JP2013233553A - Wiring material connection device - Google Patents

Wiring material connection device Download PDF

Info

Publication number
JP2013233553A
JP2013233553A JP2012105928A JP2012105928A JP2013233553A JP 2013233553 A JP2013233553 A JP 2013233553A JP 2012105928 A JP2012105928 A JP 2012105928A JP 2012105928 A JP2012105928 A JP 2012105928A JP 2013233553 A JP2013233553 A JP 2013233553A
Authority
JP
Japan
Prior art keywords
wiring material
wiring
solar cells
bus bar
bar electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012105928A
Other languages
Japanese (ja)
Inventor
Nobutaka Yasunaga
永 信 孝 安
Chikayasu Nakaoka
岡 慎 育 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NPC Inc
Original Assignee
NPC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NPC Inc filed Critical NPC Inc
Priority to JP2012105928A priority Critical patent/JP2013233553A/en
Publication of JP2013233553A publication Critical patent/JP2013233553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring material connection device in which a solar cell string is prevented from damage when a wiring material is connected with a bus bar electrode of a solar battery cell to make the solar cell string.SOLUTION: A wiring material connection device 1 includes: a conveyance mechanism 5 that supports to convey the vicinity of two opposing sides of two or more solar battery cells 2 arranged in a predetermined direction; a bus bar electrode 3 of one light receiving surface side of two adjoining solar battery cells 2 among the two or more solar battery cells 2; a wiring material connection part 6 that connects a wiring material with a bus bar electrode 3 of the other non-light receiving surface side; and a support member 7 that is disposed under the wiring material connection part 6, can move in a vertical direction, ascends and comes in contact with two solar battery cells 2 to which the wiring material is connected when the wiring material connection part 6 connects the bus bar electrode 3 and the wiring material, and descends to a position out of contact with the two or more solar battery cells 2 while the conveyance mechanism 5 conveys the two or more solar battery cells 2.

Description

本発明は、太陽電池セルのバスバー電極に配線材を接続する配線材接続装置に関する。   The present invention relates to a wiring material connecting apparatus for connecting a wiring material to a bus bar electrode of a solar battery cell.

太陽電池セル1枚当たりの出力は数W程度しかないため、複数の太陽電池セルを直列接続した太陽電池ストリングをカバーガラスで封止した太陽電池モジュールを太陽電池として用いるのが一般的である。太陽電池ストリングは、太陽電池セルの受光面に形成されるバスバー電極と、隣接する太陽電池セルの非受光面に形成されるバスバー電極とを配線材を用いて電気的に接続する処理を繰り返し行って、複数の太陽電池セルの直列接続を実現している。   Since the output per solar cell is only about several watts, a solar cell module in which a solar cell string in which a plurality of solar cells are connected in series is sealed with a cover glass is generally used as a solar cell. The solar battery string repeatedly performs a process of electrically connecting the bus bar electrode formed on the light receiving surface of the solar battery cell and the bus bar electrode formed on the non-light receiving surface of the adjacent solar battery cell using a wiring material. Thus, a plurality of solar cells are connected in series.

バスバー電極と配線材との電気的接続は通常、太陽電池セルの受光面および非受光面のバスバー電極部分にフラックスを塗布し、コンベア上にバスバー電極に沿うようにハンダコーティングされた配線材を配置してから、配線材を加熱してバスバー電極にハンダ付けを行う。加熱手段としては、ホットエア、電磁誘導加熱、赤外線ランプ等を使用できる。コンベアは、スチール製や表面にテフロン加工が施されたベルトコンベアが使用されている。   The electrical connection between the bus bar electrode and the wiring material is usually performed by applying flux to the light receiving surface and non-light receiving surface of the solar cell on the bus bar electrode, and placing the solder coated wiring material on the conveyor along the bus bar electrode. After that, the wiring material is heated and soldered to the bus bar electrode. As the heating means, hot air, electromagnetic induction heating, an infrared lamp or the like can be used. The conveyor is made of steel or a belt conveyor with a Teflon processed surface.

特許4240587号公報Japanese Patent No. 4240587

しかしながら、バスバー電極と配線材とのハンダ付けはコンベア上で行われるため、ハンダ付け後、一定の時間が経過すると、太陽電池ストリングの非受光面のバスバー電極周辺に塗布したフラックスにより太陽電池ストリングがコンベアに貼り付いてしまうという問題がある。また、コンベアに貼り付いた太陽電池ストリングを剥がす際に、太陽電池ストリングが破損するおそれもある。   However, since soldering between the bus bar electrode and the wiring material is performed on a conveyor, when a certain time has elapsed after soldering, the solar cell string is formed by the flux applied around the bus bar electrode on the non-light-receiving surface of the solar cell string. There is a problem of sticking to the conveyor. Further, when the solar cell string attached to the conveyor is peeled off, the solar cell string may be damaged.

本発明は、上述した課題を解決するために、太陽電池セルのバスバー電極に配線材を接続して太陽電池ストリングを作製する際に、太陽電池ストリングが破損しないようにした配線材接続装置を提供するものである。   In order to solve the above-described problems, the present invention provides a wiring material connecting device that prevents a solar cell string from being damaged when a wiring material is connected to a bus bar electrode of a solar cell to produce a solar cell string. To do.

上記の課題を解決するために、本発明の一態様では、所定方向に配列された複数の太陽電池セルの対向する2辺の近傍を支持して搬送する搬送機構と、
前記複数の太陽電池セルのうち、隣接する2つの太陽電池セルの一方の受光面側のバスバー電極と、他方の非受光面側のバスバー電極とに配線材を接続する配線材接続部と、
前記配線材接続部の下方に配置され、上下方向に移動可能で、前記配線材接続部が前記バスバー電極と前記配線材との接続を行う際に上昇して前記配線材が接続される前記2つの太陽電池セルに接触し、前記搬送機構が前記複数の太陽電池セルを搬送している最中は前記複数の太陽電池セルに接触しない位置まで下降する支持部材と、を備えることを特徴とする配線材接続装置が提供される。
In order to solve the above problems, in one aspect of the present invention, a transport mechanism that supports and transports the vicinity of two opposing sides of a plurality of solar cells arranged in a predetermined direction;
Of the plurality of solar cells, a wiring material connecting portion for connecting a wiring material to the bus bar electrode on one light receiving surface side of the two adjacent solar cells and the bus bar electrode on the other non-light receiving surface side;
The second wiring member is disposed below the wiring member connecting portion and is movable in the vertical direction, and is raised when the wiring member connecting portion connects the bus bar electrode and the wiring member. A support member that contacts one solar cell and descends to a position that does not contact the plurality of solar cells while the transport mechanism is transporting the plurality of solar cells. A wiring material connecting device is provided.

本発明によれば、太陽電池セルのバスバー電極に配線材を接続して太陽電池ストリングを作製する際に、太陽電池ストリングの破損を防止できる。   ADVANTAGE OF THE INVENTION According to this invention, when connecting a wiring material to the bus-bar electrode of a photovoltaic cell and producing a photovoltaic cell string, damage to a photovoltaic cell string can be prevented.

本発明の一実施形態に係る配線材接続装置1の概略構成を示す図であり、(a)は上面図、(b)は図1(a)のA−A線の断面図。It is a figure which shows schematic structure of the wiring material connection apparatus 1 which concerns on one Embodiment of this invention, (a) is a top view, (b) is sectional drawing of the AA line of Fig.1 (a). 太陽電池セルの平面図。The top view of a photovoltaic cell. (a)はバスバー電極3に配線材4を接続した太陽電池ストリングの断面図、(b)は上面図。(A) is sectional drawing of the solar cell string which connected the wiring material 4 to the bus-bar electrode 3, (b) is a top view. 支持部材7の長手方向の幅を太陽電池セル2の4個分の長さにした例を示す図。The figure which shows the example which made the width | variety of the longitudinal direction of the supporting member 7 into the length for four pieces of the photovoltaic cells. 配線材接続工程の一例を示すフローチャート。The flowchart which shows an example of a wiring material connection process. 吸着部材の上面を傾斜面にした配線材接続装置1の断面図。Sectional drawing of the wiring material connection apparatus 1 which made the upper surface of the adsorption | suction member the inclined surface.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の一実施形態に係る配線材接続装置1の概略構成を示す図であり、図1(a)は上面図、図1(b)は図1(a)のA−A線の断面図である。   FIG. 1 is a diagram showing a schematic configuration of a wiring material connecting apparatus 1 according to an embodiment of the present invention, in which FIG. 1 (a) is a top view and FIG. 1 (b) is an AA line in FIG. 1 (a). FIG.

図1(a)に示すように、矢印Xで示す搬送方向に沿って複数の太陽電池セル2が配列されている。各太陽電池セル2の受光面側と反対側の非受光面側にはそれぞれ、図2に示すように、例えば3本のバスバー電極3が形成されている。図1および図2では図示していないが、太陽電池セル2の受光面と非受光面には、これらバスバー電極3に直交する方向に、多数のフィンガー電極が形成されており、これらフィンガー電極に流れる電流がバスバー電極3に集められる。バスバー電極3の数は必ずしも3本でなくてもよい。   As shown in FIG. 1A, a plurality of solar cells 2 are arranged along the conveyance direction indicated by the arrow X. For example, three bus bar electrodes 3 are formed on the non-light-receiving surface side opposite to the light-receiving surface side of each solar battery cell 2 as shown in FIG. Although not shown in FIGS. 1 and 2, a large number of finger electrodes are formed on the light receiving surface and the non-light receiving surface of the solar battery cell 2 in a direction perpendicular to the bus bar electrodes 3. The flowing current is collected on the bus bar electrode 3. The number of bus bar electrodes 3 is not necessarily three.

本実施形態に係る配線材接続装置1は、バスバー電極3に配線材4を接続する処理を行う。バスバー電極3が3本あれば、それぞれに別々の配線材4を取り付けることになる。搬送方向に沿って配列されたn個(nは2以上の整数)以上の太陽電池セルのうち、隣接する2個の太陽電池セルのバスバー電極3に配線材4をそれぞれ接続することにより、n個の太陽電池セルが直列接続された太陽電池ストリング10が作製される。   The wiring material connection device 1 according to the present embodiment performs a process of connecting the wiring material 4 to the bus bar electrode 3. If there are three bus bar electrodes 3, separate wiring members 4 are attached to each. By connecting the wiring members 4 to the bus bar electrodes 3 of two adjacent solar cells among n (n is an integer of 2 or more) solar cells arranged along the transport direction, n A solar cell string 10 in which a plurality of solar cells are connected in series is produced.

図1(b)に示すように、本実施形態に係る配線材接続装置1は、搬送機構5と、配線材接続部6と、支持部材7と、支持部材上下機構8とを備えている。   As shown in FIG. 1B, the wiring material connection device 1 according to this embodiment includes a transport mechanism 5, a wiring material connection unit 6, a support member 7, and a support member vertical mechanism 8.

搬送機構5は、所定方向(図1(a)のX方向)に配列された複数の太陽電池セル2の対向する2辺の近傍を支持して搬送する。搬送機構5は、複数の太陽電池セル2の対向する2辺の近傍を支持する2本のベルト11と、これらベルト11を吸着させる吸着部材12と、これらベルト11を移動させる制御を行う不図示の動力機構とを有する。   The transport mechanism 5 supports and transports the vicinity of two opposing sides of the plurality of solar cells 2 arranged in a predetermined direction (X direction in FIG. 1A). The transport mechanism 5 includes two belts 11 that support the vicinity of two opposing sides of the plurality of solar cells 2, an adsorbing member 12 that adsorbs these belts 11, and controls that move these belts 11 (not shown). Power mechanism.

各ベルト11は、搬送方向に沿って環状に配置され、両ベルト11は同じ速度で同方向に移動する。図1(b)の断面図では、上下左右の2箇所ずつにベルト11の断面形状が図示されている。各ベルト11の幅は、例えば15mmである。   Each belt 11 is annularly arranged along the conveying direction, and both belts 11 move in the same direction at the same speed. In the cross-sectional view of FIG. 1 (b), the cross-sectional shape of the belt 11 is shown in two places, top, bottom, left and right. The width of each belt 11 is 15 mm, for example.

3本以上のベルト11で太陽電池セル2を支持する従来例が知られているが、本実施形態は必要最小限の2本のベルト11で太陽電池セル2の対向する2辺の近傍を支持する。対向する2辺の近傍で太陽電池セル2を支持することで、太陽電池セル2が図1(a)のY方向に位置ずれをおこしにくくなる。   Conventional examples of supporting solar cells 2 with three or more belts 11 are known, but this embodiment supports the vicinity of two opposite sides of solar cells 2 with a minimum of two belts 11. To do. By supporting the solar battery cell 2 in the vicinity of the two opposing sides, the solar battery cell 2 is less likely to be displaced in the Y direction in FIG.

また、これら2本のベルト11の間に、別個のベルト11を配置したとすると、後述するように、上下に移動する支持部材7と接触するおそれがあることから、本実施形態では、2本のベルト11の間に別個のベルト11を設けるのは好ましくない。   Further, if a separate belt 11 is disposed between the two belts 11, there is a risk of contact with the support member 7 that moves up and down, as will be described later. It is not preferable to provide a separate belt 11 between the other belts 11.

また、太陽電池セル2の対向する2辺の近傍よりも内側にベルト11を設けると、後述するように、配線材4をバスバー電極3にハンダ付けする際に、バスバー電極3の表面のフラックスがベルト11に付着するおそれがあり、ベルト11を洗浄または交換するなどのメンテナンスコストがかかってしまう。   Further, when the belt 11 is provided on the inner side of the vicinity of the two opposing sides of the solar battery cell 2, the flux on the surface of the bus bar electrode 3 is reduced when the wiring member 4 is soldered to the bus bar electrode 3 as described later. There is a possibility that the belt 11 will adhere to the belt 11, and maintenance costs such as cleaning or replacement of the belt 11 will be required.

このようなことから、本実施形態では、太陽電池の対向する2辺の近傍を2本のベルト11で支持するようにしている。   For this reason, in this embodiment, the two belts 11 support the vicinity of two opposing sides of the solar cell.

太陽電池セル2の対向する2辺間の長さは、必ずしも同じではなく、代表的な長さとして5インチと6インチがある。本実施形態では、対向する2辺間の長さの異なる複数の太陽電池セル2のいずれにも対応できるように、ベルト11間の距離を設定する。例えば、5インチの太陽電池セル2を2本のベルト11で支持する際に太陽電池セル2の2辺の近傍にベルト11が接触するようにベルト11間の距離を設定した場合は、6インチの太陽電池セル2を2本のベルト11で支持する際には、2辺の近傍よりも内側でベルト11が太陽電池セル2を支持することになるが、動作上特に問題は生じない。このように、本実施形態では、ベルト11間の距離を固定にすることを前提とするが、太陽電池セル2のサイズに応じてベルト11間の距離を調整できるようにしてもよい。   The length between two opposing sides of the solar battery cell 2 is not necessarily the same, and there are typical lengths of 5 inches and 6 inches. In this embodiment, the distance between the belts 11 is set so that it can correspond to any of the plurality of solar cells 2 having different lengths between the two opposing sides. For example, when the distance between the belts 11 is set so that the belt 11 comes into contact with the vicinity of two sides of the solar battery cell 2 when the 5-inch solar battery cell 2 is supported by the two belts 11, 6 inches. When the solar battery cell 2 is supported by the two belts 11, the belt 11 supports the solar battery cell 2 on the inner side of the vicinity of the two sides, but there is no particular problem in operation. As described above, in this embodiment, it is assumed that the distance between the belts 11 is fixed, but the distance between the belts 11 may be adjusted according to the size of the solar battery cell 2.

ベルト11は、吸着部材12により、吸着部材12の上面に吸着されながら移動する。吸着部材12の上面には、一定間隔で複数の吸着孔が設けられている。吸着部材12は、ベルト11の移動時にベルト11を吸着部材12の上面に押しつける吸着力を発生するため、ベルト11の位置ずれが抑制される。なお、吸着部材12は、不図示の真空ポンプ等で空気を吸い込むことにより吸着力を発生する。   The belt 11 moves while being attracted to the upper surface of the adsorption member 12 by the adsorption member 12. A plurality of suction holes are provided on the upper surface of the suction member 12 at regular intervals. Since the adsorption member 12 generates an adsorption force that presses the belt 11 against the upper surface of the adsorption member 12 when the belt 11 moves, the positional deviation of the belt 11 is suppressed. The adsorbing member 12 generates an adsorbing force by sucking air with a vacuum pump (not shown) or the like.

配線材接続部6は、複数の太陽電池セル2のうち、隣接する2つの太陽電池セル2の一方の受光面側のバスバー電極3と他方の非受光面側のバスバー電極3とに配線材4を接続する。バスバー電極3と配線材4との接続にはハンダを用いる。ハンダは配線材4の表面に予めコーティングされている。また、バスバー電極3の表面には、ハンダが付きやすいようにフラックスが塗布されている。   The wiring member connecting portion 6 is connected to the bus bar electrode 3 on one light receiving surface side and the bus bar electrode 3 on the other non-light receiving surface side of two adjacent solar cells 2 among the plurality of solar cells 2. Connect. Solder is used to connect the bus bar electrode 3 and the wiring member 4. The solder is coated on the surface of the wiring material 4 in advance. Further, a flux is applied to the surface of the bus bar electrode 3 so as to be easily soldered.

バスバー電極3と配線材4をハンダ付けするには、配線材4の表面のハンダを溶かさなければならない。このため、配線材接続部6は、不図示の加熱手段を有する。この加熱手段は搬送機構5の上方に設けられており、ハンダ付けを行う際に配線材4の近くに加熱手段を配置して、配線材4の表面のハンダを溶かして、バスバー電極3と配線材4とをハンダ付けする。加熱手段としては、ホットエア、電磁誘導加熱、赤外線ランプ等の公知の加熱手段を使用可能である。   In order to solder the bus bar electrode 3 and the wiring material 4, the solder on the surface of the wiring material 4 must be melted. For this reason, the wiring material connection part 6 has a heating means (not shown). This heating means is provided above the transport mechanism 5. When performing soldering, the heating means is disposed near the wiring material 4 to melt the solder on the surface of the wiring material 4, so that the bus bar electrode 3 and the wiring are connected. The material 4 is soldered. As the heating means, known heating means such as hot air, electromagnetic induction heating, and an infrared lamp can be used.

図3(a)はバスバー電極3に配線材4を接続した太陽電池ストリング10の断面図、図3(b)は上面図である。図示のように、配線材4は折り曲げられて、一端部は一つの太陽電池セル2の受光面側のバスバー電極3に接続され、他端部は隣接する太陽電池セル2の非受光面側のバスバー電極3に接続される。配線材4の折り曲げ処理は、配線材4を支持部材7に載置する前に行われる。   3A is a cross-sectional view of the solar cell string 10 in which the wiring member 4 is connected to the bus bar electrode 3, and FIG. 3B is a top view. As shown in the figure, the wiring member 4 is bent, one end is connected to the bus bar electrode 3 on the light receiving surface side of one solar battery cell 2, and the other end is on the non-light receiving surface side of the adjacent solar battery cell 2. Connected to the bus bar electrode 3. The bending process of the wiring member 4 is performed before the wiring member 4 is placed on the support member 7.

支持部材7は、配線材接続部6の下方に配置されており、支持部材上下機構8により上下方向に移動可能とされている。支持部材7は、配線材接続部6で配線材4の接続を行う際に上昇して、配線材4の接続を行う太陽電池セル2に接触する。また、支持部材7は、搬送機構5が複数の太陽電池セル2を搬送している最中は、複数の太陽電池セル2に接触しない位置まで下降する。支持部材7の上下方向の移動距離は、特に限定されるものではないが、例えば2〜5mmである。   The support member 7 is disposed below the wiring member connection portion 6 and can be moved in the vertical direction by the support member vertical mechanism 8. The support member 7 rises when the wiring member 4 is connected at the wiring member connecting portion 6 and comes into contact with the solar battery cell 2 to which the wiring member 4 is connected. Further, the support member 7 is lowered to a position where it does not contact the plurality of solar cells 2 while the transport mechanism 5 is transporting the plurality of solar cells 2. The moving distance in the vertical direction of the support member 7 is not particularly limited, but is, for example, 2 to 5 mm.

支持部材7と接触する太陽電池セル2の裏面側には3本のバスバー電極3が形成されており、上昇してきた支持部材7の上面と最初に接触するのは、これら裏面側の3本のバスバー電極3に接触するように配置される配線材4である。ただし、配線材4とバスバー電極3の膜厚は薄いため、実際には、太陽電池セル2の裏面側の大部分が支持部材7の上面に接触することになる。   Three bus bar electrodes 3 are formed on the back surface side of the solar battery cell 2 in contact with the support member 7. The first contact with the upper surface of the support member 7 that has risen is the three on the back surface side. The wiring member 4 is arranged so as to be in contact with the bus bar electrode 3. However, since the wiring material 4 and the bus bar electrode 3 are thin, most of the back side of the solar battery cell 2 actually contacts the upper surface of the support member 7.

支持部材7の短手方向の幅(図1(a)のY方向長さ)は、2本のベルト11の間隔に収まる長さである。これにより、支持部材7が上下しても、ベルト11に接触するおそれはない。また、支持部材7の短手方向の幅は、当然のことながら、バスバー電極3の幅よりも広い。   The width of the support member 7 in the short direction (the Y direction length in FIG. 1A) is a length that fits in the interval between the two belts 11. Thereby, even if the support member 7 moves up and down, there is no possibility of contacting the belt 11. Further, the width of the support member 7 in the short direction is naturally larger than the width of the bus bar electrode 3.

また、支持部材7の長手方向の幅(図1(a)のX方向長さ)は、配線材4をハンダ付けする場合には、配線材接続部6が配線材4の接続を行うのに必要な長さ、より具体的には太陽電池セル2の1個分の長さ以上である。   In addition, the width in the longitudinal direction of the support member 7 (the length in the X direction in FIG. 1A) is such that when the wiring member 4 is soldered, the wiring member connecting portion 6 connects the wiring member 4. The required length, more specifically, the length of one solar cell 2 or more.

図4は支持部材7の長手方向(搬送方向)の幅を太陽電池セル2の4個分の長さにした例を示している。4個分の長さにした理由は、支持部材7の左端側の1セル分で太陽電池セル2の予備加熱を行い、その隣の1セル分で配線材4のハンダ付けを行い、その隣の1セル分で1回目の保温を行い、右端側の1セル分で2回目の保温を行うようにしたためである。2セル分で保温を行う理由は、ハンダ付け後の太陽電池セル2の温度を徐々に下げるためであり、1回目の保温温度よりも2回目の保温温度を低くしている。なお、図4の支持部材7の幅は一例であり、必ずしも4個分の幅にする必要はない。   FIG. 4 shows an example in which the width of the support member 7 in the longitudinal direction (conveying direction) is set to the length of four solar cells 2. The reason for the length of four pieces is that the solar cell 2 is preheated by one cell on the left end side of the support member 7, the wiring material 4 is soldered by the next one cell, and the next This is because the first heat insulation is performed for one cell and the second heat insulation is performed for one cell on the right end side. The reason why the temperature is maintained for two cells is to gradually lower the temperature of the solar battery cell 2 after soldering, and the second temperature is set lower than the first temperature. Note that the width of the support member 7 in FIG. 4 is an example, and the width is not necessarily limited to four.

支持部材7は、支持部材上下機構8により、上下方向(鉛直方向)に移動する。支持部材上下機構8は、図1(b)に示すように、上下動部材13と、エアシリンダ14と、エア管15と、エアシリンダ支持台16とを有する。上下動部材13は、支持部材7を載置した状態で上下に移動する。エアシリンダ14は、エア管15から空気を出し入れすることで、上下動部材13を上下に移動させる駆動力を発生する。エアシリンダ支持台16は、エアシリンダ14を載置する台であり、上下には移動せず固定されている。エアシリンダ支持台16は、図示のようにコの字形状であり、エアシリンダ支持台16の内部をベルト11が通過する。   The support member 7 is moved in the vertical direction (vertical direction) by the support member vertical mechanism 8. As shown in FIG. 1B, the support member vertical mechanism 8 includes a vertical movement member 13, an air cylinder 14, an air tube 15, and an air cylinder support base 16. The vertical movement member 13 moves up and down with the support member 7 placed thereon. The air cylinder 14 generates driving force that moves the vertical movement member 13 up and down by taking air in and out of the air pipe 15. The air cylinder support 16 is a table on which the air cylinder 14 is placed, and is fixed without moving up and down. The air cylinder support 16 is U-shaped as shown in the figure, and the belt 11 passes through the air cylinder support 16.

なお、エアシリンダ支持台16の形状は、その内部をベルト11が通過できるような構造であればよく、必ずしもコの字形状である必要はなく、例えば環状でもよい。   The shape of the air cylinder support 16 may be a structure that allows the belt 11 to pass through the inside thereof, and does not necessarily have a U shape, and may be, for example, an annular shape.

配線材接続部6で配線材4の接続を行う際には、支持部材7が太陽電池セル2に接触されるため、太陽電池セル2上のバスバー電極3に塗布されたフラックスが支持部材7の上面に付着するおそれがある。このため、図1(b)では、太陽電池セル2を載置する支持台7aと、この支持台7aが着脱可能に取り付けられる支持基台7bとで支持部材7を構成している。これにより、支持台7aの上面にフラックス等が付着した場合等、必要に応じて支持台7aを交換でき、フラックス付着の影響を受けにくくなる。   When connecting the wiring member 4 at the wiring member connecting portion 6, the support member 7 is brought into contact with the solar battery cell 2, so that the flux applied to the bus bar electrode 3 on the solar battery cell 2 is applied to the support member 7. There is a risk of adhering to the upper surface. For this reason, in FIG.1 (b), the supporting member 7 is comprised with the support stand 7a which mounts the photovoltaic cell 2, and the support base 7b to which this support stand 7a is attached so that attachment or detachment is possible. Thereby, when a flux etc. have adhered to the upper surface of the support stand 7a, the support stand 7a can be replaced as needed, and it becomes difficult to receive the influence of flux adhesion.

なお、支持部材7を支持台7aと支持基台7bで構成し、支持台7aを着脱可能にすることは必須ではない。支持部材7を一体構造にして、支持部材7の上面を定期的にクリーニングしてもよい。クリーニングは、手動で行ってもよいし、クリーニング部材を設けてもよい。   It is not essential that the support member 7 is composed of the support base 7a and the support base 7b so that the support base 7a is detachable. The support member 7 may be integrated and the upper surface of the support member 7 may be periodically cleaned. Cleaning may be performed manually or a cleaning member may be provided.

次に、本実施形態に係る配線材接続装置1による配線材接続工程を順に説明する。図5は配線材接続工程の一例を示すフローチャートである。   Next, the wiring material connection process by the wiring material connection device 1 according to the present embodiment will be described in order. FIG. 5 is a flowchart showing an example of the wiring material connecting step.

まず、支持部材上下機構8により支持部材7を上昇させた状態で、先頭の太陽電池セル2のバスバー電極3に接続するための配線材4が支持部材7上の所定位置に配置される(工程S1)。   First, in a state where the support member 7 is raised by the support member up-and-down mechanism 8, the wiring member 4 for connecting to the bus bar electrode 3 of the leading solar cell 2 is disposed at a predetermined position on the support member 7 (process). S1).

次に、多数の太陽電池セルがスタックされたラックから、不図示のロボットの吸着パッドにて先頭の太陽電池セル2の受光面を吸着させた状態で搬送し、この太陽電池セル2の非受光面側のバスバー電極3を配置済みの配線材4に接触させる(工程S2)。   Next, it is transported from a rack in which a large number of solar cells are stacked with the light receiving surface of the first solar cell 2 adsorbed by a suction pad of a robot (not shown). The bus bar electrode 3 on the surface side is brought into contact with the already arranged wiring material 4 (step S2).

次に、工程S2で搬送した太陽電池セル2の受光面側のバスバー電極3に、別の配線材4を接触させる(工程S3)。   Next, another wiring member 4 is brought into contact with the bus bar electrode 3 on the light receiving surface side of the solar battery cell 2 conveyed in the step S2 (step S3).

次に、工程S2で搬送した太陽電池セル2の受光面側と非受光面側の配線材4に加熱手段を近づけて加熱し、配線材4とバスバー電極3をハンダ付けする(工程S4)。   Next, the wiring member 4 and the bus bar electrode 3 are soldered by bringing the heating means closer to the wiring member 4 on the light-receiving surface side and the non-light-receiving surface side of the solar battery cell 2 conveyed in step S2 (step S4).

配線材4とバスバー電極3とのハンダ付けが完了すると、支持部材上下機構8により支持部材7を下降させる(工程S5)。支持部材7が下降すると、太陽電池セル2は、2本のベルト11のみで支持される状態になり、太陽電池セル2がフラックス等を介して支持部材7に貼り付くおそれを回避できる。支持部材7が下降を始める時点では、フラックスはまだ完全には固まっていないため、仮に支持部材7にフラックスが付着したとしても、支持部材7の下降時に、太陽電池セル2が支持部材7に貼り付いた状態で支持部材7とともに下降するおそれはない。   When the soldering of the wiring member 4 and the bus bar electrode 3 is completed, the support member 7 is lowered by the support member vertical mechanism 8 (step S5). When the supporting member 7 is lowered, the solar battery cell 2 is supported by only the two belts 11, and the risk of the solar battery cell 2 sticking to the supporting member 7 via a flux or the like can be avoided. At the time when the support member 7 starts to descend, the flux is not yet completely solidified. Therefore, even if the flux adheres to the support member 7, the solar battery cell 2 is attached to the support member 7 when the support member 7 is lowered. There is no possibility of descending with the support member 7 in the attached state.

支持部材7の下降が完了すると、次に、搬送機構5は搬送方向に2本のベルト11を移動させる。移動距離は、太陽電池セル2の搬送方向長さと同じであり、ここでは配線済みの太陽電池セル2を1セル分移動させる(工程S6)。   When the lowering of the support member 7 is completed, the transport mechanism 5 next moves the two belts 11 in the transport direction. The moving distance is the same as the length of the solar cell 2 in the carrying direction, and here, the wired solar cell 2 is moved by one cell (step S6).

搬送機構5が太陽電池セル2を搬送している最中は、支持部材7は下降しているため、太陽電池セル2は、2本のベルト11のみで支持され、フラックス等が支持部材7に付着して太陽電池セル2が支持部材7に貼り付くおそれはなくなる。また、搬送中に、フラックスとハンダは固まるため、その後に、支持部材7が太陽電池セル2に接触したとしても、太陽電池セル2が支持部材7に貼り付くことはなく、太陽電池セル2の破損を防止できる。   While the transport mechanism 5 is transporting the solar battery cell 2, the support member 7 is lowered. Therefore, the solar battery cell 2 is supported only by the two belts 11, and flux or the like is applied to the support member 7. There is no possibility that the solar battery cell 2 adheres and sticks to the support member 7. Further, since the flux and the solder are solidified during the transportation, even if the support member 7 comes into contact with the solar battery cell 2 after that, the solar battery cell 2 is not attached to the support member 7. Damage can be prevented.

上述した工程S6で、太陽電池セル2の1セル分の搬送が完了すると、支持部材上下機構8により支持部材7を上昇させて、配線済みの太陽電池セル2に支持部材7を接触させる。(工程S7)。   When the transportation of one solar cell 2 is completed in the above-described step S6, the support member 7 is raised by the support member up-and-down mechanism 8, and the support member 7 is brought into contact with the wired solar cell 2. (Step S7).

その後、工程S2〜S7の工程を、太陽電池ストリング10を構成する太陽電池セル2の数であるn回(nは2以上の整数)繰り返す(工程S8)。   Then, the process of process S2-S7 is repeated n times (n is an integer greater than or equal to 2) which is the number of the photovoltaic cells 2 which comprise the solar cell string 10 (process S8).

n回目の工程S7を行った後に、太陽電池ストリング10の最後尾の太陽電池セル2の受光面側のバスバー電極3に配線材4を接触させて、加熱手段にてハンダ付けを行い、その後に支持部材7を下降させる(工程S9)。以上の工程により、太陽電池ストリング10が完成する。   After performing the n-th step S7, the wiring member 4 is brought into contact with the bus bar electrode 3 on the light receiving surface side of the last solar battery cell 2 of the solar battery string 10, and soldering is performed by a heating means, and thereafter The support member 7 is lowered (step S9). The solar cell string 10 is completed through the above steps.

図1(a)に示したように、本実施形態では、太陽電池セル2の対向する2辺の近傍を2本のベルト11で支持するため、2本のベルト11の間で、太陽電池セル2が下方に反るおそれがある。反りの大きさは、太陽電池セル2の膜厚や材料などに依存するが、反りが問題になる場合は、2本のベルト11が載置される吸着部材12の上面を、図6に示すように、太陽電池セル2が配置される内側方向から外側方向にかけて高さが連続的に低くなる傾斜面にすることで、2本のベルト11が太陽電池セル2を引っ張り合うようになり、反りを軽減することができる。   As shown in FIG. 1 (a), in this embodiment, solar cells 2 are supported between two belts 11 in order to support the vicinity of two opposing sides of the solar cells 2 with two belts 11. 2 may warp downward. Although the magnitude of the warpage depends on the film thickness and material of the solar battery cell 2, when warpage becomes a problem, the upper surface of the adsorption member 12 on which the two belts 11 are placed is shown in FIG. Thus, by making the inclined surface the height continuously lowering from the inner side to the outer side where the solar cells 2 are arranged, the two belts 11 come to pull the solar cells 2 and warp. Can be reduced.

このように、本実施形態では、太陽電池セル2のバスバー電極3に配線材4を接続する際には支持部材7を太陽電池セル2に接触させてバスバー電極3と配線材4のハンダ付けを行い、ハンダ付けが完了すると、支持部材7を下降させてから、太陽電池セル2を搬送するため、ハンダ付けの際にバスバー電極3の表面から溶け出したフラックスを介して太陽電池セル2が支持部材7に貼り付くおそれがなくなる。これにより、配線材4の接続時の太陽電池セル2の破損を防止できる。   Thus, in this embodiment, when connecting the wiring member 4 to the bus bar electrode 3 of the solar battery cell 2, the support member 7 is brought into contact with the solar battery cell 2 to solder the bus bar electrode 3 and the wiring member 4. When the soldering is completed, the support member 7 is lowered, and then the solar cell 2 is transported, so that the solar cell 2 is supported via the flux that has melted from the surface of the bus bar electrode 3 during the soldering. There is no risk of sticking to the member 7. Thereby, the damage of the photovoltaic cell 2 at the time of connection of the wiring material 4 can be prevented.

本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。   The aspect of the present invention is not limited to the individual embodiments described above, and includes various modifications that can be conceived by those skilled in the art, and the effects of the present invention are not limited to the contents described above. That is, various additions, modifications, and partial deletions can be made without departing from the concept and spirit of the present invention derived from the contents defined in the claims and equivalents thereof.

1 配線材接続装置、2 太陽電池セル、3 バスバー電極、4 配線材、5 搬送機構、6 配線材接続部、7 支持部材、8 支持部材上下機構、10 太陽電池ストリング、11 ベルト、12 吸着部材、13 上下動部材、14 エアシリンダ、15 エア管、16 エアシリンダ支持台   DESCRIPTION OF SYMBOLS 1 Wiring material connection apparatus, 2 Solar cell, 3 Bus-bar electrode, 4 Wiring material, 5 Conveyance mechanism, 6 Wiring material connection part, 7 Support member, 8 Support member vertical mechanism, 10 Solar cell string, 11 Belt, 12 Adsorption member , 13 Vertical movement member, 14 Air cylinder, 15 Air pipe, 16 Air cylinder support

Claims (9)

所定方向に配列された複数の太陽電池セルの対向する2辺の近傍を支持して搬送する搬送機構と、
前記複数の太陽電池セルのうち、隣接する2つの太陽電池セルの一方の受光面側のバスバー電極と、他方の非受光面側のバスバー電極とに配線材を接続する配線材接続部と、
前記配線材接続部の下方に配置され、上下方向に移動可能で、前記配線材接続部が前記バスバー電極と前記配線材との接続を行う際に上昇して前記配線材が接続される前記2つの太陽電池セルに接触し、前記搬送機構が前記複数の太陽電池セルを搬送している最中は前記複数の太陽電池セルに接触しない位置まで下降する支持部材と、を備えることを特徴とする配線材接続装置。
A transport mechanism that supports and transports the vicinity of two opposing sides of a plurality of solar cells arranged in a predetermined direction;
Of the plurality of solar cells, a wiring material connecting portion for connecting a wiring material to the bus bar electrode on one light receiving surface side of the two adjacent solar cells and the bus bar electrode on the other non-light receiving surface side;
The second wiring member is disposed below the wiring member connecting portion and is movable in the vertical direction, and is raised when the wiring member connecting portion connects the bus bar electrode and the wiring member. A support member that contacts one solar cell and descends to a position that does not contact the plurality of solar cells while the transport mechanism is transporting the plurality of solar cells. Wiring material connection device.
前記搬送機構は、前記複数の太陽電池セルの対向する2辺の近傍を支持する2本のベルトを有し、
前記複数の太陽電池セルのそれぞれが有する前記バスバー電極は、前記2本のベルトが支持する前記2辺の近傍よりも内側に配置されることを特徴とする請求項1に記載の配線材接続装置。
The transport mechanism has two belts that support the vicinity of two opposing sides of the plurality of solar cells,
2. The wiring member connection device according to claim 1, wherein the bus bar electrode included in each of the plurality of solar cells is disposed inside the vicinity of the two sides supported by the two belts. .
前記搬送機構が前記複数の太陽電池セルを搬送している最中は、前記バスバー電極および前記配線材は前記搬送機構には接触せず、前記複数の太陽電池セルは前記2本のベルトに支持されて搬送されることを特徴とする請求項2に記載の配線材接続装置。   While the transport mechanism is transporting the plurality of solar cells, the bus bar electrode and the wiring member do not contact the transport mechanism, and the plurality of solar cells are supported by the two belts. The wiring material connecting device according to claim 2, wherein the wiring material connecting device is conveyed. 前記搬送機構が前記複数の太陽電池セルを搬送している最中は、前記バスバー電極および前記配線材は、前記搬送機構と前記支持部材とのいずれにも接触せず、前記複数の太陽電池セルは前記2本のベルトのみに支持されて搬送されることを特徴とする請求項3に記載の配線材接続装置。   While the transport mechanism is transporting the plurality of solar cells, the bus bar electrode and the wiring member do not contact either the transport mechanism or the support member, and the plurality of solar cells. The wiring material connecting device according to claim 3, wherein the wiring material is supported and conveyed only by the two belts. 前記支持部材は、上昇しても前記2本のベルトに接触しないように、前記2本のベルトの間隔よりも狭い幅を有することを特徴とする請求項2乃至4のいずれかに記載の配線材接続装置。   5. The wiring according to claim 2, wherein the support member has a width narrower than an interval between the two belts so as not to come into contact with the two belts even when the support member is raised. Material connection device. 上面に載置された前記2本のベルトを上面に吸着させる吸着力を発生する吸着部材を備え、
前記吸着部材の上面は、前記複数の太陽電池セルが配置される内側方向から外側方向にかけて高さが連続的に低くなる傾斜面であることを特徴とする請求項2乃至5のいずれかに記載の配線材接続装置。
An adsorbing member that generates an adsorbing force that adsorbs the two belts placed on the upper surface to the upper surface;
The upper surface of the adsorption member is an inclined surface whose height continuously decreases from the inner side to the outer side where the plurality of solar cells are arranged. Wiring material connection device.
前記支持部材は、前記配線材接続部が前記配線材を接続する1つ以上の前記太陽電池セルを載置可能な大きさの支持台を有することを特徴とする請求項1乃至6のいずれかに記載の配線材接続装置。   The said support member has a support stand of the magnitude | size which can mount the 1 or more said photovoltaic cell which the said wiring material connection part connects the said wiring material, The any one of Claim 1 thru | or 6 characterized by the above-mentioned. Wiring material connecting device described in 1. 前記支持台は、4つ以上の太陽電池セルを支持可能な大きさを有することを特徴とする請求項7に記載の配線材接続装置。   The wiring member connecting apparatus according to claim 7, wherein the support base has a size capable of supporting four or more solar cells. 前記支持部材は、前記支持台を着脱可能に取り付ける支持基台を有することを特徴とする請求項7または8に記載の配線材接続装置。   The wiring member connecting apparatus according to claim 7, wherein the support member has a support base to which the support base is detachably attached.
JP2012105928A 2012-05-07 2012-05-07 Wiring material connection device Pending JP2013233553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105928A JP2013233553A (en) 2012-05-07 2012-05-07 Wiring material connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105928A JP2013233553A (en) 2012-05-07 2012-05-07 Wiring material connection device

Publications (1)

Publication Number Publication Date
JP2013233553A true JP2013233553A (en) 2013-11-21

Family

ID=49760100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105928A Pending JP2013233553A (en) 2012-05-07 2012-05-07 Wiring material connection device

Country Status (1)

Country Link
JP (1) JP2013233553A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502525A (en) * 2014-01-13 2017-01-19 ソーラーシティ コーポレーション Fabrication of solar cell module with low resistivity electrode
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US9887306B2 (en) 2011-06-02 2018-02-06 Tesla, Inc. Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US10084099B2 (en) 2009-11-12 2018-09-25 Tesla, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US10084107B2 (en) 2010-06-09 2018-09-25 Tesla, Inc. Transparent conducting oxide for photovoltaic devices
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10164127B2 (en) 2013-01-11 2018-12-25 Tesla, Inc. Module fabrication of solar cells with low resistivity electrodes
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
CN112975025A (en) * 2021-02-26 2021-06-18 宁夏小牛自动化设备有限公司 Welding method and device for repairing solar cell string
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084099B2 (en) 2009-11-12 2018-09-25 Tesla, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US10084107B2 (en) 2010-06-09 2018-09-25 Tesla, Inc. Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9887306B2 (en) 2011-06-02 2018-02-06 Tesla, Inc. Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US10115839B2 (en) 2013-01-11 2018-10-30 Tesla, Inc. Module fabrication of solar cells with low resistivity electrodes
US10164127B2 (en) 2013-01-11 2018-12-25 Tesla, Inc. Module fabrication of solar cells with low resistivity electrodes
JP2017502525A (en) * 2014-01-13 2017-01-19 ソーラーシティ コーポレーション Fabrication of solar cell module with low resistivity electrode
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US10181536B2 (en) 2015-10-22 2019-01-15 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
CN112975025A (en) * 2021-02-26 2021-06-18 宁夏小牛自动化设备有限公司 Welding method and device for repairing solar cell string

Similar Documents

Publication Publication Date Title
JP2013233553A (en) Wiring material connection device
JP4903021B2 (en) Tab lead soldering apparatus and soldering method
KR102025664B1 (en) Tabbing apparatus and controling method thereof
KR101589789B1 (en) Method and device for producing a solar panel using a carrier
KR101190563B1 (en) Laminating apparatus
JP4248389B2 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
JP2000022188A (en) Soldering system for tab lead
TW201343307A (en) Soldering apparatus of photovoltaic devices tab leads
KR101530035B1 (en) Apparatus for manufacturing solar cell string
KR102176212B1 (en) Tabbing apparatus
JP4358651B2 (en) Tab lead soldering apparatus and tab lead soldering method
JP5566319B2 (en) Method and system for manufacturing solar cell module
JP5053347B2 (en) Semiconductor cell, solar cell module, lead wire connecting device and connecting method
JP5100629B2 (en) Manufacturing method of solar cell module
JP5274326B2 (en) Manufacturing method of solar cell module
CN217452488U (en) Battery piece replacement repairing device and battery string repairing equipment
CN213003173U (en) Double-track nitrogen gas stove that PCB circuit board reflow soldering used
JP4562047B1 (en) Solar cell module manufacturing method and apparatus
WO2017026286A1 (en) Solder bonding method for mounting component and solder bonding apparatus for mounting component
JP2018046198A (en) String manufacturing method and string manufacturing apparatus
JP2011146482A (en) Apparatus and method for manufacturing solar cell module
JPH0215872A (en) Soldering device
JP2009231711A (en) Manufacturing apparatus of semiconductor substrate with electric wire, and method of manufacturing semiconductor substrate with electric wire
CN216872001U (en) Righting mechanism, frame placing device and solar laminating machine
JP2012064871A (en) Connection method and device of solar cell connection member