JP2014039492A - Method of producing ethanol from lignocellulose-containing biomass - Google Patents

Method of producing ethanol from lignocellulose-containing biomass Download PDF

Info

Publication number
JP2014039492A
JP2014039492A JP2012183122A JP2012183122A JP2014039492A JP 2014039492 A JP2014039492 A JP 2014039492A JP 2012183122 A JP2012183122 A JP 2012183122A JP 2012183122 A JP2012183122 A JP 2012183122A JP 2014039492 A JP2014039492 A JP 2014039492A
Authority
JP
Japan
Prior art keywords
culture tank
temperature
experimental example
culture
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012183122A
Other languages
Japanese (ja)
Inventor
Akira Tsukamoto
塚本  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2012183122A priority Critical patent/JP2014039492A/en
Publication of JP2014039492A publication Critical patent/JP2014039492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently producing ethanol from a lignocellulose raw material.SOLUTION: In a method of producing ethanol from a lignocellulose-based raw material where pre-treated lignocellulose-based raw material suspension, which is a raw material suitable for enzymatic saccharification reaction, is supplied to two culture tanks (a primary culture tank and a secondary culture tank) connected in series, and parallel saccharifying fermentation is performed in the two culture tanks by using cellulose-saccharifying enzyme and Issatchenkia orientalis as yeast, parallel saccharifying fermentation is performed within a ratio between a solution capacity in the primary culture tank and a solution capacity in the secondary culture tank of 7:3 to 3:7, and the parallel saccharifying fermentation is performed in a state where the temperature of raw material suspension in the secondary culture tank is higher than the temperature of raw material suspension in the primary culture tank by 1°C or more.

Description

本発明は、リグノセルロースを含有するバイオマスから効率的にエタノールを製造する方法に関する。   The present invention relates to a method for efficiently producing ethanol from biomass containing lignocellulose.

再生可能資源であるバガスや稲わら、木材チップなどのバイオマス資源からエタノールを製造し、エネルギーや化学原料として利用する試みが内外で進められている。
植物系バイオマス中の多糖類から発酵基質となる単糖や小糖類を製造する方法として酵素やその酵素を生産する微生物を用いて加水分解する酵素糖化法がある。酵素分解により、バイオマスに含まれるセルロースやヘミセルロースが分解されて、グルコース、ガラクトース、マンノース等の六炭糖やキシロース、アラビノース等の五炭糖が生成される。
Attempts to produce ethanol from biomass resources such as bagasse, rice straw, and wood chips, which are renewable resources, and to use them as energy and chemical raw materials are underway in Japan and overseas.
As a method for producing monosaccharides and small saccharides as fermentation substrates from polysaccharides in plant biomass, there is an enzyme saccharification method in which hydrolysis is performed using an enzyme or a microorganism that produces the enzyme. By enzymatic decomposition, cellulose and hemicellulose contained in the biomass are decomposed to produce hexoses such as glucose, galactose and mannose, and pentoses such as xylose and arabinose.

酵素分解により生成された糖類(六炭糖、五炭糖)を原料として酵母等の微生物で発酵させてエタノールを生産することが可能である。エタノールの生産を行う場合、酵素による糖化と酵母による発酵を同じ培養槽で行う併行糖化発酵が知られている。併行糖化発酵は、糖化と発酵を別々の培養槽で行う方法と比較し、反応時間が短縮できるというメリットがあるが、酵素反応と酵母の生育を同一の反応槽で行うため、酵素反応及び酵母の生育に適した最適温度で反応を実施できないという問題がある。エタノールの生産には一般にはサッカロマイセス・セラビシエ(Saccharomyces cerevisiae)が用いられている。併行糖化発酵で酵母としてサッカロマイセス・セラビシエを用いる場合、サッカロマイセス・セラビシエは30℃程度で生育可能であるため、併行糖化発酵を30℃程度で行う必要があり、糖化酵素の反応が低下する(糖化酵素の反応は一般に40〜50℃が適しているため)。前記問題を克服するために、近年、耐熱性酵母の作成が試みられており、一例として、40℃付近で生育可能なイサチェンキア・オリエンタリス(Issatchenkia orientalis)が報告されている。エタノール生産を行う場合、酵母の生育条件あるいは酵母によるエタノール生産効率は酵母の種類によっても異なるため、併行糖化発酵(あるいは発酵工程)でのエタノール生産に適した条件を最適化する必要がある。 It is possible to produce ethanol by fermentation with microorganisms such as yeast using saccharides (hexose sugar, pentose sugar) produced by enzymatic decomposition as raw materials. In the case of producing ethanol, parallel saccharification and fermentation in which saccharification by enzyme and fermentation by yeast are carried out in the same culture tank is known. Parallel saccharification and fermentation has the advantage that the reaction time can be shortened compared to the method in which saccharification and fermentation are performed in separate culture vessels. However, since the enzyme reaction and yeast growth are carried out in the same reaction vessel, the enzyme reaction and yeast There is a problem that the reaction cannot be carried out at the optimum temperature suitable for the growth of the rice. In general, Saccharomyces cerevisiae is used for ethanol production. When Saccharomyces cerevisiae is used as a yeast in concurrent saccharification and fermentation, Saccharomyces cerevisiae can grow at about 30 ° C., so it is necessary to carry out concurrent saccharification and fermentation at about 30 ° C., which reduces the reaction of saccharifying enzymes (saccharifying enzymes) This reaction is generally suitable at 40 to 50 ° C.). In recent years, attempts have been made to create thermotolerant yeasts in order to overcome the above problems, and as an example, Isatchenkia orientalis that can grow at around 40 ° C. has been reported. When ethanol production is performed, the growth conditions of yeast or the ethanol production efficiency by yeast vary depending on the type of yeast. Therefore, it is necessary to optimize conditions suitable for ethanol production in parallel saccharification and fermentation (or fermentation process).

セルロース系バイオマスの併行糖化発酵によりエタノールを生産する方法において、反応温度を初期温度から段階的にまたは連続的に低下させて併行糖化発酵(同時糖化発酵)を行う方法が報告されている(特許文献1)。しかし、酵母の生育条件あるいは酵母によるエタノール生産効率は酵母の種類によっても異なるため、特定の酵母を用いる場合、その酵母のエタノール生産に適した条件を最適化する必要がある。 In a method for producing ethanol by concurrent saccharification and fermentation of cellulosic biomass, a method for performing concurrent saccharification and fermentation (simultaneous saccharification and fermentation) by reducing the reaction temperature stepwise or continuously from the initial temperature has been reported (Patent Literature). 1). However, since the growth conditions of yeast or the ethanol production efficiency by yeast vary depending on the type of yeast, it is necessary to optimize conditions suitable for the ethanol production of the yeast when a specific yeast is used.

特開2010−246422号公報JP 2010-246422 A

本発明の課題は、リグノセルロースを含有するバイオマスから併行糖化発酵により酵母としてイサチェンキア・オリエンタリスを用いてエタノールを製造する方法において、効率的にエタノールを製造する方法を提供することにある。   The subject of this invention is providing the method of manufacturing ethanol efficiently in the method of manufacturing ethanol using Isachenchia orientalis as yeast from biomass containing lignocellulose by parallel saccharification and fermentation.

本発明者らは、上記の課題を解決するために鋭意検討した結果、酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料懸濁液を直列に連結した2槽の培養槽(一次培養槽と二次培養槽)に供給し、前記2槽の培養槽内でセルロース糖化酵素及び酵母としてイサチェンキア・オリエンタリス(Issatchenkia orientalis)を用いて併行糖化発酵を行うリグノセルロース系原料からのエタノール製造方法において、一次培養槽内の溶液容量と二次培養槽内の溶液容量の比率が7:3〜3:7の範囲で併行糖化発酵を行い、一次培養槽内の原料懸濁液の温度より二次培養槽内の原料懸濁液の温度を1℃以上高い温度で併行糖化発酵を行うことにより効率的にエタノールを生産できることを見出し、下記発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have two tanks in which lignocellulosic raw material suspensions that have been pretreated as raw materials suitable for enzymatic saccharification are connected in series. From the lignocellulosic raw material, which is supplied to a culture tank (primary culture tank and secondary culture tank) and subjected to parallel saccharification and fermentation using cellulose saccharifying enzyme and yeast Isachenchia orientalis in the two tanks In the ethanol production method, the saccharification and fermentation is performed in a ratio of the solution volume in the primary culture tank and the solution volume in the secondary culture tank in the range of 7: 3 to 3: 7, and the raw material suspension in the primary culture tank It has been found that ethanol can be produced efficiently by carrying out parallel saccharification and fermentation at a temperature of 1 ° C. or more higher than the temperature of the raw material suspension in the secondary culture tank. Completed the invention.

(1)酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料懸濁液を直列に連結した2槽の培養槽(一次培養槽と二次培養槽)に供給し、前記2槽の培養槽内でセルロース糖化酵素及び酵母としてイサチェンキア・オリエンタリス(Issatchenkia orientalis)を用いて併行糖化発酵を行うリグノセルロース系原料からのエタノール製造方法において、一次培養槽内の溶液容量と二次培養槽内の溶液容量の比率が7:3〜3:7の範囲で併行糖化発酵を行い、一次培養槽内の原料懸濁液の温度より二次培養槽内の原料懸濁液の温度を1℃以上高い温度で併行糖化発酵を行うことを特徴とするリグノセルロース系原料からのエタノール製造方法。 (1) Supplying to the two culture tanks (primary culture tank and secondary culture tank) which connected in series the lignocellulosic raw material suspension in which the pretreatment made into the raw material suitable for enzyme saccharification reaction is performed, In the method for producing ethanol from lignocellulosic raw materials in which saccharification and fermentation is performed using cellulose saccharifying enzyme and Isatchenkia orientalis as yeast in the two tanks, the solution volume and the secondary volume in the primary culture tank The parallel saccharification and fermentation is performed in a ratio of the solution volume in the culture tank of 7: 3 to 3: 7, and the temperature of the raw material suspension in the secondary culture tank is determined from the temperature of the raw material suspension in the primary culture tank. A method for producing ethanol from a lignocellulosic material, characterized in that parallel saccharification and fermentation is performed at a temperature of 1 ° C or higher.

(2)前記一次培養槽内の原料懸濁液の温度を36〜38℃、かつ二次培養槽内の原料懸濁液の温度を39〜43℃の範囲で併行糖化発酵を行うことを特徴とする(1)項に記載のリグノセルロース系原料からのエタノール製造方法。 (2) Parallel saccharification and fermentation are performed in a temperature range of 36 to 38 ° C. of the raw material suspension in the primary culture tank and a temperature of the raw material suspension in the secondary culture tank of 39 to 43 ° C. The method for producing ethanol from the lignocellulosic raw material according to (1).

(3)前記酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料が、リグノセルロース系原料に対して化学的処理、加圧熱水処理、機械的処理から選択される1つ以上の処理を含む前処理が施されているリグノセルロース含有バイオマスよりなる(1)項又は(2)項に記載のリグノセルロース系原料からのエタノール製造方法。 (3) The lignocellulosic raw material that has been pretreated as a raw material suitable for the enzymatic saccharification reaction is selected from chemical treatment, pressurized hot water treatment, and mechanical treatment for the lignocellulose raw material. The method for producing ethanol from a lignocellulosic raw material according to (1) or (2), which comprises a lignocellulose-containing biomass that has been subjected to pretreatment including one or more treatments.

(4)前記リグノセルロース系原料が林地残材であることを特徴とする(1)項〜(3)項のいずれか1項に記載のリグノセルロース系原料からのエタノール製造方法。 (4) The method for producing ethanol from a lignocellulosic material according to any one of (1) to (3), wherein the lignocellulosic material is a forest land residue.

本発明により、酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料懸濁液を直列に連結した2槽の培養槽(一次培養槽と二次培養槽)に供給し、前記2槽の培養槽内でセルロース糖化酵素及び酵母としてイサチェンキア・オリエンタリス(Issatchenkia orientalis)を用いて併行糖化発酵を行うリグノセルロース系原料からのエタノール製造方法において、一次培養槽内の溶液容量と二次培養槽内の溶液容量の比率が7:3〜3:7の範囲で併行糖化発酵を行い、一次培養槽内の原料懸濁液の温度より二次培養槽内の原料懸濁液の温度を1℃以上高い温度で併行糖化発酵を行うことにより効率的にエタノールを生産することが可能となる。 According to the present invention, a lignocellulosic raw material suspension, which has been pretreated as a raw material suitable for enzymatic saccharification reaction, is supplied to two culture tanks (primary culture tank and secondary culture tank) connected in series. In the method for producing ethanol from a lignocellulosic raw material in which saccharification and fermentation is performed using cellulose saccharifying enzyme and yeast as Isachenchia orientalis in the two culture tanks, the solution volume in the primary culture tank and The ratio of the solution volume in the secondary culture tank is subjected to parallel saccharification and fermentation in the range of 7: 3 to 3: 7, and the temperature of the raw material suspension in the secondary culture tank is determined from the temperature of the raw material suspension in the primary culture tank. It is possible to efficiently produce ethanol by carrying out parallel saccharification and fermentation at a temperature higher by 1 ° C. or higher.

本発明のリグノセルロース系原料からの糖類、又はエタノールの連続生産方法を実施するための装置の一例を示す図である。It is a figure which shows an example of the apparatus for implementing the continuous production method of the saccharide | sugar from the lignocellulose raw material of this invention, or ethanol.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

<リグノセルロース系原料>
本発明の方法で原料として使用するリグノセルロース系原料としては、木質系として、製紙用樹木、林地残材、間伐材等のチップ又は樹皮、木本性植物の切株から発生した萌芽、製材工場等から発生する鋸屑又はおがくず、街路樹の剪定枝葉、建築廃材等が挙げられ、草本系としてケナフ、稲藁、麦わら、コーンコブ、バガス等の農産廃棄物、油用作物やゴム等の工芸作物の残渣及び廃棄物(例えば、EFB: Empty Fruit Bunch)、草本系エネルギー作物のエリアンサス、ミスカンサスやネピアグラス等が挙げられる。
また、バイオマスとしては、木材由来の紙、古紙、パルプ、パルプスラッジ、スラッジ、下水汚泥等、食品廃棄物、等を原料として利用することができる。これらのバイオマスは、単独、あるいは複数を組み合わせて使用することができる。また、バイオマスは、乾燥固形物であっても、水分を含んだ固形物であっても、スラリーであっても用いることができる。
<Lignocellulose raw material>
As a lignocellulosic raw material used as a raw material in the method of the present invention, as a woody system, chips or bark of papermaking trees, forest land residual materials, thinned wood, etc., sprouts generated from stumps of woody plants, sawmills, etc. Sawdust or sawdust that is generated, pruned branches and leaves of street trees, building waste, etc., and herbaceous agricultural waste such as kenaf, rice straw, straw, corn cob, bagasse, industrial crop residues such as oil crops and rubber, and Examples include wastes (for example, EFB: Empty Fruit Bunch), herbaceous energy crops Eliansus, Miscanthus, and Napiergrass.
Further, as biomass, food waste such as paper derived from wood, waste paper, pulp, pulp sludge, sludge, sewage sludge, and the like can be used as raw materials. These biomasses can be used alone or in combination. The biomass can be used as a dry solid, a solid containing water, or a slurry.

前記木質系のリグノセルロース系原料としては、ユーカリ(Eucalyptus)属植物、ヤナギ(Salix)属植物、ポプラ属植物、アカシア(Acacia)属植物、スギ(Cryptomeria)属植物等が利用できるが、ユーカリ属植物、アカシア属、ヤナギ属植物が原料として大量に採取し易いため好ましい。木本性植物由来のリグノセルロース系原料の中では、林地残材(樹皮、枝葉を含む)、樹皮が好ましい。例えば、製紙原料用として一般に用いられるユーカリ(Eucalyptus)属又はアカシア(Acacia)属等の樹種の樹皮は、製紙原料用の製材工場やチップ工場等から安定して大量に入手可能であるため、特に好適に用いられる。   Examples of the woody lignocellulosic raw material include Eucalyptus genus plants, Salix genus plants, Poplar genus plants, Acacia genus plants, and Cryptomeria genus plants. Plants, genus Acacia and willow genus are preferable because they can be easily collected in large quantities as raw materials. Among the lignocellulosic raw materials derived from woody plants, forest land remnants (including bark and leaves) and bark are preferable. For example, bark of tree species such as Eucalyptus genus or Acacia genus commonly used for papermaking raw materials can be obtained in large quantities stably from lumber mills and chip factories for papermaking raw materials. Preferably used.

<機械的処理>
本発明では、前記リグノセルロース原料に機械的処理を施すことができる。機械的処理としては、切断、裁断、破砕、磨砕等の任意の機械的手段が挙げられ、リグノセルロースを次工程の化学的処理工程で糖化され易い状態にすることである。使用する機械装置については特に限定されないが、例えば、切出し装置、一軸破砕機、二軸破砕機、ハンマークラッシャー、レファイナー、ニーダー、ボールミル等を用いることができる。
<Mechanical processing>
In the present invention, the lignocellulose raw material can be subjected to mechanical treatment. Examples of the mechanical treatment include any mechanical means such as cutting, cutting, crushing, and grinding, and making lignocellulose easy to be saccharified in the next chemical treatment step. Although it does not specifically limit about the mechanical apparatus to be used, For example, a cutting device, a uniaxial crusher, a biaxial crusher, a hammer crusher, a refiner, a kneader, a ball mill etc. can be used.

前記機械的処理の前工程又は後工程として、異物(石、ゴミ、金属、プラステック等のリグノセルロース以外の異物)を除去するための洗浄などによる異物除去工程を導入することもできる。
原料を洗浄する方法としては、例えば、原料に水を噴射して原料に混合されている異物を除く方法、あるいは、原料を水中に浸漬し異物を沈降させて取り除く方法等が挙げられる。また、メタルトラップ等の装置を用いて、異物を原料から分離する方法が挙げられる。
原料に異物が含まれていると、リファイナーのディスク(プレート)等の機械的処理で用いる装置の部品を破損させる可能性があるし、配管が詰まる等の製造工程内でトラブルを起こす等の問題が発生するため、異物除去工程を導入することが望ましい。
As a pre-process or post-process of the mechanical treatment, a foreign matter removing step by washing or the like for removing foreign matter (foreign matter other than lignocellulose such as stone, dust, metal, plastic) can be introduced.
Examples of the method for washing the raw material include a method of removing water from the foreign material mixed with the raw material by spraying water on the raw material, or a method of removing the foreign material by immersing the raw material in water and sedimenting the foreign material. Moreover, the method of isolate | separating a foreign material from a raw material using apparatuses, such as a metal trap, is mentioned.
If foreign materials are included in the raw materials, there is a possibility of causing damage to equipment parts used in mechanical processing such as refiner discs (plates), and causing problems in the manufacturing process such as clogging of piping. Therefore, it is desirable to introduce a foreign substance removing step.

<化学的処理>
前記、機械的処理を施したリグノセルロース原料を次に化学的処理する。化学的処理としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム及び炭酸水素ナトリウムから選ばれる1種以上のアルカリ薬品、又は、亜硫酸ナトリウムと前記アルカリ薬品の中から選ばれる1種以上のアルカリ薬品を含有する溶液に浸漬する化学的処理を含む前処理である。また、オゾン、二酸化塩素などの酸化剤による化学的処理も可能である。
化学的処理は、前記機械的処理と組み合わせてそれらの前処理の後処理として行うことが好適である。
<Chemical treatment>
Next, the mechanically treated lignocellulose raw material is then chemically treated. As the chemical treatment, one or more alkali chemicals selected from sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate and sodium hydrogen carbonate, or one or more selected from sodium sulfite and the above alkaline chemicals are used. This is a pretreatment including a chemical treatment of immersing in a solution containing an alkaline chemical. Further, chemical treatment with an oxidizing agent such as ozone or chlorine dioxide is also possible.
The chemical treatment is preferably performed as a post-treatment of the pretreatment in combination with the mechanical treatment.

化学的処理で使用する薬品の添加量は、状況に応じて任意に調整可能であるが、薬品コストを低減するために、またセルロースの溶出・過分解による収率低下を抑制するために、リグノセルロース系原料の絶乾100質量部に対して50質量部以下であることが望ましい。化学的処理における薬品の水溶液への浸漬時間及び処理温度は、使用する原料や薬品によって任意に設定可能であるが、処理時間20〜90分、処理温度80〜200℃が好ましい。処理条件を厳しくすることで、原料中のセルロースの液側への溶出又は過分解が起こる場合もあるため、処理時間は70分以下、処理温度は180℃以下であることが好ましい。   The amount of chemicals used in the chemical treatment can be arbitrarily adjusted depending on the situation, but in order to reduce chemical costs and to suppress the yield reduction due to cellulose elution / overdecomposition, It is desirable that it is 50 mass parts or less with respect to 100 mass parts of absolutely dry cellulosic raw materials. The immersion time and the treatment temperature of the chemical in the chemical treatment can be arbitrarily set depending on the raw materials and chemicals to be used, but a treatment time of 20 to 90 minutes and a treatment temperature of 80 to 200 ° C. are preferable. By tightening the processing conditions, elution or excessive decomposition of cellulose in the raw material may occur, so that the processing time is preferably 70 minutes or less and the processing temperature is preferably 180 ° C. or less.

化学処理として、リグノセルロース原料(乾燥重量)に対して10〜50質量%の亜硫酸ナトリウム及びpH調整剤として0.1〜5質量%のアルカリを添加することもできる。リグノセルロースに亜硫酸ナトリウムを前記の添加量で単独で添加して加熱処理すると、加水分解中に酢酸等の有機酸が生成するためpHの低下が起こり加水分解液が酸性となる。加水分解液が酸性の条件下で加水分解を継続すると加水分解で生成されたキシロースがフルフラールに変換するという問題が発生する。フルフラールは、エタノール発酵の阻害物質となるため可能な限り生成させないことが望ましい。また、発酵基質であるキシロースの収率が低下するため結果としてエタノール生産効率が低下する。本発明では、リグノセルロース原料に前記の添加量で亜硫酸ナトリウム及びpH調整剤としてアルカリを添加して加熱処理することにより、加水分解中のpHが中性〜弱アルカリ性に維持されるため、フルフラールの生成及びキシロースの収率低下を抑制することができる。また、加熱処理後(加水分解後)のリグノセルロースを含む水溶液のpHが4.0〜7.0(中性〜弱アルカリ性)となるため、加水分解処理後の廃液あるいは加水分解物を中和するための薬品の使用量を低減できるというメリットがある。   As chemical treatment, 10 to 50% by mass of sodium sulfite and 0.1 to 5% by mass of alkali as a pH adjuster can be added to the lignocellulose raw material (dry weight). When sodium sulfite is added alone to the lignocellulose in the above-mentioned addition amount and heat-treated, an organic acid such as acetic acid is generated during hydrolysis, so that the pH is lowered and the hydrolyzed solution becomes acidic. When hydrolysis is continued under acidic conditions, the problem arises that xylose produced by hydrolysis is converted to furfural. Since furfural is an inhibitor of ethanol fermentation, it is desirable not to produce it as much as possible. Moreover, since the yield of xylose which is a fermentation substrate falls, ethanol production efficiency falls as a result. In the present invention, by adding sodium sulfite and an alkali as a pH adjuster to the lignocellulose raw material in the above-described amount and heat-treating, the pH during hydrolysis is maintained from neutral to weakly alkaline. Production and reduction in xylose yield can be suppressed. Moreover, since the pH of the aqueous solution containing lignocellulose after heat treatment (after hydrolysis) is 4.0 to 7.0 (neutral to weakly alkaline), the waste liquid or hydrolyzate after the hydrolysis treatment is neutralized. There is a merit that the amount of chemicals used for the reduction can be reduced.

前記pH調整剤として用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等が挙げられるが、これらの薬品に特に限定されない。使用するアルカリは、水酸化ナトリウムが望ましい。   Examples of the alkali used as the pH adjuster include sodium hydroxide, potassium hydroxide, sodium carbonate and the like, but are not particularly limited to these chemicals. The alkali used is preferably sodium hydroxide.

前記、リグノセルロース原料(乾燥重量)に対して10〜50質量%の亜硫酸ナトリウム及びpH調整剤として0.1〜5質量%のアルカリを添加して加熱処理を行う場合の加熱処理温度は、80〜200℃が好ましく、120〜180℃がさらに好ましい。また、加熱処理時間は、10〜300分で行うことができるが、30〜120分が好ましい。処理条件を厳しくすることで、原料中のセルロースの液側への溶出又は過分解が起こる場合もあるため、処理温度は、180℃以下、処理時間は120分以下であることが好ましい。 The heat treatment temperature when the heat treatment is performed by adding 10 to 50% by weight of sodium sulfite and 0.1 to 5% by weight of alkali as a pH adjuster to the lignocellulose raw material (dry weight) is 80 -200 degreeC is preferable and 120-180 degreeC is more preferable. Moreover, although heat processing time can be performed in 10 to 300 minutes, 30 to 120 minutes are preferable. By tightening the processing conditions, elution or excessive decomposition of cellulose in the raw material may occur, so that the processing temperature is preferably 180 ° C. or lower and the processing time is 120 minutes or shorter.

(磨砕処理)
本発明では、前記化学処理により得られたリグノセルロース原料をレファイナーのディスク(プレート)のクリアランスを0.1〜2.0mmの範囲で磨砕することが好ましく0.1〜1.0mmの範囲がさらに好ましい。使用するレファイナーとしては、シングルディスクレファイナー、ダブルディスクレファイナー等を使用することができ相対するディスクのクリアランスを0.1〜2.0mmの範囲に設定できるレファイナーであれば特に制限なく使用することができる。ディスクのクリアランスが2.0mmを超えると糖化または併行糖化発酵で得られる糖収率が添加するため好ましくない。一方、ディスクのクリアランスが0.1mmより低いとレファイナーで磨砕処理した後の加水分解物(固形分)の収率が低下するため好ましくない。また、ディスクのクリアランスが0.1mmより低いとレファイナーの運転に要する電気消費量が増大するため好ましくない。
(Grinding treatment)
In the present invention, the lignocellulosic raw material obtained by the chemical treatment is preferably ground in a refiner disk (plate) clearance of 0.1 to 2.0 mm, preferably in the range of 0.1 to 1.0 mm. Further preferred. As a refiner to be used, a single disk refiner, a double disk refiner, or the like can be used, and any refiner that can set the clearance of the opposing disk within a range of 0.1 to 2.0 mm can be used without particular limitation. it can. If the disc clearance exceeds 2.0 mm, the sugar yield obtained by saccharification or concurrent saccharification and fermentation is added, which is not preferable. On the other hand, if the disc clearance is lower than 0.1 mm, the yield of the hydrolyzate (solid content) after grinding with a refiner is not preferable. Also, if the disc clearance is lower than 0.1 mm, the electricity consumption required for the operation of the refiner increases, which is not preferable.

前記の磨砕処理が施されているリグノセルロース系原料を水溶液と固形分に固液分離し、固形分を糖化または併行糖化発酵の原料として用いる。固液分離する方法としては、例えば、スクリュープレス等を用いて水溶液と固形分に分離することができ、水溶液と固形分に分離することができる装置であれば制限なく使用することができる。   The lignocellulosic raw material that has been subjected to the above grinding treatment is subjected to solid-liquid separation into an aqueous solution and a solid content, and the solid content is used as a raw material for saccharification or concurrent saccharification and fermentation. As a method for solid-liquid separation, for example, an apparatus that can be separated into an aqueous solution and a solid content using a screw press or the like and can be used without limitation as long as it can be separated into an aqueous solution and a solid content.

前記の固形分離後の原料を用いて糖化または併行糖化発酵を行う前に殺菌処理を行うことが好ましい。リグノセルロース系バイオマス原料中に雑菌が混入していると、酵素による糖化を行う際に雑菌が糖を消費して生成物の収量が低下してしまうという問題が発生する。
殺菌処理は、酸やアルカリなど、菌の生育困難なpHに原料を晒す方法でも良いが、高温下で処理する方法でも良く、両方を組み合わせても良い。酸、アルカリ処理後の原料については、中性付近、もしくは、糖化及び/又は糖化発酵工程に適したpHに調整した後に原料として使用することが好ましい。また、高温殺菌した場合も、室温もしくは糖化発酵工程に適した温度まで降温させてから原料として使用することが好ましい。このように、温度やpHを調整してから原料を送り出すことで、好適pH、好適温度外に酵素が晒されて、失活することを防ぐことができる。
It is preferable to perform sterilization treatment before saccharification or parallel saccharification fermentation using the raw material after the solid separation. When miscellaneous bacteria are mixed in the lignocellulosic biomass raw material, there is a problem that the miscellaneous bacteria consume sugar when the enzyme is saccharified and the yield of the product decreases.
The sterilization treatment may be a method in which the raw material is exposed to a pH at which bacteria are difficult to grow, such as an acid or an alkali. About the raw material after an acid and an alkali treatment, it is preferable to use as a raw material, after adjusting to neutrality vicinity or pH suitable for a saccharification and / or saccharification fermentation process. In addition, even when pasteurized at a high temperature, it is preferably used as a raw material after the temperature is lowered to room temperature or a temperature suitable for the saccharification and fermentation process. Thus, by feeding out the raw material after adjusting the temperature and pH, it is possible to prevent the enzyme from being exposed to the outside of the preferred pH and the preferred temperature and being deactivated.

前記前処理が施されているリグノセルロース原料が、併行糖化発酵工程へ供給される。   The lignocellulose raw material subjected to the pretreatment is supplied to the concurrent saccharification and fermentation step.

<併行糖化発酵工程>
酵素糖化反応に適した前処理が施されたリグノセルロース系原料は、併行糖化発酵工程へ供給されて適量の水と酵素と混合されて原料懸濁液とされ、さらに酵母:イサチェンキア・オリエンタリス(Issatchenkia orientalis)と混合される。リグノセルロース系原料は酵素により糖化され、生成された糖類が酵母によりエタノールに発酵される。
<Concurrent saccharification and fermentation process>
The lignocellulosic raw material that has been subjected to pretreatment suitable for enzymatic saccharification reaction is supplied to the parallel saccharification and fermentation process, mixed with an appropriate amount of water and enzyme to form a raw material suspension, and further yeast: Isatchenkia Orientalis (Issatchenkia) orientalis). The lignocellulosic raw material is saccharified by an enzyme, and the produced saccharide is fermented to ethanol by yeast.

本発明では、併行糖化発酵工程において2槽の培養槽(一次培養槽、及び二次培養槽)を直列に連結して用いる。前記培養槽は、併行糖化発酵を行うことが可能な培養槽であれば培養槽の容量、形状、材質は特に制限されない。一次培養槽と二次培養槽内の溶液容量の比率は7:3〜3:7の範囲が好ましく、6:4〜4:6の範囲がさらに好ましい。   In the present invention, two culture tanks (a primary culture tank and a secondary culture tank) are connected in series in the parallel saccharification and fermentation step. If the said culture tank is a culture tank which can perform parallel saccharification fermentation, the capacity | capacitance, shape, and material of a culture tank will not be restrict | limited in particular. The ratio of the solution volume in the primary culture tank and the secondary culture tank is preferably in the range of 7: 3 to 3: 7, and more preferably in the range of 6: 4 to 4: 6.

図1に示すように、前記前処理が施されたリグノセルロース系原料は一次培養槽Aの供給口1から連続的あるいは断続的に添加される。添加する原料は、固形分の状態でも良いし、水溶液に懸濁した状態でも良い。一次培養槽A内で原料の併行糖化発酵処理が行われ、リグノセルロース系原料が酵素により糖化されて、生成された糖類が同時にエタノールに変換される。前記併行糖化発酵後の原料懸濁液は一次培養槽Aの排出口2から連続的あるいは断続的に排出される。 As shown in FIG. 1, the pretreated lignocellulosic material is added continuously or intermittently from the supply port 1 of the primary culture tank A. The raw material to be added may be in a solid state or suspended in an aqueous solution. In the primary culture tank A, the raw saccharification and fermentation treatment of the raw material is performed, the lignocellulosic raw material is saccharified by an enzyme, and the produced saccharide is simultaneously converted into ethanol. The raw material suspension after the concurrent saccharification and fermentation is continuously or intermittently discharged from the discharge port 2 of the primary culture tank A.

一次培養槽Aの排出口2から排出された原料懸濁液は、二次培養槽Bの供給口から二次培養槽B内に供給される。二次培養槽B内へ供給された原料懸濁液に含まれる未分解の繊維や多糖類はさらに二次培養槽B内で併行糖化発酵処理される。併行糖化発酵後の原料懸濁液は二次培養槽Bの排出口3から連続的あるいは断続的に排出される。 The raw material suspension discharged from the discharge port 2 of the primary culture tank A is supplied into the secondary culture tank B from the supply port of the secondary culture tank B. Undegraded fibers and polysaccharides contained in the raw material suspension supplied into the secondary culture tank B are further subjected to parallel saccharification and fermentation treatment in the secondary culture tank B. The raw material suspension after the concurrent saccharification and fermentation is discharged continuously or intermittently from the discharge port 3 of the secondary culture tank B.

本発明では、一次培養槽内の原料懸濁液の温度より二次培養槽内の原料懸濁液の温度を1℃以上高い温度で併行糖化発酵を行うことが好ましく、一次培養槽内の原料懸濁液の温度を36〜38℃、かつ二次培養槽内の原料懸濁液の温度を39〜43℃の範囲で併行糖化発酵を行うことがさらに好ましい。
一次培養槽A内と二次培養槽B内の原料懸濁液の温度を前記範囲に維持することにより、副産物として生成されるグリセロールがエタノールに変換されるためエタノール生産性が高まる。
In the present invention, it is preferable to perform parallel saccharification and fermentation at a temperature of the raw material suspension in the secondary culture tank higher by 1 ° C. or more than the temperature of the raw material suspension in the primary culture tank. It is more preferable to perform parallel saccharification and fermentation at a temperature of the suspension of 36 to 38 ° C and a temperature of the raw material suspension in the secondary culture tank of 39 to 43 ° C.
By maintaining the temperature of the raw material suspension in the primary culture tank A and the secondary culture tank B in the above range, glycerol produced as a by-product is converted to ethanol, so that ethanol productivity is increased.

併行糖化発酵で使用するセルロース分解酵素は、セロビオヒドロラーゼ活性、エンドグルカナーゼ活性、ベータグルコシダーゼ活性を有する、所謂セルラーゼと総称される酵素である。
各セルロース分解酵素は、夫々の活性を有する酵素を適宜の量で添加しても良いが、市販されているセルラーゼ製剤は、上記の各種のセルラーゼ活性を有すると同時に、ヘミセルラーゼ活性も有しているものが多いので市販のセルラーゼ製剤を用いれば良い。
Cellulolytic enzymes used in parallel saccharification and fermentation are enzymes collectively called cellulases having cellobiohydrolase activity, endoglucanase activity, and betaglucosidase activity.
Each cellulolytic enzyme may be added with an appropriate amount of an enzyme having the respective activity. However, commercially available cellulase preparations have the above-mentioned various cellulase activities and also have hemicellulase activity. Since many products are available, a commercially available cellulase preparation may be used.

市販のセルラーゼ製剤としては、トリコデルマ(Trichoderma)属、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、ファネロケエテ(Phanerochaete)属、トラメテス(Trametes)属、フーミコラ(Humicola)属、バチルス(Bacillus)属などに由来するセルラーゼ製剤がある。このようなセルラーゼ製剤の市販品としては、全て商品名で、例えば、セルロイシンT2(エイチピィアイ社製)、メイセラーゼ(明治製菓社製)、ノボザイム188(ノボザイム社製)、マルティフェクトCX10L(ジェネンコア社製)、GC220(ジェネンコア社製)等が挙げられる。
原料固形分100質量部に対するセルラーゼ製剤の使用量は、0.5〜100質量部が好ましく、1〜50質量部が特に好ましい。
Commercial cellulase preparations include the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Phanerochaete, the genus Trametes, the genus Humicola, and the like. There are cellulase formulations derived from Commercially available products of such cellulase preparations are all trade names, for example, cellulosin T2 (manufactured by HIPI), mecerase (manufactured by Meiji Seika Co., Ltd.), Novozyme 188 (manufactured by Novozyme), multifect CX10L (manufactured by Genencor) ), GC220 (manufactured by Genencor).
0.5-100 mass parts is preferable and, as for the usage-amount of the cellulase formulation with respect to 100 mass parts of raw material solid content, 1-50 mass parts is especially preferable.

併行糖化発酵工程での反応液のpHは3.5〜10.0の範囲に維持することが好ましく、pH4.0〜7.5の範囲に維持することがさらに好ましい。 The pH of the reaction solution in the concurrent saccharification and fermentation step is preferably maintained in the range of 3.5 to 10.0, more preferably in the range of pH 4.0 to 7.5.

併行糖化発酵工程での反応は、連続式が好ましいが、セミバッチ式、バッチ式でも良い。   The reaction in the concurrent saccharification and fermentation process is preferably a continuous type, but may be a semibatch type or a batch type.

併行糖化発酵工程における各培養槽(一次培養槽A又は二次培養槽B)での反応液の滞留時間は、3〜100時間が好ましく、5〜50時間さらに好ましい。 The residence time of the reaction solution in each culture tank (primary culture tank A or secondary culture tank B) in the concurrent saccharification and fermentation step is preferably 3 to 100 hours, and more preferably 5 to 50 hours.

酵母として用いるイサチェンキア・オリエンタリス(Issatchenkia orientalis)は、遺伝子組換技術を用いて作製した遺伝子組換微生物であってもよい。遺伝子組換微生物としては、六炭糖と五炭糖を同時に発酵できる微生物を特に制限なく用いることができる。
微生物は固定化しておいても良い。微生物を固定化しておくと、次工程で微生物を分離して再回収するという工程を省くことができるため、少なくとも回収工程に要する負担を軽減することができ、微生物のロスが軽減できるというメリットがある。また、凝集性のある微生物を選択することにより微生物の回収を容易にすることができる。
Isatchenkia orientalis used as yeast may be a genetically modified microorganism prepared using a gene recombination technique. As the genetically modified microorganism, a microorganism capable of simultaneously fermenting hexose and pentose can be used without particular limitation.
Microorganisms may be immobilized. By immobilizing microorganisms, the process of separating and re-recovering microorganisms in the next process can be omitted, so that at least the burden required for the recovery process can be reduced and the loss of microorganisms can be reduced. is there. Moreover, the collection of microorganisms can be facilitated by selecting microorganisms having aggregating properties.

本発明では、併行糖化発酵工程内に電解質として水溶性塩を添加することができる。併行糖化発酵工程で用いる原料懸濁液に電解質を添加し原料懸濁液の電気伝導度を5〜25mS/cmの範囲に維持することが好ましい。電気伝導度を5〜25mS/cmの範囲に維持することによりリグノセルロース原料の未反応成分や反応残渣等への酵素の吸着が抑制されるため、工程内における酵素の循環率が長期にわたって高い水準に維持することができる。糖類の製造あるいはエタノールの製造工程内において、操作上、電解質を添加することが可能な工程であれば、いずれの工程においても制限なく電解質を添加することができるが、併行糖化発酵工程内で添加することが操作が容易なため望ましい。   In the present invention, a water-soluble salt can be added as an electrolyte in the concurrent saccharification and fermentation process. It is preferable to add an electrolyte to the raw material suspension used in the concurrent saccharification and fermentation step to maintain the electric conductivity of the raw material suspension in the range of 5 to 25 mS / cm. By maintaining the electric conductivity in the range of 5 to 25 mS / cm, the adsorption of the enzyme to the unreacted components and reaction residues of the lignocellulose raw material is suppressed, so the enzyme circulation rate in the process is high for a long period of time. Can be maintained. The electrolyte can be added without limitation in any process as long as the electrolyte can be added in the operation in the sugar production process or ethanol production process, but it is added in the concurrent saccharification and fermentation process. This is desirable because it is easy to operate.

水溶性塩としては、アルカリ金属塩及びアルカリ土類金属塩から選ばれる塩類が好ましい。アルカリ金属塩及びアルカリ土類金属塩としては、アルカリ金属やアルカリ土類金属のハロゲン化物、硫酸塩、亜硫酸塩、チオ硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、リン酸二水素塩、リン酸水素二塩、酢酸塩、クエン酸塩からなる群から選ばれる水溶性塩が挙げられる。   As the water-soluble salt, salts selected from alkali metal salts and alkaline earth metal salts are preferable. Alkali metal salts and alkaline earth metal salts include alkali metal and alkaline earth metal halides, sulfates, sulfites, thiosulfates, carbonates, bicarbonates, phosphates, dihydrogen phosphates, Examples thereof include water-soluble salts selected from the group consisting of hydrogen phosphate di-salt, acetate and citrate.

併行糖化発酵工程から排出された培養液は、固液分離工程へ移送し液体分(濾液)と固形分(残渣)に分離することができる。固液分離を行う装置としては、スクリュープレス、スクリーン、フィルタープレス、ベルトプレス、ロータリープレス等を用いることができる。スクリーンとしては、振動装置が付加された振動スクリーンなどを用いることができる。
回収された固形分(残渣)は併行糖化発酵工程へ移送し併行糖化発酵の原料として用いることもできる。
The culture solution discharged from the concurrent saccharification and fermentation step can be transferred to a solid-liquid separation step and separated into a liquid component (filtrate) and a solid component (residue). As an apparatus for performing solid-liquid separation, a screw press, a screen, a filter press, a belt press, a rotary press, or the like can be used. As the screen, a vibrating screen to which a vibrating device is added can be used.
The recovered solid content (residue) can be transferred to a parallel saccharification and fermentation process and used as a raw material for the parallel saccharification and fermentation.

前記固液分離工程で分離された液体分は、蒸留工程へ移送し減圧蒸留装置により発酵生成物(エタノール等)を蒸留分離することができる。減圧下では低い温度で発酵生成物を分離できるため、酵素の失活を防ぐことができる。減圧蒸留装置としては、ロータリーエバポレーター、フラッシュエバポレーターなどを用いることができる。
蒸留温度は25〜60℃が好ましい。25℃未満であると、生成物の蒸留に時間がかかって生産性が低下する。また、60℃より高いと、酵素が熱変性して失活してしまい、新たに追加する酵素量が増加するため経済性が悪くなる。
蒸留後の蒸留残渣留分中に残る発酵生成物濃度は0.1質量%以下であることが好ましい。このような濃度にすることによって、後段の固液分離工程において固形物とともに排出される発酵生成物量を低減することができ、収率を向上させることができる。
The liquid component separated in the solid-liquid separation step can be transferred to a distillation step and a fermentation product (ethanol or the like) can be distilled and separated by a vacuum distillation apparatus. Since the fermentation product can be separated at a low temperature under reduced pressure, inactivation of the enzyme can be prevented. As the vacuum distillation apparatus, a rotary evaporator, a flash evaporator, or the like can be used.
The distillation temperature is preferably 25 to 60 ° C. If it is lower than 25 ° C., it takes time to distill the product, and the productivity is lowered. On the other hand, when the temperature is higher than 60 ° C., the enzyme is heat-denatured and deactivated, and the amount of newly added enzyme increases, resulting in poor economic efficiency.
The concentration of the fermentation product remaining in the distillation residue fraction after distillation is preferably 0.1% by mass or less. By setting it as such a density | concentration, the amount of fermentation products discharged | emitted with a solid substance in a subsequent solid-liquid separation process can be reduced, and a yield can be improved.

蒸留後の発酵生成物(エタノール等)を分離した後の蒸留残液は、残渣分離工程へ移送し液体留分と残渣に分離することができる。残渣分離工程で分離された液体留分には酵素が含まれており併行糖化発酵槽BR1に循環することができる。また、二次併行糖化発酵工程(前記、一次併行糖化発酵工程とは異なる併行糖化発酵工程)へ移送することもできる。二次併行糖化発酵工程では、新しいリグノセルロース原料を添加して糖化発酵させることもできるし、キシロース等の五炭糖の発酵を目的とした発酵を行うこともできる。   The distillation residue after separating the fermentation product (such as ethanol) after distillation can be transferred to a residue separation step and separated into a liquid fraction and a residue. The liquid fraction separated in the residue separation step contains an enzyme and can be circulated to the parallel saccharification and fermentation tank BR1. Moreover, it can also transfer to a secondary parallel saccharification and fermentation process (The above-mentioned parallel saccharification and fermentation process is different from the primary parallel saccharification and fermentation process). In the secondary concurrent saccharification and fermentation step, a new lignocellulose raw material can be added to cause saccharification and fermentation, or fermentation for the purpose of fermentation of pentoses such as xylose can be performed.

残渣分離工程で分離された残渣には、酵素、リグニン、発酵微生物が含まれている。リグニンは、燃焼原料として回収しエネルギーとして利用することもできるし、リグニンを回収し有効利用することもできる。また、発酵微生物(酵母など)を残渣から分離して、併行糖化発酵工程で再利用することもできる。また、残渣には酵素が吸着しているため、残渣(残渣懸濁液)に水溶性塩類を添加し、残渣から酵素を遊離させて酵素を回収し、回収した酵素を工程内で再利用することもできる。 Residues separated in the residue separation step include enzymes, lignin, and fermenting microorganisms. Lignin can be recovered as a combustion raw material and used as energy, or lignin can be recovered and used effectively. Moreover, fermenting microorganisms (yeast etc.) can be isolate | separated from a residue, and can also be reused in a parallel saccharification fermentation process. In addition, since the enzyme is adsorbed on the residue, water-soluble salts are added to the residue (residue suspension), the enzyme is released from the residue, the enzyme is recovered, and the recovered enzyme is reused in the process. You can also.

二次併行糖化発酵を行う場合、二次併行糖化発酵で生成された発酵生成物を回収するために、二次併行糖化発酵工程の後に蒸留工程を設置しても良い。また、二次併行糖化発酵槽から排出された培養液に含まれる残渣を除去するために、二次併行糖化発酵工程の後に固液分離を行って残渣を除去することもできる。   When performing secondary concurrent saccharification and fermentation, a distillation step may be installed after the secondary concurrent saccharification and fermentation step in order to recover the fermentation product produced by the secondary concurrent saccharification and fermentation. Moreover, in order to remove the residue contained in the culture solution discharged | emitted from the secondary parallel saccharification and fermentation tank, solid-liquid separation can also be performed after a secondary parallel saccharification and fermentation process, and a residue can also be removed.

次に実施例を示して本発明を更に詳細に説明するが、本発明はこれらの実施例等によって限定されるものではない。 EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these Examples.

[実験例1]
図1に示す製造工程で試験を実施した。
[前処理]
チップ状のユーカリ・グロブラスの林地残材(樹皮70%、枝葉30%)を20mmの丸孔スクリーンを取り付けた一軸破砕機(西邦機工社製、SC−15)で破砕し原料として用いた。
上記原料100kg(絶乾重量)に対して97%亜硫酸ナトリウム20kg及び水酸化ナトリウム1kgを添加後、水を添加し水溶液の容量を800Lに調整した。前記原料懸濁液を混合後、170℃で1時間加熱した。加熱処理後の原料懸濁液をレファイナー(熊谷理器工業製、KRK高濃度ディスクレファイナー)でディスク(プレート)のクリアランスを1.0mmに設定し磨砕した。次に20メッシュ(847μm)のスクリーンを用いて固液分離(脱水)することにより溶液の電気伝導度が30μS/cmになるまで水で洗浄した。固液分離後の固形物(前処理物)を原料として糖化試験を実施した。
[Experimental Example 1]
The test was carried out in the manufacturing process shown in FIG.
[Preprocessing]
Chip-like eucalyptus and globula woodland residues (70% bark, 30% branches and leaves) were crushed with a uniaxial crusher (SC-15, manufactured by Saiho Kiko Co., Ltd.) equipped with a 20 mm round hole screen and used as a raw material.
After adding 20 kg of 97% sodium sulfite and 1 kg of sodium hydroxide to 100 kg (absolute dry weight) of the raw material, water was added to adjust the volume of the aqueous solution to 800 L. The raw material suspension was mixed and then heated at 170 ° C. for 1 hour. The raw material suspension after the heat treatment was crushed with a refiner (manufactured by Kumagai Riki Kogyo Co., Ltd., KRK high concentration disc refiner) with the disc (plate) clearance set to 1.0 mm. Next, solid-liquid separation (dehydration) was performed using a 20-mesh (847 μm) screen, and the solution was washed with water until the electric conductivity of the solution reached 30 μS / cm. A saccharification test was carried out using the solid (pretreated product) after solid-liquid separation as a raw material.

[併行糖化発酵]
予め、液体培地(グルコース30g/L、ポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/L、pH5.6)50Lで酵母としてイサチェンキア・オリエンタリス(Issatchenkia orientalis、本菌株は平成15年5月22日に独立行政法人産業技術総合研究所特許生物寄託センターに寄託、受託番号FERM P−19368)を37℃で24時間培養した。
図1に示すように、2槽の培養槽(培養槽A、培養槽B)を連結し併行糖化発酵を行った。培養槽A内の溶液の容量を1.0m、培養槽B内の溶液の容量を1.0mで行った(溶液容量の比率は、培養槽A:培養槽B=1:1)。
培養槽Aにポリペプトン5g/L、酵母エキス3g/L、麦芽エキス3g/Lとなるように各々を添加後,水を添加し最終容量を0.8mに調整した。酵母菌体を含む培養液を培養槽Aに添加し24時間培養した。酵母の密度が、1x10/mlに増殖した時点で、市販セルラーゼ溶液(Accellerase DUET、ジェネンコア社製)50Lを培養槽Aに添加した。次に、培養槽Aに水を添加し培養液の最終容量を1mに調整した。
次に培養槽Aの供給口1から原料濃度が10質量%の原料懸濁液を連続的に添加した。培養槽Aの培養液の滞留時間(原料懸濁液が培養槽Aを通過する時間:培養槽Aの容量/流速)を15時間に設定し併行糖化発酵処理を行った。すなわち、併行糖化発酵処理を開始した時点から、原料懸濁液を66.6L/hの流速で培養槽Aの原料供給口1から連続的に添加した。一方、原料供給開始と同時に培養槽Aの排出口2より原料懸濁液を66.6L/hで排出し、培養槽Bへ移送した。培養槽Bでも原料懸濁液の滞留時間(原料懸濁液が培養槽Bを通過する時間:培養槽Bの容量/流速)を15時間に設定し併行糖化発酵処理を行った。また、前記セルラーゼ溶液を3.3L/hで培養槽Aに連続的に添加した。培養槽Aの温度を35℃、培養槽Bの温度を38℃に維持して培養を行った。また、培養槽A及び培養槽B共に原料懸濁液のpHを5.0に維持した。尚、連続運転中に原料懸濁液の容量が減少した場合、自動的に培地を添加することにより培養液の最終容量を1mに維持した。培養中の原料懸濁液のpHを5.0に維持した。
培養槽Bから原料懸濁液が排出されてから30時間後(定常状態になった時点)に培養槽Bの排出口3から排出される原料懸濁液に含まれるエタノール濃度をグルコースセンサー(王子計測機器製BF−400型)で測定した。結果を表1に示す。
[Concurrent saccharification and fermentation]
In advance, in a liquid medium (glucose 30 g / L, polypeptone 5 g / L, yeast extract 3 g / L, malt extract 3 g / L, pH 5.6) as yeast, Isachenchia orientalis (Issatchencia orientalis, this strain is May 2003) The deposit was made at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology on the 22nd, and the accession number FERM P-19368) was cultured at 37 ° C. for 24 hours.
As shown in FIG. 1, two culture tanks (culture tank A and culture tank B) were connected to perform parallel saccharification and fermentation. The volume of the solution in the culture tank A was 1.0 m 3 , and the volume of the solution in the culture tank B was 1.0 m 3 (the ratio of the solution volume was culture tank A: culture tank B = 1: 1).
Polypeptone 5 g / L in the culture vessel A, and adjusted yeast extract 3 g / L, after the addition of each such that the malt extract 3 g / L, water was added to a final volume of 0.8 m 3. A culture solution containing yeast cells was added to the culture tank A and cultured for 24 hours. When the yeast density grew to 1 × 10 8 / ml, 50 L of a commercially available cellulase solution (Accelerase DUET, Genencor) was added to the culture tank A. Next, water was added to the culture tank A to adjust the final volume of the culture solution to 1 m 3 .
Next, a raw material suspension having a raw material concentration of 10% by mass was continuously added from the supply port 1 of the culture tank A. The saccharification and fermentation treatment was carried out by setting the retention time of the culture solution in the culture tank A (time for the raw material suspension to pass through the culture tank A: capacity / flow rate of the culture tank A) to 15 hours. That is, the raw material suspension was continuously added from the raw material supply port 1 of the culture tank A at a flow rate of 66.6 L / h from the time when the concurrent saccharification and fermentation treatment was started. On the other hand, the raw material suspension was discharged at 66.6 L / h from the discharge port 2 of the culture tank A simultaneously with the start of the supply of the raw material, and transferred to the culture tank B. Also in the culture tank B, the saccharification and fermentation treatment was performed by setting the residence time of the raw material suspension (time for the raw material suspension to pass through the culture tank B: capacity / flow rate of the culture tank B) to 15 hours. The cellulase solution was continuously added to the culture tank A at 3.3 L / h. The culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 38 ° C. Further, the pH of the raw material suspension was maintained at 5.0 in both the culture tank A and the culture tank B. In addition, when the volume of the raw material suspension decreased during the continuous operation, the final volume of the culture solution was maintained at 1 m 3 by automatically adding the medium. The pH of the raw material suspension during the culture was maintained at 5.0.
The concentration of ethanol contained in the raw material suspension discharged from the discharge port 3 of the culture tank B 30 hours after the raw material suspension is discharged from the culture tank B (when it reaches a steady state) is measured with a glucose sensor (Oji Measured with a measuring instrument BF-400 type). The results are shown in Table 1.

[実験例2]
実験例1において、培養槽Aの温度を35℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 2]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例3]
実験例1において、培養槽Aの温度を35℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 3]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例4]
実験例1において、培養槽Aの温度を35℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 4]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例5]
実験例1において、培養槽Aの温度を35℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 5]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例6]
実験例1において、培養槽Aの温度を35℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 6]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例7]
実験例1において、培養槽Aの温度を35℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 7]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例8]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 8]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例9]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 9]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例10]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 10]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 36 ° C and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例11]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 11]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例12]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental example 12]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例13]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 13]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 36 ° C and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例14]
実験例1において、培養槽Aの温度を36℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 14]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例15]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 15]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例16]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 16]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例17]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 17]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例18]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 18]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例19]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 19]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例20]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 20]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例21]
実験例1において、培養槽Aの温度を37℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 21]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例22]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental example 22]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例23]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental example 23]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例24]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 24]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例25]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 25]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 38 ° C and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例26]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 26]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例27]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 27]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例28]
実験例1において、培養槽Aの温度を38℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 28]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例29]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental example 29]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例30]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 30]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例31]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental example 31]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例32]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experiment 32]
In Experimental Example 1, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例33]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 33]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例34]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental example 34]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

[実験例35]
実験例1において、培養槽Aの温度を39℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例1と同様の方法で試験した。結果を表1に示す。
[Experimental Example 35]
In Experimental Example 1, culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 1. The results are shown in Table 1.

Figure 2014039492
Figure 2014039492

表1に示すように、培養槽Aの温度が36〜38℃、かつ培養槽Bの温度が39〜43℃の範囲で試験した場合(実験例9〜13、実験例16〜20、実験例23〜27)、前記以外の温度範囲で試験した場合(実験例1〜8、実験例14及び15、実験例21及び22、実験例28〜35)と比較しエタノール濃度が高かった。また、培養槽Aの温度より培養槽Bの温度を1℃以上高い温度で試験した場合、エタノール濃度が高かった。 As shown in Table 1, when the temperature of the culture tank A is 36 to 38 ° C. and the temperature of the culture tank B is 39 to 43 ° C. (Experimental Examples 9 to 13, Experimental Examples 16 to 20, Experimental Examples) 23-27), when tested in a temperature range other than the above (Experimental Examples 1-8, Experimental Examples 14 and 15, Experimental Examples 21 and 22, Experimental Examples 28-35), the ethanol concentration was higher. Moreover, when the temperature of the culture tank B was tested by 1 degree C or more higher than the temperature of the culture tank A, the ethanol concentration was high.

[実験例36]
実験例1において、培養槽A内の溶液の容量を1.4m、培養槽B内の溶液の容量を0.6mで行った(溶液容量の比率は、培養槽A:培養槽B=7:3)に変更した以外は全て実験例1と同様の方法で試験した。尚、培養槽A、及び培養槽B内を通過する原料懸濁液の流速は実験例1と同様に66.6L/hで行った。結果を表2に示す。
[Experimental Example 36]
In Experimental Example 1, the volume of the solution in the culture tank A was 1.4 m 3 , and the volume of the solution in the culture tank B was 0.6 m 3 (the ratio of the solution volume is the culture tank A: the culture tank B = Except for the change to 7: 3), all tests were performed in the same manner as in Experimental Example 1. The flow rate of the raw material suspension passing through the culture tank A and the culture tank B was set at 66.6 L / h as in Experimental Example 1. The results are shown in Table 2.

[実験例37]
実験例36において、培養槽Aの温度を35℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 37]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例38]
実験例36において、培養槽Aの温度を35℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experiment 38]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例39]
実験例36において、培養槽Aの温度を35℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 39]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例40]
実験例36において、培養槽Aの温度を35℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 40]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例41]
実験例36において、培養槽Aの温度を35℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental example 41]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例42]
実験例36において、培養槽Aの温度を35℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 42]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例43]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 43]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例44]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 44]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例45]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 45]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例46]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental example 46]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例47]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental example 47]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例48]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 48]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例49]
実験例36において、培養槽Aの温度を36℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 49]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例50]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 50]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例51]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 51]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例52]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 52]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例53]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 53]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例54]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 54]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例55]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 55]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例56]
実験例36において、培養槽Aの温度を37℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 56]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例57]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 57]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例58]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 58]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例59]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experiment 59]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例60]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 60]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例61]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 61]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例62]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 62]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例63]
実験例36において、培養槽Aの温度を38℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 63]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例64]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 64]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例65]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 65]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例66]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 66]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例67]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 67]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例68]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Experimental Example 68]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例69]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 69]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

[実験例70]
実験例36において、培養槽Aの温度を39℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例36と同様の方法で試験した。結果を表2に示す。
[Example 70]
In Experimental Example 36, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 36. The results are shown in Table 2.

Figure 2014039492
Figure 2014039492

表2に示すように、培養槽Aの温度が36〜38℃、かつ培養槽Bの温度が39〜43℃の範囲で試験した場合(実験例44〜48、実験例51〜55、実験例58〜62)、前記以外の温度範囲で試験した場合(実験例36〜43、実験例49及び50、実験例56及び57、実験例63〜70)と比較しエタノール濃度が高かった。また、培養槽Aの温度より培養槽Bの温度を1℃以上高い温度で試験した場合、エタノール濃度が高かった。 As shown in Table 2, when the temperature of the culture tank A was 36 to 38 ° C. and the temperature of the culture tank B was 39 to 43 ° C. (Experimental Examples 44 to 48, Experimental Examples 51 to 55, Experimental Examples) 58-62), when tested in a temperature range other than the above (Experimental Examples 36-43, Experimental Examples 49 and 50, Experimental Examples 56 and 57, Experimental Examples 63-70), the ethanol concentration was higher. Moreover, when the temperature of the culture tank B was tested by 1 degree C or more higher than the temperature of the culture tank A, the ethanol concentration was high.

[実験例71]
実験例1において、培養槽A内の溶液の容量を0.6m、培養槽B内の溶液の容量を1.4mで行った(溶液容量の比率は、培養槽A:培養槽B=3:7)に変更した以外は全て実験例1と同様の方法で試験した。尚、培養槽A、及び培養槽B内を通過する原料懸濁液の流速は実験例1と同様に66.6L/hで行った。結果を表3に示す。
[Experimental Example 71]
In Experimental Example 1, the volume of the solution in the culture tank A was 0.6 m 3 , and the volume of the solution in the culture tank B was 1.4 m 3 (the ratio of the solution volume is the culture tank A: the culture tank B = All tests were performed in the same manner as in Experimental Example 1 except that the ratio was changed to 3: 7). The flow rate of the raw material suspension passing through the culture tank A and the culture tank B was set at 66.6 L / h as in Experimental Example 1. The results are shown in Table 3.

[実験例72]
実験例71において、培養槽Aの温度を35℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 72]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例73]
実験例71において、培養槽Aの温度を35℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 73]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例74]
実験例71において、培養槽Aの温度を35℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental example 74]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例75]
実験例71において、培養槽Aの温度を35℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 75]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例76]
実験例71において、培養槽Aの温度を35℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 76]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例77]
実験例71において、培養槽Aの温度を35℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 77]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 35 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例78]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 78]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例79]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 79]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例80]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 80]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例81]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 81]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例82]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experiment 82]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例83]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental example 83]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例84]
実験例71において、培養槽Aの温度を36℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 84]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 36 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例85]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 85]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例86]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental example 86]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例87]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experiment 87]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例88]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 88]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例89]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 89]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例90]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental example 90]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例91]
実験例71において、培養槽Aの温度を37℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Example 91]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 37 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例92]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Example 92]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例93]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 93]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例94]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 94]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例95]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 95]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例96]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 96]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例97]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 97]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例98]
実験例71において、培養槽Aの温度を38℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 98]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 38 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例99]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を38℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 99]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 38 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例100]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を39℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 100]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 39 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例101]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を40℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental example 101]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 40 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例102]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を41℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental example 102]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 41 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例103]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を42℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 103]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 42 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例104]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を43℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 104]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 43 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

[実験例105]
実験例71において、培養槽Aの温度を39℃、培養槽Bの温度を44℃に維持して培養を行った。それ以外の操作は、全て実験例71と同様の方法で試験した。結果を表3に示す。
[Experimental Example 105]
In Experimental Example 71, the culture was performed while maintaining the temperature of the culture tank A at 39 ° C. and the temperature of the culture tank B at 44 ° C. All other operations were tested in the same manner as in Experimental Example 71. The results are shown in Table 3.

Figure 2014039492
Figure 2014039492

表3に示すように、培養槽Aの温度が36〜38℃、かつ培養槽Bの温度が39〜43℃の範囲で試験した場合(実験例79〜83、実験例86〜90、実験例93〜97)、前記以外の温度範囲で試験した場合(実験例71〜78、実験例84及び85、実験例91及び92、実験例96〜105)と比較しエタノール濃度が高かった。また、培養槽Aの温度より培養槽Bの温度を1℃以上高い温度で試験した場合、エタノール濃度が高かった。 As shown in Table 3, when the temperature of the culture tank A was 36 to 38 ° C and the temperature of the culture tank B was 39 to 43 ° C (Experimental examples 79 to 83, Experimental examples 86 to 90, Experimental examples) 93-97), when tested in a temperature range other than the above (Experimental Examples 71-78, Experimental Examples 84 and 85, Experimental Examples 91 and 92, Experimental Examples 96-105), the ethanol concentration was higher. Moreover, when the temperature of the culture tank B was tested by 1 degree C or more higher than the temperature of the culture tank A, the ethanol concentration was high.

本発明により、リグノセルロースから生産効率の高いエタノールの製造方法が提供される。 The present invention provides a method for producing ethanol with high production efficiency from lignocellulose.

1:原料供給口
2:培養槽Aの排出口
3:培養槽Bの排出口
A:一次培養槽
B:二次培養槽
1: Raw material supply port 2: Cultivation tank A discharge port 3: Cultivation tank B discharge port A: Primary culture tank B: Secondary culture tank

Claims (4)

酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料懸濁液を直列に連結した2槽の培養槽(一次培養槽と二次培養槽)に供給し、前記2槽の培養槽内でセルロース糖化酵素及び酵母としてイサチェンキア・オリエンタリス(Issatchenkia orientalis)を用いて併行糖化発酵を行うリグノセルロース系原料からのエタノール製造方法において、一次培養槽内の溶液容量と二次培養槽内の溶液容量の比率が7:3〜3:7の範囲で併行糖化発酵を行い、一次培養槽内の原料懸濁液の温度より二次培養槽内の原料懸濁液の温度を1℃以上高い温度で併行糖化発酵を行うことを特徴とするリグノセルロース系原料からのエタノール製造方法。 The lignocellulosic raw material suspension, which has been pretreated as a raw material suitable for enzymatic saccharification reaction, is supplied to two culture tanks (primary culture tank and secondary culture tank) connected in series. In a method for producing ethanol from lignocellulosic raw materials in which simultaneous saccharification and fermentation is carried out using cellulose saccharifying enzyme and Isatchenkia orientalis as yeast in the culture tank of the above, the solution volume in the primary culture tank and the secondary culture tank The saccharification and fermentation is performed in a ratio of the solution volume of 7: 3 to 3: 7, and the temperature of the raw material suspension in the secondary culture tank is 1 ° C. or higher than the temperature of the raw material suspension in the primary culture tank. A method for producing ethanol from a lignocellulosic raw material, characterized by carrying out concurrent saccharification and fermentation at a high temperature. 前記一次培養槽内の原料懸濁液の温度を36〜38℃、かつ二次培養槽内の原料懸濁液の温度を39〜43℃の範囲で併行糖化発酵を行うことを特徴とする請求項1に記載のリグノセルロース系原料からのエタノール製造方法。 The parallel saccharification and fermentation is carried out at a temperature of the raw material suspension in the primary culture tank of 36 to 38 ° C and a temperature of the raw material suspension in the secondary culture tank of 39 to 43 ° C. Item 2. A method for producing ethanol from a lignocellulosic material according to Item 1. 前記酵素糖化反応に適した原料とする前処理が施されているリグノセルロース系原料が、リグノセルロース系原料に対して化学的処理、加圧熱水処理、機械的処理から選択される1つ以上の処理を含む前処理が施されているリグノセルロース含有バイオマスよりなる請求項1又は請求項2に記載のリグノセルロース系原料からのエタノール製造方法。 One or more lignocellulosic raw materials that have been pretreated as raw materials suitable for the enzymatic saccharification reaction are selected from chemical treatment, pressurized hot water treatment, and mechanical treatment for the lignocellulosic raw materials. The method for producing ethanol from a lignocellulosic raw material according to claim 1 or 2, comprising a lignocellulose-containing biomass that has been subjected to a pretreatment including the above treatment. 前記リグノセルロース系原料が林地残材であることを特徴とする請求項1〜3に記載のリグノセルロース系原料からのエタノール製造方法。 The method for producing ethanol from a lignocellulosic raw material according to claim 1, wherein the lignocellulosic raw material is forest land residue.
JP2012183122A 2012-08-22 2012-08-22 Method of producing ethanol from lignocellulose-containing biomass Pending JP2014039492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183122A JP2014039492A (en) 2012-08-22 2012-08-22 Method of producing ethanol from lignocellulose-containing biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183122A JP2014039492A (en) 2012-08-22 2012-08-22 Method of producing ethanol from lignocellulose-containing biomass

Publications (1)

Publication Number Publication Date
JP2014039492A true JP2014039492A (en) 2014-03-06

Family

ID=50392352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183122A Pending JP2014039492A (en) 2012-08-22 2012-08-22 Method of producing ethanol from lignocellulose-containing biomass

Country Status (1)

Country Link
JP (1) JP2014039492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167530A (en) * 2014-03-10 2015-09-28 王子ホールディングス株式会社 Method for enzymatic saccharification treatment of biomass containing lignocellulose
CN105154494A (en) * 2015-09-30 2015-12-16 河南天冠纤维乙醇有限公司 Method for continuous enzymolysis of lignocellulose for improving sugar concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167530A (en) * 2014-03-10 2015-09-28 王子ホールディングス株式会社 Method for enzymatic saccharification treatment of biomass containing lignocellulose
CN105154494A (en) * 2015-09-30 2015-12-16 河南天冠纤维乙醇有限公司 Method for continuous enzymolysis of lignocellulose for improving sugar concentration
CN105154494B (en) * 2015-09-30 2019-06-07 河南天冠纤维乙醇有限公司 A kind of method that lignocellulosic continuous enzymolysis mentions high glucose concentration

Similar Documents

Publication Publication Date Title
US8728770B2 (en) Method for enzymatic saccharification treatment of lignocellulose-containing biomass, and method for producing ethanol from lignocellulose-containing biomass
JP5685959B2 (en) Method for producing valuable material from lignocellulose-containing biomass
JP4930650B1 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2014018178A (en) Method of manufacturing ethanol from lignocellulose-containing biomass
JP6213612B2 (en) Method for producing ethanol from lignocellulosic material
JP6256967B2 (en) Pretreatment method for lignocellulose-containing biomass
JP5862376B2 (en) A method for producing ethanol from lignocellulosic materials.
JP2014090707A (en) Method for enzymatic saccharification of biomass containing lignocellulose and method of producing ethanol with biomass containing lignocellulose
JP2014039492A (en) Method of producing ethanol from lignocellulose-containing biomass
JP6123504B2 (en) Ethanol production method
JP6331490B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
JP2015012857A (en) Ethanol manufacturing method from biomass raw material
JP5924192B2 (en) Enzymatic saccharification method for lignocellulose-containing biomass
JP6528928B2 (en) Method for producing ethanol from lignocellulosic material
JP2015167480A (en) Method for enzymatic saccharification of biomass containing lignocellulose
JP2014132052A (en) Fuel composition
JP6492724B2 (en) Method for crushing lignocellulose-containing biomass
JP2015027285A (en) Production method of ethanol from biomass feedstock
JP2015159755A (en) Method for producing ethanol from lignocellulose-containing biomass
JP6375645B2 (en) Ethanol production method from lignocellulose
JP2013183690A (en) Method of pretreating biomass containing lignocellulose
JP2015167487A (en) Producing method of ethanol from lignocellulose containing lignocellulose
JP6343967B2 (en) Method for producing ferulic acid
JP5910367B2 (en) Method for producing ethanol from lignocellulose-containing biomass