラフである。この図3において、縦軸は冷水の流量、横軸は給気温度と送水温度の差を示している。   The temperature difference acquisition unit 123 is referred to as a supply air temperature and a water supply temperature to which heat is added by the heat source devices 1-1 and 1-2 (hereinafter referred to as “water supply temperature”) based on an arbitrary operation input by the user. ) (Hereinafter referred to as “temperature difference”) and the flow rate of the cold water is acquired and stored in advance. The reason for storing such a temperature difference will be described with reference to FIG. FIG. 3 is a graph showing the relationship between the temperature difference between the supply air temperature and the water supply temperature and the flow rate of cold water in a general air conditioning system in which the heat source device is a refrigerator. In FIG. 3, the vertical axis indicates the flow rate of cold water, and the horizontal axis indicates the difference between the supply air temperature and the water supply temperature.

熱源機は送水温度を高くするほど効率がよくなり、熱源機の消費エネルギーが減少する。ところが、送水温度を高くすればするほど負荷機器の給気の温度に近づき、負荷流量が増大し、ポンプの搬送動力が増加することが考えられる。図3に示すように、給気温度と送水温度との温度差が小さいと、負荷機器で要求される熱交換の実現に大量の冷水を必要とし、ポンプの搬送動力が増加する。給気温度と送水温度との温度差が大きいと、負荷機器で要求される熱交換の実現に少量の冷水しか必要としない。
このように、熱源機の消費エネルギーは、送水温度が高ければ減少するが、高くしすぎることでポンプの搬送動力を増大させることがある。給気温度と送水温度との温度差と負荷流量の相関を監視することにより、ポンプの搬送動力が過剰に大きくなる温度差を見極めることができるため、ポンプの搬送動力を抑えた給気温度と送水温度との温度差を求めることができ、ぎりぎりまで熱源機の送水温度を上昇させることができる。
The higher the water supply temperature, the higher the efficiency of the heat source unit, and the lower the energy consumption of the heat source unit. However, it is conceivable that the higher the water supply temperature, the closer to the temperature of the supply air of the load device, the load flow rate increases, and the conveyance power of the pump increases. As shown in FIG. 3, if the temperature difference between the supply air temperature and the water supply temperature is small, a large amount of cold water is required to realize the heat exchange required by the load device, and the conveyance power of the pump increases. If the temperature difference between the supply air temperature and the water supply temperature is large, only a small amount of cold water is required to realize the heat exchange required by the load equipment.
As described above, the energy consumption of the heat source device decreases if the water supply temperature is high, but may increase the conveyance power of the pump if it is too high. By monitoring the correlation between the temperature difference between the supply air temperature and the water supply temperature and the load flow rate, it is possible to determine the temperature difference at which the pump transfer power becomes excessively large. The temperature difference from the water supply temperature can be obtained, and the water supply temperature of the heat source machine can be raised to the limit.

そこで、本実施の形態では、図3に示すようなグラフなど、適用される空調システムにおける給気温度と送水温度の温度差と冷水の流量との関係を試運転調整時などに事前に取得し、この関係と冷水の流量の目標値とに基づいて給気温度と送水温度との温度差を設定する。これにより、冷水の流量が極端に増えることがなくなるので、熱源機1−1,1−2およびポンプ2−1,2−2の消費エネルギーが大きくなるのを防ぐことができ、結果として省エネルギー化を実現することができる。   Therefore, in the present embodiment, the relationship between the temperature difference between the supply air temperature and the water supply temperature and the flow rate of the cold water in the applied air conditioning system, such as the graph shown in FIG. A temperature difference between the supply air temperature and the water supply temperature is set based on this relationship and the target value of the flow rate of the cold water. As a result, the flow rate of the cold water does not increase excessively, so that it is possible to prevent the energy consumption of the heat source devices 1-1 and 1-2 and the pumps 2-1 and 2-2 from increasing, resulting in energy saving. Can be realized.

送水温度設定部124は、温度取得部121により取得された給気温度と、温度差取得部123により取得された温度差とに基づいて、送水温度の目標値(冷水の場合は上限値)を設定する。具体的には、給気温度に温度差を付加した値が送水温度の目標値として設定される。この目標値は、熱源機1−1,1−2に送信される。熱源機1−1,1−2は、送水温度が受信した目標値となるように冷温水を生成する。   The water supply temperature setting unit 124 sets the target value of the water supply temperature (the upper limit value in the case of cold water) based on the supply air temperature acquired by the temperature acquisition unit 121 and the temperature difference acquired by the temperature difference acquisition unit 123. Set. Specifically, a value obtained by adding a temperature difference to the supply air temperature is set as the target value of the water supply temperature. This target value is transmitted to the heat source devices 1-1 and 1-2. The heat source devices 1-1 and 1-2 generate cold / hot water so that the water supply temperature becomes the received target value.

このような温度設定値制御装置12は、CPU等の演算装置と、メモリ、HDD(Hard Disc Drive)等の記憶装置と、キーボード、マウス、ポインティングデバイス、ボタン、タッチパネル等の外部から情報の入力を検出する入力装置と、インターネット、LAN(Local Area Network)、WAN(Wide Area Network)等の通信回線を介して各種情報の送受信を行うI/F装置と、LCD(Liquid Crystal Display)等の表示装置を備えたコンピュータと、このコンピュータにインストールされたプログラムとから構成される。すなわちハードウェア装置とソフトウェアとが協働することによって、上記のハードウェア資源がプログラムによって制御され、上述した温度取得部121、流量取得部122、温度差取得部123、送水温度設定部124が実現される。なお、上記プログラムは、CD−ROM、DVD−ROM、メモリカードなどの記録媒体に記録された状態で提供されるようにしてもよい。   Such a temperature set value control device 12 inputs information from the outside such as a calculation device such as a CPU, a storage device such as a memory and an HDD (Hard Disc Drive), and a keyboard, a mouse, a pointing device, a button, a touch panel and the like. An input device for detection, an I / F device that transmits and receives various information via a communication line such as the Internet, a LAN (Local Area Network), and a WAN (Wide Area Network), and a display device such as an LCD (Liquid Crystal Display) And a program installed on the computer. That is, the hardware device and software cooperate to control the above hardware resources by a program, and the above-described temperature acquisition unit 121, flow rate acquisition unit 122, temperature difference acquisition unit 123, and water supply temperature setting unit 124 are realized. Is done. Note that the program may be provided in a state of being recorded on a recording medium such as a CD-ROM, a DVD-ROM, or a memory card.

[送水温度の制御方法]
次に、図4を参照して、温度設定値制御装置12による送水温度の制御方法について説明する。なお、以下においては、冷房の場合、すなわち熱源機1−1,1−2から冷水が供給される場合を例に説明する。
[Water temperature control method]
Next, with reference to FIG. 4, the control method of the water supply temperature by the temperature setting value control apparatus 12 is demonstrated. In the following, a case of cooling, that is, a case where cold water is supplied from the heat source devices 1-1 and 1-2 will be described as an example.

まず、温度差取得部123は、ユーザによる操作入力に基づいて、給気温度と送水温度の間に温度差を取得する(ステップS1)。この温度差は、例えば10[℃]など所定の値が設定される。   First, the temperature difference acquisition unit 123 acquires a temperature difference between the supply air temperature and the water supply temperature based on an operation input by the user (step S1). For this temperature difference, a predetermined value such as 10 [° C.] is set.

温度差を取得すると、温度取得部121は、給気温度計10から給気温度を取得する(ステップS2)。取得した給気温度は、送水温度設定部124に送出される。   When acquiring the temperature difference, the temperature acquisition unit 121 acquires the supply air temperature from the supply air thermometer 10 (step S2). The acquired supply air temperature is sent to the water supply temperature setting unit 124.

給気温度を取得すると、送水温度設定部124は、その給気温度に温度差取得部123により設定された温度差を付加した値を送水温度の目標値に設定する(ステップS3)。このように、本実施の形態では、給気温度に温度差を付加するという簡単な演算により送水温度の目標値が設定されるので、従来のように演算のために高性能で高価な演算装置を必要としないため、低コスト化を実現することができる。   When the supply air temperature is acquired, the water supply temperature setting unit 124 sets a value obtained by adding the temperature difference set by the temperature difference acquisition unit 123 to the supply air temperature as a target value of the water supply temperature (step S3). Thus, in the present embodiment, the target value of the water supply temperature is set by a simple calculation of adding a temperature difference to the supply air temperature. Therefore, cost reduction can be realized.

以上説明したように、本実施の形態によれば、送水温度と給気温度と温度差と冷水の流量との関係とに基づいて、送水温度の目標値を設定することにより、簡単な演算で送水温度の目標値を設定できるので、その演算に高性能の演算装置を必要としないため、温度設定値制御装置の低コスト化を実現することができる。また、熱媒体の流量が極端に増加することがないので、省エネルギー化を実現することができる。   As described above, according to the present embodiment, by setting the target value of the water supply temperature based on the relationship between the water supply temperature, the supply air temperature, the temperature difference, and the flow rate of the cold water, a simple calculation can be performed. Since the target value of the water supply temperature can be set, a high-performance arithmetic device is not required for the calculation, so that the cost of the temperature set value control device can be reduced. Moreover, since the flow rate of the heat medium does not increase extremely, energy saving can be realized.

なお、本実施の形態では、負荷機器5を1台のみ設ける場合を例に説明したが、負荷機器5は複数台設けるようにしてもよい。この場合、給気温度は、各負荷機器5の給気温度の平均値を用いるようにしてもよい。また、各負荷機器5の給気温度のうち最小値を用いるようにしてもよい。また、各負荷機器5の給気温度のうち低い方から2番目の値を用いるようにしてもよい。   In the present embodiment, the case where only one load device 5 is provided has been described as an example, but a plurality of load devices 5 may be provided. In this case, an average value of the supply air temperatures of the load devices 5 may be used as the supply air temperature. Further, the minimum value among the supply air temperatures of the load devices 5 may be used. Moreover, you may make it use the 2nd value from the lower one among the supply air temperature of each load apparatus 5. FIG.

また、熱源機から供給される熱媒体の温度と給気温度の温度差と熱媒体の流量の関係は、熱量計測値に基づいて適宜変更するようにしてもよい。   Further, the relationship between the temperature difference between the temperature of the heat medium supplied from the heat source device, the supply air temperature, and the flow rate of the heat medium may be changed as appropriate based on the calorific value.

また、送水温度には、負荷機器5の制御状態に応じて上限値または下限値を設けるようにしてもよい。例えば、冷房の場合には、上限値を設けることができる。これにより、送水温度が高すぎて冷房としての空気調和ができないという事態を防ぐことができる。   In addition, the water supply temperature may be provided with an upper limit value or a lower limit value according to the control state of the load device 5. For example, in the case of cooling, an upper limit value can be provided. Thereby, the situation where the water supply temperature is too high and air conditioning as cooling cannot be performed can be prevented.

また、本実施の形態において、熱源機制御部125は、往路温度計9により計測された送水温度と給気温度とを比較する場合を例に説明したが、熱源機1−1,1−2からの送水の温度を計測する送水温度計8−1,8−2による送水温度と給気温度とを比較するようにしてもよい。この場合、送水温度計8−1,8−2それぞれの送水温度と給気温度とを比較するようにしてもよい。これにより、熱源機1−1,1−2毎に適切な送水温度を実現することができる。また、送水温度計8−1,8−2による送水温度の平均値と給気温度とを比較するようにしてもよい。これにより、熱源機1−1,1−2全体としての送水温度を適切な値にすることができる。   Moreover, in this Embodiment, although the heat-source equipment control part 125 demonstrated to the example the case where the water supply temperature measured by the outward path thermometer 9 and a supply air temperature were compared, heat-source equipment 1-1, 1-2. You may make it compare the water supply temperature by the water supply thermometers 8-1 and 8-2 which measure the temperature of the water supply from, and a supply air temperature. In this case, you may make it compare the water supply temperature of each of the water supply thermometers 8-1 and 8-2, and the supply air temperature. Thereby, suitable water supply temperature is realizable for every heat-source equipment 1-1 and 1-2. Moreover, you may make it compare the average value of the water supply temperature by the water supply thermometers 8-1 and 8-2, and supply air temperature. Thereby, the water supply temperature as the heat-source equipment 1-1 and 1-2 whole can be made into an appropriate value.

また、本実施の形態では、負荷機器からの環水を加圧する一次側のポンプ2−1,2−2を備えた空調システムに適用した場合を例に説明したが、さらに熱源機と負荷機器との間に熱源機からの送水を加圧する二次側のポンプを備えた空調システムにも適用できることは言うまでもない。この場合、二次側のポンプは、熱源機の駆動に連動して駆動する。このとき、一次側のポンプも熱源機の駆動に連動して駆動するようにしてもよい。このようにしても省エネルギー化を実現することができる。   Moreover, although this Embodiment demonstrated to the example the case where it applied to the air-conditioning system provided with the primary side pumps 2-1 and 2-2 which pressurize the circulating water from a load apparatus, Furthermore, a heat source machine and a load apparatus Needless to say, the present invention can also be applied to an air conditioning system including a secondary pump that pressurizes water supplied from a heat source machine. In this case, the secondary pump is driven in conjunction with the drive of the heat source machine. At this time, the primary pump may be driven in conjunction with the driving of the heat source device. Even in this way, energy saving can be realized.

本発明は、ポンプを有する空調システムに適用することができる。   The present invention can be applied to an air conditioning system having a pump.

1−1,1−2…熱源機、2−1,2−2…ポンプ、3…往路ヘッダー、4…送水管路、5…負荷機器、6…環水管路、7…環路ヘッダー、8−1,8−2…送水温度計、9…往路温度計、10…給気温度計、11…流量計、12…温度設定値制御装置、121…温度取得部、122…流量取得部、123…温度差取得部、124…送水温度設定部。   1-1, 1-2 ... Heat source machine, 2-1, 2-2 ... Pump, 3 ... Outward header, 4 ... Water supply pipeline, 5 ... Load equipment, 6 ... Circulation pipeline, 7 ... Circulation header, 8 -1,8-2 ... Water supply thermometer, 9 ... Outward thermometer, 10 ... Supply thermometer, 11 ... Flow meter, 12 ... Temperature set value control device, 121 ... Temperature acquisition unit, 122 ... Flow rate acquisition unit, 123 ... temperature difference acquisition part, 124 ... water supply temperature setting part.

Claims (3)

熱媒体に熱を付加する熱源機と、この熱源機から供給される前記熱媒体と周囲の空気との間で熱交換を行い、この熱交換された空気を給気として供給する負荷機器と、前記熱源機と前記負荷機器との間を循環する前記熱媒体に圧力を付加するポンプとを備えた空調システムにおいて、前記熱源機から供給される前記熱媒体の温度制御装置であって、
前記給気の温度を取得する温度取得部と、
前記熱媒体の流量目標値を取得する流量取得部と、
前記流量取得部により取得された流量目標値と、前記熱源機から供給される前記熱媒体の温度と前記給気の温度との温度差と前記熱媒体の流量の関係とに基づいて、前記熱媒体の温度と前記給気の温度との温度差を取得する温度差取得部と、
前記温度取得部により取得された前記給気の温度に、前記温度差取得部により取得された前記温度差を付加することにより前記熱媒体の温度の目標値を設定する温度設定部と
を備えることを特徴とする温度設定値制御装置。
A heat source device that adds heat to the heat medium, and a load device that performs heat exchange between the heat medium supplied from the heat source device and ambient air, and supplies the heat-exchanged air as supply air, In an air conditioning system comprising a pump that applies pressure to the heat medium circulating between the heat source device and the load device, the temperature control device for the heat medium supplied from the heat source device,
A temperature acquisition unit for acquiring the temperature of the supply air;
A flow rate acquisition unit for acquiring a flow rate target value of the heat medium;
Based on the flow rate target value acquired by the flow rate acquisition unit, the temperature difference between the temperature of the heat medium supplied from the heat source unit and the temperature of the supply air, and the relationship between the flow rate of the heat medium, A temperature difference acquisition unit for acquiring a temperature difference between the temperature of the medium and the temperature of the supply air;
A temperature setting unit that sets a target value of the temperature of the heat medium by adding the temperature difference acquired by the temperature difference acquisition unit to the temperature of the supply air acquired by the temperature acquisition unit. A temperature setpoint control device characterized by the above.
請求項1記載の温度制御装置において、
前記負荷機器は、複数設けられ、
前記温度設定部は、複数の前記負荷機器における前記給気の温度に基づいて前記熱媒体の温度を設定する
ことを特徴とする設定値温度制御装置。
The temperature control device according to claim 1,
A plurality of the load devices are provided,
The temperature setting unit sets the temperature of the heat medium based on the temperature of the supply air in the plurality of load devices.
熱媒体に熱を付加する熱源機と、この熱源機から供給される前記熱媒体と周囲の空気との間で熱交換を行い、この熱交換された空気を給気として供給する負荷機器と、前記熱源機と前記負荷機器との間を循環する前記熱媒体に圧力を付加するポンプとを備えた空調システムにおいて、前記熱源機から供給される前記熱媒体の温度制御方法であって、
前記給気の温度を取得する温度取得ステップと、
前記熱媒体の流量目標値を取得する流量取得ステップと、
前記流量取得ステップにより取得された流量目標値と、前記熱源機から供給される前記熱媒体の温度と前記給気の温度との温度差と前記熱媒体の流量の関係とに基づいて、前記熱媒体の温度と前記給気の温度との温度差を取得する温度差取得ステップと、
前記温度取得ステップにより取得された前記給気の温度に、前記温度差取得ステップにより設定された前記温度差を付加することにより前記熱媒体の温度の目標値を設定する温度設定ステップと
を有することを特徴とする温度設定値制御方法。
A heat source device that adds heat to the heat medium, and a load device that performs heat exchange between the heat medium supplied from the heat source device and ambient air, and supplies the heat-exchanged air as supply air, In an air conditioning system including a pump that applies pressure to the heat medium that circulates between the heat source device and the load device, the temperature control method for the heat medium supplied from the heat source device,
A temperature acquisition step of acquiring a temperature of the supply air;
A flow rate acquisition step of acquiring a flow rate target value of the heat medium;
Based on the flow rate target value acquired in the flow rate acquisition step, the temperature difference between the temperature of the heat medium supplied from the heat source unit and the temperature of the supply air, and the relationship between the flow rate of the heat medium. A temperature difference obtaining step for obtaining a temperature difference between the temperature of the medium and the temperature of the supply air; and
A temperature setting step of setting a target value of the temperature of the heat medium by adding the temperature difference set by the temperature difference acquisition step to the temperature of the supply air acquired by the temperature acquisition step. A temperature setpoint control method characterized by the above.
JP2012188438A 2012-08-29 2012-08-29 Temperature set value control device and temperature set value control method Expired - Fee Related JP5977622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188438A JP5977622B2 (en) 2012-08-29 2012-08-29 Temperature set value control device and temperature set value control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188438A JP5977622B2 (en) 2012-08-29 2012-08-29 Temperature set value control device and temperature set value control method

Publications (2)

Publication Number Publication Date
JP2014047931A true JP2014047931A (en) 2014-03-17
JP5977622B2 JP5977622B2 (en) 2016-08-24

Family

ID=50607798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188438A Expired - Fee Related JP5977622B2 (en) 2012-08-29 2012-08-29 Temperature set value control device and temperature set value control method

Country Status (1)

Country Link
JP (1) JP5977622B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044831A (en) * 2014-08-20 2016-04-04 株式会社Nttファシリティーズ Heat medium circulation system
JP6084737B1 (en) * 2015-10-06 2017-02-22 木村工機株式会社 Air conditioning system
CN106801975A (en) * 2016-12-28 2017-06-06 杭州裕达自动化科技有限公司 Refrigeration host computer Intelligentized control method in central air-conditioning monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882524B1 (en) 2020-03-16 2023-11-08 Mitsubishi Electric Corporation Air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172127A (en) * 1981-04-17 1982-10-22 Hitachi Ltd Control device for refrigerator
JPH1026388A (en) * 1996-07-09 1998-01-27 Yamatake Honeywell Co Ltd Air-conditioning control method
JP2009030823A (en) * 2007-07-24 2009-02-12 Yamatake Corp Air conditioning control system and air conditioning control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172127A (en) * 1981-04-17 1982-10-22 Hitachi Ltd Control device for refrigerator
JPH1026388A (en) * 1996-07-09 1998-01-27 Yamatake Honeywell Co Ltd Air-conditioning control method
JP2009030823A (en) * 2007-07-24 2009-02-12 Yamatake Corp Air conditioning control system and air conditioning control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044831A (en) * 2014-08-20 2016-04-04 株式会社Nttファシリティーズ Heat medium circulation system
JP6084737B1 (en) * 2015-10-06 2017-02-22 木村工機株式会社 Air conditioning system
JP2017072357A (en) * 2015-10-06 2017-04-13 木村工機株式会社 Air Conditioning System
CN106801975A (en) * 2016-12-28 2017-06-06 杭州裕达自动化科技有限公司 Refrigeration host computer Intelligentized control method in central air-conditioning monitoring system

Also Published As

Publication number Publication date
JP5977622B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
US11592201B2 (en) Space conditioning control and monitoring method and system
JP6295867B2 (en) Air conditioning control system and air conditioning control method
CN104748308B (en) The module machine system loads and the control method of off-load of a kind of optimization
US10900686B2 (en) Central plant control system with time dependent deferred load
Chen et al. An entransy dissipation-based optimization principle for building central chilled water systems
US11092352B2 (en) Central plant control system with computation reduction based on stranded node analysis
US8694166B2 (en) Dynamic HVAC airside economizer high limit start control
JP6324628B2 (en) Heat pump utilization system control device and heat pump utilization system including the same
JP2017101862A (en) Heat source control system and control method
JP5932419B2 (en) Heat recovery plant system, heat recovery plant control device, and heat recovery plant control method
JP5977622B2 (en) Temperature set value control device and temperature set value control method
US20190033800A1 (en) Central plant control system based on load prediction through mass storage model
JP2013170753A (en) Refrigerator system
JP2012242067A (en) Consumed energy calculator, consumed energy calculating method, and program
JP2007127321A (en) Cold water load factor controller for refrigerator
JP2011169588A (en) Air conditioning optimal control system
Zheng et al. Retrofit of air-conditioning system in data center using separate heat pipe system
JP5831379B2 (en) HEAT PUMP SYSTEM, ITS CONTROL METHOD AND PROGRAM
JP2012193903A (en) Air conditioning system using outside air, and outside air heat exchange system of the same
JP6849345B2 (en) Air conditioning system controls, control methods and control programs
Wu et al. The performance of mixture refrigerant R134a/R152a in a novel gas engine-driven heat pump system
JP6476818B2 (en) Heat demand estimation device, heat demand estimation method, equipment control device, equipment control method, equipment control system, control program, and recording medium
Yang et al. An optimal control strategy based on virtual flow measuring for variable flow primary pumping
JP6982146B2 (en) Air conditioning system controls, control methods, control programs and air conditioning systems
JP2018071805A (en) Air-conditioning control device, air-conditioning system, air-conditioning control method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R150 Certificate of patent or registration of utility model

Ref document number: 5977622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees