JP2014003737A - Charge controller - Google Patents

Charge controller Download PDF

Info

Publication number
JP2014003737A
JP2014003737A JP2012135556A JP2012135556A JP2014003737A JP 2014003737 A JP2014003737 A JP 2014003737A JP 2012135556 A JP2012135556 A JP 2012135556A JP 2012135556 A JP2012135556 A JP 2012135556A JP 2014003737 A JP2014003737 A JP 2014003737A
Authority
JP
Japan
Prior art keywords
charging
voltage
power
battery
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012135556A
Other languages
Japanese (ja)
Inventor
Sho Nagashima
翔 長嶋
Kei Kamiya
慶 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012135556A priority Critical patent/JP2014003737A/en
Publication of JP2014003737A publication Critical patent/JP2014003737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charge controller capable of shortening a charging time of a battery at low temperature.SOLUTION: When a high-voltage battery 12 is charged, charging power for the high-voltage battery 12 is maintained at first predetermined power W1, and first constant-power charge control for charging the high-voltage battery 12 is performed until voltage of the high-voltage battery 12 (closed circuit voltage CCV) reaches first target voltage V1 (such as a target value of open circuit voltage OCV). Then charging voltage for the high-voltage battery 12 is maintained at predetermined voltage Va, and constant-voltage charge control for charging the high-voltage battery 12 is performed until the charging power for the high-voltage battery 12 is reduced to a determination threshold Wa. Furthermore, the charging power for the high-voltage battery 12 is maintained at second predetermined power W2 which is lower than the first predetermined power W1, and second constant-power charge control for charging the high-voltage battery 12 is performed until the voltage of the high-voltage battery 12 reaches second target voltage V2 (such as a target value of the closed circuit voltage CCV).

Description

本発明は、バッテリの充電を制御する充電制御装置に関する発明である。   The present invention relates to a charging control device that controls charging of a battery.

近年、低燃費、低排気エミッションの社会的要請から車両の動力源としてモータを搭載したハイブリッド車や電気自動車が注目されている。このような車両に搭載されるバッテリを外部電源から充電する際の充電制御として、例えば、特許文献1(特開平10−51970号公報)に記載されているように、バッテリの充電電流を所定速度で増加させる試行充電を実行した後に、バッテリの電圧が所定の充電電流切替電圧に達するたびに充電電流を減少させる本充電を実行するようにしたものがある。   In recent years, hybrid vehicles and electric vehicles equipped with a motor as a power source for vehicles have attracted attention because of the social demand for low fuel consumption and low exhaust emissions. As charging control when charging a battery mounted on such a vehicle from an external power source, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 10-51970), the charging current of the battery is set at a predetermined speed. After performing the trial charge that is increased in step 1, the main charge is executed to decrease the charge current every time the voltage of the battery reaches a predetermined charge current switching voltage.

特開平10−51970号公報JP-A-10-51970

ところで、本出願人は、図6及び図7に示すように、バッテリを充電する場合に、まず、バッテリの充電電力を比較的高い第1の所定電力W1 (一定値)に維持してバッテリを充電する第1の定電力充電制御を、バッテリの電圧(閉回路電圧CCV)が第1の目標電圧V1 (例えば開回路電圧OCVの目標値)に上昇するまで実行した後に、バッテリの充電電力を第1の所定電力W1 よりも低い第2の所定電力W2 (一定値)に維持してバッテリを充電する第2の定電力充電制御をバッテリの電圧(閉回路電圧CCV)が第2の目標電圧V2 (例えば閉回路電圧CCVの目標値)に上昇するまで実行することで、過充電を防止しながら満充電付近まで充電可能にするシステムを研究しているが、その研究過程で次のような課題が判明した。   By the way, as shown in FIG. 6 and FIG. 7, the present applicant first maintains the battery charging power at a relatively high first predetermined power W1 (a constant value) when charging the battery. After executing the first constant power charging control for charging until the battery voltage (closed circuit voltage CCV) rises to the first target voltage V1 (for example, the target value of the open circuit voltage OCV), the charging power of the battery is The battery voltage (closed circuit voltage CCV) is the second target voltage in the second constant power charging control for charging the battery while maintaining the second predetermined power W2 (constant value) lower than the first predetermined power W1. We are researching a system that allows charging to near full charge while preventing overcharge by executing until it rises to V2 (for example, the target value of the closed circuit voltage CCV). The problem was revealed.

一般に、バッテリの充電時の閉回路電圧CCVと開回路電圧OCVとの関係は、内部電圧降下IR(内部抵抗による電圧降下)と分極電圧Vx (分極作用による電圧降下)とを用いて、次式により表すことができる。
CCV=OCV+(IR+Vx )
In general, the relationship between the closed circuit voltage CCV and the open circuit voltage OCV when charging a battery is expressed by the following equation using an internal voltage drop IR (voltage drop due to internal resistance) and a polarization voltage Vx (voltage drop due to polarization action) Can be represented by
CCV = OCV + (IR + Vx)

低温時には、上式における(IR+Vx )の値が大きくなって、閉回路電圧CCVと開回路電圧OCVとの差が大きくなる傾向がある。このため、低温時(例えば−25℃のとき)には、第1の定電力充電制御の際に、まだ開回路電圧OCVが低くて充電電力量が少ない状態のときに、閉回路電圧CCVが第1の目標電圧V1 に到達して第1の定電力充電制御が終了してしまい、第1の定電力充電制御による充電電力量が常温時(例えば25℃のとき)に比べて少なくなる。これにより、第1の定電力充電制御よりも低い充電電力で充電する第2の定電力充電制御の実行時間がかなり長くなってしまい、バッテリの充電時間(充電開始から充電終了までに要する時間)が長くなるという問題がある。   When the temperature is low, the value of (IR + Vx) in the above equation increases, and the difference between the closed circuit voltage CCV and the open circuit voltage OCV tends to increase. For this reason, when the temperature is low (for example, at -25 ° C.), the closed circuit voltage CCV is low when the open circuit voltage OCV is still low and the amount of charging power is low during the first constant power charging control. The first constant power charging control is terminated when the first target voltage V1 is reached, and the amount of charging power by the first constant power charging control is smaller than that at room temperature (for example, at 25 ° C.). As a result, the execution time of the second constant power charging control for charging with lower charging power than that of the first constant power charging control is considerably increased, and the battery charging time (time required from the start of charging to the end of charging) is increased. There is a problem that becomes longer.

また、上記特許文献1の技術では、本充電の際にバッテリの電圧が充電電流切替電圧に達するたびに充電電流を減少させるため、複雑な電流制御(例えばフィードバック制御)を行う必要がある。   Moreover, in the technique of the above-mentioned Patent Document 1, in order to reduce the charging current every time the voltage of the battery reaches the charging current switching voltage during the main charging, it is necessary to perform complicated current control (for example, feedback control).

そこで、本発明が解決しようとする課題は、複雑な電流制御を行うことなく、低温時のバッテリの充電時間を短縮することができる充電制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a charge control device capable of shortening the charging time of the battery at a low temperature without performing complicated current control.

上記課題を解決するために、請求項1に係る発明は、バッテリ(12)の充電を制御する充電制御装置において、バッテリ(12)の充電電力を第1の所定電力に維持してバッテリ(12)を充電する第1の定電力充電制御をバッテリ(12)の電圧が第1の目標電圧に上昇するまで実行する第1の定電力充電制御手段(23)と、この第1の定電力充電制御の実行後に、バッテリ(12)の充電電圧を所定電圧に維持してバッテリ(12)を充電する定電圧充電制御をバッテリ(12)の充電電力が所定の判定閾値に低下するまで実行する定電圧充電制御手段(23)と、この定電圧充電制御の実行後に、バッテリ(12)の充電電力を第1の所定電力よりも低い第2の所定電力に維持してバッテリ(12)を充電する第2の定電力充電制御をバッテリ(12)の電圧が第1の目標電圧よりも高い第2の目標電圧に上昇するまで実行する第2の定電力充電制御手段(23)とを備えた構成としたものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a charge control device that controls charging of a battery (12), wherein the charging power of the battery (12) is maintained at a first predetermined power. The first constant power charge control means (23) for executing the first constant power charge control for charging the battery (12) until the voltage of the battery (12) rises to the first target voltage, and the first constant power charge After the control is executed, the constant voltage charging control for charging the battery (12) while maintaining the charging voltage of the battery (12) at a predetermined voltage is executed until the charging power of the battery (12) decreases to a predetermined determination threshold. After the voltage charging control means (23) and the constant voltage charging control are executed, the battery (12) is charged while maintaining the charging power of the battery (12) at a second predetermined power lower than the first predetermined power. Second constant power charging system The one in which the voltage of the battery (12) is configured to include a second constant power charging control means for performing (23) until the rise in the high second target voltage than the first target voltage.

この構成では、バッテリを充電する場合には、まず、バッテリの充電電力を第1の所定電力に維持してバッテリを充電する第1の定電力充電制御を、バッテリの電圧が第1の目標電圧に上昇するまで実行する。この後、バッテリの充電電圧を所定電圧に維持してバッテリを充電する定電圧充電制御を、バッテリの充電電力が所定の判定閾値に低下するまで実行した後、バッテリの充電電力を第2の所定電力に維持してバッテリを充電する第2の定電力充電制御を、バッテリの電圧が第2の目標電圧に上昇するまで実行する。   In this configuration, when charging the battery, first, the first constant power charging control for charging the battery while maintaining the charging power of the battery at the first predetermined power is performed, and the battery voltage is set to the first target voltage. Run until it rises. Thereafter, constant voltage charging control for charging the battery while maintaining the charging voltage of the battery at a predetermined voltage is executed until the charging power of the battery drops to a predetermined determination threshold, and then the charging power of the battery is set to a second predetermined power. The second constant power charge control for charging the battery while maintaining the electric power is executed until the voltage of the battery rises to the second target voltage.

この場合、第1の定電力充電制御と第2の定電力充電制御との間に実行する定電圧充電制御(図2参照)では、充電電力を第1の所定電力付近から徐々に減少させて第2の所定電力付近まで低下させることができるため、第2の所定電力で充電する第2の定電力充電制御よりも充電電力量を早く増加させることができる。   In this case, in the constant voltage charge control (see FIG. 2) executed between the first constant power charge control and the second constant power charge control, the charge power is gradually decreased from the vicinity of the first predetermined power. Since it can be reduced to the vicinity of the second predetermined power, the amount of charging power can be increased faster than the second constant power charging control in which charging is performed with the second predetermined power.

このため、第1の定電力充電制御の実行後に定電圧充電制御を実行してから第2の定電力充電制御を実行するシステムでは、低温時に第1の定電力充電制御による充電電力量が少なくなった場合でも、定電圧充電制御によって充電電力量を比較的早く増加させることが可能となり、第1の定電力充電制御から第2の定電力充電制御に切り換えるシステム(定電圧充電制御を実行しないシステム)に比べて、低温時のバッテリの充電時間(充電開始から充電終了までに要する時間)を短縮することができる。   For this reason, in the system in which the second constant power charging control is performed after the constant voltage charging control is performed after the first constant power charging control is performed, the amount of charging power by the first constant power charging control is low at low temperatures. Even in such a case, it becomes possible to increase the amount of charging power relatively quickly by the constant voltage charging control, and a system for switching from the first constant power charging control to the second constant power charging control (the constant voltage charging control is not executed). Compared with the system), the battery charging time at low temperature (time required from the start of charging to the end of charging) can be shortened.

また、定電圧充電制御では、充電電流が成り行きで変化するため、複雑な電流制御(例えばフィードバック制御)を行う必要がないという利点もある。   In addition, the constant voltage charge control has an advantage that complicated current control (for example, feedback control) does not need to be performed because the charging current changes with the course.

図1は本発明の一実施例における車両の充電制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a vehicle charge control system according to an embodiment of the present invention. 図2は本実施例の充電制御を説明するタイムチャートである。FIG. 2 is a time chart for explaining the charging control of this embodiment. 図3は本実施例の充電制御における充電電圧及び充電電流の挙動を示すタイムチャートである。FIG. 3 is a time chart showing the behavior of the charging voltage and charging current in the charging control of this embodiment. 図4は本実施例の充電制御ルーチンの処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing of the charging control routine of this embodiment. 図5は本実施例の充電制御の効果を説明するタイムチャートである。FIG. 5 is a time chart for explaining the effect of the charging control of this embodiment. 図6は比較例の充電制御を説明するタイムチャート(その1)である。FIG. 6 is a time chart (part 1) for explaining the charge control of the comparative example. 図7は比較例の充電制御を説明するタイムチャート(その2)である。FIG. 7 is a time chart (part 2) for explaining the charge control of the comparative example.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいて車両(例えば車両外部の電源から充電可能なプラグインハイブリッド車又は電気自動車)の充電制御システムの概略構成を説明する。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of a charging control system for a vehicle (for example, a plug-in hybrid vehicle or an electric vehicle that can be charged from a power source outside the vehicle) will be described with reference to FIG.

車両の動力源となるモータ11と、このモータ11に電力を供給する高電圧バッテリ12(バッテリ)とが搭載されている。また、車両外部の商用電源13(例えばAC100V電源又はAC200V電源)に充電ケーブル14を介して接続される外部電源接続部15には、商用電源13の交流電力を直流電力に変換する充電器16が接続され、この充電器16と高電圧バッテリ12とを接続する電源ラインL1,L2には、充電リレーやメインリレー(いずれも図示せず)が設けられている。   A motor 11 serving as a power source for the vehicle and a high voltage battery 12 (battery) for supplying electric power to the motor 11 are mounted. In addition, a charger 16 that converts AC power of the commercial power supply 13 into DC power is connected to the external power supply connection portion 15 connected via a charging cable 14 to a commercial power supply 13 (for example, AC100V power supply or AC200V power supply) outside the vehicle. The power supply lines L1 and L2 that are connected and connect the charger 16 and the high voltage battery 12 are provided with a charging relay and a main relay (both not shown).

また、電源ラインL1,L2には、高電圧バッテリ12の端子電圧を検出するバッテリ電圧センサ17と電流を検出するバッテリ電流センサ24が接続されている。尚、高電圧バッテリ12とバッテリ電圧センサ17とバッテリ電流センサ24等を電池パックに収容した構成としても良い。   Further, a battery voltage sensor 17 that detects a terminal voltage of the high-voltage battery 12 and a battery current sensor 24 that detects a current are connected to the power supply lines L1 and L2. The high voltage battery 12, the battery voltage sensor 17, the battery current sensor 24, and the like may be housed in a battery pack.

一方、充電器16には、高電圧バッテリ12の充電電圧(充電器16の出力電圧)を検出する充電電圧センサ18と、高電圧バッテリ12の充電電流(充電器16の出力電流)を検出する充電電流センサ19が内蔵されている。充電電圧、充電電流は、直接センサで検出するだけでなく、推定することにより検出しても良い。尚、充電器16の外部に、充電電圧センサ18や充電電流センサ19を設けた構成としても良い。高電圧バッテリ12の充電電力(充電器16の出力電力)は、充電電圧センサ18で検出した充電電圧と充電電流センサ19で検出した充電電流から求めることができる。   On the other hand, the charger 16 detects a charging voltage sensor 18 that detects a charging voltage of the high voltage battery 12 (output voltage of the charger 16) and a charging current of the high voltage battery 12 (output current of the charger 16). A charging current sensor 19 is incorporated. The charging voltage and charging current may be detected not only by direct sensor detection but also by estimation. In addition, it is good also as a structure which provided the charging voltage sensor 18 and the charging current sensor 19 in the exterior of the charger 16. FIG. The charging power of the high voltage battery 12 (output power of the charger 16) can be obtained from the charging voltage detected by the charging voltage sensor 18 and the charging current detected by the charging current sensor 19.

また、電源ラインL1,L2には、インバータ20やDC−DCコンバータ21等が接続され、インバータ20には、モータ11が接続されている。また、DC−DCコンバータ21には、補機バッテリ22(低電圧バッテリ)が接続され、この補機バッテリ22に、各種の電装品(図示せず)が接続されている。   In addition, an inverter 20, a DC-DC converter 21, and the like are connected to the power supply lines L 1 and L 2, and the motor 11 is connected to the inverter 20. Further, an auxiliary battery 22 (low voltage battery) is connected to the DC-DC converter 21, and various electrical components (not shown) are connected to the auxiliary battery 22.

上述した充電器16、インバータ20、コンバータ21等は、電子制御ユニット(以下「ECU」と表記する)23によって制御される。このECU23は、マイクロコンピュータを主体として構成され、後述する図4の充電制御ルーチンを実行することで、高電圧バッテリ12の充電制御を次のようにして実行する。   The charger 16, the inverter 20, the converter 21, and the like described above are controlled by an electronic control unit (hereinafter referred to as “ECU”) 23. The ECU 23 is mainly composed of a microcomputer, and executes charge control routine of FIG. 4 described later, thereby executing charge control of the high voltage battery 12 as follows.

図2に示すように、高電圧バッテリ12を充電する場合には、まず、高電圧バッテリ12の充電電力(充電器16の出力電力)を第1の所定電力W1 (一定値)に維持して高電圧バッテリ12を充電する第1の定電力充電制御を、高電圧バッテリ12の電圧(閉回路電圧CCV)が第1の目標電圧V1 (例えば開回路電圧OCVの目標値)に上昇するまで実行する。   As shown in FIG. 2, when charging the high voltage battery 12, first, the charging power of the high voltage battery 12 (output power of the charger 16) is maintained at the first predetermined power W1 (a constant value). The first constant power charging control for charging the high voltage battery 12 is executed until the voltage of the high voltage battery 12 (closed circuit voltage CCV) rises to the first target voltage V1 (for example, the target value of the open circuit voltage OCV). To do.

この後、高電圧バッテリ12の充電電圧(充電器16の出力電圧)を所定電圧Va (一定値)に維持して高電圧バッテリ12を充電する定電圧充電制御を、高電圧バッテリ12の充電電力が所定の判定閾値Wa に低下するまで実行する。この定電圧充電制御中は、充電電力量の増加に伴って開回路電圧OCVが上昇すると共に充電電流が減少する(図3参照)。更に、充電電流の減少によって内部電圧降下IRが減少し、充電電流の減少及び充電時間の経過によって分極電圧Vx が減少する。   Thereafter, constant voltage charging control for charging the high voltage battery 12 while maintaining the charging voltage of the high voltage battery 12 (output voltage of the charger 16) at a predetermined voltage Va (a constant value) is performed. Until the value falls to a predetermined determination threshold value Wa. During this constant voltage charging control, the open circuit voltage OCV increases and the charging current decreases as the charging power increases (see FIG. 3). Further, the internal voltage drop IR decreases due to the decrease in the charging current, and the polarization voltage Vx decreases as the charging current decreases and the charging time elapses.

この後、高電圧バッテリ12の充電電力を第1の所定電力W1 よりも低い第2の所定電力W2 (一定値)に維持して高電圧バッテリ12を充電する第2の定電力充電制御を、高電圧バッテリ12の電圧(閉回路電圧CCV)が第1の目標電圧V1 よりも高い第2の目標電圧V2 (例えば閉回路電圧CCVの目標値)に上昇するまで実行して、高電圧バッテリ12の充電を終了する。   Thereafter, the second constant power charging control for charging the high voltage battery 12 while maintaining the charging power of the high voltage battery 12 at a second predetermined power W2 (a constant value) lower than the first predetermined power W1 is performed. The high voltage battery 12 is executed until the voltage of the high voltage battery 12 (closed circuit voltage CCV) rises to a second target voltage V2 (for example, a target value of the closed circuit voltage CCV) higher than the first target voltage V1. End charging.

高電圧バッテリ12を充電する場合に、最初から定電圧充電制御を実行するようにすると、充電電力が大きくなり過ぎて充電器16の許容限界を越えてしまう可能性があり、これを防止するためには、許容限界の高い大型の充電器を用いる必要が生じる。   If the constant voltage charging control is executed from the beginning when charging the high voltage battery 12, the charging power may become too large and exceed the allowable limit of the charger 16, in order to prevent this. This requires the use of a large charger with a high tolerance limit.

その点、本実施例では、高電圧バッテリ12を充電する場合に、まず、第1の定電力充電制御を実行するため、充電電力が充電器16の許容限界値を越えてしまうことを防止することができ、許容限界の高い大型の充電器を用いる必要が生じない。   In this respect, in the present embodiment, when charging the high voltage battery 12, first, the first constant power charging control is executed, so that the charging power is prevented from exceeding the allowable limit value of the charger 16. Therefore, it is not necessary to use a large charger having a high tolerance limit.

また、第1の定電力充電制御と第2の定電力充電制御との間に実行する定電圧充電制御では、充電電力を第1の所定電力W1 付近から徐々に減少させて第2の所定電力W2 付近まで低下させることができるため、第2の所定電力W2 で充電する第2の定電力充電制御よりも充電電力量を早く増加させることができると共に、充電電力量の増加に伴って充電電流が成り行きで減少していくため(図3参照)、フィードバック制御を行う必要がない。   In the constant voltage charge control executed between the first constant power charge control and the second constant power charge control, the charge power is gradually decreased from the vicinity of the first predetermined power W1 to obtain the second predetermined power. Since it can be reduced to near W2, the charge power amount can be increased faster than the second constant power charge control charged with the second predetermined power W2, and the charge current is increased as the charge power amount increases. Therefore, it is not necessary to perform feedback control.

ところで、定電圧充電制御では、充電電力量の増加に伴って充電電流が減少して充電電力が減少していくため、定電圧充電制御で満充電付近まで充電しようとすると、充電電力がかなり低くなる領域(例えば第2の所定電力W2 よりも低くなる領域)を使用して充電する低電力充電を行うことになり、定電圧充電制御の実行時間がかなり長くなってしまい、高電圧バッテリ12の充電時間(充電開始から充電終了までに要する時間)が長くなる。   By the way, in constant voltage charge control, the charge current decreases as the amount of charge increases, and the charge power decreases. Low power charging is performed by using a region (for example, a region lower than the second predetermined power W2), and the execution time of the constant voltage charging control becomes considerably long. The charging time (time required from the start of charging to the end of charging) becomes longer.

その点、本実施例では、高電圧バッテリ12の充電電力が判定閾値Wa に低下するまで定電圧充電制御を実行し、充電電力が判定閾値Wa に低下した時点で、定電圧充電制御から第2の定電力充電制御に切り替えるため、定電圧充電制御による低電力充電を回避して定電圧充電制御の実行時間が長くなることを防止しながら、第2の定電力充電制御によって満充電に近付けることができる。   In this regard, in this embodiment, the constant voltage charging control is executed until the charging power of the high voltage battery 12 decreases to the determination threshold value Wa, and the second voltage from the constant voltage charging control is reached when the charging power decreases to the determination threshold value Wa. In order to switch to the constant power charge control, the second constant power charge control approaches the full charge while avoiding the low power charge by the constant voltage charge control and preventing the constant voltage charge control from executing for a long time. Can do.

更に、定電圧充電制御から第2の定電力充電制御に切り替えることで、高電圧バッテリ12の電圧(閉回路電圧CCV)の上昇を監視して充電完了判定を行うことができる。定電圧充電制御で充電を終了させようとする場合、定電圧充電制御では充電電圧を一定値に維持するため、電圧で充電完了判定を行うことができず、電流を監視して充電完了判定を行う必要がある。しかし、定電圧充電制御では、満充電に近くなるほど充電電流が微小にしか減少しないため、充電電流を監視しても充電が完了したか否か(満充電付近まで充電したか否か)を精度良く判定することは困難である。   Further, by switching from the constant voltage charge control to the second constant power charge control, it is possible to monitor the increase in the voltage of the high voltage battery 12 (closed circuit voltage CCV) and determine the completion of charging. When charging is to be terminated with constant voltage charging control, the charging voltage is maintained at a constant value with constant voltage charging control, so charging completion cannot be determined with voltage. There is a need to do. However, with constant voltage charge control, the charge current decreases only slightly as it approaches full charge, so even if the charge current is monitored, whether charging is complete (whether it has been charged to near full charge) is accurate. It is difficult to judge well.

本実施例のように、充電電力が判定閾値Wa に低下した時点で、定電圧充電制御から第2の定電力充電制御に切り替えることで、高電圧バッテリ12の電圧(閉回路電圧CCV)が上昇し始めるため、その高電圧バッテリ12の電圧が第2の目標電圧V2 に到達したか否かを判定することで、充電が完了したか否か(満充電付近まで充電したか否か)を精度良く判定することができる。   As in this embodiment, when the charging power decreases to the determination threshold Wa, the voltage of the high voltage battery 12 (closed circuit voltage CCV) increases by switching from the constant voltage charging control to the second constant power charging control. Therefore, by determining whether the voltage of the high-voltage battery 12 has reached the second target voltage V2, it is possible to accurately determine whether charging is complete (whether it has been fully charged). Can be judged well.

以上説明した高電圧バッテリ12の充電制御御は、ECU23によって図4の充電制御ルーチンに従って実行される。以下、このルーチンの処理内容を説明する。
図4に示す充電制御ルーチンは、ECU23の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ101で、充電要求が有るか否かを、例えば充電ケーブル14が接続されて充電要求信号が入力されたか否かによって判定する。このステップ101で、充電要求が無いと判定された場合には、ステップ102以降の充電制御に関する処理を実行することなく、本ルーチンを終了する。
The charging control of the high voltage battery 12 described above is executed by the ECU 23 according to the charging control routine of FIG. The processing contents of this routine will be described below.
The charge control routine shown in FIG. 4 is repeatedly executed at a predetermined period during the power-on period of the ECU 23. When this routine is started, first, at step 101, it is determined whether or not there is a charge request, for example, depending on whether or not a charge request signal is input after the charging cable 14 is connected. If it is determined in step 101 that there is no charge request, this routine is terminated without executing the processing related to the charge control in step 102 and subsequent steps.

一方、上記ステップ101で、充電要求が有ると判定された場合には、ステップ102に進み、第1の定電力充電制御を実行する。この第1の定電力充電制御では、高電圧バッテリ12の充電電力(充電器16の出力電力)を第1の所定電力W1 (一定値)に維持して高電圧バッテリ12を充電するように充電器16を制御する。ここで、第1の所定電力W1 は、例えば、充電器16の出力電力の最大値又はそれよりも少し低い値(例えば1〜3kW)に設定されている。   On the other hand, if it is determined in step 101 that there is a charge request, the process proceeds to step 102, and the first constant power charging control is executed. In the first constant power charging control, charging is performed so as to charge the high voltage battery 12 while maintaining the charging power of the high voltage battery 12 (output power of the charger 16) at the first predetermined power W1 (a constant value). The device 16 is controlled. Here, the first predetermined power W1 is set to, for example, the maximum value of the output power of the charger 16 or a value slightly lower (for example, 1 to 3 kW).

この後、ステップ103に進み、バッテリ電圧センサ17で検出した高電圧バッテリ12の電圧(閉回路電圧CCV)が第1の目標電圧V1 以上になったか否かを判定する。ここで、第1の目標電圧V1 は、例えば、開回路電圧OCVの目標値に設定されている。
このステップ103で、高電圧バッテリ12の電圧が第1の目標電圧V1 よりも低いと判定された場合には、上記ステップ102に戻り、第1の定電力充電制御を継続する。
Thereafter, the process proceeds to step 103, where it is determined whether or not the voltage of the high voltage battery 12 (closed circuit voltage CCV) detected by the battery voltage sensor 17 is equal to or higher than the first target voltage V1. Here, the first target voltage V1 is set to a target value of the open circuit voltage OCV, for example.
If it is determined in step 103 that the voltage of the high-voltage battery 12 is lower than the first target voltage V1, the process returns to step 102 and the first constant power charging control is continued.

その後、上記ステップ103で、高電圧バッテリ12の電圧が第1の目標電圧V1 以上になったと判定された時点で、ステップ104に進み、定電圧充電制御を実行する。この定電圧充電制御では、高電圧バッテリ12の充電電圧(充電器16の出力電圧)を所定電圧Va (一定値)に維持して高電圧バッテリ12を充電するように充電器16を制御する。ここで、所定電圧Va は、例えば、第1の定電力充電制御の終了時(高電圧バッテリ12の電圧が第1の目標電圧V1 に達した時点)の高電圧バッテリ12の充電電圧又はその付近の電圧に設定されている。   Thereafter, when it is determined in step 103 that the voltage of the high-voltage battery 12 has become equal to or higher than the first target voltage V1, the process proceeds to step 104 and constant voltage charging control is executed. In this constant voltage charging control, the charger 16 is controlled so as to charge the high voltage battery 12 while maintaining the charging voltage of the high voltage battery 12 (the output voltage of the charger 16) at a predetermined voltage Va (a constant value). Here, the predetermined voltage Va is, for example, the charge voltage of the high voltage battery 12 at the end of the first constant power charge control (when the voltage of the high voltage battery 12 reaches the first target voltage V1) or the vicinity thereof. The voltage is set to

この後、ステップ105に進み、充電電圧センサ18で検出した充電電圧と充電電流センサ19で検出した充電電流から高電圧バッテリ12の充電電力(充電器16の出力電力)を求め、この高電圧バッテリ12の充電電力が判定閾値Wa 以下になったか否かを判定する。ここで、判定閾値Wa は、例えば、第2の所定電力W2 又はその付近の電力に設定されている。
このステップ105で、高電圧バッテリ12の充電電力が判定閾値Wa よりも高いと判定された場合には、上記ステップ104に戻り、定電圧充電制御を継続する。
Thereafter, the process proceeds to step 105, where the charging power of the high voltage battery 12 (the output power of the charger 16) is obtained from the charging voltage detected by the charging voltage sensor 18 and the charging current detected by the charging current sensor 19, and the high voltage battery It is determined whether or not the 12 charging power is equal to or less than the determination threshold value Wa. Here, the determination threshold value Wa is set to, for example, the second predetermined power W2 or power in the vicinity thereof.
If it is determined in step 105 that the charging power of the high voltage battery 12 is higher than the determination threshold value Wa, the process returns to step 104 and the constant voltage charging control is continued.

その後、上記ステップ105で、高電圧バッテリ12の充電電力が判定閾値Wa 以下になったと判定された時点で、ステップ106に進み、第2の定電力充電制御を実行する。この第2の定電力充電制御では、高電圧バッテリ12の充電電力(充電器16の出力電力)を第2の所定電力W2 (一定値)に維持して高電圧バッテリ12を充電するように充電器16を制御する。ここで、第2の所定電力W2 は、第1の所定電力W1 よりも低い値(例えば500W)に設定されている。   Thereafter, when it is determined in step 105 that the charging power of the high voltage battery 12 has become equal to or less than the determination threshold value Wa, the process proceeds to step 106, and second constant power charging control is executed. In the second constant power charging control, charging is performed so that the high voltage battery 12 is charged while maintaining the charging power of the high voltage battery 12 (output power of the charger 16) at the second predetermined power W2 (a constant value). The device 16 is controlled. Here, the second predetermined power W2 is set to a value (for example, 500 W) lower than the first predetermined power W1.

この後、ステップ107に進み、バッテリ電圧センサ17で検出した高電圧バッテリ12の電圧(閉回路電圧CCV)が第2の目標電圧V2 以上になったか否かを判定する。ここで、第2の目標電圧V2 は、例えば、閉回路電圧CCVの目標値に設定されている。
このステップ107で、高電圧バッテリ12の電圧が第2の目標電圧V2 よりも低いと判定された場合には、上記ステップ106に戻り、第2の定電力充電制御を継続する。
Thereafter, the routine proceeds to step 107, where it is determined whether or not the voltage of the high voltage battery 12 (closed circuit voltage CCV) detected by the battery voltage sensor 17 has become equal to or higher than the second target voltage V2. Here, the second target voltage V2 is set to a target value of the closed circuit voltage CCV, for example.
If it is determined in step 107 that the voltage of the high-voltage battery 12 is lower than the second target voltage V2, the process returns to step 106 and the second constant power charging control is continued.

その後、上記ステップ107で、高電圧バッテリ12の電圧が第2の目標電圧V2 以上になったと判定された時点で、高電圧バッテリ12の充電が完了した(満充電付近まで充電した)と判定して、ステップ108に進み、高電圧バッテリ12の充電を終了する。   Thereafter, when it is determined in step 107 that the voltage of the high voltage battery 12 has become equal to or higher than the second target voltage V2, it is determined that the charging of the high voltage battery 12 has been completed (charged to near full charge). Then, the process proceeds to step 108 and the charging of the high voltage battery 12 is finished.

この場合、ステップ102,103の処理が特許請求の範囲でいう第1の定電力充電制御手段としての役割を果たす。また、ステップ104,105の処理が特許請求の範囲でいう定電圧充電制御手段としての役割を果たし、ステップ106,107の処理が特許請求の範囲でいう第2の定電力充電制御手段としての役割を果たす。   In this case, the processing of steps 102 and 103 serves as the first constant power charge control means in the claims. Further, the processing in steps 104 and 105 serves as a constant voltage charge control means in the claims, and the processing in steps 106 and 107 serves as second constant power charge control means in the claims. Fulfill.

以上説明した本実施例では、高電圧バッテリ12を充電する場合には、まず、高電圧バッテリ12の充電電力を第1の所定電力W1 に維持して高電圧バッテリ12を充電する第1の定電力充電制御を、高電圧バッテリ12の電圧が第1の目標電圧V1 に上昇するまで実行する。この後、高電圧バッテリ12の充電電圧を所定電圧Va に維持して高電圧バッテリ12を充電する定電圧充電制御を、高電圧バッテリ12の充電電力が判定閾値Wa に低下するまで実行した後、高電圧バッテリ12の充電電力を第2の所定電力W2 に維持して高電圧バッテリ12を充電する第2の定電力充電制御を、高電圧バッテリ12の電圧が第2の目標電圧V2 に上昇するまで実行する。   In the present embodiment described above, when charging the high voltage battery 12, first, the first constant charge for charging the high voltage battery 12 while maintaining the charging power of the high voltage battery 12 at the first predetermined power W1. The power charging control is executed until the voltage of the high voltage battery 12 rises to the first target voltage V1. Then, after executing the constant voltage charging control for charging the high voltage battery 12 while maintaining the charging voltage of the high voltage battery 12 at the predetermined voltage Va, until the charging power of the high voltage battery 12 decreases to the determination threshold value Wa, In the second constant power charging control for charging the high voltage battery 12 while maintaining the charging power of the high voltage battery 12 at the second predetermined power W2, the voltage of the high voltage battery 12 rises to the second target voltage V2. Run until.

この場合、第1の定電力充電制御と第2の定電力充電制御との間に実行する定電圧充電制御では、充電電力を第1の所定電力W1 付近から徐々に減少させて第2の所定電力W2 付近まで低下させることができるため、第2の所定電力W2 で充電する第2の定電力充電制御よりも充電電力量を早く増加させることができる。   In this case, in the constant voltage charging control executed between the first constant power charging control and the second constant power charging control, the charging power is gradually decreased from the vicinity of the first predetermined power W1 to obtain the second predetermined power. Since the electric power can be reduced to near the electric power W2, the amount of charging electric power can be increased earlier than the second constant electric power charging control in which charging is performed with the second predetermined electric power W2.

このため、図5(b)に示す本実施例のように、第1の定電力充電制御の実行後に定電圧充電制御を実行してから第2の定電力充電制御を実行するシステムでは、低温時に第1の定電力充電制御による充電電力量が少なくなった場合でも、定電圧充電制御によって充電電力量を比較的早く増加させることが可能となり、図5(a)に示す比較例のように、第1の定電力充電制御から第2の定電力充電制御に切り換えるシステム(定電圧充電制御を実行しないシステム)に比べて、低温時の高電圧バッテリ12の充電時間を短縮することができる。また、定電圧充電制御では、充電電流が成り行きで変化するため、複雑な電流制御(例えばフィードバック制御)を行う必要がないという利点もある。   For this reason, in the system in which the second constant power charging control is performed after the constant voltage charging control is performed after the first constant power charging control is performed as in the present embodiment illustrated in FIG. Even when the amount of charging power by the first constant power charging control sometimes decreases, the charging power amount can be increased relatively quickly by the constant voltage charging control, as in the comparative example shown in FIG. Compared with a system that switches from the first constant power charging control to the second constant power charging control (a system that does not execute constant voltage charging control), the charging time of the high voltage battery 12 at low temperatures can be shortened. In addition, the constant voltage charge control has an advantage that complicated current control (for example, feedback control) does not need to be performed because the charging current changes with the course.

尚、上記実施例では、高電圧バッテリ12側に設けた電圧センサ17で高電圧バッテリ12の電圧を検出するようにしたが、これに限定されず、充電器16側に設けた電圧センサ18で高電圧バッテリ12の電圧を検出するようにしても良い。   In the above embodiment, the voltage of the high voltage battery 12 is detected by the voltage sensor 17 provided on the high voltage battery 12 side. However, the present invention is not limited to this, and the voltage sensor 18 provided on the charger 16 side is used. The voltage of the high voltage battery 12 may be detected.

また、上記実施例では、充電器16側に設けた電圧センサ18で検出した充電電圧と充電器16側に設けた電流センサ19で検出した充電電流から高電圧バッテリ12の充電電力を求めるようにしたが、これに限定されず、高電圧バッテリ12側に設けた電圧センサ17で検出した電圧と高電圧バッテリ12側に設けた電流センサで検出した電流から高電圧バッテリ12の充電電力を求めるようにしても良い。   In the above embodiment, the charging power of the high voltage battery 12 is obtained from the charging voltage detected by the voltage sensor 18 provided on the charger 16 side and the charging current detected by the current sensor 19 provided on the charger 16 side. However, the present invention is not limited to this, and the charging power of the high voltage battery 12 is obtained from the voltage detected by the voltage sensor 17 provided on the high voltage battery 12 side and the current detected by the current sensor provided on the high voltage battery 12 side. Anyway.

また、上記実施例では、車両の動力源(モータ)に電力を供給するバッテリの充電制御システムに本発明を適用したが、これに限定されず、本発明は、種々のバッテリの充電制御システムに適用することができる。   In the above embodiment, the present invention is applied to the battery charge control system that supplies power to the power source (motor) of the vehicle. However, the present invention is not limited to this, and the present invention is applicable to various battery charge control systems. Can be applied.

11…モータ、12…高電圧バッテリ(バッテリ)、13…商用電源、16…充電器、17…バッテリ電圧センサ、18…充電電圧センサ、19…充電電流センサ、23…ECU(第1の定電力充電制御手段,定電圧充電制御手段,第2の定電力充電制御手段)   DESCRIPTION OF SYMBOLS 11 ... Motor, 12 ... High voltage battery (battery), 13 ... Commercial power supply, 16 ... Charger, 17 ... Battery voltage sensor, 18 ... Charge voltage sensor, 19 ... Charge current sensor, 23 ... ECU (1st constant power) Charge control means, constant voltage charge control means, second constant power charge control means)

Claims (2)

バッテリ(12)の充電を制御する充電制御装置において、
前記バッテリ(12)の充電電力を第1の所定電力に維持して前記バッテリ(12)を充電する第1の定電力充電制御を前記バッテリ(12)の電圧が第1の目標電圧に上昇するまで実行する第1の定電力充電制御手段(23)と、
前記第1の定電力充電制御の実行後に、前記バッテリ(12)の充電電圧を所定電圧に維持して前記バッテリ(12)を充電する定電圧充電制御を前記バッテリ(12)の充電電力が所定の判定閾値に低下するまで実行する定電圧充電制御手段(23)と、
前記定電圧充電制御の実行後に、前記バッテリ(12)の充電電力を前記第1の所定電力よりも低い第2の所定電力に維持して前記バッテリ(12)を充電する第2の定電力充電制御を前記バッテリ(12)の電圧が前記第1の目標電圧よりも高い第2の目標電圧に上昇するまで実行する第2の定電力充電制御手段(23)と
を備えていることを特徴とする充電制御装置。
In the charging control device for controlling the charging of the battery (12),
In the first constant power charging control for charging the battery (12) while maintaining the charging power of the battery (12) at a first predetermined power, the voltage of the battery (12) rises to the first target voltage. First constant power charge control means (23) to execute until
After the execution of the first constant power charging control, the charging power of the battery (12) is set to a constant voltage charging control for charging the battery (12) while maintaining the charging voltage of the battery (12) at a predetermined voltage. Constant voltage charge control means (23) to be executed until it falls to the determination threshold value,
Second constant power charging for charging the battery (12) while maintaining the charging power of the battery (12) at a second predetermined power lower than the first predetermined power after the execution of the constant voltage charging control. And second constant power charge control means (23) for executing control until the voltage of the battery (12) rises to a second target voltage higher than the first target voltage. Charging control device.
前記バッテリ(12)は、車両の動力源に電力を供給するバッテリであることを特徴とする請求項1に記載の充電制御装置。   The charging control device according to claim 1, wherein the battery is a battery that supplies electric power to a power source of a vehicle.
JP2012135556A 2012-06-15 2012-06-15 Charge controller Pending JP2014003737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135556A JP2014003737A (en) 2012-06-15 2012-06-15 Charge controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135556A JP2014003737A (en) 2012-06-15 2012-06-15 Charge controller

Publications (1)

Publication Number Publication Date
JP2014003737A true JP2014003737A (en) 2014-01-09

Family

ID=50036382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135556A Pending JP2014003737A (en) 2012-06-15 2012-06-15 Charge controller

Country Status (1)

Country Link
JP (1) JP2014003737A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151330A1 (en) * 2015-09-30 2017-04-05 Chervon (HK) Limited Charger and charging method
CN106785147A (en) * 2017-02-16 2017-05-31 中天储能科技有限公司 A kind of lithium ion battery rapid forming method
JP2019022939A (en) * 2018-11-12 2019-02-14 株式会社マキタ Rechargeable reciprocating saw
US20190097277A1 (en) * 2016-04-27 2019-03-28 Autonetworks Technologies, Ltd. Power source device
JP2021035135A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 Electric power system, and vehicle
CN112737009A (en) * 2020-12-14 2021-04-30 深圳市苏仁智能科技有限公司 Intelligent charging method and mobile terminal for realizing intelligent charging
CN113707958A (en) * 2020-05-21 2021-11-26 台达电子企业管理(上海)有限公司 Method for charging battery in mobile high-voltage generator and mobile high-voltage generator
US11506721B2 (en) 2018-10-25 2022-11-22 Lg Energy Solution, Ltd. Method for determining section in which generation of internal gas in second battery accelerates
JP7480719B2 (en) 2021-01-28 2024-05-10 トヨタ自動車株式会社 Server, power management system, and energy management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151261A (en) * 2005-11-25 2007-06-14 Fuji Electric Systems Co Ltd Battery charging and discharging system
JP2009284685A (en) * 2008-05-23 2009-12-03 Lecip Corp Charging device
WO2011061902A1 (en) * 2009-11-20 2011-05-26 パナソニック株式会社 Charge control circuit, cell pack, and charging system
JP2011155824A (en) * 2009-12-28 2011-08-11 Kansai Electric Power Co Inc:The Charging method and charging system of storage battery
JP2012050294A (en) * 2010-08-30 2012-03-08 Fuji Electric Co Ltd Control system for power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151261A (en) * 2005-11-25 2007-06-14 Fuji Electric Systems Co Ltd Battery charging and discharging system
JP2009284685A (en) * 2008-05-23 2009-12-03 Lecip Corp Charging device
WO2011061902A1 (en) * 2009-11-20 2011-05-26 パナソニック株式会社 Charge control circuit, cell pack, and charging system
JP2011155824A (en) * 2009-12-28 2011-08-11 Kansai Electric Power Co Inc:The Charging method and charging system of storage battery
JP2012050294A (en) * 2010-08-30 2012-03-08 Fuji Electric Co Ltd Control system for power generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151330A1 (en) * 2015-09-30 2017-04-05 Chervon (HK) Limited Charger and charging method
US20190097277A1 (en) * 2016-04-27 2019-03-28 Autonetworks Technologies, Ltd. Power source device
US10749217B2 (en) * 2016-04-27 2020-08-18 Autonetworks Technologies, Ltd. Power source device
CN106785147A (en) * 2017-02-16 2017-05-31 中天储能科技有限公司 A kind of lithium ion battery rapid forming method
US11506721B2 (en) 2018-10-25 2022-11-22 Lg Energy Solution, Ltd. Method for determining section in which generation of internal gas in second battery accelerates
JP2019022939A (en) * 2018-11-12 2019-02-14 株式会社マキタ Rechargeable reciprocating saw
JP2021035135A (en) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 Electric power system, and vehicle
CN113707958A (en) * 2020-05-21 2021-11-26 台达电子企业管理(上海)有限公司 Method for charging battery in mobile high-voltage generator and mobile high-voltage generator
CN112737009A (en) * 2020-12-14 2021-04-30 深圳市苏仁智能科技有限公司 Intelligent charging method and mobile terminal for realizing intelligent charging
JP7480719B2 (en) 2021-01-28 2024-05-10 トヨタ自動車株式会社 Server, power management system, and energy management method

Similar Documents

Publication Publication Date Title
JP2014003737A (en) Charge controller
KR101896581B1 (en) Temperature-raising device and temperature-raising method for in-car battery
US9987932B2 (en) Battery system
US10919397B2 (en) Vehicle, method of controlling vehicle, and charging system
US20160049821A1 (en) Electrical storage system, and full charge capacity estimation method for electrical storage device
JP5608881B2 (en) AC current control for in-vehicle battery charger
EP3670241B1 (en) Power source system for vehicle
JP2013062980A (en) Electronic control device and vehicle control system
JP2011152840A (en) Vehicle battery temperature adjusting device and temperature adjusting method of vehicle battery
CN103963725A (en) Power source system for vehicle, vehicle, and vehicle control method
WO2014167914A1 (en) Battery charging system and method
US20140015485A1 (en) Charging device for vehicle, vehicle equipped with charging device, and offset correction method for current sensor
JP2019004547A (en) Charging control device
JP5257318B2 (en) Electric car
US8896267B2 (en) Charging control device, vehicle including the same and charging control method
JP6414038B2 (en) Battery system
JPWO2019026149A1 (en) Power supply system and control method thereof
JP2013158202A (en) Device for detecting charge connection
JP5908360B2 (en) In-vehicle charging controller
JP6530334B2 (en) Vehicle charge control device
JP2012046121A (en) Generation control device of hybrid vehicle
KR102466647B1 (en) Method to assist with the starting of a motor vehicle combustion engine
JP6402687B2 (en) Vehicle battery system
JP2014207723A (en) System and method for charging battery
US9520730B2 (en) Method and system for charging high voltage battery packs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630