JP2014005960A - Heat exchange device - Google Patents

Heat exchange device Download PDF

Info

Publication number
JP2014005960A
JP2014005960A JP2012140437A JP2012140437A JP2014005960A JP 2014005960 A JP2014005960 A JP 2014005960A JP 2012140437 A JP2012140437 A JP 2012140437A JP 2012140437 A JP2012140437 A JP 2012140437A JP 2014005960 A JP2014005960 A JP 2014005960A
Authority
JP
Japan
Prior art keywords
heat exchange
fluid
lining sheet
outflow
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012140437A
Other languages
Japanese (ja)
Other versions
JP6047800B2 (en
Inventor
Fumihiko Koyama
文彦 小山
Hiroyuki Muraishi
浩幸 村石
Yoshikazu Miyagawa
佳和 宮川
Toshiyuki Hotani
敏幸 穂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2012140437A priority Critical patent/JP6047800B2/en
Publication of JP2014005960A publication Critical patent/JP2014005960A/en
Application granted granted Critical
Publication of JP6047800B2 publication Critical patent/JP6047800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the treatment flow amount per unit time without enlarging a device and reduce the power consumption thereby achieving energy saving.SOLUTION: A heat exchange device includes: a dividing wall part 5 which is provided in a heat exchange chamber thereby dividing the heat exchange chamber in a right direction Fs relative to heat exchange surfaces 2f, 2r and forming a pair of heat exchange divided chamber parts 3f, 3r; one or more inflow port parts 6i which may flow a fluid L from the right angle Fs relative to the one heat exchange surface 2f into the one heat exchange divided chamber part 3f; one or more outflow port parts 6e which may flow out the fluid L in the other heat exchange divided chamber part 3r in the right angle Fs relative to the other heat exchange surface 2r; and multiple circulation hole parts 7 ... which penetrate through the dividing wall part 5 and are formed along a periphery 5c of the dividing wall part 5 at a predetermined interval.

Description

本発明は、熱交換される流体を流通させる熱交換室を設けた熱交換ブロック部を備える熱交換装置に関する。   The present invention relates to a heat exchanging device including a heat exchanging block portion provided with a heat exchanging chamber for circulating a fluid to be heat exchanged.

従来、熱交換される流体を流通させる熱交換室を内部に設けた所定の厚さの熱交換ブロック部と、この熱交換ブロック部の厚さ方向における一対の熱交換面にそれぞれ付設して前記流体に対して熱交換を行う一対の温調部とを備える熱交換装置としては、特許文献1で開示される熱交換装置が知られている。   Conventionally, a heat exchange block part with a predetermined thickness provided inside a heat exchange chamber for circulating a fluid to be heat exchanged, and a pair of heat exchange surfaces in the thickness direction of the heat exchange block part are respectively attached to the heat exchange block part. A heat exchange device disclosed in Patent Document 1 is known as a heat exchange device including a pair of temperature control units that perform heat exchange with respect to a fluid.

同文献1に開示される熱交換装置は、少なくとも、熱交換される流体を流通させる所定の流路パターンを内部に設けた熱交換室を有する所定の厚さの熱交換ブロック部と、この熱交換ブロック部の厚さ方向における一対の熱交換面にそれぞれ付設して流体に対して熱交換を行う一対の温調部とを備える熱交換装置であって、熱交換室の内部に仕切壁を設けることにより、熱交換室を熱交換面に対して直角方向に二分して一対の熱交換分室部に形成するとともに、各熱交換分室部に所定の流路パターンをそれぞれ設け、かつ仕切壁に貫通孔を設けて各熱交換分室部の流路パターンの一端部同士を直列接続するとともに、一対の熱交換分室部における一方の流路パターンの他端部を流体の流入端とし、かつ他方の流路パターンの他端部を流体の流出端とした少なくとも一つの熱交換部を設けて構成したものである。   The heat exchange device disclosed in the document 1 includes at least a heat exchange block portion having a predetermined thickness having a heat exchange chamber provided therein with a predetermined flow path pattern for circulating a fluid to be heat exchanged, and this heat. A heat exchange device including a pair of temperature control units that are attached to a pair of heat exchange surfaces in the thickness direction of the exchange block unit and perform heat exchange with respect to a fluid, respectively, and a partition wall is provided inside the heat exchange chamber By providing the heat exchange chamber in a direction perpendicular to the heat exchange surface to form a pair of heat exchange compartment portions, each heat exchange compartment portion is provided with a predetermined flow path pattern, and a partition wall is provided. A through hole is provided to connect one end portions of the flow path patterns of each heat exchange compartment portion in series, and the other end portion of one flow passage pattern in the pair of heat exchange compartment portions is an inflow end of the fluid, and the other The other end of the flow path pattern Provided at least one heat exchange section and the end is obtained by configuration.

特開2010−151427号公報JP 2010-151427 A

しかし、上述した従来における所定の流路パターンを用いた熱交換構造は、次のような解決すべき課題が存在した。   However, the conventional heat exchange structure using the predetermined flow path pattern described above has the following problems to be solved.

第一に、基本的には流路パターンに対応した一本の流路が渦巻状或いはジグザグ状に形成されるため、流路の断面積を大きくするには限界があり、単位時間当たりの処理流量を増加させることができない。この場合、処理流量を増加させるには、熱交換装置全体を大型化すればよいが、大型化は、即使用材料の増加となり、熱交換装置全体の重量アップ及びコストアップを招く。   First, since one flow path corresponding to the flow path pattern is basically formed in a spiral or zigzag shape, there is a limit to increasing the cross-sectional area of the flow path, and processing per unit time The flow rate cannot be increased. In this case, in order to increase the processing flow rate, it is only necessary to increase the size of the entire heat exchange device. However, the increase in the size of the heat exchange device increases the weight and cost of the entire heat exchange device.

第二に、渦巻状或いはジグザグ状に形成した一本の流路を用いるため、流路の断面積が小さくなるのみならず、流路の全長が長くなるとともに、非直線流路も多くなる。結局、流体が流れる際における全体の流路抵抗(圧損)が大きくなり、消費電力の増加を招くなど、省エネルギ化を推進するにも限界がある。   Secondly, since one flow path formed in a spiral shape or a zigzag shape is used, not only the cross-sectional area of the flow path is reduced, but the total length of the flow path is increased and the number of non-linear flow paths is increased. Eventually, there is a limit to promoting energy saving, such as an increase in overall channel resistance (pressure loss) when the fluid flows and an increase in power consumption.

本発明は、このような背景技術に存在する課題を解決した熱交換装置の提供を目的とするものである。   The object of the present invention is to provide a heat exchange device that solves such problems in the background art.

本発明は、上述した課題を解決するため、少なくとも、熱交換される流体Lを流通させる熱交換室を内部に設けた所定の厚さを有する熱交換ブロック部2と、この熱交換ブロック部2の厚さ方向における一対の熱交換面2f,2rにそれぞれ付設して流体Lに対して熱交換を行う一対の温調部4f,4rとを備える熱交換装置1を構成するに際して、熱交換室の内部に設けることにより熱交換室を熱交換面2f,2rに対して直角方向Fsに二分して一対の熱交換分室部3f,3rを形成する仕切壁部5と、一方の熱交換面2fの直角方向Fsから一方の熱交換分室部3fの内部に流体Lを流入可能な一又は二以上の流入口部6iと、他方の熱交換分室部3rの内部の流体Lを他方の熱交換面2rから直角方向Fsに流出可能な一又は二以上の流出口部6eと、仕切壁部5を貫通し、かつ仕切壁部5の周縁5cに沿って所定間隔毎に形成した複数の流通孔部7…とを備えてなることを特徴とする。   In order to solve the above-described problems, the present invention provides at least a heat exchange block unit 2 having a predetermined thickness in which a heat exchange chamber for circulating a fluid L to be heat exchanged is provided, and the heat exchange block unit 2. When the heat exchange device 1 is provided with a pair of temperature control parts 4f and 4r that are attached to the pair of heat exchange surfaces 2f and 2r in the thickness direction of the fluid L and perform heat exchange with the fluid L, respectively, The heat exchange chamber is divided in the direction Fs perpendicular to the heat exchange surfaces 2f and 2r to form a pair of heat exchange chamber portions 3f and 3r, and one heat exchange surface 2f. One or two or more inflow ports 6i capable of flowing the fluid L into the inside of one heat exchange compartment 3f from the perpendicular direction Fs, and the fluid L inside the other heat exchange compartment 3r are connected to the other heat exchange surface. One or two or more that can flow out from 2r in the direction perpendicular to Fs An outlet portion 6e, the partition wall 5 and the through, and characterized by comprising a plurality of circulation holes 7 ... formed at predetermined intervals along the periphery 5c of the partition wall 5.

この場合、発明の好適な態様により、一又は二以上の流入口部6i,及び一又は二以上の流出口部6eは、熱交換面2f,2rに対して略中央に配することができる。また、熱交換ブロック部2は、一定の厚さを有し、かつ熱交換分室部3f,3rを形成するための熱交換分室用凹部Rf,Rrを有するインナプレート部11と、このインナプレート部11の厚さ方向における一方の面11fに当接し、かつ流入口部6iを内面に設けるための流入口用開口部12hを有する一方のアウタプレート部12と、インナプレート部11の厚さ方向における他方の面11rに当接し、流出口部6eを内面に設けるための流出口用開口部13hを有する他方のアウタプレート部13と、を備えて構成できる。さらに、流入口部6iには、流入口用開口部12hに挿通させた流入管Piの開口端部Pisを用いることができるとともに、流出口部6eには、流出口用開口部13hに挿通させた流出管Peの開口端部Pesを用いることができる。また、一方のアウタプレート部12の内面に一方のライニングシート12pを貼着することにより、この一方のライニングシート12pと流入管Piの開口端部Pisを一体化し、及び(又は)他方のアウタプレート部13の内面に他方のライニングシート13pを貼着しすることにより、この他方のライニングシート13pと流出管Peの開口端部Pesを一体化することができる。この際、一方のライニングシート12pと流入管Piの開口端部Pisを別体に形成して結合により一体化し、及び(又は)他方のライニングシート13pと流出管Peの開口端部Pesを別体に形成して結合により一体化してもよいし、或いは、一方のライニングシート12pと流入管Piの開口端部Pisを一体成形により一体化し、及び(又は)他方のライニングシート13pと流出管Peの開口端部Pesを一体成形により一体化してもよい。なお、好適な流体Lとして、薬液を適用することができる。   In this case, according to a preferred aspect of the invention, the one or more inflow ports 6i and the one or more outflow ports 6e can be arranged substantially in the center with respect to the heat exchange surfaces 2f and 2r. The heat exchange block 2 has a constant thickness, and has an inner plate part 11 having heat exchange compartment recesses Rf and Rr for forming the heat exchange compartments 3f and 3r, and the inner plate part. 11 in the thickness direction of the inner plate portion 11, one outer plate portion 12 having an inflow port opening 12 h for contacting the one surface 11 f in the thickness direction of the eleventh surface and providing the inflow port portion 6 i on the inner surface. And the other outer plate portion 13 having an outlet opening 13h for contacting the other surface 11r and providing the outlet portion 6e on the inner surface. Further, the inlet 6i can use the opening end Pis of the inflow pipe Pi inserted into the inlet opening 12h, and the outlet 6e can be inserted into the outlet 13h. The open end Pes of the outflow pipe Pe can be used. Further, by sticking one lining sheet 12p to the inner surface of one outer plate part 12, the one lining sheet 12p and the opening end Pis of the inflow pipe Pi are integrated, and / or the other outer plate. By sticking the other lining sheet 13p to the inner surface of the part 13, the other lining sheet 13p and the opening end Pes of the outflow pipe Pe can be integrated. At this time, one lining sheet 12p and the opening end Pis of the inflow pipe Pi are formed separately and integrated by coupling, and / or the other lining sheet 13p and the opening end Pes of the outflow pipe Pe are separated. And may be integrated by joining, or one lining sheet 12p and the opening end Pis of the inflow pipe Pi may be integrated by integral molding and / or the other lining sheet 13p and the outflow pipe Pe. The opening end portion Pes may be integrated by integral molding. In addition, as a suitable fluid L, a chemical | medical solution can be applied.

このような構成を有する本発明に係る熱交換装置1によれば、次のような顕著な効果を奏する。   According to the heat exchanging device 1 according to the present invention having such a configuration, the following remarkable effects can be obtained.

(1) 一方の熱交換面2fの直角方向Fsから一方の熱交換分室部3fの内部に流体Lを流入可能な一又は二以上の流入口部6iと、他方の熱交換分室部3rの内部の流体Lを他方の熱交換面2rから直角方向Fsに流出可能な一又は二以上の流出口部6eと、仕切壁部5を貫通し、かつ仕切壁部5の周縁5cに沿って所定間隔毎に形成した複数の流通孔部7…とを備えてなるため、熱交換室の内部には、パターン上、最もシンプルな流路が形成される。したがって、必要により流路の断面積を大きくすることができ、単位時間当たりの処理流量を増加させることができる。しかも、この際、熱交換装置の大型化はほとんど生じることがなく、装置全体の小型化,軽量化,低コスト化に寄与できる。   (1) One or two or more inflow ports 6i capable of flowing the fluid L into one heat exchange compartment 3f from the direction Fs perpendicular to one heat exchange surface 2f and the inside of the other heat exchange compartment 3r One or two or more outflow port portions 6e that can flow out the fluid L from the other heat exchange surface 2r in the right-angle direction Fs, the partition wall portion 5, and a predetermined distance along the peripheral edge 5c of the partition wall portion 5. Since the plurality of flow holes 7 formed for each are provided, the simplest flow path is formed in the heat exchange chamber on the pattern. Therefore, the cross-sectional area of the flow path can be increased if necessary, and the processing flow rate per unit time can be increased. In addition, at this time, the heat exchange device is hardly increased in size and can contribute to the reduction in size, weight and cost of the entire device.

(2) 熱交換室の内部における流路の断面積を容易に大きくできるとともに、流路の全長が短く、かつ単純形状(単純経路)となる。したがって、流体Lが流れる際における全体の流路抵抗(圧損)を小さくできるため、消費電力を低減することにより省エネルギ化を実現できる。   (2) The cross-sectional area of the flow path inside the heat exchange chamber can be easily increased, the total length of the flow path is short, and the shape is simple (simple path). Therefore, since the entire flow path resistance (pressure loss) when the fluid L flows can be reduced, energy saving can be realized by reducing power consumption.

(3) 好適な態様により、一又は二以上の流入口部6i,及び一又は二以上の流出口部6eを、熱交換面2f,2rに対して略中央に配すれば、流体Lは、一方の熱交換分室部3fにおいて、略中央から放射方向に均等に拡散するとともに、他方の熱交換分室部3fにおいて、略中央に放射方向から均等に収束するため、流体Lの全体に対して均等な熱交換を行うことができる。したがって、流体Lが流れる際の圧損をより小さくでき、熱交換効率の向上に寄与できる。   (3) If one or two or more inflow ports 6i and one or two or more outflow ports 6e are arranged substantially in the center with respect to the heat exchange surfaces 2f and 2r according to a preferred embodiment, the fluid L is In one heat exchange chamber 3f, it diffuses evenly in the radial direction from approximately the center, and in the other heat exchange chamber 3f, it converges equally in the radial direction to approximately the center, so that it is equal to the entire fluid L. Heat exchange can be performed. Therefore, the pressure loss when the fluid L flows can be further reduced, and the heat exchange efficiency can be improved.

(4) 好適な態様により、熱交換ブロック部2を、一定の厚さを有し、かつ熱交換分室部3f,3rを形成するための熱交換分室用凹部Rf,Rrを有するインナプレート部11と、このインナプレート部11の厚さ方向における一方の面11fに当接し、かつ流入口部6iを内面に設けるための流入口用開口部12hを有する一方のアウタプレート部12と、インナプレート部11の厚さ方向における他方の面11rに当接し、流出口部6eを内面に設けるための流出口用開口部13hを有する他方のアウタプレート部13と、を備えて構成すれば、単純形状の部品及び少ない部品点数により容易に製造できるとともに、メンテナンス性も高めることができる。   (4) According to a preferred embodiment, the heat exchanging block portion 2 has a constant thickness and has an inner plate portion 11 having heat exchanging chamber recesses Rf and Rr for forming the heat exchanging chamber portions 3f and 3r. And one outer plate portion 12 having an inlet opening portion 12h for contacting the one surface 11f in the thickness direction of the inner plate portion 11 and providing the inlet portion 6i on the inner surface, and the inner plate portion 11 and the other outer plate portion 13 having an outlet opening portion 13h for contacting the other surface 11r in the thickness direction and providing the outlet portion 6e on the inner surface. It can be easily manufactured with parts and a small number of parts, and maintainability can also be improved.

(5) 好適な態様により、流入口部6iに、流入口用開口部12hに挿通させた流入管Piの開口端部Pisを用いるとともに、流出口部6eに、流出口用開口部13hに挿通させた流出管Peの開口端部Pesを用いれば、継手等の接続手段が不要となり、構造の単純化を図れるため、コストの削減及びシール性の向上に寄与できる。   (5) According to a preferred embodiment, the inlet end Pis of the inlet pipe Pi inserted through the inlet opening 12h is used as the inlet 6i, and the outlet outlet 13h is inserted into the outlet 6h. By using the open end portion Pes of the outflow pipe Pe, a connecting means such as a joint becomes unnecessary, and the structure can be simplified, which can contribute to cost reduction and improvement in sealing performance.

(6) 好適な態様により、一方のアウタプレート部12の内面に一方のライニングシート12pを貼着することにより、この一方のライニングシート12pと流入管Piの開口端部Pisを一体化し、及び(又は)他方のアウタプレート部13の内面に他方のライニングシート13pを貼着しすることにより、この他方のライニングシート13pと流出管Peの開口端部Pesを一体化するようにすれば、継手等の接続手段を使用することなく、熱交換室内における密閉性を容易に確保できるとともに、アウタプレート部12,13に対する素材選定の自由度を高めることができる。したがって、好適な流体Lとして、薬液を適用することができる。   (6) By adhering one lining sheet 12p to the inner surface of one outer plate part 12 according to a preferred embodiment, the one lining sheet 12p and the opening end Pis of the inflow pipe Pi are integrated, and ( Or, if the other lining sheet 13p and the open end Pes of the outflow pipe Pe are integrated by attaching the other lining sheet 13p to the inner surface of the other outer plate part 13, a joint or the like Without using the connecting means, it is possible to easily secure the sealing performance in the heat exchange chamber and to increase the degree of freedom in selecting the material for the outer plate portions 12 and 13. Therefore, a chemical solution can be applied as a suitable fluid L.

(7) 好適な態様により、一方のライニングシート12pと流入管Piの開口端部Pisを別体に形成して結合により一体化し、及び(又は)他方のライニングシート13pと流出管Peの開口端部Pesを別体に形成して結合により一体化すれば、特に、容易に結合可能な素材を使用する際に利用できるとともに、一方のライニングシート12pと流入管Piの開口端部Pisを一体成形により一体化し、及び(又は)他方のライニングシート13pと流出管Peの開口端部Pesを一体成形により一体化すれば、特に、容易に成形可能な素材を使用する際に利用できる。したがって、製造時の柔軟性に優れ、製造手法の最適化を容易に実現できる。   (7) According to a preferred embodiment, one lining sheet 12p and the open end Pis of the inflow pipe Pi are formed separately and integrated by coupling, and / or the other lining sheet 13p and the open end of the outflow pipe Pe If the part Pes is formed separately and integrated by bonding, it can be used especially when using a material that can be easily combined, and the lining sheet 12p and the opening end Pis of the inflow pipe Pi are integrally formed. And / or the other lining sheet 13p and the opening end portion Pes of the outflow pipe Pe can be integrated by integral molding, particularly when a material that can be easily molded is used. Therefore, the flexibility at the time of manufacture is excellent, and the optimization of the manufacturing method can be easily realized.

本発明の好適実施形態に係る熱交換装置の断面正面図、A sectional front view of a heat exchange device according to a preferred embodiment of the present invention, 同熱交換装置の一部を破断して示す平面図、A plan view showing a part of the heat exchange device, 同熱交換装置におけるインナプレート部を示す平面図、The top view which shows the inner plate part in the heat exchanger, 同熱交換装置を分解して示す断面正面図、An exploded cross-sectional front view of the heat exchange device, 同熱交換装置における流入管(流出管)とライニングシートを結合した状態を示す断面正面図、A cross-sectional front view showing a state where the inflow pipe (outflow pipe) and the lining sheet are combined in the heat exchange device, 同熱交換装置における流入管(流出管)とライニングシートを一体成形した状態を示す断面正面図、A cross-sectional front view showing a state where the inflow pipe (outflow pipe) and the lining sheet in the heat exchange device are integrally formed, 同熱交換装置の作用説明図、Operation explanatory diagram of the heat exchange device, 同熱交換装置の使用態様の一例を示す平面図、The top view which shows an example of the usage condition of the heat exchanger, 本発明の変更実施形態に係る熱交換装置におけるインナプレート部の平面から見た構成説明図、Structural explanatory drawing seen from the plane of the inner plate part in the heat exchange apparatus which concerns on the modified embodiment of this invention,

次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。   Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る熱交換装置1の構成について、図1〜図6を参照して具体的に説明する。   First, the configuration of the heat exchange device 1 according to the present embodiment will be specifically described with reference to FIGS.

例示の熱交換装置1は流体Lとして薬液を用いる薬液用熱交換装置を示す。本実施形態に係る熱交換装置1は、このような薬液の熱交換に用いて好適である。熱交換装置1は、図1に示すように、熱交換される流体Lを流通させる熱交換室を内部に設けた所定の厚さを有する熱交換ブロック部2を備える。この熱交換ブロック部2は、図4に示すように、一定の厚さを有し、かつ図3に示すように、外郭を正方形状に形成したインナプレート部11と、一定の厚さを有し、かつインナプレート部11と外郭を同形に形成するとともに、このインナプレート部11の厚さ方向における各面11f,11rにそれぞれ当接させる一対のアウタプレート部12,13とを備えて構成する。熱交換ブロック部2を、このように構成すれば、単純形状の部品及び少ない部品点数により容易に製造できるとともに、メンテナンス性も高めることができる利点がある。   The illustrated heat exchange device 1 is a chemical heat exchange device that uses a chemical as the fluid L. The heat exchange device 1 according to the present embodiment is suitable for use in heat exchange of such a chemical solution. As shown in FIG. 1, the heat exchange device 1 includes a heat exchange block unit 2 having a predetermined thickness in which a heat exchange chamber for circulating a fluid L to be heat exchanged is provided. The heat exchange block 2 has a constant thickness as shown in FIG. 4 and a constant thickness as shown in FIG. In addition, the inner plate portion 11 and the outer shape are formed in the same shape, and the inner plate portion 11 includes a pair of outer plate portions 12 and 13 that are brought into contact with the surfaces 11f and 11r in the thickness direction of the inner plate portion 11, respectively. . If the heat exchange block part 2 is configured in this way, there is an advantage that it can be easily manufactured with simple parts and a small number of parts, and the maintainability can be improved.

この場合、インナプレート部11は、PFA,PTFE等の耐薬品性に優れたフッ素系樹脂素材により一体形成し、図4に示すように、一方の面11fには、一方の熱交換分室部3fを設けるための熱交換分室用凹部Rfを形成するとともに、他方の面11rには、他方の熱交換分室部3rを設けるための熱交換分室用凹部Rrを形成する。なお、各熱交換分室用凹部Rf,Rrは、図3に示すように、正方形状に形成する。これにより、熱交換分室用凹部RfとRr間は、熱交換室の内部に設けることにより熱交換室を熱交換面2f,2rに対して直角方向Fsに二分して一対の熱交換分室部3f,3rを形成するための仕切壁部5となる。そして、この仕切壁部5には、当該仕切壁部5を貫通し、かつ仕切壁部5の周縁5cに沿って所定間隔毎に配した複数の流通孔部7…を形成する。さらに、仕切壁部5の周縁5cからインナプレート部11の外縁間は、各アウタプレート部12,13に当接する面11f,11rとなるため、この面11f(11r)には、後述する固定用ボルトナットBn…を挿通させる複数(例示は十二)のボルト挿通孔11s…を所定間隔おきに形成する。   In this case, the inner plate portion 11 is integrally formed of a fluorine-based resin material having excellent chemical resistance such as PFA and PTFE. As shown in FIG. 4, one surface 11f has one heat exchange compartment portion 3f. A heat exchange compartment recess Rf for providing the other heat exchange compartment recess Rr for providing the other heat exchange compartment 3r is formed on the other surface 11r. In addition, each recessed part Rf, Rr for heat exchange compartments is formed in square shape, as shown in FIG. Thus, the heat exchange chamber recesses Rf and Rr are provided inside the heat exchange chamber to bisect the heat exchange chamber in the direction Fs perpendicular to the heat exchange surfaces 2f and 2r, thereby providing a pair of heat exchange chamber portions 3f. , 3r to form the partition wall portion 5. The partition wall 5 is formed with a plurality of flow holes 7 penetrating the partition wall 5 and arranged at predetermined intervals along the peripheral edge 5c of the partition wall 5. Furthermore, the space between the peripheral edge 5c of the partition wall portion 5 and the outer edge of the inner plate portion 11 becomes surfaces 11f and 11r that come into contact with the outer plate portions 12 and 13, and therefore, this surface 11f (11r) has fixing surfaces described later. A plurality (twelve examples) of bolt insertion holes 11s through which the bolts nuts Bn are inserted are formed at predetermined intervals.

一方、アウタプレート部12は、アルミニウム素材等の伝熱性に優れた剛性素材により一体形成する。そして、図4に示すように、アウタプレート部12の略中央には、流入口部6iを内面に設けるための流入口用開口部12hを形成するとともに、上述したインナプレート部11の各ボルト挿通孔11s…に対応するアウタプレート部12の位置には、同様のボルト挿通孔12s…を形成し、さらに、熱交換面2fとなるアウタプレート部12の外面には、後述する温調部4fを取付けるための複数(例示は四)の取付用ボルトBs…を螺着させる複数のネジ孔部12n…をそれぞれ形成する。   On the other hand, the outer plate part 12 is integrally formed of a rigid material having excellent heat conductivity such as an aluminum material. Then, as shown in FIG. 4, an inlet opening 12 h for providing the inlet 6 i on the inner surface is formed substantially at the center of the outer plate portion 12, and each bolt of the inner plate 11 described above is inserted. A similar bolt insertion hole 12s is formed at a position of the outer plate portion 12 corresponding to the holes 11s, and a temperature adjusting portion 4f described later is formed on the outer surface of the outer plate portion 12 serving as the heat exchange surface 2f. A plurality of screw hole portions 12n to which a plurality of (four in the illustrated example) mounting bolts Bs for mounting are screwed are formed.

また、アウタプレート部12の内面にはライニングシート12pを貼着する。ライニングシート12pは、インナプレート部11と同じ素材、即ち、PFA,PTFE等の耐薬品性に優れたフッ素系樹脂素材を使用し、厚さ250〜330〔μm〕に形成したものを用いることができる。そして、ライニングシート12pは、接着材Jを利用してアウタプレート部12の内面に貼着する。なお、ライニングシート12pにも、アウタプレート部12に設けた開口部12h及び各ボルト挿通孔12s…に対応した開口部及び挿通孔をそれぞれ設ける。   A lining sheet 12p is attached to the inner surface of the outer plate portion 12. The lining sheet 12p is made of the same material as the inner plate portion 11, that is, a fluororesin material having excellent chemical resistance such as PFA and PTFE, and having a thickness of 250 to 330 [μm]. it can. The lining sheet 12p is adhered to the inner surface of the outer plate portion 12 using the adhesive material J. The lining sheet 12p is also provided with openings and insertion holes corresponding to the openings 12h and the bolt insertion holes 12s provided in the outer plate part 12, respectively.

他方、熱交換分室部3fに流体Lを流入させるための流入管Piを用意する。この流入管Piはライニングシート12pと同じ素材を使用し、流入口用開口部12hに挿通可能、望ましくは隙間なく挿通可能な外径に形成する。そして、流入管Piの一端側となる開口端部Pis側を、ライニングシート12pにおける熱交換面2f側から流入口用開口部12hに挿入し、流入管Piの開口端部Pisをライニングシート12pに一体化させる。即ち、図5に示すように、ライニングシート12pに対して、別体に形成した流入管Piの開口端部Pisを、溶接等による溶着部Cxを介して結合(一体化)する。これにより、流入管Piの開口端部Pisが流入口部6iとなり、一方の熱交換面2fの直角方向Fsから一方の熱交換分室部3fの内部に流体Lを流入可能な流入口部6iが設けられる。   On the other hand, an inflow pipe Pi for flowing the fluid L into the heat exchange compartment 3f is prepared. The inflow pipe Pi is made of the same material as the lining sheet 12p and is formed to have an outer diameter that can be inserted into the inlet opening 12h, and preferably inserted without a gap. Then, the opening end Pis side, which is one end side of the inflow pipe Pi, is inserted into the inlet opening 12h from the heat exchange surface 2f side of the lining sheet 12p, and the opening end Pis of the inflow pipe Pi is connected to the lining sheet 12p. Integrate. That is, as shown in FIG. 5, the open end Pis of the inflow pipe Pi formed separately is joined (integrated) to the lining sheet 12p via a welded part Cx by welding or the like. Thereby, the opening end Pis of the inflow pipe Pi becomes the inflow port portion 6i, and the inflow port portion 6i through which the fluid L can flow into the inside of the one heat exchange compartment portion 3f from the perpendicular direction Fs of the one heat exchange surface 2f. Provided.

このように、流入口部6iに、流入口用開口部12hに挿通させた流入管Piの開口端部Pisを用いれば、継手等の接続手段が不要となり、構造の単純化を図れるため、コストの削減及びシール性の向上に寄与できる。また、アウタプレート部12の内面にライニングシート12pを貼着することにより、ライニングシート12pと流入管Piの開口端部Pisを一体化するようにすれば、継手等の接続手段を使用することなく、熱交換分室部3f内における密閉性を容易に確保できるとともに、アウタプレート部12に対する素材選定の自由度を高めることができる。この場合、図5に示すように、ライニングシート12pと流入管Piの開口端部Pisを別体に形成し、結合することにより一体化する製作態様は、特に、容易に結合可能な素材を使用する際に利用できる。これに対して、図6に示すように、ライニングシート12pと流入管Piの開口端部Pisを一体成形により一体化することも可能である。この製作態様は、特に、容易に成形可能な素材を使用する際に利用できる。このように、製作態様を選定できるため、製造時の柔軟性に優れ、製造手法の最適化を容易に実現できる利点がある。   In this way, if the opening end Pis of the inflow pipe Pi inserted through the inlet opening 12h is used as the inlet 6i, connection means such as a joint becomes unnecessary, and the structure can be simplified. This can contribute to the reduction of sealing and the improvement of sealing performance. Further, by attaching the lining sheet 12p to the inner surface of the outer plate part 12 so that the lining sheet 12p and the opening end Pis of the inflow pipe Pi are integrated, a connecting means such as a joint is not used. In addition, the airtightness in the heat exchange compartment 3f can be easily secured, and the degree of freedom of material selection for the outer plate part 12 can be increased. In this case, as shown in FIG. 5, the production mode in which the lining sheet 12p and the opening end portion Pis of the inflow pipe Pi are formed separately and joined together is used, in particular, using a material that can be easily joined. Can be used when On the other hand, as shown in FIG. 6, it is also possible to integrate the lining sheet 12p and the open end Pis of the inflow pipe Pi by integral molding. This production mode can be used particularly when a material that can be easily molded is used. Thus, since the production mode can be selected, there is an advantage that the manufacturing method is excellent and the manufacturing method can be easily optimized.

以上、一方のアウタプレート部12側の構成について説明したが、他方のアウタプレート部13側の構成も一方のアウタプレート部12側と同様に構成できる。他方のアウタプレート部13側の構成において、6eは流出口部,13hは流出口用開口部,13s…はボルト挿通孔,13pはライニングシート,13n…はネジ孔部,3rは熱交換分室部,Peは流出管,Pesは流出管の一端側となる開口端部,をそれぞれ示す。したがって、二つのアウタプレート部12,12を用意し、一方をアウタプレート部12、他方をアウタプレート部13として用いることができる。   The configuration on the one outer plate portion 12 side has been described above, but the configuration on the other outer plate portion 13 side can also be configured in the same manner as the one outer plate portion 12 side. In the configuration on the other outer plate part 13 side, 6e is an outlet part, 13h is an outlet part for opening, 13s... Is a bolt insertion hole, 13p is a lining sheet, 13n is a screw hole part, 3r is a heat exchange compartment part. , Pe indicates an outflow pipe, and Pes indicates an opening end portion which is one end side of the outflow pipe. Therefore, two outer plate portions 12 and 12 can be prepared, and one can be used as the outer plate portion 12 and the other as the outer plate portion 13.

このような構成部材を用いるため、インナプレート部11の両面11f,11rを、それぞれライニングシート12p,13pが当接するように、各アウタプレート部12,13により挟むとともに、図1に示すように、複数のボルトナットBn…により固定すれば、インナプレート部11に形成した一対の熱交換分室用凹部Rf,Rrが一対のアウタプレート部12,13に挟まれることにより密閉された熱交換分室部3f,3rが形成される熱交換ブロック部2を得ることができ、熱交換ブロック部2の厚さ方向における両面が一対の熱交換面2f,2rとなる。なお、図示を省略したが、インナプレート部11とライニングシート12p,13pを含む各アウタプレート部12,13間には密閉性を高めるためのシールリングを介在させる。   Since such a constituent member is used, both surfaces 11f and 11r of the inner plate portion 11 are sandwiched between the outer plate portions 12 and 13 so that the lining sheets 12p and 13p come into contact with each other, as shown in FIG. If fixed by a plurality of bolts and nuts Bn..., A pair of heat exchange compartment recesses Rf and Rr formed in the inner plate portion 11 are sandwiched between the pair of outer plate portions 12 and 13, and the heat exchange compartment portion 3f is sealed. , 3r can be obtained, and both surfaces in the thickness direction of the heat exchange block portion 2 become a pair of heat exchange surfaces 2f, 2r. In addition, although illustration was abbreviate | omitted, between each outer plate part 12 and 13 containing the inner plate part 11 and the lining sheet | seats 12p and 13p, the seal ring for improving a sealing property is interposed.

他方、熱交換装置1は、熱交換ブロック部2の厚さ方向における一対の熱交換面2f,2rにそれぞれ付設して流体Lに対する熱交換を行う一対の温調部4f,4rとを備える。一方の温調部4fは、図1及び図2に示すように、ペルチェ素子を用いた複数のサーモモジュールMt…を備え、このサーモモジュールMt…の内面側を熱交換ブロック部2における熱交換面2fを構成するアウタプレート部12の外面に配列させるとともに、さらに、このサーモモジュールMt…の外側の面にサーモモジュールMt…の放熱又は放冷を行うウォータジャケット部22を重ねる。例示のウォータジャケット部22は四つのジャケットユニットUj…を使用し、図2に示すように、流入管Piを避けて組合わせている。各ジャケットユニットUj…は、冷却水(温水を含む)の流入口Uji…及び流出口Uje…を有し、内部に、流入口Uji…から流出口Uje…に至る水路Rwを有する。例示のウォータジャケット部22は、各ジャケットユニットUj…を直列接続したが、並列接続してもよい。   On the other hand, the heat exchange device 1 includes a pair of temperature control units 4f and 4r that are attached to the pair of heat exchange surfaces 2f and 2r in the thickness direction of the heat exchange block unit 2 to exchange heat with the fluid L, respectively. As shown in FIGS. 1 and 2, one temperature control unit 4 f includes a plurality of thermo modules Mt... Using Peltier elements, and the inner surface side of the thermo modules Mt. Further, the water jacket portion 22 that radiates or cools the thermo modules Mt... Is overlaid on the outer surface of the thermo modules Mt. The illustrated water jacket portion 22 uses four jacket units Uj... And is combined to avoid the inflow pipe Pi as shown in FIG. Each jacket unit Uj has an inflow port Uji ... and an outflow port Uje ... for cooling water (including hot water), and has a water channel Rw from the inflow port Uji ... to the outflow port Uje .... In the illustrated water jacket portion 22, the jacket units Uj... Are connected in series, but may be connected in parallel.

そして、ウォータジャケット部22の外面に保持プレート23を重ね、取付ボルトBs…を、保持プレート23,ウォータジャケット部22,サーモモジュールMt…の存在しない位置を介して、アウタプレート12の外面に設けたネジ孔部12n…に螺着して、ウォータジャケット部22及びサーモモジュールMt…を固定する。なお、サーモモジュールMt…は、図示を省略した制御部に接続され、温度センサにより検出される流体Lの温度に対するフィードバック制御が行われる。この場合、一対の温調部4fと4rに対して同時に制御を行ってもよいし、それぞれ独立した制御を行ってもよい。独立した制御を行う際には、温調部4f側に対しては粗い制御を行い、温調部4r側に対しては高精度の制御を行うなど、各種制御モードを設定できる。以上、一方の温調部4fについて説明したが、他方の温調部4rも一方の温調部4fと同様に構成する。   Then, the holding plate 23 is overlapped on the outer surface of the water jacket portion 22, and the mounting bolts Bs are provided on the outer surface of the outer plate 12 through positions where the holding plate 23, the water jacket portion 22, the thermo module Mt. The water jacket portion 22 and the thermo modules Mt... Are fixed by screwing into the screw holes 12 n. The thermo modules Mt... Are connected to a control unit (not shown) and perform feedback control on the temperature of the fluid L detected by the temperature sensor. In this case, the pair of temperature control units 4f and 4r may be controlled simultaneously or independently. When performing independent control, various control modes can be set such that rough control is performed on the temperature control unit 4f side and high-precision control is performed on the temperature control unit 4r side. Although one temperature adjustment unit 4f has been described above, the other temperature adjustment unit 4r is configured similarly to the one temperature adjustment unit 4f.

次に、本実施形態に係る熱交換装置1の使用方法及び動作について、図1〜図8を参照して説明する。   Next, the usage method and operation | movement of the heat exchange apparatus 1 which concern on this embodiment are demonstrated with reference to FIGS.

例示は、熱交換装置1により流体(薬液)Lを冷却する場合について説明する。まず、不図示の送液ポンプにより流体(薬液)Lを供給すれば、流体Lは、流入管Piから流入口部6iに至り、流入口部6i(開口端部Pis)から一方の熱交換分室部3fに供給される。この場合、図7に示すように、一方の熱交換分室部3fの略中央であって、仕切壁部5の一方の面に対して面直角方向から供給される。一方の熱交換分室部3fの略中央に供給された流体Lは、図7に示す実線矢印Fwfで示すように、熱交換分室部3fの内部において360〔゜〕の放射方向へ拡散するように流れ、流体Lは熱交換分室部3fの周縁、即ち、仕切壁部5の周縁5cに至る。   The example demonstrates the case where the fluid (chemical | medical solution) L is cooled with the heat exchange apparatus 1. FIG. First, if a fluid (chemical solution) L is supplied by a liquid feed pump (not shown), the fluid L reaches the inflow port 6i from the inflow pipe Pi, and one heat exchange compartment from the inflow port 6i (open end Pis). Supplied to the section 3f. In this case, as shown in FIG. 7, the heat is supplied from a direction perpendicular to the surface to one surface of the partition wall portion 5, which is approximately the center of the one heat exchange chamber portion 3 f. As shown by the solid arrow Fwf shown in FIG. 7, the fluid L supplied to the approximate center of one heat exchange compartment 3f diffuses in the radial direction of 360 ° within the heat exchange compartment 3f. The flow and the fluid L reach the periphery of the heat exchange compartment 3f, that is, the periphery 5c of the partition wall 5.

仕切壁部5の周縁5cには周方向に沿って所定間隔毎に形成した複数の流通孔部7…を有するため、流体Lは各流通孔部7…を通って仕切壁部5の他方の面(反対側の面)における周縁5c、即ち、他方の熱交換分室部3rの周縁に至る。他方の熱交換分室部3rの周縁には次々と連続的に流体Lが供給されるため、流体Lは、図7に示す点線矢印Fwrで示すように、熱交換分室部3rの内部において中心方向へ収束するように流れ、流体Lは熱交換分室部3rの略中央に至る。他方の熱交換分室部3rの略中央には、流出口部6eが臨むため、熱交換分室部3rの略中央に至った流体Lは、流出口部6e(開口端部Pes)から流出管Peを通って流出する。   Since the peripheral edge 5c of the partition wall 5 has a plurality of flow holes 7 formed at predetermined intervals along the circumferential direction, the fluid L passes through the flow holes 7 and the other of the partition walls 5. It reaches the peripheral edge 5c on the surface (opposite surface), that is, the peripheral edge of the other heat exchange compartment 3r. Since the fluid L is continuously supplied to the periphery of the other heat exchange compartment 3r one after another, the fluid L is centered inside the heat exchange compartment 3r as indicated by the dotted arrow Fwr shown in FIG. The fluid L reaches the approximate center of the heat exchange compartment 3r. Since the outflow port 6e faces the approximate center of the other heat exchange compartment 3r, the fluid L reaching the approximate center of the heat exchange compartment 3r flows from the outflow port 6e (open end Pes) to the outflow pipe Pe. Spill through.

一方、温調部4f,4rのサーモモジュールMt…に対しては冷却モードによる通電制御を行う。したがって、熱交換ブロック部2の熱交換面2f,2rはサーモモジュールMt…の冷却作用によりそれぞれ冷却され、各熱交換分室部3f及び3rを流れる流体Lに対する熱交換が行われる。即ち、流体Lに対する冷却が行われる。この際、一方の熱交換分室部3fにおいては、流体Lが中心側から周縁側に流れるため、流体Lは、中心側における温度が相対的に高くなるとともに、周縁側における温度が相対的に低くなる。また、他方の熱交換分室部3rにおいては、流体Lが周縁側から中心側に流れるため、流体Lは、周縁側における温度が相対的に高くなるとともに、中心側における温度が相対的に低くなる。この結果、熱交換ブロック部2における中心側から周縁側に至る全体の温度分布が、より平均化(均一化)される。これにより、熱交換ブロック部2の全体における中心側と周縁側の温度格差(温度ムラ)をより小さくすることが可能となり、中心側と周縁側の間で生じる無用な膨張歪や熱損失を回避できる。特に、ペルチェ素子を用いたサーモモジュールMt…により温調部4f,4rを構成する場合には、熱交換ブロック部2の中心側と周縁側におけるサーモモジュールMt…の負荷度合の格差が小さくなるため、サーモモジュールMt…における全体の劣化防止及び長寿命化に寄与できる。なお、ウォータジャケット部22には冷却水を用いた液体が供給され、サーモモジュールMt…の発熱側が冷却される。   On the other hand, energization control in the cooling mode is performed on the thermo modules Mt of the temperature control units 4f and 4r. Therefore, the heat exchange surfaces 2f and 2r of the heat exchange block 2 are cooled by the cooling action of the thermo modules Mt... And heat exchange is performed for the fluid L flowing through the heat exchange compartments 3f and 3r. That is, the fluid L is cooled. At this time, in one heat exchange compartment 3f, since the fluid L flows from the center side to the peripheral side, the fluid L has a relatively high temperature on the central side and a relatively low temperature on the peripheral side. Become. Further, in the other heat exchange compartment 3r, since the fluid L flows from the peripheral side to the central side, the fluid L has a relatively high temperature on the peripheral side and a relatively low temperature on the central side. . As a result, the entire temperature distribution from the center side to the peripheral side in the heat exchange block unit 2 is further averaged (uniformized). Thereby, it becomes possible to further reduce the temperature difference (temperature unevenness) between the center side and the peripheral side in the entire heat exchange block part 2, and avoid unnecessary expansion strain and heat loss that occur between the center side and the peripheral side. it can. In particular, when the temperature control units 4f and 4r are configured by the thermo modules Mt using Peltier elements, the difference in the degree of load between the thermo modules Mt on the center side and the peripheral side of the heat exchange block unit 2 is small. , It is possible to contribute to the prevention of the entire deterioration and the extension of the life of the thermo modules Mt. Note that a liquid using cooling water is supplied to the water jacket portion 22, and the heat generation side of the thermo modules Mt... Is cooled.

よって、このような本実施形態に係る熱交換装置1によれば、一方の熱交換面2fの直角方向Fsから一方の熱交換分室部3fの内部に流体Lを流入可能な一又は二以上の流入口部6iと、他方の熱交換分室部3rの内部の流体Lを他方の熱交換面2rから直角方向Fsに流出可能な一又は二以上の流出口部6eと、仕切壁部5を貫通し、かつ仕切壁部5の周縁5cに沿って所定間隔毎に形成した複数の流通孔部7…とを備えてなるため、熱交換室の内部には、パターン上、最もシンプルな流路が形成される。したがって、必要により流路の断面積を大きくすることができ、単位時間当たりの処理流量を増加させることができる。しかも、この際、熱交換装置の大型化はほとんど生じることがなく、装置全体の小型化,軽量化,低コスト化に寄与できる。   Therefore, according to such a heat exchange device 1 according to the present embodiment, one or more of the fluid L can flow into the inside of the one heat exchange compartment 3f from the direction Fs perpendicular to the one heat exchange surface 2f. The inlet 6i, one or two or more outlets 6e through which the fluid L inside the other heat exchange compartment 3r can flow out from the other heat exchange surface 2r in the perpendicular direction Fs, and the partition wall 5 pass through. And a plurality of flow holes 7 formed at predetermined intervals along the peripheral edge 5c of the partition wall 5, so that the simplest flow path in the pattern is provided inside the heat exchange chamber. It is formed. Therefore, the cross-sectional area of the flow path can be increased if necessary, and the processing flow rate per unit time can be increased. In addition, at this time, the heat exchange device is hardly increased in size and can contribute to the reduction in size, weight and cost of the entire device.

また、熱交換室の内部における流路の断面積を容易に大きくできるとともに、流路の全長が短く、かつ単純形状(単純経路)となる。したがって、流体Lが流れる際における全体の流路抵抗(圧損)が小さくなり、消費電力の低減に寄与できるとともに、省エネルギ化をより推進することができる。しかも、流入口部6i及び流出口部6eは、熱交換面2f,2rに対して略中央に配したため、流体Lは、一方の熱交換分室部3fにおいて、略中央から放射方向に均等に拡散するとともに、他方の熱交換分室部3fにおいて、略中央に放射方向から均等に収束する。これにより、流体Lの全体に対して均等な熱交換を行うことができるとともに、流体Lが流れる際の圧損をより小さくでき、熱交換効率の向上に寄与できる。   Further, the cross-sectional area of the flow path inside the heat exchange chamber can be easily increased, the total length of the flow path is short, and a simple shape (simple path) is obtained. Therefore, the overall flow resistance (pressure loss) when the fluid L flows is reduced, which can contribute to reduction of power consumption and further promote energy saving. In addition, since the inlet 6i and the outlet 6e are arranged at substantially the center with respect to the heat exchange surfaces 2f and 2r, the fluid L is diffused evenly in the radial direction from the substantially center in the one heat exchange compartment 3f. At the same time, in the other heat exchange compartment 3f, it converges evenly from the radial direction to the approximate center. Thereby, while being able to perform uniform heat exchange with respect to the whole fluid L, the pressure loss at the time of the fluid L flowing can be made smaller, and it can contribute to the improvement of heat exchange efficiency.

なお、以上の使用態様は、熱交換装置1を単独で使用する態様となるが、本実施形態に係る流入管Pi及び流出管Peは、熱交換面2f,2rから突出するため、図8に示すように、多数(例示は九)の熱交換装置1…を同一面方向に密着させて配列させ、一体化させた熱交換装置100として構成することができ、装置全体の処理能力を用途や目的等に対応して、容易かつ柔軟に変更できる利点がある。   In addition, although the above usage mode turns into the mode which uses the heat exchange apparatus 1 independently, since the inflow pipe Pi and outflow pipe Pe which concern on this embodiment protrude from the heat exchange surfaces 2f and 2r, in FIG. As shown, a large number (e.g., nine) of heat exchange devices 1 can be arranged in close contact with each other in the same plane direction, and can be configured as an integrated heat exchange device 100. There is an advantage that it can be changed easily and flexibly according to the purpose.

次に、本発明の変更実施形態に係る熱交換装置1について、図9(a),(b)及び(c)を参照して説明する。   Next, a heat exchange device 1 according to a modified embodiment of the present invention will be described with reference to FIGS. 9 (a), (b) and (c).

図9(a)は、全体形状を変更した例を示す。前述した図1〜図7に示した実施形態は、熱交換分室部3f,3rの全体形状を正方形に形成したものであるが、図9(a)は、熱交換分室部3f,3rの全体形状を長方形に形成したものである。このため、離間した二つの流入口部6i,6iを配設するとともに、離間した二つの流出口部6e,6eを配設した。この場合、流入口部6i,6iの数は二つとなるが、基本的には流体Lを二つに分流した機能となるため、流入口部6iと6iの二つを一つの流入口部と見做すことができる。したがって、図9(a)に示すレイアウトの場合も、流入口部6i(流出口部6e)を熱交換面2f(2r)に対して略中央に配することになる。このように、熱交換装置1は、全体形状が長方形であってもよく、長方形が細長くなるに従って、流入口部6i(流出口部6e)の数を増やせばよい。特に、熱交換装置1は、流入口部6i(流出口部6e)を熱交換面2f(2r)に対して略中央に配することにより、流体Lを、略中央から放射方向に均等に拡散させ、かつ放射方向から略中央に均等に収束させることが望ましいため、この機能を最大限実現できるように、流入口部6i(流出口部6e)の数及び位置を選定できる。以上の点を除き、他の細部の構成及び機能は、図1〜図7に示した実施形態と同じになる。このため、図9(a)において、図1〜図7と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 9A shows an example in which the overall shape is changed. In the embodiment shown in FIGS. 1 to 7 described above, the overall shape of the heat exchange compartments 3f and 3r is formed in a square shape, but FIG. 9A shows the whole of the heat exchange compartments 3f and 3r. The shape is a rectangle. For this reason, two separated inlet portions 6i, 6i are provided, and two separated outlet portions 6e, 6e are provided. In this case, the number of the inlet portions 6i and 6i is two, but basically, since the fluid L is divided into two, the two inlet portions 6i and 6i are regarded as one inlet portion. Can be seen. Accordingly, also in the layout shown in FIG. 9A, the inlet 6i (outlet 6e) is arranged substantially in the center with respect to the heat exchange surface 2f (2r). Thus, the heat exchange device 1 may have a rectangular overall shape, and may increase the number of inflow ports 6i (outflow ports 6e) as the rectangle becomes elongated. In particular, the heat exchanging device 1 disperses the fluid L evenly in the radial direction from the approximate center by disposing the inflow port portion 6i (outlet port portion 6e) substantially at the center with respect to the heat exchange surface 2f (2r). In addition, since it is desirable to converge evenly in the center from the radial direction, the number and position of the inlet portions 6i (outlet portions 6e) can be selected so that this function can be realized to the maximum. Except for the above points, the configuration and functions of other details are the same as those of the embodiment shown in FIGS. For this reason, in FIG. 9A, the same components as those in FIGS. 1 to 7 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図9(b)は、熱交換分室部3f,3rの全体形状を変更した例を示す。前述した図1〜図7に示した実施形態は、熱交換分室部3f,3rの全体形状を正方形に形成したものであるが、図9(b)は、熱交換分室部3f,3rの全体形状を円形に形成したものである。この形態を選択した場合、熱交換面積が、図1〜図7に示した実施形態に対して小さくなるが、流体Lを、図9(b)に示す点線矢印Fweに示すように、略中央から放射方向に均等に拡散させ、かつ放射方向から略中央に均等に収束させる観点からは理想的な形態となる。以上の点を除き、他の細部の構成及び機能は、図1〜図7に示した実施形態と同じになる。このため、図9(b)において、図1〜図7と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 9B shows an example in which the overall shape of the heat exchange compartments 3f and 3r is changed. In the embodiment shown in FIGS. 1 to 7 described above, the overall shape of the heat exchange chamber portions 3f and 3r is formed in a square shape, but FIG. 9B shows the entire heat exchange chamber portions 3f and 3r. The shape is circular. When this form is selected, the heat exchange area becomes smaller than that of the embodiment shown in FIGS. 1 to 7, but the fluid L is substantially at the center as indicated by the dotted arrow Fwe shown in FIG. 9B. From the viewpoint of evenly diffusing from the radial direction to the radial direction and evenly converging from the radial direction to the approximate center. Except for the above points, the configuration and functions of other details are the same as those of the embodiment shown in FIGS. Therefore, in FIG. 9B, the same parts as those in FIGS. 1 to 7 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図9(c)は、熱交換分室部3f,3rに内部に流体Lの流れをガイドする複数のガイド条(又はガイド溝)31…を設けたものである。これにより、流体Lは、ガイド条31…の形状に沿って流れるため、流れを整えることができるとともに、僅かではあるが、熱交換距離(熱交換時間)を長くすることができる。以上の点を除き、他の細部の構成及び機能は、図1〜図7に示した実施形態と同じになる。このため、図9(c)において、図1〜図7と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 9 (c) is provided with a plurality of guide strips (or guide grooves) 31... For guiding the flow of the fluid L inside the heat exchange compartments 3f and 3r. Thereby, since the fluid L flows along the shape of the guide strips 31..., The flow can be adjusted and the heat exchanging distance (heat exchanging time) can be lengthened although it is slight. Except for the above points, the configuration and functions of other details are the same as those of the embodiment shown in FIGS. For this reason, in FIG.9 (c), while attaching the same code | symbol to the same part as FIGS. 1-7, the structure is clarified, The detailed description is abbreviate | omitted.

以上、好適実施形態(変更実施形態を含む)について詳細に説明したが、本発明はこのような実施形態に限定されるものではなく、細部の構成,形状,数量,素材等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。   The preferred embodiment (including the modified embodiment) has been described in detail above. However, the present invention is not limited to such an embodiment, and the detailed configuration, shape, quantity, material, etc. Changes, additions and deletions can be made arbitrarily without departing from the scope.

例えば、流入口部6i,流出口部6eを、熱交換面2f,2rに対して略中央に配するとは、中央のみならず発明の効果を確保できる中央周辺を含む概念である。また、「直角方向Fs」とは、正確な直角を意味するものではなく、発明の効果を確保できる僅かな傾斜を含む概念である。一方、ライニングシート12p(13p)と流入管Pi(流出管Pe)の開口端部Pis(Pes)を一体化する形態は、同一形態により一体化してもよいし、異なる形態により一体化してもよい。他方、熱交換分室部3f,3rの形状は、例示した正方形,長方形,円形のみならず、正三角形や六角形等の対称性を有する多角形等をはじめ、各種形状を適用できる。また、温調部4f,4rをアウタプレート12,13の熱交換面2f,2rに直接取付けた形態を例示したが、別途、熱伝導性素材により形成した装着プレートを用意し、この装着プレートの一面に温調部4f,4rを取付けるとともに、他面を熱伝導性ペースト等を介在させてアウタプレート12,13の熱交換面2f,2rに取付けてもよい。さらに、温調部4f,4rをサーモモジュールMt…とウォータジャケット部22の組合わせにより構成した場合を示したが、同様の機能を有する他の温調手段により構成する場合を排除するものではない。なお、ウォータジャケット部22に流す液体として、冷却水又は温水を例示したが不凍液等の他の各種液体を適用できる。   For example, arranging the inflow port portion 6i and the outflow port portion 6e substantially at the center with respect to the heat exchange surfaces 2f and 2r is a concept including not only the center but also the center periphery that can secure the effect of the invention. The “right angle direction Fs” does not mean an exact right angle but is a concept including a slight inclination that can ensure the effect of the invention. On the other hand, the form in which the lining sheet 12p (13p) and the opening end Pis (Pes) of the inflow pipe Pi (outflow pipe Pe) are integrated may be integrated by the same form or may be integrated by different forms. . On the other hand, the shapes of the heat exchange chambers 3f and 3r are not limited to the illustrated squares, rectangles, and circles, and various shapes such as polygons having symmetry such as regular triangles and hexagons can be applied. Moreover, although the temperature control part 4f and 4r illustrated the form directly attached to the heat exchange surfaces 2f and 2r of the outer plates 12 and 13, a mounting plate formed of a heat conductive material is prepared separately. The temperature control parts 4f and 4r may be attached to one surface, and the other surface may be attached to the heat exchange surfaces 2f and 2r of the outer plates 12 and 13 with a heat conductive paste or the like interposed therebetween. Furthermore, although the case where temperature control part 4f, 4r was comprised by the combination of thermomodule Mt ... and the water jacket part 22 was shown, the case where it comprises with the other temperature control means which has the same function is not excluded. . In addition, although the cooling water or the warm water was illustrated as a liquid sent to the water jacket part 22, other various liquids, such as an antifreeze liquid, are applicable.

本発明に係る熱交換装置1は、流体Lとして薬液を使用する薬液用熱交換装置に用いて最適であるが、洗浄液や水等の液体、更には空気や不活性ガス等の気体を含む各種流体を適用できるとともに、用途として、半導体製造装置や液晶ガラス基板処理装置等の各種装置における熱交換装置1として利用できる。   The heat exchanging device 1 according to the present invention is optimal for use in a chemical liquid heat exchanging device that uses a chemical solution as the fluid L. While being able to apply a fluid, it can be used as a heat exchange device 1 in various apparatuses such as a semiconductor manufacturing apparatus and a liquid crystal glass substrate processing apparatus.

1:熱交換装置,2:熱交換ブロック部,2f:熱交換面,2r:熱交換面,3f:熱交換分室部,3r:熱交換分室部,4f:温調部,4r:温調部,5:仕切壁部,5c:仕切壁部の周縁,6i:流入口部,6e:流出口部,7…:流通孔部,11:インナプレート部,11f:インナプレート部の一方の面,11r:インナプレート部の他方の面,12:アウタプレート部,12h:流入口用開口部,12p:ライニングシート,13:アウタプレート部,13h:流出口用開口部,13p:ライニングシート,L:流体,Fs:直角方向,Rf:熱交換分室用凹部,Rr:熱交換分室用凹部,Pi:流入管,Pe:流出管,Pis:開口端部,Pes:開口端部   DESCRIPTION OF SYMBOLS 1: Heat exchange apparatus, 2: Heat exchange block part, 2f: Heat exchange surface, 2r: Heat exchange surface, 3f: Heat exchange compartment part, 3r: Heat exchange compartment part, 4f: Temperature control part, 4r: Temperature control part , 5: partition wall portion, 5c: peripheral edge of partition wall portion, 6i: inlet portion, 6e: outlet portion, 7 ...: flow hole portion, 11: inner plate portion, 11f: one surface of inner plate portion, 11r: The other surface of the inner plate part, 12: Outer plate part, 12h: Inlet opening part, 12p: Lining sheet, 13: Outer plate part, 13h: Outlet opening part, 13p: Lining sheet, L: Fluid, Fs: Right angle direction, Rf: Heat exchange compartment recess, Rr: Heat exchange compartment recess, Pi: Inflow pipe, Pe: Outflow pipe, Pis: Open end, Pes: Open end

Claims (8)

少なくとも、熱交換される流体を流通させる熱交換室を内部に設けた所定の厚さを有する熱交換ブロック部と、この熱交換ブロック部の厚さ方向における一対の熱交換面にそれぞれ付設して前記流体に対して熱交換を行う一対の温調部とを備える熱交換装置において、前記熱交換室の内部に設けることにより前記熱交換室を前記熱交換面に対して直角方向に二分して一対の熱交換分室部を形成する仕切壁部と、一方の熱交換面の直角方向から一方の熱交換分室部の内部に流体を流入可能な一又は二以上の流入口部と、他方の熱交換分室部の内部の流体を他方の熱交換面から直角方向に流出可能な一又は二以上の流出口部と、前記仕切壁部を貫通し、かつ前記仕切壁部の周縁に沿って所定間隔毎に形成した複数の流通孔部とを備えてなることを特徴とする熱交換装置。   At least a heat exchange block portion having a predetermined thickness in which a heat exchange chamber for circulating a fluid to be heat exchanged is provided, and a pair of heat exchange surfaces in the thickness direction of the heat exchange block portion. In a heat exchange device comprising a pair of temperature control units that perform heat exchange with respect to the fluid, the heat exchange chamber is divided into two in a direction perpendicular to the heat exchange surface by being provided inside the heat exchange chamber. A partition wall that forms a pair of heat exchange compartments, one or more inlets that allow fluid to flow into one of the heat exchange compartments from a direction perpendicular to one of the heat exchange surfaces, and the other heat One or two or more outflow ports that can flow the fluid inside the exchange chamber from the other heat exchange surface in a direction perpendicular to the other, and a predetermined interval along the periphery of the partition wall. And having a plurality of flow holes formed for each Heat exchange apparatus according to symptoms. 前記一又は二以上の流入口部,及び前記一又は二以上の流出口部は、前記熱交換面に対して略中央に配することを特徴とする請求項1記載の熱交換装置。   The heat exchange apparatus according to claim 1, wherein the one or more inflow ports and the one or more outflow ports are arranged substantially in the center with respect to the heat exchange surface. 前記熱交換ブロック部は、一定の厚さを有し、かつ前記熱交換分室部を形成するための熱交換分室用凹部を有するインナプレート部と、このインナプレート部の厚さ方向における一方の面に当接し、かつ前記流入口部を内面に設けるための流入口用開口部を有する一方のアウタプレート部と、前記インナプレート部の厚さ方向における他方の面に当接し、前記流出口部を内面に設けるための流出口用開口部を有する他方のアウタプレート部と、を備えることを特徴とする請求項1又は2記載の熱交換装置。   The heat exchange block portion has a constant thickness, and has an inner plate portion having a heat exchange compartment recess for forming the heat exchange compartment portion, and one surface in the thickness direction of the inner plate portion. The outer plate portion having an inlet opening for providing the inlet portion on the inner surface, and the other surface in the thickness direction of the inner plate portion, and the outlet portion The other outer plate part which has the opening part for outflow ports provided in an inner surface, The heat exchange apparatus of Claim 1 or 2 characterized by the above-mentioned. 前記流入口部は、前記流入口用開口部に挿通させた流入管の開口端部を用いるとともに、前記流出口部は、前記流出口用開口部に挿通させた流出管の開口端部を用いることを特徴とする請求項3記載の熱交換装置。   The inflow port portion uses the open end portion of the inflow pipe inserted into the inflow port opening portion, and the outflow port portion uses the open end portion of the outflow pipe inserted into the outflow port opening portion. The heat exchange device according to claim 3. 前記一方のアウタプレート部の内面に一方のライニングシートを貼着することにより、この一方のライニングシートと前記流入管の開口端部を一体化し、及び(又は)前記他方のアウタプレート部の内面に他方のライニングシートを貼着しすることにより、この他方のライニングシートと前記流出管の開口端部を一体化することを特徴とする請求項4記載の熱交換装置。   By sticking one lining sheet to the inner surface of the one outer plate portion, the one lining sheet and the opening end portion of the inflow pipe are integrated, and / or on the inner surface of the other outer plate portion. The heat exchange device according to claim 4, wherein the other lining sheet and the open end of the outflow pipe are integrated by sticking the other lining sheet. 前記一方のライニングシートと前記流入管の開口端部を別体に形成して結合により一体化し、及び(又は)前記他方のライニングシートと前記流出管の開口端部を別体に形成して結合により一体化することを特徴とする請求項5記載の熱交換装置。   The one lining sheet and the opening end of the inflow pipe are formed separately and integrated by bonding, and / or the other lining sheet and the opening end of the outflow pipe are formed separately and combined. 6. The heat exchange device according to claim 5, wherein the heat exchange device is integrated. 前記一方のライニングシートと前記流入管の開口端部を一体成形により一体化し、及び(又は)前記他方のライニングシートと前記流出管の開口端部を一体成形により一体化することを特徴とする請求項5記載の熱交換装置。   The one lining sheet and the opening end of the inflow pipe are integrated by integral molding, and / or the other lining sheet and the opening end of the outflow pipe are integrated by integral molding. Item 6. The heat exchange device according to Item 5. 前記流体には、薬液を適用することを特徴とする請求項1〜7のいずれかに記載の熱交換装置。   The heat exchange apparatus according to claim 1, wherein a chemical solution is applied to the fluid.
JP2012140437A 2012-06-22 2012-06-22 Heat exchanger Active JP6047800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140437A JP6047800B2 (en) 2012-06-22 2012-06-22 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140437A JP6047800B2 (en) 2012-06-22 2012-06-22 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2014005960A true JP2014005960A (en) 2014-01-16
JP6047800B2 JP6047800B2 (en) 2016-12-21

Family

ID=50103848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140437A Active JP6047800B2 (en) 2012-06-22 2012-06-22 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6047800B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918059A (en) * 1995-06-28 1997-01-17 Technova:Kk Thermoelectric conversion device
JP2000180075A (en) * 1998-12-17 2000-06-30 Toyo Radiator Co Ltd Shell-type heat exchanger
US20050133212A1 (en) * 2003-12-18 2005-06-23 Wilson Michael J. Forced fluid heat sink
JP2005172270A (en) * 2003-12-08 2005-06-30 Calsonic Kansei Corp Radiator incorporated with oil cooler
JP2010151427A (en) * 2008-12-26 2010-07-08 Orion Mach Co Ltd Heat exchange device
JP2012107783A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Vehicle heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918059A (en) * 1995-06-28 1997-01-17 Technova:Kk Thermoelectric conversion device
JP2000180075A (en) * 1998-12-17 2000-06-30 Toyo Radiator Co Ltd Shell-type heat exchanger
JP2005172270A (en) * 2003-12-08 2005-06-30 Calsonic Kansei Corp Radiator incorporated with oil cooler
US20050133212A1 (en) * 2003-12-18 2005-06-23 Wilson Michael J. Forced fluid heat sink
JP2010151427A (en) * 2008-12-26 2010-07-08 Orion Mach Co Ltd Heat exchange device
JP2012107783A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Vehicle heat exchanger

Also Published As

Publication number Publication date
JP6047800B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5650693B2 (en) Battery cooler
US10475724B2 (en) Heat exchangers for dual-sided cooling
KR100928893B1 (en) Thermostat for chemical liquid
CN108603732B (en) Plate heat exchanger and heat pump type heating and hot water supply system provided with plate heat exchanger
TW200727121A (en) Multi-element heat exchange assemblies and methods of fabrication for a cooling system
CN107732405B (en) Phased array antenna microchannel four-layer two-phase cold plate
JP6199982B2 (en) Gasket and assembly
JP5403583B2 (en) Heat exchanger
JP2008186913A (en) Fluid-temperature controller
US20060032611A1 (en) Semiconductor device cooling apparatus
JP6047800B2 (en) Heat exchanger
KR20080076222A (en) Laminated heat exchanger and fabricating method thereof
TWI470181B (en) Heat exchanger
JP2011127820A (en) Plate type heat exchanger and heat pump device
WO2017036292A1 (en) Heat exchange device for circulation cooling system and manufacturing method thereof
JP2009264727A (en) Heat exchanger unit and heat exchanger using the same
KR20030057382A (en) Heat exchange unit
JP2000243886A (en) Cooling body for power semiconductor element
CN105810805A (en) Liquid cooling heat sink
KR101823554B1 (en) Wwater purifier cooling device
JP2016017737A (en) TED heat exchanger
JP7031524B2 (en) Cooler
JP2007024343A (en) Safety heat exchanging plate and safety heat exchanger using the same
US20190234691A1 (en) Thermal module
JP2011208814A (en) Water-cooling jacket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6047800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250