JP2014033291A - Spectral diffusion receiving device - Google Patents

Spectral diffusion receiving device Download PDF

Info

Publication number
JP2014033291A
JP2014033291A JP2012171620A JP2012171620A JP2014033291A JP 2014033291 A JP2014033291 A JP 2014033291A JP 2012171620 A JP2012171620 A JP 2012171620A JP 2012171620 A JP2012171620 A JP 2012171620A JP 2014033291 A JP2014033291 A JP 2014033291A
Authority
JP
Japan
Prior art keywords
signal
spread spectrum
spread
peak
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012171620A
Other languages
Japanese (ja)
Other versions
JP6019900B2 (en
Inventor
Hiroyasu Sano
裕康 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012171620A priority Critical patent/JP6019900B2/en
Publication of JP2014033291A publication Critical patent/JP2014033291A/en
Application granted granted Critical
Publication of JP6019900B2 publication Critical patent/JP6019900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that it is assumed that sequence length of a diffusion code and the diffusion code are known in a conventional spectral diffusion receiving device, and demodulation of a received spectral diffusion signal cannot be performed when the sequence length of the diffusion code is not known.SOLUTION: In a spectral diffusion receiving device, a cycle of a diffusion code is obtained by estimating a peak period of a correlation output between a received spectral diffusion signal and a signal that is extracted from the received signal in a peak period estimation part 117.

Description

本発明は拡散符号の系列長を推定するスペクトル拡散受信装置に関するものである。 The present invention relates to a spread spectrum receiver for estimating a sequence length of a spread code.

従来のスペクトル拡散受信装置では、スペクトル拡散信号を受信する際に拡散符号の系列長が既知であるとしてスペクトル拡散復調を行う。 In a conventional spread spectrum receiver, spread spectrum demodulation is performed on the assumption that the sequence length of a spread code is known when a spread spectrum signal is received.

一例として、非特許文献1に記載の従来技術について説明する。図15に従来のスペクトル拡散通信システムの送受信装置の構成例を示す。図15において、170は情報変調部、171はスペクトル拡散変調部、172は拡散符号生成部、173は送信アンテナ、174は受信アンテナ、175はスペクトル拡散復調部、176は拡散符号生成部、177は情報復調部を表す。送信すべきデータは情報変調部170に入力され、情報変調された後にスペクトル拡散変調部171に入力される。スペクトル拡散変調部171では、拡散符号生成部172で生成された既知の拡散符号により拡散変調が施され、拡散変調されたスペクトル拡散信号は送信アンテナから送信される。 As an example, the prior art described in Non-Patent Document 1 will be described. FIG. 15 shows a configuration example of a transmission / reception apparatus of a conventional spread spectrum communication system. In FIG. 15, 170 is an information modulation unit, 171 is a spread spectrum modulation unit, 172 is a spread code generation unit, 173 is a transmission antenna, 174 is a reception antenna, 175 is a spread spectrum demodulation unit, 176 is a spread code generation unit, and 177 is Represents an information demodulator. Data to be transmitted is input to the information modulation unit 170, and after information modulation, input to the spread spectrum modulation unit 171. The spread spectrum modulation section 171 performs spread modulation with the known spread code generated by the spread code generation section 172, and the spread spectrum signal subjected to the spread modulation is transmitted from the transmission antenna.

受信側では受信アンテナ174で受信した信号をスペクトル拡散復調部175に入力する。拡散符号生成部176では伝搬遅延時間を予測あるいは拡散符号の同期を取った上で拡散符号を発生する。前記拡散符号生成部176からの出力を用いてスペクトル拡散符号生成部175では逆拡散処理を行い、情報復調が可能な信号を生成する。前記スペクトル拡散復調部175の出力は情報復調部177に入力され、情報データを得るための復調処理が行われる。   On the receiving side, the signal received by the receiving antenna 174 is input to the spread spectrum demodulator 175. The spread code generation unit 176 generates a spread code after predicting the propagation delay time or synchronizing the spread code. Using the output from the spread code generator 176, the spread spectrum code generator 175 performs a despreading process to generate a signal that can be demodulated. The output of the spread spectrum demodulator 175 is input to an information demodulator 177 where demodulation processing for obtaining information data is performed.

横山光雄「スペクトル拡散通信システム」科学技術出版社、pp.471−477(1988年5月)。Mitsuo Yokoyama “Spread Spectrum Communication System” Science and Technology Publishers, pp. 471-477 (May 1988).

上記の従来技術におけるスペクトル拡散受信装置では拡散符号が既知であり、拡散符号の系列長も既知であることを前提としている。そのため、拡散符号や拡散符号の系列長が不明な場合には、スペクトル拡散信号を受信してもスペクトル拡散復調が行えないという問題が生じる。   It is assumed that the spread spectrum receiver in the above-described prior art has a known spread code and a known sequence length of the spread code. Therefore, when the spread code or the sequence length of the spread code is unknown, there arises a problem that spread spectrum demodulation cannot be performed even if a spread spectrum signal is received.

本発明は上記の問題点を解決するためになされたもので、拡散符号の系列長が不明な場合でも、受信側で拡散符号の系列長を推定するスペクトル拡散受信装置を得ることを目的とする。なお、スペクトル拡散信号は情報変調される場合が多く、本発明では情報変調されたスペクトル拡散信号から周期性を有する拡散符号の系列長を精度よく推定できるスペクトル拡散受信装置を得ることを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a spread spectrum receiver that estimates the sequence length of a spreading code on the receiving side even when the sequence length of the spreading code is unknown. . Note that the spread spectrum signal is often information-modulated, and an object of the present invention is to obtain a spread-spectrum receiver capable of accurately estimating the sequence length of a spread code having periodicity from the information-modulated spread spectrum signal. .

上記の目的を達成するために、本発明におけるスペクトル拡散受信装置は、スペクトル拡散信号を含む信号を受信信号として受信するスペクトル拡散受信手段と、前記受信信号の一部を抽出する信号抽出手段と、前記信号抽出手段により抽出された信号と前記受信信号とを用いて前記受信信号に含まれるスペクトル拡散信号の拡散系列長を推定する推定手段と、を備えることを特徴とする。   In order to achieve the above object, a spread spectrum receiving apparatus according to the present invention includes a spread spectrum receiving means for receiving a signal including a spread spectrum signal as a received signal, a signal extracting means for extracting a part of the received signal, And estimating means for estimating a spread sequence length of a spread spectrum signal included in the received signal using the signal extracted by the signal extracting means and the received signal.

本発明にかかるスペクトル拡散受信装置では、スペクトル拡散信号の拡散系列長を事前に知らなくても、拡散系列長を独自に検出することができる。 The spread spectrum receiver according to the present invention can uniquely detect the spread sequence length without knowing the spread sequence length of the spread spectrum signal in advance.

実施の形態1において想定するスペクトル拡散信号の送信局の構成。1 shows a configuration of a spread spectrum signal transmission station assumed in the first embodiment. 実施の形態1に係わるスペクトル拡散受信装置の基本構成図。1 is a basic configuration diagram of a spread spectrum receiving apparatus according to Embodiment 1. FIG. 実施の形態1に係わるスペクトル拡散受信装置の動作を示すフローチャート。3 is a flowchart showing the operation of the spread spectrum receiving apparatus according to the first embodiment. 実施の形態1のスペクトル拡散受信装置における送受信信号と抽出した受信信号系列の関係を示す図。The figure which shows the relationship between the transmission-and-reception signal in the spread spectrum receiver of Embodiment 1, and the extracted received signal series. 実施の形態1において相関演算時に位相ずれがない場合の相関電力の出力を示す図。The figure which shows the output of correlation power when there is no phase shift at the time of correlation calculation in Embodiment 1. 実施の形態1において相関演算時に位相ずれがある場合の相関電力の出力を示す図。The figure which shows the output of correlation power in case there exists a phase shift at the time of correlation calculation in Embodiment 1. FIG. 実施の形態1のピーク検出部出力における相関電力の出力。Output of correlation power at the peak detection unit output of the first embodiment. 実施の形態2に係わるスペクトル拡散受信装置の基本構成図。FIG. 3 is a basic configuration diagram of a spread spectrum receiving apparatus according to a second embodiment. 実施の形態2のスペクトル拡散受信装置において電力算出部の出力が周波数領域に変換された結果。The result of having converted the output of the electric power calculation part into the frequency domain in the spread spectrum receiver of the second embodiment. 実施の形態2において相関演算時に位相ずれがない場合の周波数領域での電力ピーク値の様子。The state of the power peak value in the frequency domain when there is no phase shift during correlation calculation in the second embodiment. 実施の形態2において相関演算時に位相ずれがある場合の周波数領域での電力ピーク値の様子。The state of the power peak value in the frequency domain when there is a phase shift during correlation calculation in the second embodiment. 実施の形態3に係わるスペクトル拡散受信装置の基本構成図。FIG. 5 is a basic configuration diagram of a spread spectrum receiver according to a third embodiment. 実施の形態3に係わるスペクトル拡散受信装置の動作を示すフローチャート。10 is a flowchart showing the operation of the spread spectrum reception apparatus according to the third embodiment. 実施の形態4に係わるスペクトル拡散受信装置の動作を示すフローチャート。10 is a flowchart showing the operation of the spread spectrum reception apparatus according to the fourth embodiment. 従来技術におけるスペクトル拡散受信装置の基本構成図。The basic block diagram of the spread-spectrum receiver in a prior art.

実施の形態1.
本実施の形態はスペクトル拡散受信装置に関するものであり、図1から図7をもとに当該装置の拡散符号の系列長推定方法について説明する。
Embodiment 1 FIG.
The present embodiment relates to a spread spectrum receiving apparatus, and a spread code sequence length estimation method of the apparatus will be described with reference to FIGS.

図1は本実施の形態で想定するスペクトル拡散送信装置の構成を示しており、100は情報変調部、101はスペクトル拡散変調部、102は拡散系列部、103はスペクトル拡散信号を示している。図2は本実施の形態におけるスペクトル拡散受信装置の拡散系列長推定部の構成を示しており、110は拡散信号受信部、111は抽出信号長設定部、112は信号抽出部、113は拡散系列長推定部、114は相関器、115は電力算出部、116はピーク検出部、117はピーク周期推定部を示している。図3に本実施の形態によるスペクトル拡散受信装置の拡散系列長推定の処理フローを示している。図4は受信信号と抽出した受信信号系列との関係の一例を示しており、(a)は位相ずれ(時間ずれ)がない場合、(b)は位相ずれ(時間ずれ)がある場合(シンボルが変化しない場合)、(c)は位相ずれ(時間ずれ)がある場合(シンボルが変化する場合)を示している。図5は相関演算時に受信信号と抽出した受信信号系列との間に位相ずれ(時間ずれ)がない場合の波形例、図6は位相ずれ(時間ずれ)がある場合の波形例を示す。図7に相関器出力の相関電力のピーク値を検出するためのしきい値とピーク値の関係を示す。 FIG. 1 shows the configuration of a spread spectrum transmitter assumed in this embodiment, where 100 is an information modulation unit, 101 is a spread spectrum modulation unit, 102 is a spread sequence unit, and 103 is a spread spectrum signal. FIG. 2 shows the configuration of the spread sequence length estimation unit of the spread spectrum reception apparatus according to the present embodiment, where 110 is a spread signal reception unit, 111 is an extracted signal length setting unit, 112 is a signal extraction unit, and 113 is a spread sequence. A length estimation unit, 114 is a correlator, 115 is a power calculation unit, 116 is a peak detection unit, and 117 is a peak period estimation unit. FIG. 3 shows a processing flow of spread sequence length estimation of the spread spectrum receiver according to the present embodiment. FIG. 4 shows an example of the relationship between the received signal and the extracted received signal sequence. (A) shows no phase shift (time shift), and (b) shows a phase shift (time shift) (symbol). (C) shows the case where there is a phase shift (time shift) (when the symbol changes). FIG. 5 shows a waveform example when there is no phase shift (time shift) between the received signal and the extracted received signal sequence during correlation calculation, and FIG. 6 shows a waveform example when there is a phase shift (time shift). FIG. 7 shows the relationship between the threshold value and the peak value for detecting the peak value of the correlation power of the correlator output.

以下、図1から図7を用いて本実施の形態における受信処理を説明する。まず、図1は本実施の形態で想定するスペクトル拡散送信装置の構成を示しており、送信局では情報変調部100において情報が変調される。具体的には、送信すべき情報はBPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)などの変調方式を用いて一定時間の時間シンボル単位で変調される。また、スペクトル拡散変調部101において、情報変調部100で変調された情報は拡散系列部102で生成されたスペクトル拡散系列によってスペクトル拡散変調されて送信される。送信されるスペクトル拡散信号103はチップ時間単位で変化する信号であり、1つのデータシンボル時間内に多数のチップが存在する。その結果、情報変調されたデータシンボルの周波数帯域よりも、拡散変調されたスペクトル拡散信号の送信される周波数帯域は広くなる。本実施の形態における受信装置では、このようにスペクトル拡散変調された送信信号を想定する。 Hereinafter, the reception process according to the present embodiment will be described with reference to FIGS. First, FIG. 1 shows a configuration of a spread spectrum transmission apparatus assumed in the present embodiment, and information is modulated by an information modulation unit 100 in a transmission station. Specifically, the information to be transmitted is modulated in units of time symbols for a fixed time using a modulation scheme such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), or the like. Also, in the spread spectrum modulation section 101, the information modulated by the information modulation section 100 is spread spectrum modulated by the spread spectrum sequence generated by the spread sequence section 102 and transmitted. The spread spectrum signal 103 to be transmitted is a signal that changes in units of chip time, and there are a large number of chips in one data symbol time. As a result, the frequency band in which the spread spectrum signal subjected to the spread modulation is transmitted is wider than the frequency band of the information-modulated data symbol. The receiving apparatus according to the present embodiment assumes a transmission signal subjected to spread spectrum modulation in this way.

図2、図3を参照して本実施の形態の制御手順を説明する。スペクトル拡散受信装置では、スペクトル拡散信号を所定の時間間隔でサンプリングした受信信号を拡散信号受信部110に蓄積する(ステップ120)。次に、抽出信号長設定部111では蓄積された信号から抽出すべき信号長N(Nは正の整数)を設定する(ステップ121)。ここで、信号長は通常サンプル数によって表現されるが、それ以外の方法であっても構わない。信号抽出部112では抽出信号長設定部111で設定された信号長Nに従い、拡散信号受信部110に蓄積された信号の中から信号長Nの分だけ信号を抽出する(ステップ122)。ここで、抽出信号長設定部111で設定される信号長は、本来の拡散信号の拡散周期よりも短い長さとすることが必要である。拡散系列長推定部113では信号抽出部112において抽出された信号を参照信号として、拡散信号受信部110に蓄積された受信信号サンプルをずらしながら参照信号と受信信号との相関値を計測し、その相関値のピークの時間周期を拡散系列長として推定する(ステップ123)。 The control procedure of the present embodiment will be described with reference to FIGS. In the spread spectrum receiver, the received signal obtained by sampling the spread spectrum signal at a predetermined time interval is stored in the spread signal receiving unit 110 (step 120). Next, the extracted signal length setting unit 111 sets a signal length N (N is a positive integer) to be extracted from the accumulated signal (step 121). Here, the signal length is usually expressed by the number of samples, but other methods may be used. The signal extraction unit 112 extracts a signal corresponding to the signal length N from the signals accumulated in the spread signal reception unit 110 according to the signal length N set by the extraction signal length setting unit 111 (step 122). Here, the signal length set by the extracted signal length setting unit 111 needs to be shorter than the original spreading period of the spread signal. The spread sequence length estimation unit 113 uses the signal extracted by the signal extraction unit 112 as a reference signal, measures the correlation value between the reference signal and the reception signal while shifting the reception signal samples accumulated in the spread signal reception unit 110, The time period of the peak of the correlation value is estimated as the spreading sequence length (step 123).

ステップ123における具体的な処理について説明する。拡散系列長推定部113では相関器114において信号抽出部112で抽出された信号の複素共役値を参照信号とし、拡散信号受信部110に蓄積された受信信号サンプルとの相関演算を行う。ここで、相関器114はN段(Nは抽出信号長設定部111で設定された値)の段数を有する相関器として構成される。具体的には、拡散信号受信部110に蓄積された受信信号サンプルを時間的にずらしながら参照信号との相関演算を行い、さまざまな受信信号サンプルのタイミングに対して相関係数を算出する。相関器114の出力は電力算出部115に入力され、相関電力が算出される。 Specific processing in step 123 will be described. The spread sequence length estimation unit 113 uses the complex conjugate value of the signal extracted by the signal extraction unit 112 in the correlator 114 as a reference signal, and performs a correlation operation with the received signal sample accumulated in the spread signal reception unit 110. Here, correlator 114 is configured as a correlator having N stages (N is a value set by extraction signal length setting section 111). Specifically, the correlation calculation with the reference signal is performed while shifting the received signal samples accumulated in the spread signal receiving unit 110 in time, and the correlation coefficient is calculated with respect to various timings of the received signal samples. The output of the correlator 114 is input to the power calculation unit 115, and the correlation power is calculated.

図4は受信信号と抽出した受信信号系列との関係を一例として示している。図4において、「位相ずれがない」とは1つの情報シンボルから受信信号系列が抽出された状態であり、「位相ずれがある」とは2つのまたがる情報シンボルから受信信号系列が抽出される状態を表す。この位相ずれのあり/なしによって、電力算出部115の出力である相関電力の時間的な出力波形は変化する。 FIG. 4 shows an example of the relationship between the received signal and the extracted received signal sequence. In FIG. 4, “no phase shift” is a state in which a received signal sequence is extracted from one information symbol, and “having a phase shift” is a state in which a received signal sequence is extracted from two straddling information symbols. Represents. Depending on the presence / absence of this phase shift, the temporal output waveform of the correlation power, which is the output of the power calculation unit 115, changes.

図4(a)に示されるように受信信号と抽出された受信信号系列との位相ずれがない場合には、図5に示されるように周期ごとに規則正しく電力50dBを超える相関値のピークが得られる。図5において横軸は相関演算を行う受信信号のサンプルタイミング、縦軸はその相関電力の出力値を示している。一方、位相ずれがある場合には、図4(b)に示すように2つのまたがる情報シンボルから受信信号系列が抽出される。この抽出された受信系列は2つの情報シンボルが同じ値である場合(図4(b)に対応)には大きな相関値となり、2つの情報シンボルが異なる値となる場合(図4(c)に対応)には小さな相関値となる。その結果、図6に示されるように、相関電力のピーク値は不規則に発生する。 When there is no phase shift between the received signal and the extracted received signal sequence as shown in FIG. 4 (a), a correlation value peak regularly exceeding the power of 50 dB is obtained for each period as shown in FIG. It is done. In FIG. 5, the horizontal axis represents the sample timing of the received signal for correlation calculation, and the vertical axis represents the output value of the correlation power. On the other hand, when there is a phase shift, a received signal sequence is extracted from two straddling information symbols as shown in FIG. This extracted received sequence has a large correlation value when two information symbols have the same value (corresponding to FIG. 4B), and has a different value when the two information symbols have different values (FIG. 4C). Correspondence) is a small correlation value. As a result, as shown in FIG. 6, the peak value of the correlation power occurs irregularly.

図2の電力算出部115の出力はピーク検出部116に入力され、ピーク検出が行われる。図7にピーク検出部116の動作を説明するため、ピーク発生状況の一例を示す。ここで、ピーク値の発生時間間隔(サンプル間隔)はMであり、抽出信号長設定部111で設定された抽出信号長Nよりも大きく、既知ではないものである。図7ではサンプル時間順にピーク値P(1) 、P(M+1)、P(2M+1)が得られており、ここでは3つのピーク値のうちP(M+1)が最大値をとっている。ピーク検出部116では次式のしきい値Pthを設定し、Pthよりも高いものをピークとみなし、そのピークが表れる時刻(サンプル番号)を抽出する。 The output of the power calculation unit 115 in FIG. 2 is input to the peak detection unit 116, and peak detection is performed. FIG. 7 shows an example of a peak occurrence situation in order to explain the operation of the peak detection unit 116. Here, the peak value generation time interval (sample interval) is M, which is larger than the extracted signal length N set by the extracted signal length setting unit 111 and is not known. In FIG. 7, the peak values P (1), P (M + 1), and P (2M + 1) are obtained in the order of the sample time. Here, P (M + 1) has the maximum value among the three peak values. The peak detection unit 116 sets a threshold value Pth of the following expression, regards a value higher than Pth as a peak, and extracts a time (sample number) at which the peak appears.

Pth=α・Pmax (1)
ここで、Pmaxは最大ピーク値、αは0<α<1の係数である。
Pth = α · Pmax (1)
Here, Pmax is a maximum peak value, and α is a coefficient of 0 <α <1.

ピーク検出部116で検出されたピーク値とそのサンプル番号に関する情報は、ピーク周期推定部117に入力される。ピーク周期推定部117ではピーク値の時間間隔(又はサンプル間隔)に関する統計値をとり、統計的に頻度の高い時間間隔を拡散符号の系列長として推定して出力する。ただし、ピーク値の発生周期がNよりも短いものについては推定値としないこととする。 Information regarding the peak value detected by the peak detection unit 116 and its sample number is input to the peak period estimation unit 117. The peak period estimation unit 117 takes a statistical value relating to the time interval (or sample interval) of the peak value, and estimates and outputs a statistically frequent time interval as the sequence length of the spreading code. However, those having a peak value generation cycle shorter than N are not estimated values.

以上のように、さまざまな受信信号のタイミングに対して抽出された受信信号系列との相関を計測し、相関のピーク周期を算出することにより、受信側で拡散符号の系列長を推定することが可能なスペクトル拡散受信装置が得られる。 As described above, it is possible to estimate the sequence length of the spread code on the receiving side by measuring the correlation with the received signal sequence extracted for various received signal timings and calculating the peak period of the correlation. A possible spread spectrum receiver is obtained.

実施の形態2.
実施の形態1は時間領域で拡散系列長を推定するスペクトル拡散受信装置に関するものであったのに対し、本実施の形態では周波数領域で拡散系列長を推定するスペクトル拡散受信装置について開示する。
Embodiment 2. FIG.
While the first embodiment relates to a spread spectrum receiver that estimates the spread sequence length in the time domain, this embodiment discloses a spread spectrum receiver that estimates the spread sequence length in the frequency domain.

図8に本実施の形態における拡散系列長推定部の構成を示す。図8において、140は拡散信号受信部、141は抽出信号長設定部、142は信号抽出部、143は拡散系列長推定部、144は相関器、145は電力算出部、146は時間−周波数領域変換、147はピーク検出部、148はピーク周期推定部を示している。本実施の形態における構成と、実施の形態1との違いのある時間−周波数領域変換部146とピーク検出部147とピーク周期推定部148の動作を中心に説明する。 FIG. 8 shows the configuration of the spreading sequence length estimation unit in the present embodiment. In FIG. 8, 140 is a spread signal receiving unit, 141 is an extracted signal length setting unit, 142 is a signal extraction unit, 143 is a spread sequence length estimation unit, 144 is a correlator, 145 is a power calculation unit, and 146 is a time-frequency domain. Conversion 147 indicates a peak detection unit, and 148 indicates a peak period estimation unit. The operation of the time-frequency domain conversion unit 146, the peak detection unit 147, and the peak period estimation unit 148 that are different from the configuration of the present embodiment and the first embodiment will be mainly described.

本実施の形態では相関演算後の電力算出部145の出力は、時間−周波数領域変換部146に入力される。時間−周波数領域変換部146に入力された電力算出部145の出力で時間サンプルに対して、時間領域から周波数領域に変換する処理を行う。時間領域から周波数領域に変換する処理については、例えば、FFT(Fast Fourier Transform)を用いてもよい。FFTでは例えば2のべき乗単位(ポイント数:K)での計算が一般に行われる。図9に、電力算出部145の出力を時間領域から周波数領域に変換した結果を示す。相関演算の電力に周期性のあるピーク値が発生する場合には、周波数領域に変換された場合でも、周期性のあるピークが発生する。図9にみられる周波数領域上のピークの発生周期Fには、式(2)に示す関係がある。 In the present embodiment, the output of power calculation unit 145 after the correlation calculation is input to time-frequency domain conversion unit 146. A process of converting the time sample from the time domain to the frequency domain is performed on the time sample by the output of the power calculation unit 145 input to the time-frequency domain conversion unit 146. For the process of converting from the time domain to the frequency domain, for example, FFT (Fast Fourier Transform) may be used. In FFT, for example, calculation is generally performed in units of powers of 2 (number of points: K). FIG. 9 shows the result of converting the output of the power calculator 145 from the time domain to the frequency domain. When a peak value with periodicity occurs in the power of the correlation calculation, a peak with periodicity occurs even when converted into the frequency domain. The peak generation period F in the frequency domain seen in FIG. 9 has the relationship shown in Expression (2).

F=K/M (2) F = K / M (2)

ただし、Mは時間領域におけるピークの発生周期であり、拡散符号の系列長である。また、図10に相関演算時に位相ずれがない場合、図11に相関演算時に位相ずれがある場合に関して、周波数領域における電力のピーク値の様子を示す。周波数領域上では受信信号と抽出した受信信号系列に位相ずれがある場合とない場合のいずれについても、周期性のある電力のピーク値が得られている。 Here, M is the peak generation period in the time domain, and is the sequence length of the spreading code. FIG. 10 shows the state of power peak values in the frequency domain when there is no phase shift at the time of correlation calculation and FIG. 11 shows the phase shift at the time of correlation calculation. In the frequency domain, a peak value of periodic power is obtained for both cases where there is a phase shift between the received signal and the extracted received signal series.

次に、時間−周波数領域変換部146の出力はピーク検出部147に入力され、実施の形態1と同様にピーク検出が行われる。ピーク検出部147の出力はピーク周期推定部148に入力され、実施の形態1と同様な方法で周波数領域上でのピークの発生周期を推定する。ピーク周期推定部148に関する実施の形態1との差異は、周波数領域上でのピークの発生周期の推定結果Fをもとに、時間領域上でのピークの発生周期の推定結果に変換する必要がある点である。具体的には、式(2)の関係にあることを利用して、周波数領域上でのピークの発生周期の推定結果を式(3)に基づき時間領域上での拡散符号の系列長の推定値M’に変換する必要がある。 Next, the output of the time-frequency domain conversion unit 146 is input to the peak detection unit 147, and peak detection is performed as in the first embodiment. The output of the peak detection unit 147 is input to the peak period estimation unit 148, and the peak generation period on the frequency domain is estimated by the same method as in the first embodiment. The difference from the first embodiment regarding the peak period estimation unit 148 needs to be converted into the estimation result of the peak generation period on the time domain based on the estimation result F of the peak generation period on the frequency domain. There is a point. Specifically, by using the relationship of Equation (2), the estimation result of the peak generation period on the frequency domain is used to estimate the sequence length of the spreading code in the time domain based on Equation (3). It needs to be converted to the value M ′.

M’=K/F (3) M '= K / F (3)

以上のように、本発明では情報変調されたスペクトル拡散信号から、周期性を有する拡散符号の系列長を推定することができる。時間領域ではピークが不規則に生じる場合であっても、周波数領域に変換すると安定的なピークの発生間隔Fを得ることができ、発生間隔Fを安定的に測定することができる。その結果、時間領域から周波数領域へ変換した後に相関演算によるピーク電力の周期を推定することができ、拡散符号の系列長の推定精度の改善が可能なスペクトル拡散受信装置を得ることができる。 As described above, in the present invention, the sequence length of a spread code having periodicity can be estimated from an information-modulated spread spectrum signal. Even when peaks occur irregularly in the time domain, when converted to the frequency domain, a stable peak generation interval F can be obtained, and the generation interval F can be stably measured. As a result, it is possible to obtain a spread spectrum receiver that can estimate the period of peak power by correlation calculation after conversion from the time domain to the frequency domain, and can improve the estimation accuracy of the sequence length of the spread code.

実施の形態3.
実施の形態1、実施の形態2では拡散符号の系列長周期を推定していたのに対して、本実施の形態では系列長周期の推定の可否を判断し、拡散周期の推定を行う拡散系列長推定の処理について説明する。
Embodiment 3 FIG.
In the first and second embodiments, the sequence length period of the spreading code is estimated, whereas in this embodiment, the spreading sequence is determined by determining whether the sequence length period can be estimated and estimating the spreading period. The length estimation process will be described.

図12は本実施の形態で想定するスペクトル拡散送信装置の構成を示しており、実施の形態1におけるスペクトル拡散受信装置(図1)の構成にさらに拡散系列長推定可否決定部118が付加されている。また、実施の形態2におけるスペクトル拡散受信装置(図8)の構成に同様に拡散系列長推定可否決定部を付加する構成も本実施の形態に含まれるが、説明を割愛する。図13は本実施の形態における動作フローを示している。以下、図12、13に基づき本実施の形態について説明を行う。 FIG. 12 shows the configuration of the spread spectrum transmitter assumed in the present embodiment, and a spread sequence length estimation availability determination unit 118 is further added to the configuration of the spread spectrum receiver in FIG. 1 (FIG. 1). Yes. Further, a configuration in which a spreading sequence length estimation availability determining unit is added to the configuration of the spread spectrum receiving apparatus (FIG. 8) in the second embodiment is also included in the present embodiment, but the description is omitted. FIG. 13 shows an operation flow in the present embodiment. Hereinafter, the present embodiment will be described with reference to FIGS.

図13のフローに示されるようにスペクトル拡散受信装置では、所定のサンプリング間隔で入力された受信信号を拡散信号受信部110に蓄積する(ステップ150)。次に、抽出信号長設定部111では蓄積された信号から抽出すべき信号長N(Nは正の整数)を設定する(ステップ151)。ここで、信号長Nは、拡散系列の周期Mよりも短い長さ(N<M)とする。受信信号系列を抽出する動作(ステップ152)、拡散系列長を推定する動作(ステップ153)については、実施の形態1および実施の形態2と同じ処理であるため、説明を割愛する。 As shown in the flow of FIG. 13, the spread spectrum receiving apparatus accumulates the received signals input at a predetermined sampling interval in the spread signal receiving unit 110 (step 150). Next, the extracted signal length setting unit 111 sets a signal length N (N is a positive integer) to be extracted from the accumulated signal (step 151). Here, the signal length N is assumed to be shorter than the period M of the spreading sequence (N <M). The operation for extracting the received signal sequence (step 152) and the operation for estimating the spread sequence length (step 153) are the same as those in the first and second embodiments, and therefore will not be described.

ステップ151において設定される信号長Nは、本来の拡散系列の周期に相当するサンプル数Mよりも十分に小さい場合がある。この場合には、相関器出力の電力のピーク値のS/Nが十分に得られない場合があるため、拡散符号の系列長の推定が行えなくなる可能性がある。そこで、本実施の形態では、抽出信号長設定部111で設定する信号長Nを順次変えながら(例えば、2のべき乗で増やしながら)、拡散系列長推定結果が得られるまで繰り返し行う(ステップ154)。具体的には、スペクトル拡散送信装置(図12)内の拡散系列長推定可否決定部118ではピーク周期推定部117からピーク周期とそのピーク周期の確度に関する出力を受け取り、その確度情報に基づき拡散系列長推定が適切に行われたかどうかを判定する。拡散系列長推定可否決定部118において拡散系列長推定が適切に行われていない場合には(ステップ154)、抽出信号長設定部111で設定する信号長Nを順次変えながら(例えば、2のべき乗で増やしながら)、拡散系列長推定結果が得られるまで繰り返し行う(ステップ155)。推定された拡散系列長が適切であると判定された場合には、拡散系列長の推定処理を停止する(ステップ154)。 The signal length N set in step 151 may be sufficiently smaller than the number of samples M corresponding to the original spreading sequence period. In this case, since the S / N of the peak value of the power of the correlator output may not be sufficiently obtained, there is a possibility that the sequence length of the spreading code cannot be estimated. Therefore, in the present embodiment, the signal length N set by the extracted signal length setting unit 111 is sequentially changed (for example, increased by a power of 2), and is repeated until a spread sequence length estimation result is obtained (step 154). . Specifically, the spread sequence length estimation availability determination unit 118 in the spread spectrum transmitter (FIG. 12) receives an output related to the peak period and the accuracy of the peak period from the peak period estimation unit 117, and based on the accuracy information Determine if length estimation was done properly. If spread sequence length estimation is not properly performed in the spread sequence length estimation enable / disable determining unit 118 (step 154), the signal length N set by the extracted signal length setting unit 111 is sequentially changed (for example, a power of 2) This is repeated until the spreading sequence length estimation result is obtained (step 155). If it is determined that the estimated spreading sequence length is appropriate, the spreading sequence length estimation process is stopped (step 154).

以上のように、本発明では情報変調されたスペクトル拡散信号から周期性を有する拡散符号の系列長を推定するため、相関器の段数を規定する系列長設定を変えながら繰り返し拡散符号の系列長を推定することで、拡散符号の系列長の推定精度の改善が可能なスペクトル拡散受信装置を得ることができる。   As described above, in the present invention, in order to estimate the sequence length of a spread code having periodicity from an information-modulated spread spectrum signal, the sequence length of a repeated spread code is changed while changing the sequence length setting that defines the number of correlators. By performing the estimation, it is possible to obtain a spread spectrum receiver capable of improving the estimation accuracy of the sequence length of the spread code.

実施の形態4.
実施の形態3では拡散系列長推定が適切に行われたかどうかに応じて、信号長Nを順次更新したが、本実施の形態ではさらにその信号長Nが最大値に達した場合に拡散系列長推定を停止する処置を設けた実施の形態を示す。
Embodiment 4 FIG.
In the third embodiment, the signal length N is sequentially updated depending on whether or not the spread sequence length estimation is properly performed. In the present embodiment, however, the spread sequence length is further increased when the signal length N reaches the maximum value. An embodiment in which a measure for stopping estimation is provided.

図14のフローに示されるように所定のサンプリング間隔で入力された受信信号は、拡散信号受信部110に入力される(ステップ160)。次に、抽出信号長設定部111では蓄積された信号から抽出すべき信号長N(Nは正の整数)を設定する(ステップ161)。設定される信号長Nは、本来の拡散系列長Mよりも短い長さ(N<M)とする。受信信号系列を抽出する動作(ステップ162)、拡散系列長を推定する動作(ステップ163)、拡散系列長推定結果が得られるまで繰り返し行う動作(ステップ164)については、実施の形態3と同じ処理であるため、説明を割愛する。 As shown in the flow of FIG. 14, the received signal input at a predetermined sampling interval is input to the spread signal receiving unit 110 (step 160). Next, the extracted signal length setting unit 111 sets a signal length N (N is a positive integer) to be extracted from the accumulated signal (step 161). The set signal length N is shorter than the original spreading sequence length M (N <M). The operation for extracting the received signal sequence (step 162), the operation for estimating the spread sequence length (step 163), and the operation to be repeated until the spread sequence length estimation result is obtained (step 164) are the same as in the third embodiment. Therefore, the explanation is omitted.

本来の拡散系列長Mが既知でない場合には、NがMよりも十分に小さい場合がある。この場合には、相関器出力の電力のピーク値のS/Nが十分に得られない場合があるため、拡散符号の系列長の推定が行えなくなる可能性がある。そこで、拡散系列長推定が適切に行われていない場合には(ステップ164)、抽出信号長設定部111で設定する信号長Nを順次変えながら(例えば、2のべき乗で増やしながら)、拡散系列長推定結果が得られるまで繰り返し行う(ステップ165)。抽出信号長設定部111では信号長Nが信号長設定最大値まで達したかどうか判定する(ステップ166)。最大系列長に達していない場合には、信号長Nを順次増やしながらステップ161に戻る。また、抽出信号長設定部111において信号長Nが系列長設定最大値まで達したと判定された場合には、拡散系列長の推定処理を停止する。 If the original spreading sequence length M is not known, N may be sufficiently smaller than M. In this case, since the S / N of the peak value of the power of the correlator output may not be sufficiently obtained, there is a possibility that the sequence length of the spreading code cannot be estimated. Therefore, when the spreading sequence length estimation is not properly performed (step 164), the spreading sequence is changed while sequentially changing the signal length N set by the extracted signal length setting unit 111 (for example, increasing by a power of 2). The process is repeated until a length estimation result is obtained (step 165). The extracted signal length setting unit 111 determines whether or not the signal length N has reached the maximum signal length setting (step 166). If the maximum sequence length has not been reached, the process returns to step 161 while sequentially increasing the signal length N. If the extracted signal length setting unit 111 determines that the signal length N has reached the maximum sequence length setting value, the spread sequence length estimation process is stopped.

以上の制御により、設定最大値までの信号長Nの範囲内において、相関器の段数を規定する系列長設定を変えながら繰り返し拡散符号の系列長を推定できる。その結果、設定最大値までの信号長Nの範囲内において、拡散符号の系列長の推定精度の改善が可能なスペクトル拡散受信装置を得ることができる。 With the above control, the sequence length of the repetitive spreading code can be estimated while changing the sequence length setting that defines the number of correlator stages within the range of the signal length N up to the set maximum value. As a result, it is possible to obtain a spread spectrum receiver capable of improving the estimation accuracy of the sequence length of the spread code within the range of the signal length N up to the set maximum value.

100:情報変調部
101:スペクトル拡散変調部
102:拡散系列部
103:スペクトル拡散信号
110:拡散信号受信部
111:抽出信号長設定部
112:信号抽出部
113:拡散系列長推定部
114:相関器
115:電力算出部
116:ピーク検出部
117:ピーク周期推定部
118:拡散系列長推定可否決定部
130、132、134:送信/受信信号
131、133、135:抽出した受信信号系列
140:拡散信号受信部
141:抽出信号長設定部
142:信号抽出部
143:拡散系列長推定部
144:相関器
145:電力算出部
146:時間−周波数領域変換
147:ピーク検出部
148:ピーク周期推定部
170:情報変調部
171:スペクトル拡散変調部
172:拡散符号生成部
173、174:アンテナ
175:スペクトル拡散復調部
176:拡散符号生成部
177:情報復調部
100: information modulation unit 101: spread spectrum modulation unit 102: spread sequence unit 103: spread spectrum signal 110: spread signal reception unit 111: extracted signal length setting unit 112: signal extraction unit 113: spread sequence length estimation unit 114: correlator 115: Power calculation unit 116: Peak detection unit 117: Peak period estimation unit 118: Spreading sequence length estimation availability determination unit 130, 132, 134: Transmission / reception signal 131, 133, 135: Extracted received signal sequence 140: Spreading signal Reception unit 141: Extracted signal length setting unit 142: Signal extraction unit 143: Spreading sequence length estimation unit 144: Correlator 145: Power calculation unit 146: Time-frequency domain conversion 147: Peak detection unit 148: Peak period estimation unit 170: Information modulator 171: Spread spectrum modulator 172: Spread code generator 173, 174: Antenna 175: Spectrum Le spread demodulation unit 176: spreading code generating unit 177: information demodulating unit

Claims (7)

スペクトル拡散信号を含む信号を受信信号として受信するスペクトル拡散受信手段と、
前記受信信号の一部を抽出する信号抽出手段と、
前記信号抽出手段により抽出された信号と前記受信信号とを用いて前記受信信号に含まれるスペクトル拡散信号の拡散系列長を推定する推定手段と、
を備えることを特徴とするスペクトル拡散信号受信装置。
Spread spectrum receiving means for receiving a signal including a spread spectrum signal as a received signal;
Signal extraction means for extracting a part of the received signal;
Estimating means for estimating a spread sequence length of a spread spectrum signal included in the received signal using the signal extracted by the signal extracting means and the received signal;
A spread spectrum signal receiving apparatus comprising:
前記推定手段は、
前記信号抽出手段により抽出された信号を参照信号として前記受信信号との相関演算を行う相関演算手段と、
前記相関演算手段の出力の電力値を算出する電力算出手段と、
前記電力算出手段の出力に基づき電力値のピーク値を検出するピーク検出手段と、
前記ピーク検出手段の出力に基づきピークの発生する周期を推定し、拡散符号の系列長として出力するピーク周期推定手段と、
を備えることを特徴とする請求項1に記載のスペクトル拡散受信装置。
The estimation means includes
Correlation calculation means for performing a correlation calculation with the received signal using the signal extracted by the signal extraction means as a reference signal;
Power calculating means for calculating the power value of the output of the correlation calculating means;
Peak detection means for detecting the peak value of the power value based on the output of the power calculation means;
A peak period estimating means for estimating a period of occurrence of a peak based on an output of the peak detecting means and outputting as a sequence length of a spreading code;
The spread spectrum receiver according to claim 1, further comprising:
前記推定手段は、
前記信号抽出手段により抽出された信号を参照信号として前記受信信号との相関演算を行う相関演算手段と、
前記相関演算手段の出力に対して電力値を算出するための電力算出手段と、
前記電力算出手段の出力を時間領域から周波数領域に変換する時間−周波数領域変換手段と、
前記時間−周波数領域変換手段の出力に基づき電力のピーク値を検出するピーク検出手段と、
前記ピーク検出手段の出力を用いて周波数領域においてピークの発生する周期を推定し、時間領域における拡散符号の系列長に変換して出力するピーク周期推定手段と、
を備えることを特徴とする請求項1に記載のスペクトル拡散受信装置。
The estimation means includes
Correlation calculation means for performing a correlation calculation with the received signal using the signal extracted by the signal extraction means as a reference signal;
Power calculating means for calculating a power value for the output of the correlation calculating means;
Time-frequency domain conversion means for converting the output of the power calculation means from the time domain to the frequency domain;
Peak detection means for detecting a peak value of power based on the output of the time-frequency domain conversion means;
A peak period estimation means for estimating a period in which a peak occurs in the frequency domain using the output of the peak detection means, and converting and outputting the sequence length of a spreading code in the time domain;
The spread spectrum receiver according to claim 1, further comprising:
前記相関演算手段は、
前記信号抽出手段により抽出された信号を複素共役値に変換する複素共役算出手段と、
前記複素共役算出手段により複素共役値に変換された信号を参照信号として前記受信信号との相関演算を行う演算手段と、
を備えることを特徴とする請求項2に記載のスペクトル拡散受信装置。
The correlation calculation means includes
Complex conjugate calculation means for converting the signal extracted by the signal extraction means into a complex conjugate value;
Arithmetic means for performing a correlation operation with the received signal using the signal converted into a complex conjugate value by the complex conjugate calculation means as a reference signal;
The spread spectrum receiver according to claim 2, comprising:
前記推定手段による推定結果に基づき推定の可否を決定し、前記決定に基づき拡散符号の系列長の推定を繰り返し行うか否かを決定する推定可否決定手段
を備えることを特徴とする請求項1に記載のスペクトル拡散信号受信装置。
2. An estimation capability determination unit that determines whether estimation is possible based on a result of estimation by the estimation unit, and that determines whether to repeatedly estimate a sequence length of a spread code based on the determination. The spread spectrum signal receiver described.
信号抽出手段により抽出された信号長が設定最大値まで達したか否かを判定し、前記判定に基づき拡散符号の系列長の推定を繰り返し行うか否かを決定する信号長判定手段
を備えることを特徴とする請求項5に記載のスペクトル拡散信号受信装置。
It is provided with signal length determination means for determining whether or not the signal length extracted by the signal extraction means has reached a set maximum value, and determining whether or not to repeatedly estimate the sequence length of the spread code based on the determination. The spread spectrum signal receiving apparatus according to claim 5.
スペクトル拡散信号を含む信号を受信信号として受信するスペクトル拡散受信ステップと、
前記受信信号の一部を抽出する信号抽出ステップと、
前記信号抽出ステップにより抽出された信号と前記受信信号とを用いて前記受信信号に含まれるスペクトル拡散信号の拡散系列長を推定する推定ステップと、
を備えることを特徴とするスペクトル拡散信号受信方法。
A spread spectrum receiving step for receiving a signal including a spread spectrum signal as a received signal;
A signal extraction step of extracting a portion of the received signal;
An estimation step of estimating a spread sequence length of a spread spectrum signal included in the reception signal using the signal extracted by the signal extraction step and the reception signal;
A spread spectrum signal receiving method comprising:
JP2012171620A 2012-08-02 2012-08-02 Spread spectrum receiver Active JP6019900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012171620A JP6019900B2 (en) 2012-08-02 2012-08-02 Spread spectrum receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012171620A JP6019900B2 (en) 2012-08-02 2012-08-02 Spread spectrum receiver

Publications (2)

Publication Number Publication Date
JP2014033291A true JP2014033291A (en) 2014-02-20
JP6019900B2 JP6019900B2 (en) 2016-11-02

Family

ID=50282816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012171620A Active JP6019900B2 (en) 2012-08-02 2012-08-02 Spread spectrum receiver

Country Status (1)

Country Link
JP (1) JP6019900B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548513A (en) * 1991-08-16 1993-02-26 Mitsubishi Electric Corp Frame synchronization controller
JP2001086034A (en) * 1999-09-14 2001-03-30 Nec Corp Metthod and circuit for detecting spreading code in perch channel detection circuit
JP2002368648A (en) * 2001-06-11 2002-12-20 Nec Corp Code estimating device and code estimating method
JP2003078445A (en) * 2001-08-31 2003-03-14 Railway Technical Res Inst Transponder
JP2006157949A (en) * 2002-03-25 2006-06-15 Interdigital Technology Corp Blind code detecting method and apparatus
JP2006238355A (en) * 2005-02-28 2006-09-07 Toshiba Corp Modulation device, wireless transmitting device, and wireless receiving device
JP2006254120A (en) * 2005-03-10 2006-09-21 Nec Corp Receiving method and receiver
JP2008258817A (en) * 2007-04-03 2008-10-23 Mitsubishi Electric Corp Communication apparatus
JP2010534017A (en) * 2007-07-17 2010-10-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for detecting the presence of a spectrally spread signal
JP2011211732A (en) * 2005-09-20 2011-10-20 Qualcomm Inc Timing acquisition, mode, and guard detection for ofdm transmission

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548513A (en) * 1991-08-16 1993-02-26 Mitsubishi Electric Corp Frame synchronization controller
JP2001086034A (en) * 1999-09-14 2001-03-30 Nec Corp Metthod and circuit for detecting spreading code in perch channel detection circuit
JP2002368648A (en) * 2001-06-11 2002-12-20 Nec Corp Code estimating device and code estimating method
JP2003078445A (en) * 2001-08-31 2003-03-14 Railway Technical Res Inst Transponder
JP2006157949A (en) * 2002-03-25 2006-06-15 Interdigital Technology Corp Blind code detecting method and apparatus
JP2006238355A (en) * 2005-02-28 2006-09-07 Toshiba Corp Modulation device, wireless transmitting device, and wireless receiving device
JP2006254120A (en) * 2005-03-10 2006-09-21 Nec Corp Receiving method and receiver
JP2011211732A (en) * 2005-09-20 2011-10-20 Qualcomm Inc Timing acquisition, mode, and guard detection for ofdm transmission
JP2008258817A (en) * 2007-04-03 2008-10-23 Mitsubishi Electric Corp Communication apparatus
JP2010534017A (en) * 2007-07-17 2010-10-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for detecting the presence of a spectrally spread signal

Also Published As

Publication number Publication date
JP6019900B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
TWI383627B (en) Method and apparatus for processing primary and secondary synchronization signals for wireless communication
JP4976420B2 (en) Method for improving synchronization and information transmission in a communication system
KR100802844B1 (en) Ranging channel processing device and method of OFDMA system
TW201203959A (en) Method and apparatus for accurate time synchronization in wireless communication system
RU2658625C1 (en) Spread spectrum signal generating method, generating apparatus, receiving method and receiving apparatus
WO2008084381B1 (en) Apparatus, method and computer program product for detecting non-synchronized random access channel preamble
US7616723B2 (en) Method for symbol timing synchronization and apparatus thereof
US20150023329A1 (en) Wireless network signal to interference plus noise ratio estimation for a random access channel
US20130259013A1 (en) Method and apparatus for processing primary and secondary synchronization signals for wireless communication
KR20180080681A (en) System and method for blind detection of numerology
JP6019900B2 (en) Spread spectrum receiver
JP2013046373A (en) Communication system and receiver
KR102625211B1 (en) Apparatus And Method for Calculating Receiving Time Of Wireless Communication Signal
Li et al. A novel timing advanced estimation algorithm for eliminating frequency offset in satellite system
KR100655660B1 (en) WLAN preamble detection apparatus, its preamble detection and timing detection method
KR20210065821A (en) Method for detecting primary synchronization signal based on 5g new radio communication and apparatus thereof
KR101340153B1 (en) Apparatus and method for frequency offset estimation of spread spectrum
JP2010534967A (en) Synchronization of receiver to signal with known structure
JP2010154107A (en) Synchronization detecting circuit, synchronization detection method and receiving device
US9806760B2 (en) Acquisition method for pseudo noise code at receiver and receiver for acquiring pseudo noise code
JP5465131B2 (en) Code estimation apparatus and code estimation method
JP5875561B2 (en) Method for improving synchronization and information transmission in a communication system
TW201635831A (en) Time-varying channel discriminating device and method thereof
JP5787846B2 (en) Receiving device, spread spectrum communication device, and communication system
JP5967853B2 (en) Reception device and delay profile generation method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6019900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250