JP2014030343A - Electric-vehicle control device - Google Patents

Electric-vehicle control device Download PDF

Info

Publication number
JP2014030343A
JP2014030343A JP2013167003A JP2013167003A JP2014030343A JP 2014030343 A JP2014030343 A JP 2014030343A JP 2013167003 A JP2013167003 A JP 2013167003A JP 2013167003 A JP2013167003 A JP 2013167003A JP 2014030343 A JP2014030343 A JP 2014030343A
Authority
JP
Japan
Prior art keywords
power storage
storage device
power
filter
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013167003A
Other languages
Japanese (ja)
Other versions
JP5777669B2 (en
Inventor
Takeshi Koga
猛 古賀
Masayuki Nogi
雅之 野木
Shinichi Toda
伸一 戸田
Yosuke Nakazawa
洋介 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013167003A priority Critical patent/JP5777669B2/en
Publication of JP2014030343A publication Critical patent/JP2014030343A/en
Application granted granted Critical
Publication of JP5777669B2 publication Critical patent/JP5777669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric-vehicle control device that combines a step-up/down chopper and an electric capacitor and is capable of functioning as a sufficient high-voltage auxiliary power supply to an auxiliary circuit.SOLUTION: An electric-vehicle control device includes a first contactor whose one end is connected to a current collector or an electric capacitor 32 and the other end is connected to a first filter, a main circuit which the other end of the first filter is connected to, an auxiliary circuit connected to the current collector through a second filter, and a step-up/down chopper 31 whose one end is connected to between the second filter and the auxiliary circuit, another one end is connected to between first contactor and one end of the electric capacitor 32, and the other end is connected to between the other end of the electric capacitor 32 and the auxiliary circuit.

Description

本発明は電気車用制御装置に関するものである。この制御装置は、電気車の電力供給が不能(例えば架線停電又は架線自体がないエリア)になったとき、最寄りの場所まで、電気車に備えた蓄電装置から補助回路に安定した電力を供給する場合のに適用されて有効である。   The present invention relates to an electric vehicle control apparatus. This control device supplies stable power to the auxiliary circuit from the power storage device provided in the electric vehicle to the nearest place when power supply to the electric vehicle becomes impossible (for example, an area where there is no overhead line power failure or the overhead line itself) It is valid when applied to the case.

現在の電気車では、架線等からの電源供給が不能になった場合は、電気車が動けなくなり救援車を待つしかないという課題がある。一方、一部のトロリーバスは、この課題は解決されていて、トロリー線のない車庫周辺等での移動は、車載のバッテリーを電源として低速で走行を可能にしている。トロリーバスでは補助回路の負荷容量が小さく、総てバッテリーによる駆動が可能である。しかし、高圧補助電源装置により負荷容量の大きい補助回路に電源を供給するタイプの一般の編成列車は、高圧補助電源装置からの交流出力で電力を得るシステムなので、これらの一般の編成列車ではバッテリー走行時には高圧補助電源装置は動作しないという課題がある。このため、一般の編成列車では自走により最寄りの場所へ移動することが実現せず、現在は線路をふさいだ状態で救援車による救出を仰いでいる。   In the current electric vehicle, when power supply from an overhead line or the like becomes impossible, there is a problem that the electric vehicle cannot move and has to wait for a rescue vehicle. On the other hand, in some trolley buses, this problem has been solved, and movement around a garage without a trolley line or the like enables traveling at a low speed by using an in-vehicle battery as a power source. In the trolley bus, the load capacity of the auxiliary circuit is small, and all can be driven by a battery. However, general trains of the type that supply power to an auxiliary circuit with a large load capacity with a high-voltage auxiliary power supply are systems that obtain power with an AC output from the high-voltage auxiliary power supply, so these general trains run on batteries. Sometimes, there is a problem that the high-voltage auxiliary power supply device does not operate. For this reason, in general trains, it is not possible to move to the nearest place by self-running, and now we are looking to rescue with a rescue vehicle while blocking the track.

なお電気車においてブレーキをかけたときに回生電力が得られるが、この回生エネルギーを有効利用する技術は知られている(たとえば特許文献1)。この回生エネルギーは力行加速時などに利用されている。   Note that regenerative electric power is obtained when the brake is applied in an electric vehicle, and a technique for effectively using this regenerative energy is known (for example, Patent Document 1). This regenerative energy is used for powering acceleration.

特開2003−199204号公報JP 2003-199204 A

高圧補助電源装置で負荷容量の大きい補助回路に電源を供給する一般の編成列車では、高圧補助電源装置からの交流出力で電力を得るシステムなので、これらの一般の編成列車ではバッテリー走行時には高圧補助電源装置は動作しないという課題がある。   In general trains that supply power to an auxiliary circuit with a large load capacity with a high-voltage auxiliary power supply, the system uses the AC output from the high-voltage auxiliary power supply to obtain power. There is a problem that the device does not operate.

一方、直流電車における離線といった瞬時の電源欠如、又は交流電車における交交セクション通過といった常時発生する短時間の電源欠如、交直電車における比較的長時間の電源の欠如に対しても、電力供給対策を測る必要がある。   On the other hand, measure power supply measures even for short-term power shortages such as disconnection in DC trains, short-time power shortages that always occur such as passing through crossing sections in AC trains, and relatively long-term power shortages in AC / DC trains. There is a need.

瞬時或いは短時間の電源欠如に対しては、離線保証用に大容量のコンデンサを準備して、電力供給対策を測ることができる。また長時間の電源欠如に対しては、蓄電装置を用意し、車内の消灯を避ける必要があるが、そのために蛍光灯負荷だけは経済的な交流蛍光灯から多少高価な直流蛍光灯を採用せざるを得ないという課題がある。   For a shortage of power supply for an instant or for a short time, it is possible to prepare a large-capacity capacitor for guaranteeing disconnection and measure power supply measures. For long periods of power shortage, it is necessary to prepare a power storage device and avoid turning off the vehicle interior. There is a problem that it must be done.

また、自動列車運転における列車の停止制御では、停止間際の回生失効の発生により、停止位置精度が大きく変化するという課題もある。   Moreover, in the train stop control in the automatic train operation, there is a problem that the stop position accuracy greatly changes due to the occurrence of regeneration invalidation just before the stop.

そこでこの発明は、昇降圧チョッパと蓄電装置を組み合わせることにより、主回路に対しては低速でも力行を得る電力を確保できると共に、補助回路に対しては十分な高圧補助電源としての機能を提供する電気車用制御装置を提供することを目的とする。   Therefore, the present invention can secure power for obtaining power running even at a low speed for the main circuit by combining the step-up / step-down chopper and the power storage device, and provides a function as a sufficient high-voltage auxiliary power source for the auxiliary circuit. An object is to provide a control device for an electric vehicle.

上記の課題を解決するために本発明の実施例は、一端が集電装置または蓄電装置に接続し、他端が第1のフィルタに接続される第1の接触器と、前記第1のフィルタの他端が接続する主回路と、前記集電装置と第2のフィルタを介して接続される補助回路と、前記第2のフィルタと前記補助回路の間に一端が接続され、前記第1の接触器と前記蓄電装置の一端との間に別の一端が接続され、前記蓄電装置の他端と前記補助回路の間に他端が接続される昇降圧チョッパとを有する。   In order to solve the above problems, an embodiment of the present invention includes a first contactor having one end connected to a current collector or a power storage device and the other end connected to a first filter, and the first filter. A main circuit to which the other end of the power supply is connected; an auxiliary circuit connected to the current collector through a second filter; and one end connected between the second filter and the auxiliary circuit; Another end is connected between the contactor and one end of the power storage device, and a buck-boost chopper is connected between the other end of the power storage device and the auxiliary circuit.

上記の解決手段によると、補助回路に対しては十分な高圧補助電源として機能することができる。   According to the above solution, the auxiliary circuit can function as a sufficient high-voltage auxiliary power source.

トロリーバス蓄電装置の鉄道車両適用例を示す図である。It is a figure which shows the railway vehicle application example of a trolley bus electrical storage apparatus. 本発明の装置を直流電気車に適用した例を示す図である。It is a figure which shows the example which applied the apparatus of this invention to the DC electric vehicle. 図2の蓄電制御装置の動作を説明するために示し回路図である。FIG. 3 is a circuit diagram shown for explaining the operation of the power storage control device of FIG. 2. 図2の蓄電装置の電圧と架線の電圧に対する車両速度と引張力の関係を示す説明図である。It is explanatory drawing which shows the relationship between the vehicle speed with respect to the voltage of the electrical storage apparatus of FIG. 2, and the voltage of an overhead wire, and tensile force. 図2の逆流阻止ダイオードに変わる他の例を示す図である。It is a figure which shows the other example replaced with the backflow prevention diode of FIG. 本発明の装置の動作例を説明するために、列車速度、架線電圧、充電状態(SOC)の時系列の例を示す図である。In order to demonstrate the operation example of the apparatus of this invention, it is a figure which shows the example of a time series of a train speed, an overhead line voltage, and a charge condition (SOC). 架線電圧の変動領域の例を示す図である。It is a figure which shows the example of the fluctuation | variation area | region of an overhead wire voltage. 本発明の装置を交流電気車に適用した例を示す図である。It is a figure which shows the example which applied the apparatus of this invention to the alternating current electric vehicle. 本発明の装置を交直電気車に適用した例を示す図である。It is a figure which shows the example which applied the apparatus of this invention to the AC / DC electric vehicle. 本発明のさらに他の実施例であり、直流電気車に適用した例を示す図である。It is a further example of the present invention and is a diagram showing an example applied to a DC electric vehicle. 図10の装置の動作例を説明するために、列車速度、充電状態(SOC)及び列車消費電力の時系列の例を示す図である。It is a figure which shows the example of a time series of a train speed, a charge condition (SOC), and train power consumption in order to demonstrate the operation example of the apparatus of FIG.

以下、本発明の実施の形態について、詳細に説明する。まず図1の電車線の一般回路を参照し、バッテリー走行が可能なトロリーバスなどで実施されている現状のドライブ制御方法を説明する。   Hereinafter, embodiments of the present invention will be described in detail. First, referring to the general circuit of the train line in FIG. 1, a current drive control method implemented in a trolley bus or the like capable of running on a battery will be described.

電車線等の外部から電力を集電する集電装置11からの出力電力は、接触器12と17に供給される。   Output power from a current collector 11 that collects power from outside such as a train line is supplied to contactors 12 and 17.

通常時、この電力は、接触器12を介してリアクトル13、コンデンサ14でフィルタリングされ、可変電圧可変周波数(VVVF)インバータ15に供給される。また通常時、電力は、接触器17を介してリアクトル18、逆流阻止ダイオード19、コンデンサ20を介して固定電圧固定周波数(CVCF)インバータ21に供給される。リアクトル18、コンデンサ20はフィルタを形成している。   Normally, this electric power is filtered by the reactor 13 and the capacitor 14 via the contactor 12 and supplied to the variable voltage variable frequency (VVVF) inverter 15. In normal times, power is supplied to the fixed voltage fixed frequency (CVCF) inverter 21 via the contactor 17, the reactor 18, the reverse current blocking diode 19, and the capacitor 20. The reactor 18 and the capacitor 20 form a filter.

VVVFインバータ15の出力は、主電動機16a−16dに供給され、CVCFインバータ21の出力は、バスの蛍光灯など補助回路22に供給される。   The output of the VVVF inverter 15 is supplied to the main motors 16a-16d, and the output of the CVCF inverter 21 is supplied to the auxiliary circuit 22 such as a fluorescent lamp on the bus.

今、集電装置11からの電力が受けられなくなったとすると、接触器12はバッテリー24側に切り替わり、バッテリー24からの直流電圧をVVVFインバータ15に供給する。これにより主回路側の主電動機が駆動される。集電装置11からの電力は、電圧も高く電力制限も十分大きいため、バスは高速で走行できるが、バッテリー24からの電力は、低いバッテリー電圧での走行になるため、バスは極低速での走行になる。従ってこのバッテリー走行は車庫での運転や営業路線上では停電が発生した際の退避のときに実施されている。   Assuming that the power from the current collector 11 can no longer be received, the contactor 12 switches to the battery 24 side and supplies the DC voltage from the battery 24 to the VVVF inverter 15. As a result, the main motor on the main circuit side is driven. Since the power from the current collector 11 is high in voltage and power limit is sufficiently large, the bus can run at high speed, but the power from the battery 24 runs at low battery voltage, so the bus is at very low speed. It becomes running. Therefore, this battery running is carried out when driving in a garage or when retreating when a power failure occurs on a business route.

上記のバッテリー走行ではCVCFインバータ21はバッテリー電圧が低すぎて動作できないため、CVCFの交流出力で蛍光灯などが接続されている場合、蛍光灯は消灯になるという不具合が生じる。実際にはこのような消灯を避けるため、蛍光灯はバッテリーからの直流で点灯する直流蛍光灯を用いて対処している。しかしながら、一般の直流電車では蛍光灯電源はCVCFインバータ出力の交流を使用しているので、この種トロリーバスで実施する方法は高価な設備を伴うことになる。   In the battery running described above, the CVCF inverter 21 cannot operate because the battery voltage is too low. Therefore, when a fluorescent lamp or the like is connected with the AC output of the CVCF, the fluorescent lamp is turned off. In practice, in order to avoid such turn-off, the fluorescent lamp is dealt with by using a direct-current fluorescent lamp that is lit by direct current from the battery. However, in general DC trains, the fluorescent lamp power supply uses AC output from the CVCF inverter, so that the method implemented with this type of trolley bus involves expensive equipment.

なお整流器23は、通常時は、CVCFインバータ21の出力である3相交流電流を整流してバッテリー24に充電を行っている。   Note that the rectifier 23 normally charges the battery 24 by rectifying the three-phase alternating current that is the output of the CVCF inverter 21.

図2は本発明に係わる直流電車におけるバッテリー走行を可能にした蓄電制御装置30の例を示している。図1と共通する部分には、図1と同一符号を付している。図1との違いは、昇降圧チョッパ31と蓄電装置32を有する蓄電制御装置30が設けられている点である。   FIG. 2 shows an example of a power storage control device 30 that enables battery running in a DC train according to the present invention. Portions common to those in FIG. 1 are denoted by the same reference numerals as in FIG. A difference from FIG. 1 is that a power storage control device 30 having a step-up / step-down chopper 31 and a power storage device 32 is provided.

通常走行状態では、接触器12が集電装置11側に接続され、VVVFインバータ15に電力が供給される。VVVFインバータ15の出力は、主電動機16a−16dに供給される。   In the normal running state, the contactor 12 is connected to the current collector 11 side, and power is supplied to the VVVF inverter 15. The output of the VVVF inverter 15 is supplied to the main motors 16a-16d.

また通常走行状態では、接触器17は集電装置11側に接続される。このときは、蓄電制御装置30は、逆流阻止ダイオード19のカソード側から受電した電圧(1500V)を、昇降圧チョッパ31により降圧し、蓄電装置32に蓄電(300V)を行う。   Further, in the normal running state, the contactor 17 is connected to the current collector 11 side. At this time, the power storage control device 30 steps down the voltage (1500 V) received from the cathode side of the backflow prevention diode 19 by the step-up / step-down chopper 31 and stores power (300 V) in the power storage device 32.

非常走行時には、接触器12は、蓄電装置32側に切り替えられる。また基本的には接触器17はオフされる。   During emergency traveling, the contactor 12 is switched to the power storage device 32 side. Basically, the contactor 17 is turned off.

このような非常走行時には、蓄電装置32からの電圧(300V)は、接触器12を介して、VVVFインバータ15に入力する。このために、低速ではあるが、主電動機16a−16dが駆動され、電気車は低速運転される。   During such emergency running, the voltage (300 V) from the power storage device 32 is input to the VVVF inverter 15 via the contactor 12. For this reason, although the speed is low, the main motors 16a to 16d are driven, and the electric vehicle is operated at a low speed.

また非常走行時には、蓄電制御装置30は、蓄電装置32からの電圧を昇降圧チョッパ31により昇圧し、その電圧1500VをCVCFインバータ21に供給することができる。よって、バッテリー走行時にもCVCFインバータ21は、定常に動作することができる。この結果、電気車内の照明、エアーコンディショナー、などの付帯設備を通常と同様に運転することができる。特に客車などで照明、エアーコンディショナーが安定して動作することは重要である。   Further, during emergency running, the power storage control device 30 can boost the voltage from the power storage device 32 by the step-up / step-down chopper 31 and supply the voltage 1500 V to the CVCF inverter 21. Therefore, the CVCF inverter 21 can operate normally even when the battery is running. As a result, incidental facilities such as lighting in the electric vehicle and air conditioner can be operated as usual. In particular, it is important that lighting and air conditioners operate stably in passenger cars.

一般に公称電圧1500Vの架線では蓄電装置32の電圧を300V程度にしておくことで、昇圧動作によりCVCFインバータが動作可能な電圧(例えば1500V)を得ることができる。バッテリー32の出力は、例えばシステム制御装置100などの電源電圧として利用される。システム制御装置100は、昇降圧チョッパ31を駆動するためのパルス、接触器17、12等を制御するための制御信号を出力する。また、架線電圧の状態などを検出することもできる。   Generally, in an overhead line with a nominal voltage of 1500 V, the voltage at which the CVCF inverter can operate can be obtained by boosting operation by setting the voltage of the power storage device 32 to about 300 V. The output of the battery 32 is used as a power supply voltage for the system control device 100, for example. The system control apparatus 100 outputs a pulse for driving the step-up / step-down chopper 31, a control signal for controlling the contactors 17, 12 and the like. It is also possible to detect the state of the overhead line voltage.

図3(A),図3(B)は、上記した昇降圧チョッパ31の動作をさらに詳しく説明するための図である。スッチング回路SW1とスイッチング回路SW2の直列回路とは、逆流阻止ダイオード19のカソードとアースライン間に接続されている。スイッチング回路SW1、SW2は、それぞれ絶縁型バイポーラ・トランジスタ(IGBT)が用いられている。ゲート回路g1、g2は、スイッチング回路SW1、SW2をそれぞれオンオフ制御するためのゲート回路であり、システム制御装置100から制御信号が入力される。蓄電装置32の一方の電極は、アースラインに接続され、他方の電極は、リアクトルL1を介してスイッチ回路SW1、SW2の接続点に接続されると共に、接触器12の一方の端子に接続されている。接触器12は、架線からの電力を選択した第1の走行状態と、蓄電装置32からの電力を選択した第2の走行状態を取ることができる。   3A and 3B are diagrams for explaining the operation of the step-up / step-down chopper 31 in more detail. The series circuit of the switching circuit SW1 and the switching circuit SW2 is connected between the cathode of the backflow prevention diode 19 and the ground line. Each of the switching circuits SW1 and SW2 is an insulated bipolar transistor (IGBT). The gate circuits g1 and g2 are gate circuits for performing on / off control of the switching circuits SW1 and SW2, respectively, and a control signal is input from the system control device 100. One electrode of the power storage device 32 is connected to the ground line, and the other electrode is connected to the connection point of the switch circuits SW1 and SW2 via the reactor L1 and to one terminal of the contactor 12. Yes. The contactor 12 can take the 1st driving state which selected the electric power from an overhead wire, and the 2nd driving state which selected the electric power from the electrical storage apparatus 32. FIG.

図3(A)は、昇降圧チョッパ31が充電モードのときの電流の流れを示している。スイッチング回路SW1がオンオフ制御され、スイッチング回路SW2をオフ状態に保つと、逆流阻止ダイオード19からの電流がスイッチング回路SW1を介して蓄電装置32に流れ込み、充電が行われる。蓄電された電力を保持する場合には、スイッチング回路SW1,SW2はオフされる。図3(B)は、昇降圧チョッパ31が放電モードのときの電流の流れを示している。放電する場合には、スイッチング回路SW1がオフ状態で、スイッチング回路SW2がオンオフ制御される。すると、リアクトルL1により昇圧された電圧が、スイッチング回路SW1のダイオードを介して補助回路側へ送出される。   FIG. 3A shows a current flow when the buck-boost chopper 31 is in the charging mode. When the switching circuit SW1 is controlled to be turned on and off and the switching circuit SW2 is kept in the off state, the current from the backflow prevention diode 19 flows into the power storage device 32 through the switching circuit SW1, and charging is performed. When holding the stored electric power, the switching circuits SW1 and SW2 are turned off. FIG. 3B shows a current flow when the buck-boost chopper 31 is in the discharge mode. When discharging, the switching circuit SW1 is turned off and the switching circuit SW2 is controlled to be turned on / off. Then, the voltage boosted by the reactor L1 is sent to the auxiliary circuit side via the diode of the switching circuit SW1.

図4は、電気車がDC1500Vで走行する場合と、DC300Vで走行する場合の車両速度と引張力の関係を示している。通常走行時(第1の走行状態)は、DC1500Vが架線から得られる。しかし非常走行時(第2の走行状態)は、DC300Vが蓄電装置32から得られる。非常走行時の走行速度は低速となる。   FIG. 4 shows the relationship between the vehicle speed and the tensile force when the electric vehicle runs at DC 1500V and when it runs at DC 300V. During normal travel (first travel state), DC 1500 V is obtained from the overhead wire. However, during emergency traveling (second traveling state), DC 300 V is obtained from the power storage device 32. The traveling speed during emergency traveling is low.

なお上記の実施例では、逆流阻止ダイオード19を用いたが、この部分の構成としては、図5に示すように高抵抗19Aとサイリスタ19Bの並列回路を用いても可能である。したがってこの部分の回路は総称して高抵抗部と称することにする。   In the above embodiment, the reverse current blocking diode 19 is used. However, as a configuration of this portion, a parallel circuit of a high resistance 19A and a thyristor 19B can be used as shown in FIG. Therefore, the circuit of this part is generically called a high resistance part.

上記したように本発明にかかる装置では、車載される蓄電装置を有効活用している。直流電車あるいは交流電車、交直電車に関わらず上記蓄電制御装置を設け、前記蓄電装置32は、直接主回路装置の入力部と接続可能とすることで、架線からの供給電力が欠如した場合も、この蓄電制御装置が、蓄電装置32の電圧を昇圧し高圧を必要とする補助回路を動作させることができる。   As described above, in the device according to the present invention, the on-board power storage device is effectively used. Regardless of whether it is a DC train, an AC train, or an AC / DC train, the power storage control device is provided, and the power storage device 32 can be directly connected to the input unit of the main circuit device, so that the power supply from the overhead line is lacking. This power storage control device can operate the auxiliary circuit that boosts the voltage of the power storage device 32 and requires a high voltage.

また、架線からの電力供給に頼らない非常走行では蓄電装置(低電圧)を直接主回路に接続することができ、低速ではあるが最寄の場所に移動できる。そして同時に蓄電制御装置を作用させることで補助回路側の高圧補助電源装置としては定常の出力で補助回路負荷に電力供給できる。   Further, in emergency running without relying on power supply from an overhead wire, the power storage device (low voltage) can be directly connected to the main circuit, and can move to the nearest place at a low speed. At the same time, by operating the power storage control device, the high voltage auxiliary power supply device on the auxiliary circuit side can supply power to the auxiliary circuit load with a steady output.

また、蓄電装置の蓄電状態を管理し、停止までに発生する回生エネルギーを吸収できるような蓄電池の充電状態とすることで、列車停止間際の低速域における列車の回生エネルギーを蓄電装置が吸収することで、低速域の回生失効を防止し、列車停止精度を向上することが可能である。   In addition, the storage device absorbs the regenerative energy of the train in the low speed range just before the train stops by managing the storage state of the storage device and charging the storage battery so that the regenerative energy generated by the stop can be absorbed Therefore, it is possible to prevent regeneration from being revoked in the low speed range and improve the train stopping accuracy.

電気車等において、架線電圧正常時の走行で、定常的に起こる瞬時離線という極短時間の電源欠如に際してはVVVFインバータ15が停止しても力行時、惰行時の走行に支障をきたさない。しかしCVCFインバータ21が停止すると蛍光灯の消灯を伴うため、連続動作が要求される。   In an electric vehicle or the like, when there is a short-time power shortage, which is a momentary disconnection that occurs regularly when the overhead line voltage is normal, even if the VVVF inverter 15 stops, it does not hinder the running during power running and coasting. However, when the CVCF inverter 21 is stopped, the fluorescent lamp is turned off, so that continuous operation is required.

従って本発明では上記したように、蓄電装置32から昇降圧チョッパ31を介して即電力を供給することで連続動作が可能になる。また回生ブレーキでは架線側に電力を戻す動作となる。しかし、架線側に回生負荷が少なく、回生ブレーキにより電力が架線側にもどってきたとき、異常に架線電圧が持ち上げられ、回生動作不能に陥る場合がある。   Therefore, in the present invention, as described above, continuous operation can be performed by immediately supplying electric power from the power storage device 32 via the step-up / down chopper 31. In regenerative braking, power is returned to the overhead line side. However, when the regenerative load is small on the overhead line side and the electric power returns to the overhead line side due to the regenerative brake, the overhead line voltage may be abnormally raised and the regenerative operation may be disabled.

そこで、本装置では力行時に蓄電装置32の充電状態を例えば80%程度にしておき、回生ブレーキ時に架線電圧が異常に持ち上げられる場合は昇降圧チョッパの降圧動作で蓄電装置32に充電余裕を設けておくことで回生動作を継続することができる。充電状態の設定及び制御は、例えばシステム制御装置100により管理される。   Therefore, in this device, the charging state of the power storage device 32 is set to, for example, about 80% during power running, and if the overhead wire voltage is abnormally raised during regenerative braking, a charging margin is provided for the power storage device 32 by the step-down operation of the step-up / down chopper. The regenerative operation can be continued by placing it. The setting and control of the charging state are managed by the system control device 100, for example.

図6(A)は、電車速度の変化の例を示し、図6(B)は、架線電圧が変化した様子を示し、図6(C)は蓄電装置32への充電状態を示している。   6A shows an example of a change in train speed, FIG. 6B shows a state in which the overhead line voltage has changed, and FIG. 6C shows a state in which the power storage device 32 is charged.

架線電圧異常時、つまり架線からの電力供給を受けることができなくなった場合は図6(A)のライン6a2に示すように、低速での非常走行ができる。図6(A)のライン6a1は、通常走行が行われるときの様子を示している。   When the overhead line voltage is abnormal, that is, when it becomes impossible to receive power supply from the overhead line, emergency running at a low speed can be performed as shown by the line 6a2 in FIG. A line 6a1 in FIG. 6A shows a state when the normal traveling is performed.

この際、CVCFインバータ21も通常の動作ができるので、CVCFインバータ21の出力で機能する蛍光灯は通常通り灯し続けることはできるし、またブレーキ等の空気圧を制御するコンプレッサも正常に動作させることができる。このため、電気車は長期間の運転が可能となり、駅間で停電等が発生しても最寄りの駅等に安全に退避することができる。   At this time, since the CVCF inverter 21 can also operate normally, the fluorescent lamp functioning with the output of the CVCF inverter 21 can continue to light normally, and the compressor that controls the air pressure such as a brake can also operate normally. Can do. For this reason, the electric vehicle can be operated for a long time, and even if a power failure or the like occurs between the stations, it can be safely evacuated to the nearest station or the like.

電気車等において、架線電圧正常時の走行で、定常的に起こる瞬時離線という極短時間の電源欠如に際してはVVVFインバータ15が停止しても力行時、惰行時の走行に支障をきたさない。しかしCVCFインバータ21が停止すると蛍光灯の消灯を伴うため、連続動作が要求される。   In an electric vehicle or the like, when there is a short-time power shortage, which is a momentary disconnection that occurs regularly when the overhead line voltage is normal, even if the VVVF inverter 15 stops, it does not hinder the running during power running and coasting. However, when the CVCF inverter 21 is stopped, the fluorescent lamp is turned off, so that continuous operation is required.

図6(B)は、電圧範囲Vs1,Vs2,Vs3(図7参照)に対して実際の架線電圧が変化している様子を示している。また図6(C)は、蓄電装置32の充電状態の様子を示している。   FIG. 6B shows a state where the actual overhead line voltage changes with respect to the voltage range Vs1, Vs2, Vs3 (see FIG. 7). FIG. 6C shows a state where the power storage device 32 is charged.

図7は本発明の架線電圧と蓄電制御装置30の制御によって作られる蓄電装置32の充電状態を示す。公称では電圧1500Vの架線電圧の変動範囲は900Vから1800Vである。架線の正常状態とみなせるVs1の範囲では蓄電制御装置30の充電、又は放電動作で例えば蓄電装置32の充電状態を80%に保つ。   FIG. 7 shows the state of charge of the power storage device 32 created by the control of the overhead line voltage and the power storage control device 30 of the present invention. Nominally, the fluctuation range of the overhead line voltage of 1500V is 900V to 1800V. In the range of Vs1 that can be regarded as a normal state of the overhead line, for example, the charging state of the power storage device 32 is maintained at 80% by charging or discharging operation of the power storage control device 30.

離線などの電源欠如では電圧がVs2領域に入り、蓄電装置32は放電モードでCVCFインバータ21へ電力を供給することになる。この際、逆流阻止ダイオード19の効果によりこの電力はVVVFインバータ15には供給されないので、蓄電制御装置の制御容量は小さくてすむことになる。一方、回生ブレーキ時に架線電圧が異常にあがり、Vs3の領域に入り込むと蓄電制御装置30は蓄電装置32への充電モードに移り、架線電圧の上昇を抑制することになる。これは回生効率を高めることになり、省エネルギー効果に大きく寄与する。   In the absence of power source such as disconnection, the voltage enters the Vs2 region, and the power storage device 32 supplies power to the CVCF inverter 21 in the discharge mode. At this time, the electric power is not supplied to the VVVF inverter 15 due to the effect of the reverse current blocking diode 19, so that the control capacity of the power storage control device can be reduced. On the other hand, when the overhead line voltage becomes abnormal during regenerative braking and enters the region of Vs3, the power storage control device 30 shifts to the charging mode for the power storage device 32 and suppresses the increase of the overhead line voltage. This increases the regeneration efficiency and greatly contributes to the energy saving effect.

この発明は上記の実施例に限定されるものではなく、各種の車両に適用することが可能であり、以下各種の車両に適用された様子を説明する。   The present invention is not limited to the above-described embodiment, and can be applied to various types of vehicles, and the manner in which the present invention is applied to various types of vehicles will be described below.

図8に本発明の基本コンセプトを交流電気車両に適用した場合の回路例を示す。集電装置11は、主変圧器41の第1巻線41aに接続されている。主変圧器41の第2巻線41bは、整流装置D1を介して、接触器12の一方の入力端子に接続されている。接触器12の出力は、入力フィルタを介してVVVFインバータ15に供給される。主変圧器41の第3巻線41cに接続されている整流装置D2の出力は、補助回路側の入力フィルタを介してCVCFインバータ21に供給されている。   FIG. 8 shows a circuit example when the basic concept of the present invention is applied to an AC electric vehicle. The current collector 11 is connected to the first winding 41 a of the main transformer 41. The second winding 41b of the main transformer 41 is connected to one input terminal of the contactor 12 via the rectifier D1. The output of the contactor 12 is supplied to the VVVF inverter 15 through an input filter. The output of the rectifier D2 connected to the third winding 41c of the main transformer 41 is supplied to the CVCF inverter 21 via the input filter on the auxiliary circuit side.

図8においては、蓄電装置32への充放電動作をする昇降圧チョッパ31は、主変圧器41の第3巻線41cを介した整流装置D2と高圧補助電源装置の入力部間に接続されている。また主回路のVVVFインバータ15の入力フィルタが架線から切り離されたときは、代って蓄電装置32の出力がVVVFインバータ15に入力する構成である。他の部分は、先の実施形態と同じ構成であるために、同一符号を付している。   In FIG. 8, the step-up / step-down chopper 31 that performs the charging / discharging operation of the power storage device 32 is connected between the rectifier D2 and the input portion of the high-voltage auxiliary power supply device via the third winding 41c of the main transformer 41. Yes. In addition, when the input filter of the VVVF inverter 15 of the main circuit is disconnected from the overhead line, the output of the power storage device 32 is input to the VVVF inverter 15 instead. The other parts are the same as those in the previous embodiment, and are therefore given the same reference numerals.

図9に本発明の基本コンセプトを交直流車両に適用した場合の回路例を示す。集電装置11は、交流の場合、主変圧器41の第1巻線41aに接続することができる。また集電装置11は、直流の場合、接触器42を介して接触器12の一方の入力端に接続することができる。主変圧器41の第2巻線41bは整流装置D1に接続されている。この整流装置D1の出力は、接触器12の一方の入力端に接続されている。接触器12は、非常走行時には蓄電装置32の出力を選択する。   FIG. 9 shows a circuit example when the basic concept of the present invention is applied to an AC / DC vehicle. In the case of alternating current, the current collector 11 can be connected to the first winding 41 a of the main transformer 41. In the case of direct current, the current collector 11 can be connected to one input terminal of the contactor 12 via the contactor 42. The second winding 41b of the main transformer 41 is connected to the rectifier D1. The output of the rectifier D1 is connected to one input terminal of the contactor 12. The contactor 12 selects the output of the power storage device 32 during emergency traveling.

この図9の装置は、架線からの電力供給を受けず、低速でも車載の蓄電装置で非常走行する交直流電気車に適用された例である。蓄電装置32への充放電動作をする昇降圧チョッパ31は、主変圧器の第2巻線を介した整流装置D1の出力の逆流阻止ダイオード19dと高圧補助電源装置の入力部間に接続される。また主回路のVVVFインバータ15の入力フィルタが架線から切り離されときは、代って蓄電装置32の出力がVVVFインバータ15に入力する構成である。他の部分は、先の実施形態と同じ構成であるために、同一符号を付している。   The apparatus shown in FIG. 9 is an example applied to an AC / DC electric vehicle that does not receive power supply from an overhead line and travels urgently with an in-vehicle power storage device even at a low speed. A step-up / step-down chopper 31 for charging / discharging the power storage device 32 is connected between the backflow prevention diode 19d of the output of the rectifier D1 via the second winding of the main transformer and the input portion of the high-voltage auxiliary power supply. . Further, when the input filter of the VVVF inverter 15 of the main circuit is disconnected from the overhead wire, the output of the power storage device 32 is input to the VVVF inverter 15 instead. The other parts are the same as those in the previous embodiment, and are therefore given the same reference numerals.

図10は図2の装置の変形例である。逆流阻止ダイオード19の両端に放電制御素子(IGBT)50を接続し、蓄電装置32の放電電力を補助電源装置としてだけでなく、主回路にも選択放電できるようにしたものである。図10の方式と図2の方式の違いは、主回路側にも昇圧チョッパの出力を接続し、主回路側への電力供給を可能にしている点である。蓄電装置の容量が小さい場合は、力行補助を行うだけの余力がないが、蓄電容量が大きい場合は、主回路へ電力を蓄電装置から供給し、架線ハイブリッドシステムとして動作させることも可能である。   FIG. 10 shows a modification of the apparatus shown in FIG. A discharge control element (IGBT) 50 is connected to both ends of the reverse current blocking diode 19 so that the discharge power of the power storage device 32 can be selectively discharged not only to the auxiliary power supply device but also to the main circuit. The difference between the method of FIG. 10 and the method of FIG. 2 is that the output of the step-up chopper is also connected to the main circuit side to enable power supply to the main circuit side. When the capacity of the power storage device is small, there is not enough power to assist powering. However, when the power storage capacity is large, power can be supplied from the power storage device to the main circuit and operated as an overhead hybrid system.

蓄電装置のエネルギーを力行に用いる場合は、図10の放電制御素子50を点弧することで主回路に向けエネルギーを放出する。   When the energy of the power storage device is used for powering, the discharge control element 50 in FIG. 10 is ignited to release energy toward the main circuit.

図11は図10の装置を用い、列車のTASC制御時の停止精度の向上を狙った場合の列車速度と蓄電装置32の充放電パターンの例を示している。図11(A)は、列車速度の変遷、図11(B)は蓄電装置の充電状態を示し、図11(C)は、列車消費電力の変化の様子を示している。図11(C)で列車の消費電力が大きくなる領域C11に於いて蓄電装置を放電することで、饋電系へのピーク電力を軽減する他、饋電線の損失を減らし省エネルギー化に寄与する。   FIG. 11 shows an example of the train speed and the charge / discharge pattern of the power storage device 32 when the device of FIG. 10 is used and the stop accuracy is improved during TASC control of the train. FIG. 11A shows the change in train speed, FIG. 11B shows the state of charge of the power storage device, and FIG. 11C shows the change in train power consumption. In FIG. 11 (C), the power storage device is discharged in the region C11 where the power consumption of the train becomes large, thereby reducing the peak power to the feeder system and reducing the loss of the feeder and contributing to energy saving.

駅間時分を一定に走行するような自動列車運転(Automatic Train Operation: ATO)システムを使用した場合、蓄電装置の放電によりパンタ点電圧が上昇することで力行性能が向上し、最高速度を抑えた省エネルギー運転効果を増大することも出来る。   When using an Automatic Train Operation (ATO) system that travels constantly between stations, the power running performance is improved by increasing the punter voltage due to the discharge of the power storage device, and the maximum speed is reduced. The energy saving operation effect can also be increased.

駅間走行中は、図11に示すように蓄電装置の充電状態(SOC)をある一定レベル以上保つ必要がある。これは、駅間走行中に停電が発生し饋電を受けられなくなったとき、架線レス走行を実施し次駅までの走行エネルギーを確保するためである。   During traveling between stations, it is necessary to keep the state of charge (SOC) of the power storage device at a certain level or higher as shown in FIG. This is because when a power failure occurs during traveling between stations and no power is received, traveling without an overhead wire is performed to secure traveling energy to the next station.

図11では充電状態(SOC)50%一定となっているが、次駅に近づくにつれて架線レス走行に必要となるエネルギーは小さくなるので、必要な消費エネルギーを列車位置に応じて算出し、駅間最低SOCを可変とすることで蓄電装置の容量を有効活用(例えば回生に備え積極的に放電)することで、列車の消費エネルギーを更に抑制することも出来る。   In FIG. 11, the state of charge (SOC) is constant at 50%, but the energy required for overhead line-less traveling decreases as the next station is approached, so the required energy consumption is calculated according to the train position and By making the minimum SOC variable, the power storage device capacity can be effectively utilized (for example, positively discharged in preparation for regeneration), thereby further reducing the energy consumption of the train.

また列車が減速し駅に停止する際には、速度の低い領域を優先して回生エネルギーを吸
収する。実施例では列車速度30km/h以下の速度域に於いて蓄電装置が回生電力を吸収している。架線に回生していた場合、列車の回生電力を消費する負荷を失ってしまうと回生失効が発生し機械ブレーキを使用することになり、列車停止精度に大きな影響が出てくる。しかし、本実施例にように30km/h以下の回生失効を完全に防止すれば停止精度を常に高い状態に保つことが可能になる。30km/h以下での回生失効が停止間際の精度に大きく影響を与えているが、蓄電装置のSOC状態が低く、回生電力の吸収に余裕がある場合は、30km/h以上の速度域の回生電力を蓄電装置が吸収することも出来、省エネルギー効果の増大に寄与する。
In addition, when the train decelerates and stops at the station, regenerative energy is absorbed by giving priority to the low-speed area. In the embodiment, the power storage device absorbs regenerative power in a speed range of a train speed of 30 km / h or less. When regenerating on an overhead line, if the load that consumes the regenerative power of the train is lost, the regenerative invalidation occurs and the mechanical brake is used, which greatly affects the train stop accuracy. However, the stop accuracy can always be maintained at a high level by completely preventing regeneration invalidity of 30 km / h or less as in this embodiment. Regeneration invalidation at 30 km / h or less greatly affects the accuracy at the time of stopping, but if the SOC state of the power storage device is low and there is room for absorption of regenerative power, regeneration at a speed range of 30 km / h or more is possible. The power storage device can also absorb power, which contributes to an increase in energy saving effect.

さらにまた架線停電もしくは低電圧時には、図10の放電制御素子50を消弧しCVCFインバータ21に対してのみ蓄電装置からエネルギーを供給する。架線停電時は、饋電システム側で地落事故が起きていることも考えられ、饋電システム側の事故点に対して列車からパワーを流出させないことは安全上重要である。   Furthermore, at the time of a power failure or low voltage, the discharge control element 50 in FIG. 10 is extinguished and energy is supplied from the power storage device only to the CVCF inverter 21. At the time of an overhead power outage, a ground accident may have occurred on the power transmission system side, and it is important for safety not to let power flow out of the train against the accident point on the power transmission system side.

図10の装置で架線レス走行を行う場合は、集電装置11としてのパンタグラフを降ろし架線と主回路を切り離した上で、放電制御素子50を点弧し、VVVFインバータ15に対してエネルギーを供給する。これが第3軌条方式の鉄道で架線レス走行を実施する場合は、集電装置の直後に遮断器を設け、架線と列車の主回路とを切り離す方法で対応可能である。なお、上記実施例は蓄電池を用いているが、蓄電池に限定せず電気2重層コンデンサ((EDLC:Electric Double-Layer Capacitor)といった各種蓄エネルギー装置で適用可能である。EDLCは、非常に大きな容量を持っている。   When performing the overhead wireless running with the apparatus of FIG. 10, the pantograph as the current collector 11 is lowered, the overhead line and the main circuit are separated, the discharge control element 50 is ignited, and energy is supplied to the VVVF inverter 15. To do. When this is a third rail type railroad-less traveling, it can be handled by providing a breaker immediately after the current collector and separating the overhead line from the main circuit of the train. In addition, although the said Example uses a storage battery, it is applicable not only to a storage battery but to various energy storage devices, such as an electric double layer capacitor (EDLC: Electric Double-Layer Capacitor. EDLC has a very large capacity. have.

上記したように集電装置又は架線停電といった場合、バッテリー走行により低速ではあるが動かし、最寄の駅まで乗客を送り届けるという目的に対し、本発明ではバッテリー走行期間中も補助電源装置を出力することができるため、蛍光灯と点灯が維持でき、且つブレーキ動作の元になる空気タンクへ空気を圧縮するコンプレッサの動作を維持することで、長時間の安全な運転が保証される。   As described above, in the case of a current collector or an overhead power failure, the auxiliary power supply is output even during the battery running period in the present invention for the purpose of moving the passenger at a low speed by battery running and delivering the passenger to the nearest station. Therefore, the operation of the compressor that compresses air to the air tank that is the source of the brake operation can be maintained, and long-time safe operation is guaranteed.

且つ、本発明を直流車両に適用した場合は離線補償となり、離線補償用大形コンデンサを除去できるので補助電源装置の小形化を促す。また回生電力を一部吸収することはできるため、回生効率が向上する。つまりシステム制御装置100の制御に従い、自車の走行速度に応じて蓄電装置の充放電制御を行うとともに、停止間際の低速域においては、饋電線への回生を行わず蓄電装置32への回生のみを行う。   In addition, when the present invention is applied to a DC vehicle, it becomes line separation compensation, and the large capacitor for line separation compensation can be removed, so that the auxiliary power supply apparatus can be miniaturized. Moreover, since a part of the regenerative power can be absorbed, the regenerative efficiency is improved. In other words, according to the control of the system control device 100, charge / discharge control of the power storage device is performed according to the traveling speed of the host vehicle, and only regeneration to the power storage device 32 is not performed in the low speed range just before stopping without regenerating the feeder. I do.

また、ATOシステムが採用されている線区においては、停止間際の回生失効を完全に防止することで、停止位置精度の向上を図ることも可能となる。また、駅間走行中に架線レス走行に必要なエネルギー量を随時把握し蓄電池のSOC下限値を保つことで、限りある蓄電装置の容量を有効活用し、回生失効防止や列車のピーク電力抑制効果を向上させることも出来る。つまりシステム制御装置100の制御に従い、非常時の架線レス走行に必要なエネルギー量を列車位置に応じてデータベースから取得もしくは演算し前記蓄電装置への充放電を行う。   In addition, in the section where the ATO system is adopted, it is possible to improve the stop position accuracy by completely preventing regeneration invalidation just before stopping. In addition, the amount of energy required for overhead line-less travel during station-to-station travels is maintained as needed to maintain the SOC lower limit of the storage battery, thereby effectively utilizing the limited capacity of the power storage device, preventing regenerative expiration and suppressing train peak power. Can also be improved. That is, according to the control of the system control device 100, the amount of energy necessary for the overhead-less traveling in an emergency is acquired or calculated from the database according to the train position, and the power storage device is charged / discharged.

交流電車では交交セクションが設備されているので、電力欠如が定常的に発生し、このセクションを渡るたびに蛍光灯が消灯することは許されないので、高価な直流蛍光灯が車内灯として設備されているが、本発明を交流電車に適用した場合、補助電源装置は蓄電制御装置からの放電により電力を補助電源装置に入力できるため、安価な一般の交流蛍光灯が使用できることになる。   Since there is an intersection section on AC trains, there is a constant power shortage, and it is not allowed to turn off the fluorescent lamp every time this section is crossed, so expensive DC fluorescent lamps are installed as interior lights. However, when the present invention is applied to an AC train, the auxiliary power supply device can input electric power to the auxiliary power supply device by discharging from the power storage control device, so that an inexpensive general AC fluorescent lamp can be used.

交直流電車では直流区間、又は交流区間を走行している際の効果は直流電車、交流電車として動作するが、交直セクションという長い距離の無電圧区間を渡ることになり、長時間のバッテリーによる蛍光灯を点灯する必要があり、大きなバッテリー容量を有することになるが、本発明を使用した効果では一般の交流蛍光灯に加え、バッテリー容量を大きくする必要がない。   In an AC / DC train, the effect of traveling in the DC section or AC section is that it operates as a DC / AC train. However, the AC / DC section crosses a long non-voltage section of the AC / DC section. The lamp needs to be turned on and has a large battery capacity, but the effect of using the present invention does not require a large battery capacity in addition to a general AC fluorescent lamp.

本発明は、直流電車、交流電気車両、交直流車両などのように蓄電装置を有する装置に適用して有効である。   The present invention is effective when applied to a device having a power storage device such as a DC train, an AC electric vehicle, and an AC / DC vehicle.

11・・・集電装置、12、17・・・接触器、13、18・・・リアクトル、14、20・・・コンデンサ、15・・・VVVFインバータ、16a、16b、16c、16d・・・主電動機、19・・・逆流阻止ダイオード、21・・・CVCFインバータ、22・・・補助回路、23・・・整流器、24・・・バッテリー、30・・・蓄電制御装置、31・・・昇降圧チョッパ、32・・・蓄電装置、41・・・主変圧器、100・・・システム制御装置。 DESCRIPTION OF SYMBOLS 11 ... Current collector, 12, 17 ... Contactor, 13, 18 ... Reactor, 14, 20 ... Capacitor, 15 ... VVVF inverter, 16a, 16b, 16c, 16d ... Main motor, 19 ... backflow prevention diode, 21 ... CVCF inverter, 22 ... auxiliary circuit, 23 ... rectifier, 24 ... battery, 30 ... power storage control device, 31 ... lift Pressure chopper, 32 ... power storage device, 41 ... main transformer, 100 ... system control device.

Claims (9)

一端が集電装置または蓄電装置に接続し、他端が第1のフィルタに接続される第1の接触器と、
前記第1のフィルタの他端が接続する主回路と、
前記集電装置と第2のフィルタを介して接続される補助回路と、
前記第2のフィルタと前記補助回路の間に一端が接続され、前記第1の接触器と前記蓄電装置の一端との間に別の一端が接続され、前記蓄電装置の他端と前記補助回路の間に他端が接続される昇降圧チョッパと、
を有する電気車用制御装置。
A first contactor having one end connected to a current collector or a power storage device and the other end connected to a first filter;
A main circuit to which the other end of the first filter is connected;
An auxiliary circuit connected to the current collector via a second filter;
One end is connected between the second filter and the auxiliary circuit, another end is connected between the first contactor and one end of the power storage device, and the other end of the power storage device and the auxiliary circuit A buck-boost chopper whose other end is connected between,
A control apparatus for an electric vehicle.
前記第1の接触器は集電装置と蓄電装置とに選択的に接続可能である請求項1記載の電気車用制御装置。   The electric vehicle control device according to claim 1, wherein the first contactor is selectively connectable to a current collector and a power storage device. 前記第1のフィルタは、リアクトルとコンデンサを有する請求項1または2記載の電気車用制御装置。   The electric vehicle control device according to claim 1, wherein the first filter includes a reactor and a capacitor. 前記第2のフィルタは、リアクトルとコンデンサを有する請求項1から3のいずれか1項に記載の電気車用制御装置。   The electric vehicle control device according to any one of claims 1 to 3, wherein the second filter includes a reactor and a capacitor. 前記昇降圧チョッパは、スイッチ素子とダイオードが逆並列接続されたスイッチング回路が直列に接続され、直列に接続されたスイッチング回路の間にリアクトルが接続される請求項1から4のいずれか1項に記載の電気車用制御装置。   5. The step-up / step-down chopper according to claim 1, wherein a switching circuit in which a switching element and a diode are connected in antiparallel is connected in series, and a reactor is connected between the switching circuits connected in series. The control apparatus for electric vehicles as described. 前記昇降圧チョッパの前記スイッチング回路の直列の一端は、前記第2のフィルタと前記補助回路の間に接続され、前記昇降圧チョッパのリアクトルの一端は、前記第1の接触器と前記蓄電装置の一端の間に接続され、前記昇降圧チョッパの前記スイッチング回路の直列の別の一端は、前記蓄電装置の他端と前記補助回路の間に接続される請求項5に記載の電気車用制御装置。   One end in series of the switching circuit of the step-up / down chopper is connected between the second filter and the auxiliary circuit, and one end of the reactor of the step-up / down chopper is connected to the first contactor and the power storage device. 6. The electric vehicle control device according to claim 5, wherein the other one end in series of the switching circuit of the buck-boost chopper is connected between the other end of the power storage device and the auxiliary circuit. . 前記昇降圧チョッパは、前記第2のフィルタの出力電圧を降圧して前記蓄電装置を充電する状態と、前記蓄電装置の出力電圧を昇圧して前記補助回路に供給する状態とが切り替わる、請求項1から5のいずれか1項に記載の電気車用制御装置。   The step-up / step-down chopper switches between a state in which the output voltage of the second filter is stepped down to charge the power storage device and a state in which the output voltage of the power storage device is stepped up and supplied to the auxiliary circuit. The control device for an electric vehicle according to any one of 1 to 5. 前記第2のフィルタの入力端子は、前記集電装置に1次側巻線が接続された変圧器の2次側の巻線に接続された整流器に接続される請求項1から5のいずれか1項に記載の電気車用制御装置。   6. The input terminal of the second filter is connected to a rectifier connected to a secondary winding of a transformer having a primary winding connected to the current collector. The control device for an electric vehicle according to Item 1. 前記第2のフィルタは、リアクトルが前記第1のフィルタのリアクトルと共用されており、入力端子は、前記第1の接触器の出力端子に接続されている
請求項1から5のいずれか1項に記載の電気車用制御装置。
The reactor according to any one of claims 1 to 5, wherein the second filter has a reactor shared with the reactor of the first filter, and an input terminal is connected to an output terminal of the first contactor. The control apparatus for electric vehicles described in 1.
JP2013167003A 2013-08-09 2013-08-09 Electric vehicle control device Active JP5777669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167003A JP5777669B2 (en) 2013-08-09 2013-08-09 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167003A JP5777669B2 (en) 2013-08-09 2013-08-09 Electric vehicle control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009099055A Division JP5558022B2 (en) 2009-04-15 2009-04-15 Electric vehicle storage control device and storage control method

Publications (2)

Publication Number Publication Date
JP2014030343A true JP2014030343A (en) 2014-02-13
JP5777669B2 JP5777669B2 (en) 2015-09-09

Family

ID=50202536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167003A Active JP5777669B2 (en) 2013-08-09 2013-08-09 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP5777669B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521747A1 (en) * 2018-09-17 2020-04-15 Siemens Ag Oesterreich Battery arrangement for the auxiliary operation of a rail vehicle
WO2020075504A1 (en) * 2018-10-11 2020-04-16 株式会社日立製作所 Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle
CN111717066A (en) * 2020-06-29 2020-09-29 蜂巢能源科技有限公司 Power control method of battery pack, computer readable storage medium and control system
CN114720779A (en) * 2022-05-10 2022-07-08 北京全路通信信号研究设计院集团有限公司 Phase-controllable bow net offline electromagnetic disturbance simulation system and test method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273103A (en) * 1985-05-27 1986-12-03 Toshiba Corp Ac and dc electric railcar
JPH06245316A (en) * 1993-02-10 1994-09-02 Mitsubishi Electric Corp Controller for universal electric vehicle
JPH10271610A (en) * 1997-03-26 1998-10-09 Railway Technical Res Inst Device for controlling changeover of power supply for ac electric railway
JP2003199204A (en) * 2001-12-25 2003-07-11 Toshiba Corp Electric vehicle control device
JP2004056934A (en) * 2002-07-22 2004-02-19 Railway Technical Res Inst Auxiliary power unit
JP2006325316A (en) * 2005-05-18 2006-11-30 Toshiba Corp Electric vehicle controller
JP2007228796A (en) * 2004-02-20 2007-09-06 Railway Technical Res Inst Circuit arrangement and railway vehicle operation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273103A (en) * 1985-05-27 1986-12-03 Toshiba Corp Ac and dc electric railcar
JPH06245316A (en) * 1993-02-10 1994-09-02 Mitsubishi Electric Corp Controller for universal electric vehicle
JPH10271610A (en) * 1997-03-26 1998-10-09 Railway Technical Res Inst Device for controlling changeover of power supply for ac electric railway
JP2003199204A (en) * 2001-12-25 2003-07-11 Toshiba Corp Electric vehicle control device
JP2004056934A (en) * 2002-07-22 2004-02-19 Railway Technical Res Inst Auxiliary power unit
JP2007228796A (en) * 2004-02-20 2007-09-06 Railway Technical Res Inst Circuit arrangement and railway vehicle operation system
JP2006325316A (en) * 2005-05-18 2006-11-30 Toshiba Corp Electric vehicle controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521747A1 (en) * 2018-09-17 2020-04-15 Siemens Ag Oesterreich Battery arrangement for the auxiliary operation of a rail vehicle
WO2020075504A1 (en) * 2018-10-11 2020-04-16 株式会社日立製作所 Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle
JPWO2020075504A1 (en) * 2018-10-11 2021-12-02 株式会社日立製作所 How to charge a railroad vehicle drive system and a power storage device in a railroad vehicle
JP7094381B2 (en) 2018-10-11 2022-07-01 株式会社日立製作所 How to charge a railroad vehicle drive system and a power storage device in a railroad vehicle
CN111717066A (en) * 2020-06-29 2020-09-29 蜂巢能源科技有限公司 Power control method of battery pack, computer readable storage medium and control system
CN114720779A (en) * 2022-05-10 2022-07-08 北京全路通信信号研究设计院集团有限公司 Phase-controllable bow net offline electromagnetic disturbance simulation system and test method
CN114720779B (en) * 2022-05-10 2024-02-27 北京全路通信信号研究设计院集团有限公司 Phase-controllable bow net offline electromagnetic disturbance simulation system and test method

Also Published As

Publication number Publication date
JP5777669B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5558022B2 (en) Electric vehicle storage control device and storage control method
US9873335B2 (en) Electric railcar power feeding system, power feeding device, and power storage device
EP3038854B1 (en) Electric power conversion device, emergency traveling system and railway vehicle
US7451842B2 (en) Control system for electric motor car
US8924051B2 (en) Drive device for railway vehicle
US9227516B2 (en) Electric vehicle propulsion control device and railway vehicle system
KR101237552B1 (en) Railway system installing power supply facility on railroads between stations
JP2009072003A5 (en)
JP5902534B2 (en) Railway vehicle drive system
WO2019119495A1 (en) Train traction rescue method and system
JP2008263741A (en) Battery charger of railroad vehicle
JP2008263741A5 (en)
JP2012039867A (en) Device for control of electric rolling stock
JP2010130772A (en) Rail vehicle drive system
JP6055258B2 (en) Railway vehicle
JP5777669B2 (en) Electric vehicle control device
CN112721958A (en) Traction auxiliary system and method suitable for power outage area and vehicle
JP2010213506A (en) Power supply controller and power supply control method
JP4178728B2 (en) Power supply equipment for electric vehicles
JP4304827B2 (en) Power supply facilities and electric vehicles
WO2018123917A1 (en) Circuit system for railroad vehicle
JP2015056993A (en) Railroad vehicle drive device
JP2001320831A (en) Electric rolling stock for railway
JP2015167466A (en) Driving device for railway vehicle
JPH1198606A (en) Power supply for regenerative power absorber

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R151 Written notification of patent or utility model registration

Ref document number: 5777669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151